автореферат диссертации по транспорту, 05.22.19, диссертация на тему:Совершенствование систем управления морскими подвижными объектами на основе идентификации и адаптации

кандидата технических наук
Шейхот, Андрей Константинович
город
Владивосток
год
2008
специальность ВАК РФ
05.22.19
Диссертация по транспорту на тему «Совершенствование систем управления морскими подвижными объектами на основе идентификации и адаптации»

Автореферат диссертации по теме "Совершенствование систем управления морскими подвижными объектами на основе идентификации и адаптации"

На правах рукописи

ШЕЙХОТ Андрей Константинович

ООЗ 17 15-78

СОВЕРШЕНСТВОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ

МОРСКИМИ ПОДВИЖНЫМИ ОБЪЕКТАМИ НА ОСНОВЕ ИДЕНТИФИКАЦИИ И АДАПТАЦИИ

Автореферат диссертации на соискание ученой степени кандидата технических наук

05 22 19 - Эксплуатация водного транспорта, судовождение

Владивосток 2008

О 5 (ЛЭЧ 2008

003171578

Работа выполнена в Федеральном государственном образовательном учреждении высшего профессионального образования "Морского государственного университета им. адм Г И Невельского"

Научный руководитель доктор технических наук, профессор

Дыда Александр Александрович

Официальные оппоненты доктор технических наук, профессор

Завьялов Виктор Валентинович

кандидат технических наук, доцент Юрчик Федор Дмитриевич

Ведущая организация Тихоокеанский военно-морской институт им

С О Макарова, г Владивосток

Защита состоится 25 июня 2008 года в 16 часов на заседании диссертационного совета Д 223 005 01 при Морском государственном университете им адм Г И Невельского по адресу 690059, г Владивосток, ул Верхнепортовая, 50а, ауд 241, факс (4232) 41-49-68

С диссертацией можно ознакомиться в читальном зале библиотеки учебного корпуса № 1 Морского государственного университета имени Г И Невельского.

Автореферат разослан 19 мая 2008 года.

Ученый секретарь диссертационного совета

Резник А Г

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Морские подвижные объекты (МПО) представляют собой практически важный класс динамических систем, функционирующих в условиях значительного влияния внешней среды К МПО относятся наиболее распространенные во-доизмещающие суд а, суда с динамическим принципом поддержания (на воздушной подушке, на подводных крыльях), подводные аппараты-роботы, поисково-разведочные комплексы и др Одной из важнейших проблем, связанных с построением и эксплуатацией МПО, является создание высококачественных систем управления, обеспечивающих желаемую динамику и точность отработки программных траекторий движения

Решению этой проблемы посвящены работы российских и зарубежных исследователей М.Д Агеева, Ю АЛукомского, В Г. Пешехонова, Д А Скороходова, ВС Ястребова, Я И Войткунского, ВС Чугунова, ЕН. Пантова, НН Махина, Б Б Шереметева, А М Филатова, В М Корчанова, В В Рождественского, ТI Fossen, О Egeland, D R Yorger, J G. Cooke, J -J E Slotine, L Healey, R Sutton и др Движение МПО по поверхности или в толще водной среды обладает существенными особенностями, в значительной мере затрудняющими построение его системы управления. К ним относятся нестационарность МПО, нелинейность уравнений динамики, многомерность и многосвязность, структурно-параметрическая неопределенность, наличие внешних возмущений

Нестационарность МПО выражается в изменении его параметров с течением времени, связанных, например, с загрузкой судна, изменением характеристик обтекаемости поверхности судна и другими факторами

Нелинейность уравнений динамики МПО является следствием более общих уравнений движения твердого тела в пространстве, например, уравнений Лагранжа 2-го рода Кроме того, нелинейность моделей МПО в существенной мере связана с влиянием внешней среды, в которой движется объект Известно, что силы и моменты вязкого сопротивления представляют собой сложные нелинейные функции компонент вектора линейной и угловой скоростей МПО Определение таких функциональных зависимостей, как правило, выполняется на основе дорогостоящих экспериментальных исследований и требует значительных временных ресурсов Для практического использования наиболее привлекательными являются упрощенные линеаризованные модели МПО

Многомерность и многосвязность МПО как объекта управления заключается в наличии нескольких взаимосвязанных каналов целенаправленного воздействия на его поведение Так, например, при управлении курсом судна требуется одновременно обеспечить малый крен (стабилизировать относительно ну-

ля) Построение системы управления МПО значительно упрощается, если взаимовлияние каналов незначительно или его можно компенсировать Структурно-параметрическая неопределенность динамики МПО связана с отсутствием достоверных данных о параметрах объекта и невозможностью получения абсолютно адекватных уравнений движения МПО Примером параметрической неопределенности могут быть присоединенные массы и моменты инерции МПО, которые заранее невозможно вычислить Функциональная неопределенность связана с неточным знанием аналитического вида зависимостей, входящих в уравнения движения МПО

Наличие внешних возмущений - ветра, волн, течений - заметной снижает качество процессов управления МПО, и следовательно, ухудшает безопасность плавания, надежность эксплуатации и другие важные характеристики судна или другого объекта.

Обзор и анализ теоретических исследований и практических разработок показал, что традиционные линейные регуляторы (ПИ, ПИД и др) не обеспечивают высокого качества управления и для дальнейшего совершенствования средств и систем управления движением МПО требуется переход к новым методам синтеза управляющих устройств и алгоритмов, опирающимся на более точные и сложные математические модели объектов

Таким образом, в настоящее время актуальным является построение и изучение новых перспективных систем автоматического управления движением МПО, учитывающих специфику этих сложных динамических объектов

В связи со сказанным, цель настоявшей диссертационной работы состоит в разработке и исследовании систем автоматического управления движением МПО, эффективных в сложных условиях их эксплуатации

Для достижения поставленной цели в диссертационной работе ставятся и решаются следующие задачи

1 Анализ специфики условий функционирования МПО и их математических моделей,

2 Исследование влияния нестационарности параметров МПО и внешних возмущений на качество процессов управления при использовании типовых регуляторов,

3 Разработка и исследование систем и алгоритмов адаптивной идентификации параметров МПО при наличии внешних возмущений,

4 Разработка и исследование систем и алгоритмов адаптивного управления движением МПО

5 Построение систем управления движением МПО на основе нелинейной модели

6 Разработка нейросетевых систем управления движением МПО на основе нелинейной модели

Основные результаты и положения, выносимые на защиту.

1 Анализ специфики линейных и нелинейных многомерных математических моделей МПО

2 Анализ влияния нестационарности и неопределенности параметров МПО на качества переходных процессов в системах управления их движением использовании типовых линейных регуляторов и фиксированными настройками

3. Системы адаптивной идентификации параметров МПО, в том числе, с адаптивной подстройкой к уровню внешних возмущений

4 Система адаптивного управления движением МПО с явной эталонной моделью

5 Нелинейная система управления движением МПО с неявной эталонной моделью

6 Нейросетевая система управления движением МПО с неявной эталонной моделью

Методы исследования. При выполнении работы использовались методы

современной теории автоматического управления - идентификации, адаптивного, нелинейного, нейросетевого управления, матричного и векторного исчисления, теории дифференциальных уравнений, математического моделирования, а также интенсивные численные эксперименты на компьютере

Научная новизна.

1 Выявлены факторы нестационарности и структурно-параметрической неопределенности, специфические для морских подвижных объектов

2 Показана работоспособность известных алгоритмов и систем параметрической идентификации для линеаризованных моделей МПО, а также предложены модификации систем (алгоритмов) параметрической идентификации МПО с адаптивной подстройкой к уровню внешних возмущений

3 По обобщенной нелинейной модели МПО выполнен синтез системы управления движением с неявной эталонной моделью и предложено программное обеспечение для получения законов управления в символьной форме

4 Предложены нейросетевые системы и алгоритмы управления, основанные на обобщенной нелинейной модели МПО, а также новые алгоритмы обучения многослойных нейронных сетей

Достоверность результатов. Достоверность результатов подтверждается корректным использованием строгих математических методов исследования, применением экспериментально подтвержденных линейных и нелинейных математических моделей различных типов МПО,

Практическая ценность. Практическая ценность разработанных систем и алгоритмов адаптивной идентификации состоит в том, что они могут быть непосредственно использованы для определения параметров МПО, в том числе, и в условиях внешних возмущений, по экспериментальным данным, хранящимся в виде файлов

Применение предложенных адаптивных и нейросетевых систем управления позволяет уменьшить трудоемкость работ, связанных с ручной перенастройкой регуляторов

Использование разработанного программного обеспечения для символьного синтеза позволяет ускорить процесс построения системы управления по нелинейным моделям МПО

Апробация результатов. Основные результаты диссертационной работы обсуждались и получили одобрение на регулярной конференции Международной федерации автоматического управления IF AC «Control Application in Marine Systems» CAMS'2007 («Применение управления в морских системах») (Bol, Croatia, 2007), Региональной научно-технической конференции «Знание-творчество-профессионализм» - МГУ им адм Г И Невельского, 2005, Международная научно-техническая конференция «Молодежь - наука - инновации» МГУ им адм Г И Невельского, 2007, 54-я Региональная научно-техническая конференция «Молодежь - наука - инновации» МГУ им адм Г И Невельского, 2006, на научно-технических конференциях университета, семинарах кафедры автоматических и информационных систем

Публикации По результатам исследования опубликовано 8 печатных работ, в том числе входящая в перечень ВАК

Структура и объем работы Диссертация состоит из введения, четырех глав, заключения, приложений, списка литературы, содержащего 94 наименования Работа изложена на 126 страницах машинописного текста, содержит 80 рисунков и 3 таблицы

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении показана актуальность проблемы автоматизированного аналитического синтеза систем управления Обсуждается состояние и развитие проблемы автоматизации, намечены основные пути решения, сформулированы цели и задачи исследований, дана общая характеристика работы

Первая глава посвящена анализу математических моделей МПО Морские подвижные объекты представляют собой практически важный класс динамических систем (объектов) Особенности движения МПО связаны, в первую очередь, с тем, что их функционирование осуществляется либо на границе двух сред (атмосфера - океан), либо в водной толще. При движении МПО в

водной среде происходит, кроме прочего, также перемещение присоединенных водных масс Количественная оценка присоединенных масс и моментов инерции, в общем случае, затруднена в связи со сложной геометрической формой МПО, неопределенностью условий обтекания корпуса, изменчивостью загрузки МПО и другими факторами

Кроме того, МПО при своем движении испытывает вязкое сопротивление водной среды, оценка которого также затруднена. Силы и моменты вязкого сопротивления связаны существенно нелинейными зависимостями со скоростью движения МПО, его осадкой, формой корпуса, шероховатостью поверхности и др

Для управления движением МПО характерны два основных типа задач стабилизация какого-либо кинематического параметра (например, стабилизация крена судна вблизи нуля),

обеспечение желаемого программного изменения некоторого кинематического параметра (к примеру, отслеживание заданного программного курса судна или движение автономного подводного аппарата на заданном расстоянии от дна)

В общем случае МПО представляет собой многомерный управляемый объект и проектируемая система автоматического управления должна обеспечивать достижение сразу нескольких целей (стабилизацию одних переменных, программное изменение других, компенсацию возмущений внешней среды, оптимизацию заданных показателей и др) Для решения подобных задач в современной теории управления широко используются принцип декомпозиции большой системы на подсистемы меньшей размерности и принцип децентрализации управления Отметим, что при декомпозиции системы на более простые подсистемы взаимодействие между ними можно рассматривать как возмущения, аналогичные возмущающим воздействиям, которое оказывает внешняя среда Указанные принципы будут использоваться в настоящей работе при создании систем и алгоритмов автоматического управления движением МПО

В настоящее время разработано значительное количество математических моделей МПО - от простых линейных одномерных до чрезвычайно сложных многомерных нелинейных моделей Степень детализации применяемых математических моделей МПО, в первую очередь, определяется характером решаемых задач

С другой стороны, адекватная математическая модель МПО может быть достаточно простой, например, модель водоизмещающего судна при решении задачи управления курсом.

Распространенными линеаризованными моделями МПО (судна) являются модели Номото 1-го порядка

\У(в) = ——— з(Тз +1)

и 2-го порядка

W(s)= k-(T°S + 1)

s(T,s + l)(T2s +1)

Особенность моделей состоит в том, что коэффициенты и постоянные времени нестационарны и варьируются с изменением условий движения судна

Рассмотрена также математическая модель автономного подводного аппарата (АПА) и выполнен ее краткий анализ Подводный аппарат, обладающий 6 степенями свободы, которым соответствуют три угловых и три линейных координаты Кинематические уравнения вращательного движения АПА, использующие углы Эйлера, имеют следующий вид

d8 (covcos8sini|/ + (ozsinv|/sin0)

— = юх---

dt cosvy

dtp (to, cos£> + (y, sin0) dt cos(c

dw

—— = a>, cos0 + iu„ sin0 dt y

При записи модели используются следующие переменные 0,(р,ц/- углы Эйлера, {C0x,(0y,(0z)r - вектор угловой скорости , выраженной на проекциях на связанные оси координат

Кинематические уравнения переносного (линейного) движения АПА имеют следующий вид dx

— = Vx cos <р cos ц/ -Vy cos <p cos 9 sin y + Vy sinpsin0 +

+ Vt cos^smy/sinfl + K, cos0smf> dy

= K cosiy + Vy cos у/cos0 - Vt cos у/s in 0 dz

— = -Vx cos у sin + Vy cos p sin 0 + Vy cos0sin$)sin^ + + Vt cos (p cos 0 - V, cos <p sin 4/ sin в

где {x,y,z)T- координаты АПА в инерциальной системе, (Vx,Vy,Vz)T - проекции вектора линейной скорости АПА на связанные с ним оси координат

Уравнения динамики АПА представляются следующей системой нелинейных дифференциальных уравнений 6-го порядка (М + Лп )VI - My СЙ>2 + (А/ + Я33 )V2ay - (М + Я22 )Vya>2 + + My caxú)y + P¡ sin у/ = Fx (М + Л22 )Vy + (М + Лп )Vxa>z - (М + Л]3 )V2mx -

- Мус{а2 + <охг) + Р, cos 4/ cos в = Fy

(М + Лзз)К2 + (М + Л,2)Ууа>х + Муссо1 -+ МусО)уО)г-Р, СОБ^г/БШ в = Рг

V* +«£ +Лб)-Ц +¿¡№4+ (Л + Л,бН + ((■/, + Д55) - (Л + Ж«, -

-МусУх+(Л22-Л11)У1Уу+Му^тч,-Мус{У1а>у-Ууа>1) = М, Здесь М- масса АПА, 3у,3 г - главные моменты инерции АПА, ЛиЛг'^зз - присоединенные массы АПА, Л44,Л55,Л66 - присоединенные моменты инерции АПА, Рх,Ру,Рг, Мх, Му, М2 - компоненты суммарного вектора силы и момента силы, действующие на АПА, Р1 - плавучесть АПА, ус - метацентрическая высота

Математическую модель динамики МПО, представляющую собой уравнениями Лагранжа, часто удобно записывать в виде

о(ч)ч+в(ч,ч)ч+с(ч,ч) = и

где я - вектор обобщенных координат МПО, £> - положительно-определенная матрица инерции МПО, В - матрица, соответствующая центробежным и корио-лисовым силам и моментам сил, в - вектор сил и моментов, определяемых весом и плавучестью МПО, а также вязким сопротивлением, и - вектор управляющих и других сил и моментов

В поведении АПА, как следует из приведенной математической модели, имеется существенная взаимосвязь различных подсистем, особенно проявляющаяся при глубоком маневрировании Таким образом, АПА относится к классу многомерных управляемых динамических объектов

Используемый в настоящей работе адаптивный подход к построению систем управления традиционно позволяет совместить во времени этапы исследования (идентификации) объекта и управления им Преимущество адаптивного подхода к построению систем управления состоит также и в том, что в процессе эксплуатации управляемого объекта его характеристики могут изменяться непредсказуемым образом, например, с изменением условий плавания МПО, обрастанием корпуса, сменой загрузки и др В связи с этим, адаптивный подход дает возможность в определенной мере сократить этапы проектирования систем

управления МПО за счет отказа от построения слишком детальной математической модели МПО и части дорогостоящих экспериментальных исследований

При движении МПО по поверхности океана или в его толще внешняя среда оказывает значительное влияние на объест. Водоизмещающее надводное судно подвергается воздействию волн, ветра, течений Ветро-волновые возмущения оказывают отрицательное влияние на характер движения МПО, качество процессов управления, ухудшают эксплуатационные параметры и надежность судна Кроме того, воздействие внешних возмущений ведет к увеличения расхода ресурсов на управление

Одним из типичных видов внешних возмущений является так называемое регулярное волнение Такой вид волнения преобладает в открытых акваториях и считается основным, постоянно действующим на судно возмущением Регулярное волнение характеризуется высотой волны, ее длиной (частотой), фазовой скоростью Различают также глубоководные и мелководные волны.

В настоящее время получили распространение математические модели регулярного волнения в виде одной или нескольких гармонических составляющих

г

v(t) = a0+X>, sinira.t + tp,), 1=1

где параметры ао, ar = const - амплитуды гармоник,

В случае необходимости построения математической модели внешнего возмущения, содержащего несколько гармонических составляющих, соответствующая динамическая система принимает форму

Si 0 1 0 0

-со? 0 0 0

0 0 0 1

0 0 0

Размерности векторов коэффициентов и состояния, очевидно, становятся равными 2т Вводя обозначение для матрицы

"0100"

-ю? ООО Г= 1

0 0 0 1

0 0 -со? 0

запишем математическую модель (генератора) регулярного внешнего возмущения

v = cTÇ

Анализ приведенных выше и других существующих математических моделей МПО показывает, что в большинстве случаев они могут быть представлены в двух основных видах

- линейная (линеаризованная) модель,

- нелинейная модель

Кроме приведенной модели, имеет распространение также линейная (относительно вектора состояния) модель вида

х = А(х)х + Ви,

которая учитывает влияние некоторых переменных вектора состояния МПО (например, дрейфа) на коэффициенты уравнений

Важным частным случаем нелинейной динамической модели МПО является следующая

x = f(x) + g(x)u,

Более полные модели МПО, учитывающие воздействие внешних возмущений, принимают следующую форму

линейная модель

х = Ax + Bu + v(t),

нелинейная модель

x = f(x) + g(x)u + v(t), Присоединяя к линейной модели МПО модель внешних возмущений, получим следующую динамическую систему

х = Ax + Bu + v(t) v = cTÇ

Аналогично записывается обобщенная нелинейная математическая модель

МПО

x = f(x) + g(x)u + v(t), y = dTx,

Ç = n;,

v = cT4

Во второй главе исследуется влияние параметрической неопределенности и внешних возмущений на процессы управления МПО Исследуется связь каче-

ства процессов управления движением МПО с их параметрами На примерах систем управления курсом судна показано, что применение традиционных регуляторов (ПИ, ПИД и т п) часто не обеспечивает удовлетворительного качества переходных процессов в системе Показывается, что причина ухудшения качества процессов управления заключается в нестационарности, неопределенности параметров МПО, а также во влиянии внешних возмущений

В современной постановке задачи требования к системе управления могут быть предъявлены в форме соответствия некоторой эталонной (желаемой) модели, записанной в виде набора (системы) дифференциальных уравнений, которые описывают требуемую реакцию на входное задающее воздействие В случае, когда эталонная система является линейной и стационарной, желаемая динамика может быть эквивалентно представлена некоторой передаточной функцией

Получены соотношения, связывающие параметры управляемого объекта и конкретных законов управления (регуляторов), обеспечивающих эталонную динамику Показано теоретически и подтверждено численными экспериментами, что использование типовых линейных регуляторов с фиксированными параметрами не позволяет сохранить высокое качество процессов управления при изменении режимов движения и параметров МПО

Для повышения качества систем управления МПО перспективным представляется применение подстройки параметров регуляторов в соответствии с текущими значениями параметров МПО на основе их идентификации и использование принципов адаптивного управления

В третьей главе решается задача адаптивная идентификация параметров МПО Кратко рассмотрены теоретические основы применяемого метода скоростного градиента, развитого в работах А Л Фрадкова

Далее метод скоростного градиента применен для построения системы идентификации параметров линеаризованной модели МПО Для определенности была выбрана математическая модель Номото 2-го порядка канала управления курсом судна

Входным воздействием для идентифицируемого объекта является положение руля, которое доступно измерению В качестве выхода принята угловая скорость, т е производную курсового угла Предполагается, что угловое ускорение тоже измеримо

Модель МПО представлена уравнением

х = Ах + Ви,

где х = (х!,х2)т - вектор состояния модели, составленный из угловой скорости и ускорения, и - угол поворота руля Настраиваемая модель имеет вид

у = Атх + Вти + а,

вектор у = (уьуг)1 описывает состояние модели, а а =(аь а2)т - дополнительный вектор

Введение переменной в = х - у и целевой функции

1 т

2

позволяет решать задачу параметрической идентификации путем настройки матриц модели согласно уравнениям (алгоритму):

ей с!Вт

Г^Х1,

= Г811Т,

Л

а = a0sign(s). ( константа а0> 0 81§п(8) = (бщп^,) 81§п(82))т.)

Примеры процессов идентификации параметр МПО приведены на рис. 1-2 Исследования показали, что идентификационный алгоритм остается работоспособным и при некотором малом уровне помех, точнее, при выполнении условия:

|Ь,у(1)|<а0,

МО|<а0.

При уровне внешних возмущений, близком к нарушению этих условий, качество процессов идентификации параметров МПО значительно ухудшается (см. рис. 3).

Рис. 1. Идентификация параметра Ь2

Рис. 2. Идентификация параметра а22

Рис. 3. Идентификация параметра а21 при внешних возмущениях.

С дальнейшим ростом уровня помех алгоритм идентификации параметров МПО полностью теряет работоспособность.

Для расширение области работоспособности предложен модифицированный алгоритм параметрической идентификации МПО, основанный на адаптивной подстройке параметра а0 к текущему уровню внешнего возмущения. Суть предлагаемой модификации состоит в том, чтобы увеличивать уровень а0, например, интегрируя сигнал 8(1), до тех пор, пока выход настраиваемой модели отличается от выхода объекта.

Таким образом, алгоритм параметрической идентификации (настройки матриц модели) приобретает вид:

¿1

ёа0 т

-- = 78 в,

а

а = а0sign(s).

Характерные процессы идентификации показаны на рис. 4-6 При отключении предложенной настройки параметра а0 идентификация нарушается (рис. 7).

0.08 0.06 0.04 0.02 0

-0.02 -0.04 -0.06 -0.08 -0.1

10 12 14 16 18 20 I, вес

Рис. 4. Идентификация «а» при включенной настройке а0.

В 10 12 14 16 18

Рис. 5. Идентификация «Ь» при включенной настройке а0.

Рис. 6. Процесс настройки параметра а0

Рис. 7. Нарушение процесса идентификации параметра «а»

Четвертая глава посвящена разработке систем адаптивного управления МПО с эталонной моделью. Для линеаризованных моделей МПО типа Номото развивается подход, основанный на применении явной эталонной модели, которая определяет его желаемую динамику. Метод скоростногоградиента позволяет синтезировать адаптивную коррекцию динамики МПО, которая приближает поведение объекта к заданному эталону.

Кратко рассмотрены необходимые теоретические сведения об адаптивном управлении с эталонной моделью. Для линеаризованной математической модели МПО:

х = Ах + Ви,

желаемой (эталонной) динамике:

хт =Атхт +Втг(1),

и закона управления:

и = кгг(0 + кхх + и, , нетрудно получить следующие законы настройки параметров адаптивного регулятора (адаптивной коррекции)

^ = -уВтРегт, ск

^■=-уВтРехт,

а!

Ч„ = -у8з^п(ВтРе),

У а =7о|е|

(е = х - хт. Р>0) Для практической реализации матрица В должна быть заменена известной аналогичной матрицей эталонной модели

При соблюдении определенных условий структурного характера рассогласование еЩ с течением времени стремится к нулю На практике же из-за особенностей моделей МПО проверка указанных условий затруднена Однако, как показывают численные эксперименты, может быть достигнуто значительное улучшение динамики системы управления МПО На основе приведенных выше соотношений и модели Номото 2-го порядка была разработана система адаптивной коррекции динамики МПО

Применение адаптации ведет к постепенному улучшению качества переходных процессов (на рис 8 - пример отработки заданного курса судном) При отключении адаптивной коррекции качество переходных процессов остается низким (рис 9) . Процессы настройки параметров закона управления даны на рис 10-11

Далее в работе рассмотрена задача построения системы управления МПО на основе обобщенной нелинейной модели и метода линеаризации с помощью нелинейных обратных связей (А Ьк1оп и др) Известно, что для нелинейного объекта

x = f(x) + g(x)u,

У = Кх),

закон управления вида

и = А~\х)(м>- Г(х)) обеспечивает линеаризацию исходной системы относительно выхода у и нового управления IV Матрица декомпозиции А(х) и вектор Г(х) вычисляются следующим образом

А(х)-

ЬетИу\(х)

ЬЬу\(х) . .. ЬП}-\{х)

'«„ / ту

Г(х) =

Ь}К{х) ь)1Мх)

(г = (гх,..гт)Т - вектор так называемых относительных степеней, м> = (м>1,. м>т)Т - новое управление

" дИ (х) ^ дх1

У,™ =

(1=1, ш)

» 20 I 15

Г

ц-

• 1 »плоима* модель '¡** 2 <дапти»н«ямодсль

Г

100 150

1 х «о

Рис 9 Выходы эталонной модели (1) и объекта (2) при адаптивной настройке

закона управления

Рис. 9. Выходы эталонной модели (1) и объекта (2) при отключенной адаптивной коррекции (настройке)

1 г f—у— г—

1, вес

Рис. 10. Настройка параметра регулятора Кх1(1)

1 --, ------

0.5 0

-0.5

£

-I .........................................

.2.5 - -1 -' ------i

0 50 100 150 200 250

t, sec

Рис. 11. Настройка параметра регулятора Kx2(t) 19

Обозначим yd{t) и e{t) = yd(t) —y[t) соответственно желаемую траекторию движения системы и ошибку слежения Выбор нового управления w в виде

и надлежащих коэффициентов (неявной эталонной модели) кг позволяет обеспечить асимптотическое стремление ошибки слежения к нулю

С увеличением сложности МПО «ручное» получение закона управления в соответствии с приведенными соотношениями становиться чрезвычайно трудоемким или даже фактически не выполнимым Использование современных пакетов символьных вычислений, позволяет существенно облегчить решение этой задачи В работе для выполнения аналитического (символьного) синтеза нелинейного управления был создан и использован программный комплекс, функционирующий в среде Maple

Задаваясь полной или упрощенными моделями динамического объекта, пользователь программного комплекса имеет возможность быстро синтезировать и сравнить различные законы управления МПО Это существенно сокращает время разработки регулятора и повышает ее качество

Примеры генерируемых программным комплексом символьных выражений для векторов управления АПА приведены ниже

u2 =Fy = x8*x7*lll-xll*xl0*133+x8*x7*Mm-xll*xl0*Mm-yc*x7A2*Mm-yc*xlCT2*Mm-cos(хЗ)*sin(x2)*w3*122-cos(хЗ)*sin(x2)*w3*Mm+ cos(x3)*cos(x2)*wl*122+ cos(x3)* cos(x2)*wl*Mm+ sin(x3)*w2*Mm+sm(x3)*w2*122-Mm*xll*xl2+x9*x7*122+ Mm*x9*x7-xll*xl2*122+PL*cos(x3)*cos(xl) ,

w2= (R2*sin(omg2*t)-x(5))*ki21+(R2*cos(omg2*t)*omg2-

sin(x(3))*x(8)-cos(x(3))*cos(x(l))*x(9)+

cos (x (3) ) *sm(x(l) ) *x(ll) ) *ki22-R2*sin{omg2*t) *omg2A2

Получаемые в символьной форме законы управления (регуляторы) могут быть просто реализованы на современной микропроцессорной базе

Моделирование полученной системы управления АПА, на основе сгенерированных программой шаЙаЬ-фашюв подтвердило корректность полученного управления Примеры отработки программной траектории движения АПА по

линейным координатам приведены на рис. 12. Как видно из полученных гра-| фиков, ошибка слежения за программной траекторией асимптотически стремиться к нулю и соответствует эталонной модели. На рис.13 показан вид сигналов управления, которые, как видно, ограничены и могут быть практически реализованы.

и* *

Рис. 12. Выходная и программная характеристики АПА: х,х .

■ "у

ч \

г

: » / | : V'

О 5 10 15 20 25 30

Рис. 13. Компоненты вектора управления и: Рх, , Ь\.

Далее рассматривается задача построения нейросетевого управления МПО с неявной эталонной моделью. Динамика МПО описывается уравнениями Ла-гранжа:

41 =Чг.

0(41)4г + В(41,42)42 +С(40 = и.

Пусть требуется, чтобы обобщенные координаты динамического объекта 41, следовали за предписанной программной траекторией ЦлО), цС12(Ч). Ошибки слежения обозначим следующим образом:

в! =4« "4., е2 = 4(12 - 4г-

Исследована возможность использования многослойной нейронной сети (НС) для управления МПО Показана специфика задачи и на базе метода скоростного градиента разработаны новые алгоритмы обучения НС В частности, для НС с одним скрытым сигнал управления имеет вид

U = у (W, w, х) = Wf (w, х) (для активационных функций выходного слоя, равных 1) W, w - матрицы весовых коэффициентов слоев НС

Алгоритмы обучения НС приобретают вид

W(k+I) -W(k)+ye2fT(w,x) W<k+I> •= w<k) +уФ\Уте2хт, где у - шаг обучения НС, f и Ф - известные функции

Процедура обучения НС ведет к минимизации выбранного целевого функционала и к уменьшению ошибки e2(t) q2(t) с течением времени стремится (в идеальных условиях, асимптотически) к qd2(t)

q2(t) -> qd2(t) Для qd2(t) = q*(t) + k(q*(t)-q1(t)) получаем

(q* (t) - q, (t)) + k(q* (t) - q, (t)) -> 0, При выборе матрицы k, например, диагональной с положительными элементами, обеспечивается слежение за траекторией q*(t) с ограниченной, возможно, с нулевой, ошибкой

Предлагаются также варианты упрощения практической реализации разработанных НС-регуляторов

В Приложении представлены документы, подтверждающие полезность и практическое применение полученных результатов.

Список основных публикаций:

1 Шейхот, А К Перспективные направления совершенствования систем управления движением морских подвижных объектов / [Текст] А А Дыда, А К Шейхот // Транспортное дело России, №9, часть 2 - 2007-С 24-25 (Перечень ВАК 2006)

2 Sheykhot А К Symbolic Synthesis of Control Laws for Underwater Vehicle and Robot Manipulator / [Электронный ресурс] A A. Dyda, E.V Lubimov and А К Sheykhot // Symbolic Synthesis of Control Laws for Underwater Vehicle and Robot Manipulator // Proc. Of Intern IFAC Conf "Control Application in Marine Systems" (CAMS'2007), - Bol, Croatia, 2007. CD ROM, F0040

3 Шейхот, А К Особенности математических моделей морских подвижных объектов / [Текст] А К Шейхот // Региональная научно-техническая конференция «Знание-творчество-профессионапизм» - МГУ им адм Г И Невельского, 2005 - С 422-424

4 Шейхот, А К Метод обратных задач динамики в задаче синтеза управления морскими подвижными объектами / [Текст]. А К Шейхот // Региональная научно-техническая конференция «Знание-творчество-профессионализм» МГУ им адм Г И Невельского, 2005 -С 415-417

5 Шейхот, А К Нейросетевое управление морскими подвижными объектами / [Текст] А К Шейхот // Международная научно-техническая конференция «Молодежь - наука - инновации» МГУ им адм Г И Невельского, 2007 - С 40-44

6 Шейхот, А К Подход к решению задаче идентификации параметров математической модели судна / [Текст] А К Шейхот // 54-я Региональная научно-техническая конференция «Молодежь - наука - инновации» МГУ им адм Г И Невельского, 2006 - С 50-52

7 Шейхот, А К Влияние внешних возмущений на процесс идентификации морских подвижных объектов / [Текст] А К Шейхот // Международная научно-техническая конференция «Молодежь — наука - инновации». МГУ им адм Г И Невельского, 2007 - С 48^19

8 Шейхот, А К Идентификация параметров морских подвижных объектов с помощью настраиваемой модели / [Текст] А К Шейхот // Международная научно-техническая конференция «Молодежь - наука - инновации» МГУ им адм Г И Невельского, 2007 - С 45^17

ШЕЙХОТ Андрей Константинович

СОВЕРШЕНСТВОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ МОРСКИМИ ПОДВИЖНЫМИ ОБЪЕКТАМИНА ОСНОВЕ ИДЕНТИФИКАЦИИ И АДАПТАЦИИ

Автореферат диссертации на соискание ученой степени кандидата технических наук

Уел печ л 1,3 уч изд л 1,5 Формат 60x 84/16

Тираж 100 экз Заказ №372

Отпечатано в типографии ИПК МГУ им адм Г И Невельского 690059 г Владивосток, ул Верхнепортовая, 50а

Оглавление автор диссертации — кандидата технических наук Шейхот, Андрей Константинович

Введение.

1. Анализ математических моделей МПО.

1.1. Особенности условий функционирования МПО. ■ 1.2. Математическая модель водоизмещающего надводного судна.

1.3. Математическая модель автономного подводного аппарата.

1.4. Математические модели внешних возмущений.

1.5. Обобщенная математическая модель МПО.

1.6. Выводы по главе 1.

2. Влияние параметрической неопределенности и внешних возмущений на процессы управления МПО.

2.1. Качество процессов управления движением МПО.

2.2. Линейная система управления движением МПО. Влияние нестационарности и параметрической неопределенности.

2.3. Нелинейная система управления движением МПО. Влияние нестационарности и параметрической неопределенности.

2.4. Влияние внешних возмущений на процессы управления МПО

2.5. Выводы по главе 2.

3. Адаптивная идентификация параметров МПО.

3.1. Метод скоростного градиента в задаче идентификации и управления.

3.2. Идентификация параметров МПО с помощью настраиваемой модели.

3.3. Влияние внешних возмущений на процесс идентификации.

3.4. Система параметрической идентификации МПО с адаптацией к уровню внешних возмущений.

3.5. Выводы по главе 3.

4. Адаптивное управление МПО с эталонной моделью.

4.1. Адаптивное управление МПО с явной эталонной моделью.

4.2. Нелинейное управление МПО с неявной эталонной моделью

4.3. Нейросетевое управление МПО с неявной эталонной моделью

4.4. Выводы по главе 4.

Введение 2008 год, диссертация по транспорту, Шейхот, Андрей Константинович

Морские подвижные объекты (МПО) представляют собой практически важный класс динамических систем, функционирующих в условиях значительного влияния внешней среды. К МПО относятся, в первую очередь, наиболее распространенные водоизмещающие суда, суда с динамическим принципом поддержания (на воздушной подушке, на подводных крыльях), подводные аппараты-роботы, поисково-разведочные комплексы и др. [1, 7, 21, 26, 27, 34-36, 53, 68, 69, 89, 93]. Одной из важнейших проблем, связанных с построением и эксплуатацией МПО, является создание высококачественных систем управления, обеспечивающих желаемую динамику переходных процессов и точность отработки программных траекторий движения.

Движение МПО по поверхности или в толще водной среды обладает рядом существенных особенностей, которые в значительной мере затрудняют построение системы автоматического управления его движением. К этим особенностям относятся:

- нестационарность МПО;

- нелинейность уравнений динамики;

- многомерность и многосвязность;

- структурно-параметрическая неопределенность;

- наличие внешних возмущений.

Нестационарность МПО выражается в изменении его параметров с течением времени, связанных, например, с загрузкой судна, изменением характеристик обтекаемости поверхности судна (в частности, при обрастании корпуса) и другими факторами.

Нелинейность уравнений динамики МПО является следствием более общих уравнений движения твердого тела в пространстве, например, уравнений Лагранжа 2-го рода [9, 26, 39, 40, 41]. Кроме того, нелинейность моделей МПО в существенной мере связана с влиянием внешней среды, в которой движется объект. Известно, что силы и моменты вязкого сопротивления представляют собой сложные нелинейные функции компонент вектора линейной и угловой скоростей МПО. Определение таких функциональных зависимостей, как правило, выполняется на основе дорогостоящих экспериментальных исследований и требует значительных временных ресурсов. Для практического использования наиболее привлекательными являются упрощенные линеаризованные модели МПО.

Многомерность и многосвязность МПО как объекта управления заключается в наличии нескольких взаимосвязанных каналов целенаправленного воздействия на его поведение. Так, например, при управлении курсом судна требуется одновременно обеспечить малый крен (стабилизировать относительно нуля). Построение системы управления МПО значительно упрощается, если взаимовлияние каналов незначительно или его можно компенсировать.

Структурно-параметрическая неопределенность динамики МПО связана с отсутствием достоверных данных о параметрах объекта и невозможностью получения абсолютно адекватных уравнений движения МПО. Примером параметрической неопределенности могут быть присоединенные массы и моменты инерции МПО, которые заранее невозможно вычислить. Функциональная неопределенность связана с неточным знанием аналитического вида зависимостей, входящих в уравнения движения МПО [26, 27, 35].

Наличие внешних возмущений - ветра, волн, течений — заметно снижает качество процессов управления МПО, и, следовательно, ухудшает безопасность плавания, надежность эксплуатации и другие важные характеристики судна или другого объекта.

Обзор и анализ теоретических исследований и практических разработок в рассматриваемой предметной области показал, что для дальнейшего совершенствования средств и систем управления движением

МПО требуется переход к новым методам синтеза управляющих устройств и 5 алгоритмов, опирающихся на более точные и сложные математические модели объектов.

Таким образом, в настоящее время актуальным является построение и изучение новых перспективных систем автоматического управления движением МПО, учитывающих специфику этих сложных динамических объектов.

В связи со сказанным, цель настоящей диссертационной работы состоит в разработке и исследовании систем автоматического управления движением МПО, эффективных в сложных условиях их эксплуатации.

Для достижения поставленной цели в диссертационной работе ставятся и решаются следующие задачи:

1. Анализ специфики условий функционирования МПО и их математических моделей.

2. Исследование влияния нестационарности параметров МПО и внешних возмущений на качество процессов управления при использовании типовых регуляторов.

3. Разработка и исследование систем и алгоритмов адаптивной идентификации параметров МПО при наличии внешних возмущений.

4. Разработка и исследование систем и алгоритмов адаптивного управления движением МПО.

5. Построение систем управления движением МПО на основе нелинейной модели.

6. Разработка нейросетевых систем управления движением МПО на основе нелинейной модели.

Основные результаты и положения, выносимые на защиту.

1. Анализ специфики линейных и нелинейных многомерных математических моделей МПО.

2. Анализ влияния нестационарности и неопределенности параметров МПО на качества переходных процессов в системах управления их движением, при использовании типовых линейных регуляторов с фиксированными настройками.

3. Системы адаптивной идентификации параметров МПО, в том числе, с адаптивной подстройкой к уровню внешних возмущений.

4. Система адаптивного управления движением МПО с явной эталонной моделью.

5. Нелинейная система управления движением МПО с неявной эталонной моделью.

6. Нейросетевая система управления движением МПО с неявной эталонной моделью.

Методы исследования. При выполнении работы использовались методы современной теории автоматического управления — идентификации, адаптивного, нелинейного, нейросетевого управления, матричного и векторного исчисления, теории дифференциальных уравнений, математического моделирования, а также интенсивные численные эксперименты на компьютере. Научная новизна.

1. Выявлены факторы нестационарности и структурно-параметрической неопределенности, специфические для морских подвижных объектов.

2. Показана работоспособность известных алгоритмов и систем параметрической идентификации для линеаризованных моделей МПО, а также предложены модификации систем (алгоритмов) параметрической идентификации МПО с адаптивной подстройкой к уровню внешних возмущений.

3. По обобщенной нелинейной модели МПО выполнен синтез системы управления движением с неявной эталонной моделью и предложено программное обеспечение для получения законов управления в символьной форме.

4. Предложены нейросетевые системы и алгоритмы управления, основанные на обобщенной нелинейной модели МПО, а также новые алгоритмы обучения многослойных нейронных сетей. Достоверность результатов.

Достоверность результатов подтверждается корректным использованием строгих математических методов исследования, применением экспериментально подтвержденных линейных и нелинейных математических моделей различных типов МПО, Практическая ценность.

Практическая ценность разработанных систем и алгоритмов адаптивной идентификации состоит в том, что они могут быть непосредственно использованы для определения параметров МПО, в том числе, и в условиях внешних возмущений, по экспериментальным данным, хранящимся в виде файлов.

Применение предложенных адаптивных и нейросетевых систем управления позволяет уменьшить трудоемкость работ, связанных с ручной перенастройкой регуляторов.

Использование разработанного программного обеспечения для символьного синтеза позволяет ускорить процесс построения системы управления по нелинейным моделям МПО. Апробация результатов.

Основные результаты диссертационной работы обсуждались и получили одобрение на регулярной конференции Международной федерации автоматического управления IF AC «Control Application in Marine Systems» CAMS'2007 («Применение управления в морских системах») (Bol, Croatia, 2007), Региональной научно-технической конференции «Знание-творчество-профессионализм». - МГУ им. адм. Г.И.Невельского, 2005, Международная научно-техническая конференция «Молодежь - наука — инновации». МГУ им. адм. Г.И.Невельского, 2007, 54-я Региональная научно-техническая конференция «Молодежь — наука — инновации». МГУ им. адм. 8

Г.И.Невельского, 2006, на научно-технических конференциях университета, семинарах кафедры автоматических и информационных систем.

Публикации. По результатам исследования опубликовано 8 печатных работ, в том числе одна, входящая в перечень ВАК.

Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, приложений, списка литературы, содержащего 94 наименования. Работа изложена на 127 страницах машинописного текста, содержит 80 рисунков и 3 таблицы.

Заключение диссертация на тему "Совершенствование систем управления морскими подвижными объектами на основе идентификации и адаптации"

4.4 Выводы по главе 4

На основе метода скоростного градиента выполнено построение адаптивной системы управления движением МПО с явной линейной

Dn(qi) Di2(qi) D2,(q,) D22(qi) эталонной моделью. Исследования показали, что при фиксированных параметрах традиционных регуляторов (ПИ, ПИД и др.) априорная неопределенность в знании текущих параметров МПО отрицательно сказывается на качестве процессов управления. Применение регуляторов с адаптивной настройкой параметров закона управления позволило приблизить переходные процессы в системе управления к заданным эталонным, которые обладают желаемыми свойствами.

В ряде случаев применение линеаризованных моделей движения МПО оказывается неоправданным упрощением. В связи с этим для корректного решения задачи построения системы управления требуется применение адекватной нелинейной многомерной модели МПО. На примере общей модели автономного подводного аппарата выполнен синтез нелинейной системы управления МПО методом линеаризации нелинейной обратной связью. Теоретически показано и подтверждено численными экспериментами, что переходные процессы в разработанной системе управления соответствуют неявно заданной линейной эталонной модели, определяемой коэффициентами линейной части регулятора.

В связи со сложностью математической модели многомерного нелинейного объекта - МПО предложено использование пакетов символьной компьютерной математики для получения законов управления (регуляторов) в аналитической форме, максимально удобной для практической реализации.

В развитие адаптивно подхода к построению систем управления движением МПО были предложены нейросетевые регуляторы. На основе метода скоростного градиента были предложены новые алгоритмы обучения многослойных нейронных сетей, применяемых в системах управления динамическими объектами — МПО для обеспечения переходных процессов, определяемых неявной эталонной моделью.

ЗАКЛЮЧЕНИЕ

В результате выполненных в диссертационной работе исследований были получены следующие основные научные результаты.

На основе проведенного анализа типовых линеаризованных и нелинейных математических моделей морских подвижных объектов, режимов и условий их эксплуатации показано, что МПО являются специфическими объектами управления, для которых характерны нестационарность характеристик, параметрическая неопределенность, многомерность и нелинейность. В связи с этим даже в наиболее простых режимах, когда линеаризованные модели являются адекватными, применение в системах управления движением МПО стандартных линейных регуляторов (типа ПИД, ПИ, ПД и других) с фиксированными параметрами ведет к снижению качества процессов управления и, следовательно, уменьшению надежности и безопасности эксплуатации МПО.

Улучшение характеристик системы управления МПО может быть достигнуто за счет идентификации текущих значений параметров МПО в процессе движения и подстройки коэффициентов регуляторов выбранной структуры таким образом, чтобы обеспечить динамические процессы в системе управления, близкие к выбранной эталонной модели.

Выполнена разработка системы адаптивной идентификации параметров МПО по его обобщенной линеаризованной модели на основе метода скоростного градиента. Показана работоспособность системы идентификации при малом уровне внешних возмущений. Для компенсации значительных внешних воздействий предложена и исследована модифицированная система с адаптивной настройкой на уровень возмущений.

Предложена и исследована линейная система управления движением МПО с адаптивной настройкой параметров регулятора по явной эталонной модели. Показаны преимущества предложенной системы в сравнении с традиционными регуляторами, имеющими фиксированные настройки.

Решена задача построения системы управления МПО на базе обобщенной нелинейной модели. Показано, что применение метода линеаризации нелинейной обратной связью позволяет также обеспечить независимость каналов управления (декомпозицию системы) и высококачественные переходные процессы, задаваемые неявной эталонной, в частности, линейной моделью. Ввиду громоздкости многомерных нелинейных моделей МПО для решения задачи построения регуляторов (законов управления) предложено использовать компьютерную символьную математику.

Предложен и исследован также подход к построению системы управления движением МПО, обобщающий концепцию адаптации и основанный на использовании многослойных нейронных сетей. Показаны особенности их применения для управления динамическими объектами и разработаны новые алгоритмы обучения нейронных сетей, входящих в состав регуляторов системы управления МПО.

Таким образом, полученные в диссертационном исследовании технические решения позволяют в значительной мере усовершенствовать характеристики систем управления МПО, и, значит, улучшить надежность и другие эксплуатационные параметры морских подвижных объектов.

Библиография Шейхот, Андрей Константинович, диссертация по теме Эксплуатация водного транспорта, судовождение

1. Автономные подводные аппараты. Агеев М.Д., Касаткин В.А., Киселев Л.В. и др. JI. Судостроение, 1981. - 224с.

2. Андриевский Б.Р. Козлов Ю.М. Методы управления в условиях неопределенности. JI.:1989. - 88 с.

3. Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. М.: Наука, 1976. - 768с.

4. Бойчук JI.M. Метод структурного синтеза нелинейных систем автоматического управления. М.: Энергия, 1971. 112с.

5. Борцов Ю.А., Поляхов Н.Д., Путов В.В. Электромеханические системы с адаптивным и модальным управлением. Л.: Энергоатомиздат. Ленингр. отд-ние, 1984. - 216с.: ил.

6. Борцов Ю.А., Соколовский Г.Г. Автоматизированный электропривод с упругими связями. 2-е изд., перераб. и доп. — СПб.: Энергоатомиздат. Санкт-Петербург, отд-ние, 1992. — 288 е.: ил.

7. Войткунский Я.И. Справочник по теории корабля. Л.: Судостроение, 1973.-512 с.

8. Воронов А.А., Ким Д.П., Лохин В.М. и др. Теория автоматического управления: Учеб. для ВУЗов по спец. "Автоматика и телемеханика". 4.2. Теория нелинейных и специальных систем управления. — М.: Высш. шк., 1986. 504с.: ил.

9. Вукобратович М., Стокич Д., Кирчански Н. Неадаптивное и адаптивное управление манипуляционными роботами. М.: Мир, 1989. - 376с.

10. Вышковский Г.Л., Ганопольский Л.З., Долгов A.M. и др. Нелинейные нестационарные системы. Под ред. Топчеева Ю.И. М.: Машиностроение, 1986.-336с.

11. Галушкин А.И. Теория нейронных сетей. Кн.1: Учеб. пособие для вузов / Общая редакция А.И. Галушкина. М.: ИПРЖР, 2000. 416 е.: ил.

12. Горбань А. Нейроинформатика и ее приложения. "Открытые системы" №4 -5, 1998. Научно-технический журнал.

13. Дыда А. А. Адаптивное и нейросетевое управление сложными динамическими объектами. — Владивосток: Дальнаука, 2007. — 149 с.

14. Дыда А.А. Синтез адаптивного и робастного управления исполнительными устройствами подводных роботов. Дисс. Докт. Технич. наук. Владивосток, 1998.

15. Дыда А.А,. Любимов Е.В. Автоматизация проектирования систем управления движения морских подвижных объектов // Транспортное дело России №11. М: Изд-во Морские вести России, 2006. - С. 3-8.

16. Дыда А.А., Маркин В.Е., Оськин Д.А. Синтез робастно- адаптивных и нейросетевых алгоритмов управления манипуляционными роботами // Докл. VIII-го Всероссийского съезда по теоретической и прикладной механике, Пермь, 2002.

17. Дыда А.А., Лебедев А.В. Нелинейная адаптивная коррекция движителя подводного робота. // Изв.ВУЗов, Электромеханика, № 1-2, 1996, с. 83-87.

18. Дыда А.А., Шейхот А.К. Перспективные направления совершенствования систем управления движением морских подвижных объектов // Транспортное дело России, №9, часть 2, с.24-25.

19. Дьяконов В. Круглов В. Matlab. Анализ, идентификация и моделирование систем. Специальный справочник. СПб.:Питер, 2002. - 446 с.

20. Ермолаев Г.Г., Зотеев Е.С. Основы морского судовождения. — М: Транспорт, 1988.

21. Иващенко Н.Н. Автоматическое регулирование. Теория и элементысистем. -М., Машиностроение, 1973. 606с.119

22. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М.: Наука. Главная редакция физико-математической литературы, 1984.

23. Короткий С.Г. Нейронные сети: алгоритм обратного распространения. // "Byte/Россия". Жур. Изд. дом "Питер", №5, 2000г. С.26-29.

24. Короткий С.Г. Нейронные сети: основные положения. // "Byte/Россия". Жур. Изд. дом "Питер", №5, 2000г. С. 18-21.

25. Лукомский Ю.А., Пешехонов В.Г., Скороходов Д.А.Навигация и управление движением судов. — С.-Петербург: Элмор, 2002.- 360 с.

26. Лукомский Ю.А., Чугунов B.C. Системы управления морскими подвижными объектами. Л.: Судостроение, 1988. - 272 с.

27. Макаров В.Н. Современная информационная технология в системах управления. // Известия АН. "Теория и системы управления", №1, 2000г.

28. Медведев B.C., Лесков А.Г., Ющенко А.С. Системы управления манипуляционных роботов. М.: Наука, 1978. - 416с.

29. Мирошник И.В., Никифоров В.О., Фрадков А.В. Нелинейное и адаптивное управление сложными динамическими системами. СПб.: Наука, 2000. 549с.: ил.

30. Никифоров В.О. Адаптивное и робастное управление с компенсацией возмущений. — СПб.:Наука, 2003. 282 с.

31. Оськин Д. А., Дыда А.А. Анализ применения нейронных сетей для управления и идентификации. Сборник тезисов докладов XXXVIII НТК ДВГТУ. Владивосток, ДВГТУ, 1997. С.46-47.

32. Оськин Д.А. Управление движением подводного аппарата на основе нейросетевых алгоритмов. Дальневосточная математическая школа-семинар имени академика Е.В. Золотова: Тезисы докладов. Владивосток: Дальнаука, 2002. С. 103-104.

33. Пантов Е.Н., Махин Н.Н., Шеремет Б.Б. Основы теории движения подводных аппаратов. Л.: Судостроение, 1973.-211 с.

34. Подводные роботы. Под общей редакцией B.C. Ястребова. JL, "Судостроение". 1977. 368с.: ил.

35. Понырко С. А., Попов О. С., Ястребов В. С. Адаптивные системы для исследования океана. СПб.: Судостроение, 1993. - 224с.: ил.

36. Попов Е.П. Теория нелинейных систем автоматического управления: Учеб. пособие. 2-е изд., стер. - М.: Наука. Гл. ред. физ.-мат. лит., 1998. -256с.

37. Попов Е.П., Верещагин А.Ф., Зенкевич C.JI. Манипуляционные роботы: динамика и алгоритмы. М.: Наука, 1978.- 400с.

38. Промышленные роботы. / Под ред. Я. Д. Шифрина. М.: Машиностроение, 1982.-415с.

39. Тимофеев А.В. Управление роботами. Учеб. пособие. Л.: Изд-во Ленинградского университета, 1986. 240с.

40. Тимофеев А.В. Эволюция теории и средств управления в робототехнике и мехатронике. // "Мехатроника" №1, 2000г. Научно-технический и производственный журнал. Изд. "Машиностроение".

41. Трахтенгерц Э.А. Компьютерная поддержка принятия решений: Научно-практическое издание. Серия "Информатизация России на пороге XXI века". М.: СИНТЕГ, 1998. - 376с.

42. Фомин В.Н., Фрадков А.Л., Якубович В.А. Адаптивное управление динамическими объектами. М.: Наука. Главная редакция физико-математической литературы, 1981.- 448с.

43. Фрадков А.Л. Адаптивное управление в сложных системах: беспоисковые методы. М. Наука. Гл. ред. физ.-мат. лит., 1990. - 296с.

44. Фу К., Гонсалес Р., Ли К. Робототехника: Пер. с англ. М.: Мир, 1989.-624с.: ил.

45. Цыпкин Я.З. Адаптация и обучение в автоматических системах. -Главная редакция физико-математической литературы изд-ва "Наука", М., 1968, 400с.

46. Шейхот А.К. Особенности математических моделей морских подвижных объектов // Региональная научно-техническая конференция «Знание-творчество-профессионализм». МГУ им. адм. Г.И.Невельского, 2005, с.422-424.

47. Шейхот А.К. Метод обратных задач динамики в задаче синтеза управления морскими подвижными объектами // Региональная научно-техническая конференция «Знание-творчество-профессионализм». МГУ им. адм. Г.И.Невельского, 2005, с.415-417

48. Шейхот А.К. Нейросетевое управление морскими подвижными объектами // Международная научно-техническая конференция «Молодежь наука - инновации». МГУ им. адм. Г.И.Невельского, 2007, с.40-44

49. Шейхот А.К. Подход к решению задаче идентификации параметров математической модели судна // 54-я Региональная научно-техническая конференция «Молодежь — наука — инновации». МГУ им. адм. Г.И.Невельского, 2006, с.50-52

50. Шейхот А.К. Влияние внешних возмущений на процесс идентификации морских подвижных объектов // Международная научно-техническая конференция «Молодежь — наука — инновации». МГУ им. адм. Г.И.Невельского, 2007, с.48-49

51. Шейхот А.К. Идентификация параметров морских подвижных объектов с помощью настраиваемой модели // Международная научно-техническая конференция «Молодежь — наука — инновации». МГУ им. адм. Г.И.Невельского, 2007, с.45-47

52. Ястребов B.C., Филатов A.M. Системы управления подводных аппаратов-роботов. М., Наука, 1983. 88с.

53. Behera L. and Gopal М. Adaptive manipulator trajectory control using neural networks. Int. J. Systems SCI., 1994, Vol. 25, №. 8. pp. 1249-1265.

54. Berghuis H., Nijmeijer H. Robust control of robots using only position measurement. // Preprints of 12th World IF AC Congress, Sydney, Australia, July 1993, Vol.1, pp. 501-506.

55. Brook N., Dayan J. Shavit A. Classification and examination of adaptivei Lcontrol methods for robots. // Preprints of 12 World IF AC Congress, Sydney, Australia, My 1993, Vol.1, pp. 149-152.

56. Chen Y., Dezhao C. Generalized Error Back Propagation Training and Neural Network for Pattern Classification. // Proceeding of second control conference, Seoul, Korea, July 1997. Vol. 3, pp. 819-822.

57. Choi J.-L., Hwang C.-S. On the fuzzy-neural controller for a multivariable nonlinear system. // Proceeding of second control conference, Seoul, Korea, July 1997. Vol.3, pp. 631-634.

58. Dote Y., Akhmetov D. F., Shalique S. M. Control and Diagnosis for Power Electronic System Using Soft Computing. // Proceeding of second control conference, Seoul, Korea, July 1997. Vol. 3, pp. 491-494.

59. Driving process modelling based on improved backpropagation algorithm. // Proceedings of the 14th World Congress of IF AC. Edited by Wu Т., Xu X., Copyright © 1999 IF AC

60. Dyda, A. Design of Adaptive VSS Algorithm for Robot Manipulator Control // Proc. Of First Asian Control Conference. Tokyo, 1994. — pp. 10771080.

61. Dyda, A. Design of Adaptive Algorithms for Underwater Manipulator // Proc. Of Int. Conf. OCEANS'94. Brest, France, 1994.

62. Dyda, A. and Di Gennaro, S. Adaptive Trajectory Control for Underwater Robot. // Proc. Of Int. Conf. OCEANS'94. Brest, France, 1994.

63. Dyda A. and Os'kin D. Neural Network control system for Underwater Robots // Proc. of IF AC Conf. "Control Applications in Marine Systems", Ancona, Italy, 2004. pp.427-432

64. A.A. Dyda, E.V. Lubimov and A.K. Sheykhot Symbolic Synthesis of Control Laws for Underwater Vehicle and Robot Manipulator//Proc. Of Intern. IF AC Conf. "Control Application in Marine Systems" (CAMS'2007), Bol, Croatia, 2007. CD ROM, F0040.

65. Dyda A.A., Filaretov V.F. Algorithm of time-sub-optimal control for robot manipulator drivers. // Preprints of 12th World IF AC Congress, Sydney, Australia, July 1993, vol.4, pp. 97-99.

66. Feng G. Robust adaptive control for robot manipulators in task space. // Preprints of 12th World IF AC Congress, Sydney, Australia, July 1993, Vol.1, pp. 131-134.

67. Fossen, T.I. Guidance and Control Systems od Ocean Vehicles. — John Wiley and Sons, 1997.

68. Fossen, T.I. Marine Control Systems. Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernatics, AS, 2002.,

69. Fuli W., Mingzhoung L., Yinghna Y. Multilayered feedforward-feedback recurrent neuron networks and learning algorithms. // Proceeding of 2nd control conference, Seoul, Korea, July 1997. Vol. 3, pp. 787-790.

70. Harris C. J., Wu Z. Q., Feng M. Aspects of the theory and application of intelligent modeling, control and estimation. // Proceeding of second control conference, Seoul, Korea, July 1997. Vol. 3, pp. 1-10.

71. Hsu L., Lizarralde F. Variable structure adaptive tracking control of robot manipulators without joint velocity measurement. // Preprints of 12th World IF AC Congress, Sydney, Australia, July 1993, Vol.1, pp. 145-148.

72. Huaqiang L., Guanzhong D., Naiping X. Non-linear system identification using neural networks oriented speech. // 12th World Congress International Federation of Automatic Control, Sydney, Australia, 18-23 July 1993. Vol. 1, pp. 353-356.

73. Isidori, Alberto. Nonlinear control systems: an introduction. Roma: 1989. - 482p.

74. Jin L., Nikiforuk P.N., Gupta M.M. Model matching control of unknown nonlinear system using recurrent neural networks. // 12th World Congress International Federation of Automatic Control, Sydney, Australia, 18-23 July 1993. Vol. l,pp. 337-344.

75. Koivisto H., Ruoppila V.T. and Koivo H.V. Real-time neural networkth control — an IMC approach. // Preprints of 12 World IF AC Congress, Sydney,

76. Australia, July 1993, Vol.4, pp. 47-50.

77. Ku C.C., Lee K.Y., Edwards R.M. Nuclear reactor control using diagonalthrecurrent neural networks. // Preprints of 12 World IF AC Congress, Sydney, Australia, July 1993, Vol.6, pp. 267-270.

78. Lee J. H., Kim S. J., Lee S. B. The study on the intelligent control of robot system using neural networks. // Proceeding of second control conference, Seoul, Korea, July 1997. Vol. 3, pp. 67-70.

79. Mori Y., Kobayashi H., Uchida K. Robot vision system by neural network-active vision and self-learning. // Preprints of 12th World IF AC Congress, Sydney, Australia, July 1993, Vol.3, pp. 65-68.

80. Narendra K. S., Parthasaraty K. Identification and control of dynamical systems using neural networks.// IEEE transformations on neural networks. Vol. 1. №1, march 1990.

81. Neural network predictive adaptive controller based upon damped least square. // Taken from: Proceedings of the 14 World Congress of IF AC. Edited by Chen H. F., Cheng D. Z., Zhang J. F., Copyright © 1999 IF AC.

82. Os'kin D.A., Dyda A.A. Neural Network and Adaptive Control System Synthesis: Comparative Study for Underwater Robots. // Pacific Science Review, Vol.2, 2000, pp. 34-37.

83. Ouyang К. Y., Lee P.L., Cameron I.T. Polynomial system identification using neural networks. // Preprints of 12th World IF AC Congress, Sydney, Australia, July 1993, Vol.4, pp. 53-56.

84. Park J. H. and Kang J. Y. Fuzzy-Logic Controller for a two-link Flexible Manipulator. // Proceeding of 2nd control conference, Seoul, Korea, July 1997. Vol.3, pp. 435-438.

85. Rao M., Wang Q., Feng E., Jun Y., Chen B. Computer integrated process systems in continuous manufacturing industries. // Preprints of 12th World IFAC Congress, Sydney, Australia, July 1993, Vol.1, pp. 249-252.

86. Sorsa Т., Suontausta J., Koivo H.N. Fault diagnosis of dynamic systems using neural networks. // 12th World Congress International Federation of Automatic Control, Sydney, Australia, 18-23 July 1993. Vol.7, pp. 453-456.

87. Spangelo I., Egaland O. Thruster modelling and energy- optimization for an automous underwater vechicle. // Preprints of 12th World IFAC Congress, Sydney, Australia, July 1993, Vol.5, pp. 401- 404.

88. Su H.-T., McAvoy T.J. Integration of multilayer perceptron networks and linear dynamic models. // Preprints of 12th World IFAC Congress, Sydney, Australia, July 1993, Vol.4, pp. 57-60.

89. Wong A.K.C., Ching J.Y. Neural networks in manufacturing. // Preprints of 12th World IFAC Congress, Sydney, Australia, July 1993, Vol.3., pp. 41-44.

90. Yorger D.R., Cooke J.G., Slotine J.-J.E. The influence of thruster dynamics on underwater vechicle behavior and their incorporation into control system design. // IEEE Jour, of Ocean. Eng., Vol.15, No. 3. July 1990. pp. 167-177.

91. Yuh Y. A neural net controller for underwater robotic vehicle. // IEEE journal of oceanic engineering. Vol.15, № 3, July 1990.