автореферат диссертации по транспорту, 05.22.07, диссертация на тему:Повышение эффективности электронной аппаратуры управления магистральных электровозов переменного тока

кандидата технических наук
Юренко, Иван Кондратьевич
город
Москва
год
1984
специальность ВАК РФ
05.22.07
Диссертация по транспорту на тему «Повышение эффективности электронной аппаратуры управления магистральных электровозов переменного тока»

Оглавление автор диссертации — кандидата технических наук Юренко, Иван Кондратьевич

Введение

1. Обзор и анализ применяемых электронных аппаратур управления электроподвижным составом /

1.1 Эффективность функционирования - наиболее общая характеристика электронной аппаратуры управления

1.2 Электронная аппаратура управления электровозами серии Re шведской фирмы ASEA /f

1.3 Электрошая аппаратура управления электровозами типов 1/41.001 и /43.

1.4 Электр онная аппаратура управления электровозами Szi

1.5 Электронная аппаратура управления, применяемая на электровозах ВЛШТи ВД80С

1.6 Электронная аппаратура управления электровозами

ВЛ80Р

1.7 Анализ изменяемых электронных аппаратур управления электроподвижным составом ^

Выводы ЗЬ

2. Повышение эффективности эжктронной аппаратуры управления в режиме тяги ЗУ

2.1 Проблема использования силы сцепления 3Q

2.2 Основные функции, выполняемые системой автоматического регулирования в режиме тяги Mi

2-3 Качествен! ый анализ особенностей функционирования системы автоматического регулирования при боксоваши

2.4 Повышение динамической жесткости характеристик тяговых двигателей средствами автоматики. Теоретические предпосылки

2.5 Сравнительная оценка способов автоматического регулирования токов тяговых двигателей при боксовании. Выявление областей эффективного применения 5М

2.6 Улучшение тяговых свойств путем снижения вероятности. возникновения боксования

2.6.1 Автоматическое перераспределение нагрузок тяговых двигателей

2.6.2 Устройство для автоматического вклинения контакторов- ослабления поля 6/

2.7 Схемные решения

2.8 Экспериментальные исследования 7/

2.8.1 Устройство для автоматического регулирования токов при боксовании

2.8.2 Устройство для автоматического включения контакторов ослабления поля ^

Выводы

3. Повышение эффективности электронной аппаратуры управления- в режиме электрического торможения ^

3.1 Усовершенствование алгоритма управления ^

3.2 Схемные решения ¿

3.3 Теоретические исследования системы автоматаческого регулирования тормозной силы в рвкиме стабилизации скорости движения на спуске

3.4 Экспериментальные исследования

Выводы /ОБ

4. Повышение энергетических показателей и надежности т и риеторных преобразователей средствами электронной аппаратуры управления /¿

4.1 Условия включения тиристоров преобразователей с параллельным и последовательным соединением выпрямительных мостов

4.2 Пути обеспечения надежного включения тиристоров и повышения энергетических показателей магистральных электровозов в режиме тяги 11Ь

4.3 Обеспечение надежного включения тиристоров преобразователей в режиме рекуперации '/2.-Ь Выводы 12В

5. Исследование вопросов безотказности электронной аппаратуры управления

5.1 Проблема надежности электронной аппаратуры управженш (

Введение 1984 год, диссертация по транспорту, Юренко, Иван Кондратьевич

электронной аппаратуры управления

5.3 Аналитическая оценка показателей надежности электронной аппаратуры управления ^

5.4 Эффективность резервирования электронной аппаратуры управления и методы ее количественной сценки /32

5.5 Оценка влияния технического обслуживания на эффективность резервирования

5.6 Обоснование триодичности технического обслуживания электроны) й аппаратуры управления электровоза ВЯ80Р ¡54

5.7 Экспериментальная оценка показателей надежности электронной аппаратуры управления электровоза ВЛ80Р 1515.8 Некоторые вопросы повышения надежности электронной аппаратуры управления !Ь1

Выводы 16?

6. Практическое использование результатов исследований /72

7. Основные результаты работы и выводы №9

8. Литература 119

9. Приложение I (90

10. Пршожение 2 /'92

ВВВДЕШЕ

В утвержденных ХХУ1 съездом КПСС "Основных направлениях экономического и социального развития СССР на 1981 - 1985 года и на период до 1990 года" намечена широкая программа повышения эффективности работы железнодорожного транспорта /на долю которого приходится более 60$ всех грузовых перевозок/ в направлении совершенствования технических средств, широкого внедрения новейших достижений науки и техники, наиболее прогрессивных видов подвижного состава /I/.

Повышение эффективности работы транспорта определяется объективными требованиями социально-экономического развития страны и повышения её научно-технического и производственного потенциала.

Большие возможности повышения эффективности электроподвижного состава /ЭПС/ открывает использование тиристорных преобразователей, позволяющих улучшить тяговые и тормозные свойства локомотивов, повысить надежность, точность и быстродействие регулирования основных параметров, повысить безопасность движения и упростить управление, а также получить эффективный электрический тормоз. Это направление является генеральным в техническом развитии ЭПС /2 - б/. Однако, богатые потенциальные возможности тиристорных преобразователей в полной мере могут быть реализованы только совершенной электронной аппаратурой управления /ЭАУ/, выполняющей определенные функции при высокой надежности, т.е. характеристиками ЭАУ.

Наиболее общей характеристикой ЭАУ является эффективность её функционирования. Таким образом, преимущества электровозов с ти-ристорными преобразователями в значительной степени определяется эффективностью функционирования ЭАУ. Под эффективностью ЭАУ в самом общем смысле понимают свойство, отражающее способность ЭАУ получать требуемые результаты /7 - 10/.

Обеспечение надежности ЭАУ рассматривается как часть более общей проблемы - повышения эффективности её функционирования.

Составляющими эффективности ЭАУ, применительно к ЭПС, являются тяговые и тормозные свойства электровозов, качество электромагнитных и электромеханических переходных процессов, энергетические показатели электровозов и их надежность, безопасность движения, степень загрузки машиниста операциями по управлению и т.д., короче говоря, все те качественные и количественные показатели работы ЭПС, на которые прямо или косвенно влияет ЭАУ в процессе её функционирования. Таким образом, исследование вопросов эффективности диктует комплексный подход к процессам функционирования ЭАУ.

В данной работе эффективность ЭАУ употребляется в указанном выше смысле.

Обзор и анализ применяемых ЭАУ, обобщение опыта эксплуатации ЭАУ на отечественных и зарубежных электровозах показали, что имеются большие резервы повышения эффективности функционирования ЭАУ, применяемой на отечественных электровозах.

Это обстоятельство, а также то, что в недалеком будущем начнется выпуск новых, более мощных электровозов, на которых будут реализованы все достижения отечественного электровозостроения, обусловило необходимость исследования вопросов повышения эффективности ЭАУ.

Обзор, проведенный в данной работе, показал, что тиристор-ные преобразователи и ЭАУ находят все более широкое применение на ЭПС, как у нас в стране, так и зарубежом.

В СССР работы по созданию электровозов с применением тирис-торных преобразователей и ЭАУ ведутся с 1964 года во ВШИЖТ,

ВЭлНИИ, НЭВЗ, МЭИ, ВШИЭМ, НИИ завода "Электровыпрямитель11, МИТ, ЛИИЖТ и других организациях.

Результатом этих работ является запуск в серию электровозов ВЛ80Т с электрическим реостатным торможением и электровоза ВЛ80Р

- первого в СССР и одного из первых в мировой практике магистрального электровоза переменного тока с шшеным многозонным регулированием выпрямленного напряжения тяговых двигателей и рекуперативным торможением. Освоен выпуск экспортных электровозов для поставок в Финляндию типа 5т./ , изготовлены опытные образцы электровозов ВЛ80А и ВЛ80В с асинхронным и вентильными тяговыми двигателями соответственно.

В работе на основе обзора и анализа ЭАУ, применяемых на отечественном и зарубежном ЭПС, анализе литературных источников /II

- 16/ и обобщении опыта эксплуатации первых отечественных электровозов с ЭАУ /27 - 33/ выявлены основные тенденции развития и более широкого применения ЭАУ, а также намечены основные пути совершенствования ЭАУ с целью повышения эффективности её функционирования.

Внедрение ЭАУ на ЭПС идет по принципу "от простого к сложному". Вначале создавались и внедрялись простые, разомкнутые системы ручного управления, обеспечивающие выполнение минимально-необходимого числа функций управления /22, 23, 24/. По мере освоения и накопления опыта эксплуатации, появления новой элементной базы /интегральной микроэлектроники/, ЭАУ усложняется за счет увеличения числа выполняемых функций с целью повышения эффективности её функционирования.

В настоящее время уровень электронной схемотехники и системотехники таков, что позволяет реализовать алгоритмы управления практически любой сложности, получить любые качественные показатели при удовлетворительных для ЭПС весо-габаритных, стоимостных, мощностных, надежностных, энергетических и других показателей.

Большие возможности повышения эффективности ЭАУ заключаются в применении замкнутых систем автоматического регулирования основных параметров электровозов (САР). Эффективность САР заключается в улучшении тяговых и тормозных свойств, повышении точности и быстродействия регулирования основных параметров, в упрощении процесса управления электровозом и снижении нервно-психической нагрузки машиниста, а также повышении безопасности движения /II, 12, 20, 25, 33, 36/.

В результате обзора и анализа принципов и методов построения систем автоматического управления тиристорными электровозами была выбрана наиболее рациональная схема системы автоматического управления электровозом, которая в самом общем случае представляет собой многоконтурную структуру с подчиненным регулированием параметров /II, 26, 37, 38/.

Однако, применение на ЭПС САР, принципы построения которых разработаны на основе теории автоматического регулирования применительно к общепромышленному тиристорному электроприводу, характеризуется рядом специфических режимов их функционирования, которые в настоящее время или недостаточно исследован, или вообще не исследовались. Эти режимы в решающей степени определяют эффективность применения автоматики на ЭПС.

Специфическим режимом функционирования автоматики в тяге является режим автоматического регулирования токов тяговых двигателей при боксовании колесных пар, названный в работе /42/ динамическим управлением, а в работе /43/ - системой автоматической стабилизации сцепления. Исследования, проведенные в данной работе /28/, показали, что применение системы автоматического регулирования токов тяговых двигателей, обеспечивающей пуск с заданным и автоматически поддерживаемым током, приводит к тому, что автоматика, стремясь поддержать пусковой ток, усугубляет начавшийся процесс боксования колесных пар, что выражается в резком нарастании напряжения на тяговых двигателях, и как следствие, увеличении скорости проскальзывания колесных пар. Традиционная схема защиты от боксования /электромеханическое реле, включенное в эквипотенциальные точки тяговых двигателей/ в некоторых случаях / например, при одновременном боксовании двух осей одной тележки/ не реагирует, и быстро развивающийся процесс боксования перерастает в разносной. Это приводит к тяжелым последствиям для тяговых двигателей.

Таким образом, проведенные исследования привели к выводу о несовместимости традиционной схемы защиты от боксования с замкнутой системой автоматического регулирования тока тяговых двигателей.

Известно, что процесс развития боксования в существенной мере определяется динамической жесткостью характеристик тяговых двигателей. Возможны два пути повышения динамической жесткости: изменение конструкции тяговых двигателей /переход на независимое и смешанное возбуждение/ и средствами ЭАУ.

В работе теоретически обоснована и экспериментально подтверждена принципиальная возможность повышения динамической жесткости характеристик тяговых двигателей средствами автоматики -путем корректировки уставки регулятора тока на величину, пропорциональную производной по времени одного из параметров, характеризующих процесс боксования колесных пар, что обеспечивает автоматическое восстановление сцепления при их одновременном боксовании. Показано также, что для обеспечения нормального функционирования автоматики и автоматического восстановления сцепления во всех эксплуатационных режимах боксования необходима корректировка уставки регулятора тока не только на величину производной по времени одного из параметров, характеризующих процесс боксования, но и на величину, пропорциональную разнице значений параметра, характеризующего процессы в двигателях бок-сующей и небоксующей колесных пар. Оба вида коррекции взаимодополняют друг друга /28, 48, 49/.

Известно, что максимальная сила тяги, которую может развивать электровоз, определяется пределом по сцеплению передней оси, который ниже предела остальных осей электровоза, т.к. при реализации силы тяги происходит разгрузка передней тележки и догрузка осей задней тележки. Показана возможность снижения вероятности возникновения боксования средствами автоматики путем автоматического уменьшения нагрузки тяговых двигателей передней тележки относительно задних, а также снижения бросков тока тяговых двигателей при включении контакторов ослабления поля /46, 50, 51/.

Специфичным режимом функционирования автоматики на ЭПС при электрическом торможении является режим стабилизации скорости на спуске со сложным профилем пути. Эксплуатация показала, что при автоматическом регулировании тормозной силы электровоза ВЛ80Т на участках со сложным профилем пути в автосцепках поезда возникают нежелательные реакции. Объясняется это тем, что в режиме стабилизации скорости на спуске при выходе электровоза со спуска на площадку, вследствие равенства действительной и заданной скорости и отсутствии скатывающей силы, автоматика сбрасывает тормозную силу до нуля. При этом сцепки ослабляются и состав растягивается. При переходе на последующий уклон происходит разгон состава, затем автоматическое включение реостатного тормоза, и, вследствие набегания задних вагонов, в передней части состава возникают резкие динамические толчки /27, 38/.

В работе /38/ показано, что для исключения отрицательных реакций в составе поезда необходимо усовершенствовать алгоритм регулирования тормозной силы таким образом, чтобы тормозная сила не опускалась ниже определенного минимального уровня независимо от соотношения действительной и заданной скоростей движения. В соответствии с этим в данной работе усовершенствована функциональная и разработана структурная схема системы автоматического регулирования тормозной силы, исследована устойчивость системы и определена область допустимых значений коэффициента усиления разомкнутой системы, при которых обеспечивается устойчивость замкнутой /55, 56, 57/.

Обобщение опыта эксплуатации ЭАУ электровозов ВЛ80Р показало, что имеются резервы повышения энергетических показателей электровоза и надежности тиристорных преобразователей средствами ЭАУ /29, 32, 33/.

Щ, основе анализа потенциальных условий работы тиристоров преобразователей обоснована необходимость использования для управления тиристорными преобразователями с параллельным соединением мостов устройства слежения за напряжением на тиристорах с изменяющимся /при переходе с одной зоны на другую/ уровнем срабатывания порогового элемента. Обоснована необходимость отсечки в момент начала инверторной коммутации р управляющих импульсов тиристоров, осуществляющих/регулирование тока рекуперации /63,

64/.

Ш основе теоретических исследований разработаны электронные устройства, экспериментальные исследования и эксплуатация на серийных электровозах которых показали их высокую эффективность, обеспечивающую улучшение тяговых и тормозных свойств и повышение надежности и энергетических показателей электровозов.

В данной работе проблема обеспечения надежности ЭАУ рассматривается как часть более общей проблемы - повышения эффективности её функционирования, т.к. уровень надежности в значительной степени определяет её эффективность.

Обобщение опыта эксплуатации ЭАУ электровоза ВЛ80Р /33/ выявило резервы повышения её надежности, которая, в принципе, должна быть выше, по сравнению с контактными системами управления. Проблема обеспечения надежности ЭАУ усугубляется еще и тем, что, как следует из вышеизложенного, происходит её усложнение путем увеличения числа выполняемых функций с целью повышения её эффективности /30, 31, 32, 33/.

Показано, что основной составляющей надежности ЭАУ как комплексного свойства в период нахождения электровоза в эксплуатации и до возвращения его в депо или на пункт технического осмотра является её безотказность относительно отказов 1-го рода.

Сделаны аналитическая оценка и анализ эксплуатационной надежности ЭАУ электровоза ВЛ80Р.

Разработана методика оценки эффективности резервирования ЭАУ с использованием математического аппарата теории марковских случайных процессов с дискретными состояниями и непрерывным временем, позволяющая установить закономерности изменения количественных характеристик надежности в зависимости от кратности резервирования и наработки.

Показано, что эффективность резервирования является функцией наработки.Для ЭАУ электровоза ВЛ80Р наработку, равную 4000 ч, можно считать критической, т.к. при этой наработке эффекта от резервирования практически нет, а интенсивность отказов 1-го рода резервированной ЭАУ приближается к нерезервированной. Кроме того, даже при кратности резервирования (П = Ч вероятность безотказной работы относительно отказов 1-го рода настолько низкая /0,3/, что ЭАУ практически не может выполнять возложенные на неё функции.

Эффективность) резервирования растет с увеличением кратности резервирования. Однако, с ростом кратности резервирования прирост эффективности уменьшается. Наибольший прирост эффективности при кратности резервирования т - I и т = 2.

Особенность ЭАУ электроподвижного состава состоит в, том, что контроль и восстановление ее работоспособности должно производиться на одном из видов ТО или ТР,установленных для электровозов.

Показано, что показатели надежности резервированной ЭАУ зависят от того, на каком из установленных для ЭПС видов ТО или ТР происходит контроль и восстановление ее работоспособности. Полученные соотношения позволяют рассчитать показатели надежности резервированной ЭАУ относительно отказов 1-го рода.

Показано, что интенсивность отказов 1-го рода резервированной ЭАУ ЭШ характеризуется мгновенным значением, имеющим пилообразную' форму, и постоянным средним значением. Рассмотрены области применимости мгновенного и среднего значений. При рассчезв вероятности безотказной работы относительно отказов 1-го рода за интервал наработки, равный периодичности между проверками и восстановлением работоспособности ЭАУ, необходимо использовать мгновенное значение интенсивности отказов. Если же наработка, при которой вычисляется вероятность безотказной работы, намного превышает периодичность контроля и работоспособности ЭАУ, то необходимо использовать среднее значение интенсивности отказов. Непосредственно наблюдаемой в эксплуатации величиной интенсивности отказов 1-го рода резервированной ЭАУ является ее средняя интенсивность отказов.

Обоснован критерий выбора периодичности контроля и восстановления работоспособности резервированной ЭАУ, заключающийся в том, что необходимо брать наибольшую из установленных для ЭПС периодичностей ТО и ли ТР, на которой обеспечивается практическая безотказность ЭАУ относительно отказов 1-го рода.

Показано, что практическая безотказность относительно отказов 1-го рода электровоза ВЛ80Р обеспечиваетоя на интервале наработки, равной периодичности Т02. Переход на новую элементную базу - интегральный схемы низшей и средней степени интеграции позволит снизить величину интенсивности отказов примерно на порядок. Применение разработанной методики позволило оценить показатели надежности и эффективность резервирования ЭАУ электровоза ВЛ80Р. При этом дана оценка нижнего гарантированного уровня надежности. Сравнение теоретических и экспериментальных данных показывает, что точность теоретических оценок не превышает 15$. Указанная методика используется в ВЭлНИИ на стадии проектирования ЭАУ.

Результаты исследований, проведенных в данной работе, были использованы при разработке, доводке до серийного производства и организации технического обслуживания ЗАУ электровозов ВЛ8СТ, ВЛ80С, ВЛ80Р,5*/.

Электронные устройства, разработанные на основе исследований, внедрены в серийное производство на указанных электровозах.

В комплексе все основные положения данной работы будут использованы на перспективных электровозах, предназначенных для БАМ, начало выпуска которых намечено на конец текущей пятилетки.

Новизна разработок подтверждается а.с. 747747, 709417, 651988, 530412, 653718, 768674, 1068305.

Технико-экономическая эффективность, подробно рассмотренная в соответствующих разделах, заключается в улучшении тяговых и тормозных свойств и энергетических показателей электровозов, уменьшении износа бандажей и рельсов и расхода песка, повышении надежности как самой электронной'аппаратуры управления, так и силового оборудования, с которым она прямо или косвенно связана /тиристорных преобразователей, тяговых двигателей/, уменьшении количества поврежденных силовых тиристоров преобразователей, а также уменьшении расходов на производство и эксплуатацию аппаратуры и связанного с ней оборудования.

Документальное подтверждение внедрения результатов исследований и полученная при этом технико-экономическая эффективность в количественном выражении, полученная на НЭВЗе, приведены в приложении к диссертации.

I. ОБЗОР И АНАЛИЗ ПРИМЕНЯЕМЫХ ЭЛЕКТРОННЫХ АППАРАТУР УПРАВЛЕНИЯ ЭЛЕКТРОПОДВДШЫМ СОСТАВОМ

Заключение диссертация на тему "Повышение эффективности электронной аппаратуры управления магистральных электровозов переменного тока"

ОСНОВШЕ РЕЗУЛЬТАТЫ РАБОТЫ И ВЫВОДЫ

1. Обзор и анализ литературных источников и электронных аппаратур управления, применяемых на отечественных и зарубежных магистральных электровозах, показал, что степень использования потенциальных возможностей тиристорных преобразователей определяется эффективностью функционирования аппаратуры управления, составной частью которой является надежность, и что имеются резервы повышения эффективности аппаратуры, применяемой на отечественных электровозах, заключающиеся в улучшении тяговых и тормозных свойств электровозов, повышении их энергетических .показателей как самой аппаратуры, так и оборудования, с которым аппаратура прямо или косвенно связана.

2. Применение на магистральных электровозах замкнутых систем автоматического регулирования характеризуется рядом специфических для ЭПС режимов их функционирования, в значительной степени определяющих её эффективность и которые недостаточно исследованы в настоящее время, как то: регулирование токов при боксова-нии и регулирование тормозной силы при стабилизации скорости на спуске со сложным профилем в режиме электрического торможения.

3. Качественный анализ функционирования системы автоматического регулирования в специфическом для ЭПС режиме - боксовании колесных пар показывает, что автоматика в некоторых случаях усугубляет начавшийся процесс боксования, а применение известных способов повышения динамической жесткости характеристик тяговых двигателей не исключает отрицательного влияния автоматики на процесс развития боксования при одновременном боксовании двух колесных пар, двигатели которых подключены к одному преобразователю, а в более общем случае - всех колесных пар электровоза.

4. Теоретически обоснована и экспериментально подтверждена принципиальная возможность повышения динамической жесткости характеристик тяговых двигателей средствами автоматики - путем корректировки уставки регулятора тока якоря на величину, пропорциональную производной по времени одного из параметров, характеризующих процесс боксования колесных пар, что обеспечивает автоматическое восстановление сцепления при одновременном боксовании двух колесных пар, двигатели которых подключены к одному преобразователю, а в общем случае - при одновременном боксовании всех колесных пар электровоза.

5. Для обеспечения нормального функционирования автоматики и автоматического восстановления сцепления во всех эксплуатационных режимах боксования корректировка уставки регулятора тока должна быть не только на величину, пропорциональную производной по времени одного из параметров, Характеризующих процесс боксования, но и на величину, пропорциональную разнице значений параметра, характеризующего процессы в двигателях, связанных передачей с боксующей и не боксующей колесными парами и что лба вида коррекции взаимодополняют друг друга.

6. Для снижения вероятности возникновения боксования осей передней тележки как наиболее разгруженной под действием опрокидывающих моментов необходимо уменьшать, примерно на 10$, уставку регулятора тока передней тележки относительно уставки регуляторов тока задних тележек.

7. Усовершенствована функциональная и разработана структурная схемы системы автоматического регулирования тормозной силы при электрическом торможении в режиме стабилизации скорости движения на спуске со сложным профилем пути, исследована устойчивость системы и определена область допустимых значений коэффициента усиления разомкнутой системы, при которых обеспечивается устойчивость исходной замкнутой.

8. Показано, что для тиристорных преобразователей с параллельным соединением мостов, потенциальные условия, необходимые для включения плеч на разных зонах, возникают в разное время относительно нуля питающего напряжения.

9. Обоснована необходимость использования для управления тиристорными преобразователями с параллельным соединением мостов устройства слежения за напряжением на тиристорах с изменяющимся /при переходе с одной зоны на другую/ уровнем срабатывания порогового элемента.

10. Обоснована необходимость отсечки вр /момент начала инверторной коммутации/ управляющих импульсов тиристоров, осуществляющих регулирование тока рекуперации.

11. Разработана методика оценки эффективности резервирования и показателей надежности ЭАУ относительно отказов 1-го рода. С помощью указанной методики выполнена оценка показателей надежности ЭАУ электровоза ВЛ80Р и эффективности её резервирования. Показано, что для ЭАУ типа БУВИП-100 наработка, равная 4000ч, является критической, так как при этой наработке эффекта от резервирования практически нет, а интенсивность отказов 1-го рода резервированной аппаратуры приближается к нерезервированной. С ростом кратности прирост эффективности резервирования уменьшается. Наибольший прирост эффективности при кратности I и 2.

12. Показана зависимость показателей надежности относительно отказов 1-го рода от того, на каком из установленных для ЭПС видов ТО или ТР производится контроль и восстановление её работоспособности. Получены соотношения, позволяющие рассчитать показатели надежности.

13. Показано, что интенсивность отказов 1-го рода характеризуется мгновенным и средним значениями. Рассмотрены области их применения при расчетах.

14. Теоретически и экспериментально обоснована практическая безотказность относительно отказов 1-го рода ЭАУ электровоза BJI80P на интервале наработки, равном периодичности Т02.

15. Исходя из критерия практической безотказности относительно отказов 1-го рода теоретически и экспериментально обоснована периодичность замены отказавших блоков резервированной ЭАУ электровоза BJI80P равная периодичности Т02. Практическая безотказность относительно отказов 1-го рода на интервале наработки, равном периодичности TPI может быть обеспечена снижением интенсивности отказов на порядок. Такие показатели надежности ЭАУ могут быть получены переходом на новую элементную базу - микроэлектронику /интегральные схемы низшей и средней степени интеграции/ при существующей кратности резервирования, равной I.

16. Применение разработанной методики позволило оценить показатели надежности и эффективность резервирования ЭАУ электровоза ВЛ80Р. При этом дана оценка нижнего гарантированного уровня надежности- Сравнение теоретических и экспериментальных данных показывает, что точность теоретических оценок не превышает 15%, Указанная методика используется в ВЭлНИИ на стадии проектирования ЭАУ.

17. На основе теоретического и экспериментального исследований разработаны устройства электронной аппаратуры управления, повышающие её эффективность функционирования и внедренные на серийно выпускаемых НЭВЗом магистральных электровозах: устройство для автоматического регулирования токов тяговых двигателей при боксовании - на экспортном электровозе для поставок в Финляндию типа Sti , усовершенствованное устройство для автоматического регулирования тормозной силы при электрическом торможении в режиме стабилизации скорости на спуске со сложным профилем пути -на электровозах BJI80T, BJI80C, BJI84; устройство, обеспечивающее отсечку в /момент*инверторной коммутации/ импульсов управления тиристорами, осуществляющими регулирование тока рекуперации -на электровозе ВЛ80Р. Исследования вопросов безотказности электронной аппаратуры управления использованы при доводке до серийного производства, организации эксплуатации и технического обслуживания и оценке уровня эксплуатационной надежности аппаратуры электровоза ВЛ80Р. Разработанная методика оценки показателей надежности и эффективности резервирования используется на стадии проектирования ЭАУ. В комплексе все результаты исследований будут использованы на перспективном электровозе, предназначенном для БАМ. Экономическая эффективность внедренных на серийно выпускаемых НЭВЗом магистральных электровозах устройств электронной аппаратуры управления составила I млн. 102 тысячи рублей.

Библиография Юренко, Иван Кондратьевич, диссертация по теме Подвижной состав железных дорог, тяга поездов и электрификация

1. Основные направления экономического и социального развития СССР на 1981 - 1985 гг. и на период до 1990 г. - Правда,1980 2 дек.

2. Тихменев Б.Н., Голованов В. А., Капустин Л.Л. О плавном регулировании напряжения на тяговых двигателях электроподвижного состава однофазно-постоянного тока. Тр/ВНИИж.-д. трансп. 1966, вып.312, с. 5 -17.

3. Тихменев Б. Н., Голоеэное В.Л., БасоЕ Ю.А. Плавное регулирование выпрямленного напряжения на электровозах с тиристорами.- Тр/ВНИИ ж.-д. трансп.1966, вып. 312, с.18 32.

4. Тихменев Б.Н. Перспективы развития электровозов. £.-д. трансп. 1971, JS 10, с. 5 - 10.

5. Тихменев Б. Н. Пути совершенствования электроподЕИЖного состава. Электр, и тепловоз, тяга. 1971, JE 3, с. 7 -12.

6. Takashi Т., Hirosbi I., Tosbikatsu К : Control of AG electric lokomotives with a thyristor system and regenerative braking. Hitachi Review, 1971» v.20, N 9, 364-372.

7. Васильев B.B. Прогнозирование надежности и эффективности радиоэлектронных систем. М., Сов. радио, 1970, с. 334.

8. Ястребенецкик М.А. Надежность технических средств в АСУ технологическими процессами. М., Энергоиздат, 1982, с. 221.

9. Надежность и эффективность АСУ / Под общ.ред. Заренина Ю.Г.- Киев, Техника, 1975, о.368.

10. Дружинин Г. В. Надежность автоматизированных систем. -Ы., Энергия, 1977, с.536.

11. ГОренко И. К., Гуд но в Л.Г. Системы автоматизации управления электроподвииным составом. Тр/ЦНИИ МГО, 1974, вып. 518,с. 138 146.

12. Феоктистов В.П., Шапкин И.Н. Автоматическое регулирование скорости электро подвижно го состава. S.-д. транс п., i960,$ 3, с.86 91.

13. SJ Takes Delivery of Rc2 Thyristor Lokomotives. -Railway Gazette, 1967, 123, N 19, p. 729 73314. ASEA Thyristor Electrics s Series Production for SJ.

14. Modern Railway, 1970, IT 4, p. 76 84.

15. Bjprklund V.B. Thyristorlokomotive G?yp Rcl der Schwedischen Staatsbahnen. Elektrische Bahnen, 1970, N 4, S. 76 - 84.

16. Szandtner V., Fiser J., Kozma L. Our Experiment with Thyristor Lokomotives. Ganz Electric Review, 1969, N 9,p. 34 45.

17. Булев O.H., Кириллов B.C., Юренко И. К. Электровоз Sri --3000. Электротехн. пром-сть. Сер. Тяговое и подъемно-транспортное оборудование, 1975, вып. 6 /39/, с.6 -10.

18. Voss U. Shaltung und Steuerung des Triebzuges Baureihe 420 der Deutschen Bundesbahn. Elektrische Bahnen, 1969, 40,1. N 12, S. 288 294.•19» Assmis A. Die Fahr und Brems Steuerung der Locomotive & ЮЗ. - Elektrische Bahnen, 1972, N 7, S. 165-167»

19. Капустин Л.Д., КопаневА.С., Лозановский А.Л. Особенности устройства и эксплуатации электровоза ВЛ80Р. М., Транспорт, 1979, с.175.

20. Наумов Б.М- Разработка и исследование бес-контактных устройств управления электровозами переменного тока: Автореф. дис. на. сои с к. учен. степ. канд. техн. наук. Новочеркасск, 1967,с.17. Новочерк. политехи, ин-т.

21. Шумский В.Г. Исследование фазового управления многомос-говым выпрямителем электровозов переменного тока в тяговом режиме: Автореф. дис. на сшск. учен. степ. канд. техн. наук. М., 1977, с.19. - МЭИ.

22. Калабухов O.P. Разработка и исследование элементов систем управления тирк; торными преобразователями магистральных Электрою зов переменного тока: Автореф. дис. на соиск. учен. степ, канд. техн. наук. М., 1977, с.19. - МЭИ.

23. Тулупов, В.Д. Пошшение эффективности систем электрического торможен и я локомотивов. М., Транспорт, 1968, с.II2.

24. Упр авление вентильными электроприводами постоянного тока / Лебедев Е.Д., Неймарк В.Е., Пистрак М-Я., Слежановский О-В.- М., Энергия, 1980, с.195.

25. Воробьев В.П. Что показывает опыт эксплуатации электровозов ВЛ80Т. Электр, и тепловоз, тяга, 1974, И, с.7 - 12.

26. Лозановский А. Л., Юренко И. К- Эксплуатационная надежность электронных компонентов аппаратуры управления магистральных электровозов. Доклад на семит.ре "Техническая диагностика тягового подвижного состава". Рига, 1982.

27. Тихменев Б.Н. Пути повышения надежности и энергетических показателей электровоза ВЯ80Р. Вестник ВНИИ ж.-д. трансп., 1982, В2, с.15 - 19.

28. Независимое возбуждение тяговых двиганз лей электровозов.

29. ПОД ред. А.Т.Головатого М., Транспорт, 1976, с.150.

30. Розенфельд В.Е., Исаев И.П., Сидоров H.H. Теория электрической тяш. М., Транспорт, 1983, с.332.

31. Пр еобразовательные полупроводниковые устройства подвижного состава. / Под ред. Инькова Ю.М. М., Транспорт, 1980, с. 258.

32. Тулупов В.Д. Автомата ческое регулирование сил тяги и торможения электроподвижного состава. М., Транспорт, 1976, с. 355.

33. Феоктистов В.П. Исследование системы плавного автоматического регулирования тягового привода численным моделированием. Тр. / Моск. ин-т инж. трансп., 1970, вып.327, с.57 - 66.

34. Феоктистов В.П. Улучшение тяговых свойств электроподвижного состава при плавном автоматическом пуске. Электричество, 1970, Ж0, с.24 - 28.

35. Капустин Л.Д. Плавное регулирование выпрямленного напр яжения на электропоездах с тиристорами. Тр ./ВНИИ ж.-д. трансп., 1967, вып.312, е.35 - 39.

36. Тихменев Б-Н. Пути совершенствования электроподвижного состава. Электр, и тепловоз, тяга, 1971, №3, с.7 - 12.

37. Фаминский Г.В., Меншутин H.H. Улучшение тяговых свойств электровозов при шосном регулировании силы тяги с контролем сцепления. Тр./ВНИИ ж.-д. трансп., 1968, вып. 378, с.80 - 101.

38. Ми нов А.К. Повышение тяговых свойств электровозов и тепловозов с электрической передачей. М., Транспорт, 1965, с. 262.

39. Испытания электровоза Szi -3000 на участке магистральной железной дороги. Отчет / Всесоюз. н.-и., проектно-конструк. и технол. ин-т электровозостроения, Руководитель работы Янов

40. В.П., Ф-63-72. Новочеркасск, 1972, с.73.

41. A.C. 709417 /СССР/. Устройство для автоматического регулирования тэков тяговых дшгателей электровозов. / Всесоюз. науч.-исслед., проектно-конструк. и технол. ин-т электровозостроения. Авт. изобрет. Юренко И.К., Стекольщиков В.А. , Титов

42. Г.И. заяв, 27.03.78 №2593938/24-11; опубл. в Б.И. 1980 №2 МКЙ В 60 15/20.

43. Zwahlen Robert Bohli Werner. Konzeption der Steuer undiii

44. Regelelktronik auf Eriebfahr zeugen mit Anschnittsteuerungi,-BroTOi Boveri Mitt 1975, 62 IT 12 , 517-527.

45. Germanier R. Zugführungsfunktionen bei elektrischer Tractionv — Techn Rdsch 1975, 67, N 32, 17-18.5>4v Eckart Saumweber und Günther Winkle, München. Eine neue Gleitschutzgeneration für die Eisenbahn unter Verwendung vonv w

46. Mikroprozessoren.- Elektrische Bahnen 79. Jahrgang 1981 Heft 9;

47. Юренко И .К. 0 регулировании тормозной силы электровозов с реостатшм торможением. В кн.: Электровозостроение: Сб. н^гч. труд® / Всесоюз. н.-и., проектно-конструк. и технол. ин-тэлектровозостроения, Новочеркасск, 1982, т.22, с.51 57.

48. Бессекерский В.А., Попов E.H. Теория систем автоматического регулирования. М., Шука, 1972, с.761.

49. Мугинштей! JI.A-, Некрасов O.A., Иванов К).В. Параллельное включение диодов и тиристоров в преобразователях электроподвижного состава. Тр. / ЖИИ ж.-д. трансп., 1976, вып.516, с. 17 - 23.

50. Тиристоры. / Под ред. Юбунцова В.А. М., Энергия, 1971, с.560.

51. Некрасов O.A., Ми рошниченко Р.И. Условия работы вспомогательных машин по напряжению. Тр. / ВНИИ ж.-д. трансп., 1966,вып.312, с.76 97.

52. Толованов В.А., Капустин Л.Д., Хомяков Б.Н. Эксплуатация сш овых преобразователей электроподвижного состава. М., Транспорт, 1977, с.204.

53. Филшпенко Ю.И. Разработка и исследование системы формирования импульсов управления тиристоров преобразователей магистральных зя ектровозов:Автореф. дис. на соиск. учен. степ, канд. техн. наук. М., 1975. МЭИ.

54. Горский A.B. Рассчет коэффициента готовности аппаратуры электроподвижного состава. Тр. / ИТ, 1967, вып.250, с.87 -95.

55. Зяектроподвижной состав. Эксплуатация, надежность и ремонт: Учебник для вузов ж.-д. трансп. / Головатый А.Т., Исаев

56. И.П., Борцов П.И. и др. ; под ред. Головатого АЛ. и Борцова П.И. М., Транспорт, 1983, с.350.

57. Вектцель Е.С. Теория вероятностей. М., Наука, 1969, с.574.

58. Ососков Г.А. Одна предельная теорема для потока однородных собштий. В кн.: Теория вероятностей и ее применение. 2. 1956, е.274 - 282.

59. Погожев Н.Б. Опенка отклонений потоков отказов в аппаратур е многоразового действия от пуассоковского потока. В кн.: ЭДбержтику - на службу комзцунизму, т.2. М-, Энергия, 1964, с.228- 246.

60. Юренко И.К. Оценка эксплуатационной надежности электронной алтратуры управления электровозов. В кн.: Электровозостроение: Сб. науч. трудов / Всесоюз. н.-и., прожтно-конструк. и технол. ин-т электровозостроения, Новочеркасск, 1983, т.23, с. 60 - 64.

61. Ефимов Н.Е., Кальман Н.Г., Мартынов В.Н. Надежность твердых интегральных схем. М., Стандартов, 1979, с.216.

62. Преснухин И.К., Шахнов В.А., Кустов В.А. Основы конструирования микроэлектронных вычислительных машин. М., Высшая шюла, 1976', с.404.

63. Вентщель Е.С. Исследование операций. М., Московское радио, 1972, с.547.

64. Падовко A.M. Основы теории надежности. М., Наука, 1964, с.443.

65. Белецкий В.В. Теория и практические методы резервирования радиоэлектронной аппаратуры. М . , Энергия, 1977, с.350.

66. Базовский И. Надежность. Теория и практика. М., Мир, 1965, с.364.

67. Панфилов И.В., Половко А. М. Вычислительные системы. -М., Сов. радио, 1980, с. 304.

68. ГОСТ 13 377-75 Надежность в технике. Термины и определения.

69. ГОСТ 17 510-72 Надежность изделий машиностроения. Система сбора и обработки информации.

70. ОСТ 24.04 0.03-79 Тяговый подвижной состав железнодорожного транспорта. Надежность. Термины и определения.

71. ГОСТ 11.005-74 Правила определения оценок и доверительных границ для пар аметров экспоненциального распределения и распределения Пуассона.

72. Опытная эксплуатация электровозов, оборудованных аппаратурой управления на микроэлектронике. Протокол / Всесоюз. науч.-исслед., проектно-конструк. и технол. ин-т электровозостроения. Руководитель работы Лозановский А.Л. ЭВ-21-81, Новочеркасск, 1981.

73. Типовые испытания блока управления выпр ямительно-ин-верторным преобразователем. Протокол / Всесоюз. науч.-исслед., проекшо-кснструк. и технол. ин-т электровозостроения. Руководитель р аботы Лобанова Л.С. ЭА-15-84, Новочеркасск, 1984.

74. Merkel H.H. Mehr Elektronik und höhere Zuverlässigkeit -ein Widerspruch ? Schienenfahrzeuge, 1977» N I» 23-25.о

75. Schneider H. Probleme der Zuverlässigkeit von Triebfahrzeugen bei der Projektierung. Schienenfahrzeuge 55, 1978*1. W v1. S. 229« 232.

76. Данные для построения графиков рис. 2.17