автореферат диссертации по строительству, 05.23.16, диссертация на тему:Взаимодействие волн с гидротехническими сооружениями в прибрежной зоне моря
Автореферат диссертации по теме "Взаимодействие волн с гидротехническими сооружениями в прибрежной зоне моря"
АО "Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева"
на правах рукописи
ИГахин Виктор Миронович
УДК.551.466.4
Взаимодействие волн с гидротехническими сооружениями в прибрежной зоне моря
Специальность 05.23.16 - Гидравлика и инженерная гидрология
АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора технических нате
Санкт-Петербург. 1994
Работа выполнена в Черноморском филиале АО "Научно-исследовательский институт транспортного строительства" (ЦНИИС)
Официальные оппоненты:
доктор технических наук, профессор,
заел уж. деятель науки и техники Лглш ЛИ
д.т.н., проф..член корр. йщ.транспорта Втенцель В.К..
доктор технических наук, профессор Зкхззядская'Н.Н.
Ведущее предприятие - АО ''Ленморниипроеггг'"
Защита диссертации состоится
»г3'■ ъ^Ф^аг- в ¡о.
часов-на заседании диссертационного совета. Д 144.03.01 при АО " В сероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева" по адресу: 195220, Санкт-Петербург, ул.Гжатская, 121, актовый зал.
С диссертацией можно ознакомиться в научно-техничегыой -.библиотеке института. ^ -
Автореферат разослан"" НЯОРЗ тоемг
Ученый секретарь Специализированного Совета кандидат технических наук, 7 -- .
старший научный сотрудник 7\(/Сб£ССс( Т.В. Иванова -
<?бщая характеристика работы
Актуальность работы. Интенсивное освоение морских побережий и широкомасштабное гражданское, промышленное и курортное строительство, как правило, сопровождается все более усиливающимся вторжением человека в естественные береговые процессы. Так, строительство портов приводит к нарушению вдольберегового потока наносов, застройка территории к прекращению поступления материала коренного берега на подводный береговой склон, хозяйственное освоение речных пойм влияет на твердый сток рек. Нарушение хода природных процессов нередко вызывает нежелательные последствия: обмеление , портовых .акваторий, низовые размывы берегов, подмыв оснований и разрушение инженерных сооружений, активизацию оползневых процессов и др. Кроме -того, в последние годы весьма актуальной является проблема загрязнения прибрежных акваторий нефтепродуктами, промышленными и коммунальными сточными водами, химическими удобрениями и гербицидами.
Таким образом, в настоящее время строительство гидротехшгческих сооружений в прибрежной зоне морей- и водохранилищ требует решения комплекса задач. Это и традиционные задачи воздействия волн и течений на сооружения, но также и задачи о влиянии проектируемых объектов на смежные участки бе рега, режим движения наносов, подводный береговой склон, вдольбереговые и циркуляционные течения, водообмен. Однако решение такого комплекса' задач для условий прибрежной зоны, в частности прибойной, - достаточно сложная проблема.
Так, до настоящего времени нормированные методы расчета параметров волн-и нагрузок на сооружения основываются на линейной теории волн и эмпириче-' гких формулах. Нет единой концепции по методике физического моделирования гидро-литодинамических процессов в прибрежной зоне моря. Не получили обобщения новые методы и сооружения с~использованием проницаемых конструкций, разработанные в последние годы.
Требуют совершенствования и теоретические методы исследования трансформации волн в прибойной зоне моря. В настоящее время расчет обрушающих-•л волн (Лонге-Хиггине, Стюарт. Меоте. Леонтьев) осуществляется с использо-:анием соотношений линейной теории для оценки энергии волн. Кроме того, не "читывается нелинейное взаимодействие волн и течений, генерируемых волнени-м в прибойной зоне. —
В-последние годы возрос интерес к изучению пограничного слоя, формируе-[ого волнением на мелководье. -Это можно объяснить тем. что от характеристик
-2г-
течения в этом слое зависит и направленность перемещения наносов, и рель дна, и, в конечном счете, устойчивость берегового склона. Однако работ, nocí щенных исследованию тК'рбулентного пограничного слоя пока относительна i много (Ионсон, Беккер,. Дэвис, М.И. Железняк, Слис,Саммер и др.). Это мож объяснить тем, что. исследования, статистически нестационарных турбулентш течений весьма сложны. И лишь с разв»тив>л чзмержтельной и вычислительн техники стало возможным проводить изучение таких течений более интенсивнс глубоко.
" Таким образом, можно сделать вывод об актуальности задачи обобщен и разработки новых методов экспериментальных и теоретических исследован гидро-лито динамических процессов в прибрежной зоне моря с учетом совреме ных достижений гидромеханики. В связи с тенденцией все возрастающего пр менения компьютеров для инженерных расчетов и проектирования," актуалып является и "доведение" -математических моделей до отлаженных и апробирова ных программ, позволяющих проводить расчеты трансформации волн, их вза модействия с сооружениями, течений в прибрежной зоне моря, включая прибо нузпу с учетшснелинейных, дисперсионных и диссипативных аффектов. Требу! теарегатзгетжтз. оопснов'ания: новые способы и конструкции, разработанные в г следние года, для снижения: штормового воздействия на берега и инженерш сооружения.
Фсшкгшж ©Эъегг исследований был выполнен в рамках государственных охраасваьсЕ прогргдаг. а тажже в процессе проведения поисковых и научно - т( нических работ по конкретным объектам.
Личный вклад диссертанта, в исследованиях, выполненных в соавторст] заключался в постановке задач, разработке алгоритмов их решения, метода* ском руководстве и участии в экспериментальных исследованиях, анализе j зультатов измерений.
Целью работы является комплексное решение научно - технической проб: мы о воздействии штормового волнения на гидротехнические сооружения разлх-ных типов в прибрежной зоне"Моря, включая прибойную, с разработкой нов: методов физического и математического моделирования.
Для реализации поставленной цели необходимо было: выполнить анализ а: периментальных и теоретических исследований по рассматриваемой проблег разработать метод расчета волнопродукторов; провести масштабные серии э:
риментов; разработать алгоритмы и программы для расчета течения в волно-м пограничном слое, трансформации волн конечной амплитуды в мелководной не, включая прибойную, с произвольным рельефом дна, их взаимодействия с цротехническими сооружениями; создать метода расчета новых берегоза.щит-х сооружений с проницаемой передней гранью и волновой камерой; решить цачу о нелинейном взаимодействии волн и их взаимодействии с неоднородно-тми рельефа дна; рассмотреть вопрос о влиянии проницаемых сооружений и эднородностей рельефа дна на транспорт наносов.
Методы исследований. В процессе работы был выполнен комплекс экспе-ментальных исследований: методические опыты, масштабные серии опытов и ыты по обоснованию математических моделей; а также значительный объем >ретических исследований, включающий аналитическое и численное решение ;ач, математическое моделирование гидродинамических процессов в прибреж-Ъ зоне моря, разработку и обоснование методов расчета. Кроме того были эведены разработки по совершенствованию методики физического моделиро-шя волн и течений а также созданию новых методов и устройств для целей эегозащиты. •
Объекты исследований - прибрежная зона моря, волны, гидротехнические >ружения. - • -
Научная новизна работы. Разработаны и обоснованы новые подходы к фи-гескому моделированию береговых процессов на морских побережьях, пред-кен новый метод расчета волнопродукторов для условий относительно малых гбин.
Разработаны новые типы берегозащитных сооружений и методы их расчета. Решены задачи о нелинейном взаимодействии волн с нёоднородностями ре-:фа дна и дисперсионном усилении волн. -
Разработан метод расчета волновых процессов в-прибойной зоне моря и ме-( расчета волнового пограничного слоя на.подводном береговом склоне.
Практическое значение работы заключается в возможности использования [ученных результатов: при физическом моделировании гидро" - лйтодинамиче-х процессов на конкретных береговых участках; для оценки параметров волн ечений в прибрежной, зоне^моря. в' том числе в прибойной зоне и течений в [донном пограничном слое; для расчета взаимодействия волн с сооружениями личных типов и волновых нагрузок на сооружения с учетом нелинейных, дис-сионных и диссипатйвных эффектов; при разработке способов и конструкций
для защиты берегов, коммуникаций и инженерных сооружений от воздействия штормового волнения; при оценке влияния сооружений на смежные участки береговой зоны.
На защиту выносятся:
методика физического моделирования береговых процессов на галечных и
песчаных побережьях; .....
метод расчета трансформации волн (как регулярных, так и нерегулярных) на береговом откосе с произвольным рельефом дна;
закономерности взаимодействия волн большой амплитуды с подводной траншеей и взаимодействия слабодисперсионных волн различной длины;
метод расчета трансформации волн конечной амплитуды в мелководной акватории с произвольным рельефом дна, в том числе при наличии инженерных сооружений;
метод расчета параметров волн и генерируемых ими течений в прибойной зоне моря:
метод расчета течения в пограничном слое, формируемым волнением на подводном бертгозззм «ждоае;
метод расчета волновых нагрузок на сооружения различных типов, в той числе ьд сооружения с проницаемой передней гранью и волновой камерой; новые методы и конструкции для целей берегозащиты;
метод ощяеевк влияния стока, взносов на смежные участки береговой зоны. Результахьг работы внедрены:
при решении практических задач на различных участках берегов морей Черного (Северо - Запад, Крым, Краснодарский край), Азовского (Краснодар ский край), Балтийского (г. Светлогорск, г. Зеленогорск, Куршская коса), Ка спийского (г. Дербент, г. Махачкала);
методика гидравлического моделирования волнения и береговых процессо: опубликована;
методы расчета проницаемых сооружений используются в. специализирован ных проектных организациях России и Украины;
новые методы берегозащиты (с применением.проницаемых сооружений с вох новой камерой и подводной траншеей) запатентованы и находятся в различны стадиях внедрения. - ..
Апробация работы. Основные положения диссертации докладывались на международных и 16 всесоюзных и республиканских конференциях, совещания и семинарах.
Публикации. По теме диссертации опубликовано 35 работ, в том числе гчено 4 авторских свидетельства на изобретения.
Объем работы. Диссертация состоит из предисловия, шести глав и заклю-[я. Содержит 186 стр., в том числе 57 рис., 12 таблиц и список литературы 02 наименований.
Авхор считает своим долгом выразить глубокую признательность академи-'АН О.Ф. Васильеву, доктору техн. наук~Д.Д. Лагшо, канд. техн. наук Хасхачиху за постоянное внимание к работе и большую помощь; докторам шо-математических наук В.И. Букрееву, E.H. Пелиновскому, И.Т. Селезо-;окторам технических наук А.Н. Милитееву, Е.И. Массу, доктору географиях наук H.A. Айбулатову, инженеру Ю.С. Гребневу, кандидатам техниче-: наук A.A. Атавину,- Е.К. Гречищеву, И.Ш. Халфину, B.JI. Максимчуку, (идату физ.-мат. наук М.И. Железняку, кандидату географических наук В.В. ицкому за ценные советы, высказанные при обсуждении отдельных этапов )ты, кандидатам технических наук В.П. Мальцеву,"К.Н. Макарову, н.с. Л .-А. ельник, инженерам В.В. Козлову, H.A. Ермаковой, Л.А.Месс, и другим со-щикам Черноморского отделения ЦНИИС за помощь в проведении экспери-:альных исследований и расчетов, а также н.с. Т.В. Шах иной за большую эщь в отладке программ и проведении численных экспериментов.
Основное содержание работы В предисловии дано обоснование актуальности работы и сформулированы [ и задачи исследований.
В первой главе изложено современное состояние вопроса. Отмечается, что в лабораторных условиях гидро- литодинамические процес-прибрежной зоне моря изучаются, как правило, на уменьшенных моделях, этом для создания диналпгчески подобных процессов следует соблюдать ряд >вий, которые вытекают из теории подобия или теории размерностей. Прин-динамического подобия может быть сформулирован (Л.И. Седов, Б.А. Шу-Дж. Дейли и Д. Харлеман) как требование того, чтобы в двух системах ^метрически подобными границами индивидуальные силы, действующие, на ветствующие элементы среды в соответствующие моменты времени, были ном и том же отношении. При правильной постановке экспериментов мож-олучить не только достаточно полную качественную_картину явления, но и ходимую количественную информацию (И-И. Леви, .Лж. Шарп)." Гидравлическое моделирование процессов распространения волн обычно
осуществляется при обеспечении геометрического подобия/в соответствии еды-, бранным линейным масштабом сц,, равенства чисел Фруда и соответствующих начальных (при необходимости) и граничных условий.- Влияние вязкости на движение волн, как правило, невелико. Равенство чисел Фруда в натурных условиях и на модели обеспечивается выбором масштаба периода волн ат ¿¿"зависимости
<*т = . (1)
Если ддаэ размыв аинмое, та на модели- необходимо обеспечить и.подобие процессов переноса наносов, в частности обеспечить соответствующее отношение сил инерции к силам вязкости, действующих на-частицы наносов, или равенство чисел Рейнольдса.
В общем случае на модели не удается получить число Рейнольдса, соответствующее натурному. В этом заключается основная трудность моделирования гидравлических процессов а» потоках, со свободной поверхностью и размываемыми -гоатжаиием:. ЗЖшяжлж^.'в жакдош ¡кширвзжам. хшувга жеойкццимо анализировать- ¡втяник ^нкота Рейнсяьдшь па. результаты; исдедимш. При достаточно больших: числах; Решюльдса- силы гидравлического' воздействия: пропорциональны: шведрату «норостн; и. ше зашалят от вязяохггк жадности. В этом случае необ хедашо жвжепечихь щгцшйие •по 'щшаБу #[зуда. яя гедагсчг"рмч£еакве подобие донньс нащипан. ТаыигШ сличай и&жаг метала стриг изучении движения крупнозернисты: нанахгов, а также при волновови воздействии на относительно крупномасштабны! сооружения или элементы сооружений.
Если наносы мелкозернистые, то кеаьзя пренебречь влиянием молекулярно: вязкости на перенос твердых частиц. В этом случае оба параметра, и числ< Рейнольдса и число Фруда, являются определяющими. Для изучения в лабора торных условиях движения мелкозернистых наносов применяются методы прк ближеаного моделирования как с использованием натурного материала,, так легких частиц.
С применением частиц из легких материалов выполнено довольно значител] ное количество работ по исследованию транспорта-наносов в береговой зоне и руслах. Использование легких частиц-позволяет моделировать условия начал размыва дна. Однако процессы переноса наносов искажаются и в этом случа поскольку относительная шероховатость дна на модели будет отличаться от н турной, а значит будут отличаться и гидродинамические характеристики теч ния. Подробный обзор масштабных соотношений,'полученных до 1975 г разныг.
зторами при моделировании движения наносов в прибрежной зоне, обусловлен-эго волновым воздействием, с использованием легких наносов дан Камфуисом.
Следует отметить также работы Нода и Веллинга по методике гидравличе-сого моделирования профиля песчаного берегового склона.-----
Обзор работ последнего десятилетия по методике гидравлического модели-звания трансформации волн и лито динамических процессов на морских берегах .шолнил Далримпл. Из этого обзора следует:
1. На модели правильно воспроизводится трансформация коротких золн з гучае равенства чисел Фруда и геометрического подобия.
2. Для длинных волн возможно искажение масштабов модели. При этом >стоверно будет воспроизводиться рефракция волн, поскольку фазовая скорость >лны является функцией'только глубины воды.
3. Процессы трансформации и дифракции волн, в том числе волн относи- . 'льно большой амплитуды на произвольной глубине, и трансформации волно-iro спектра на неискаженных физических моделях соответствуют процессам в .турных условиях.
4. При равенстве чисел Фруда и геометрическом подобии в лабораторных ловиях моделируется и обрушение волн в прибойной зоне.
К сожалению, таких однозначных выводов нельзя сделать относительно мо-лирования процессов переноса наносов. Поэтому в данной работе большое имание уделено методике лабораторных исследований транспорта наносов з ибрежной зоне моря.
Методы расчета взаимодействия волн с подводным береговым склоном или косами инженерных сооружений существенно различаются з зависимости от аы распространения волн. Методы, хорошо разработаны для описания транс-рмации волн до обрушения (Стоке, Буссинеск, Кортевег и де Фриз, М.А. Ла-ентьев, Стокер, Уизем, Л.В. Овсянников, Ю.З. Алешков, Ю.И. Шокин. Пе-грин, E.H. Пелиновский, М.И. Железняк. A.A.' Атавин. С.М. Шугрин и др.). (нако эти методы непригодны для расчета параметров золн в прибойной зоне, зал ось бы. з этой зоне, где длина золн существенно больше .глубины, а сле-зательно, дисперсионные эффекты несущественны, должна "хорошо "работать"-1ссическая теория мелкой воды, которая с удовлетворительной точностью опивает движение длинных золн, з том числе с обрушением в виде гидравлическо-прыжка или турбулентной боры. Однако этой теорией при расчетах зетро-к волн следует пользоваться с осторожностью. Во-первых, она не позволяет 1вильно определить местоположение начала обрушения волн (если проводить
расчеты с учетом нелинейных членов, то независимо от глубины все волны при движении обрушатся) и, во- вторых, скорость диссипации энергии в турбулентной боре относительно велика и в расчетах волны быстро затухают. В реальных условиях при пологих береговых склонах обращающаяся волна может пройти болыпстг-расстояние; язтеждгчтжгсупгестаенно уменьшится ее высота.
При решении задачи о трансформации воле в прибойной зоне наиболее часто используется метод, предложенный Меоте. Метод основан на решении уравнения баланса энергии волн в виде
где Е - энергия волн на единицу площади; сд - скорость переноса энергии; V -скорость диссипации анергии, обусловленная разрушением волн и трением о дно; х - горизонтальная координата, направленная к берегу. В прибойной зоне трением о дно обычно пренебрегают, а скорость диссипации энергии определяется по зависимости, аналогичной для скорости диссипации в гидравлическом прыжке. Необходимо отметить также, что обрушающиеся волны создают дополнительные напряжения в направлении распространения волн. Это вызывает повышение среднего уровня (волновой нагон) и генерирование вдольбереговых, циркуляционных и разрывных течений. Теоретические исследования этих явлений стали развиваться после работы Лонге-Хиггинса и Стюарта, в которой авторы ввели концепцию радиационных напряжений. Расчет характеристик волн и течений з прибойной зоне в настоящее время осуществляется по следующей схеме (И.О. Леонтьев): .
- из уравнения (2) определяется плотность волновой энергии;
- с использованием соотношений линейной теории волн -рассчитываются радиационные напряжения; - - -
- определяется волновой нагон;
- с учетом волнового нагона и радиационных, напряжений решаются осредненные по глубине уравнения количества движения и неразрывности.
К достоинствам такого метода можно'отнести относительную его простотуиво многих случаях неплохое соответствие результатов расчетов с эксперементаль-ными данными. К недостаткам .-.пренебрежение нелинейными эффектами, которые в прибойной зоне весьма существенны, нел-чет взаимодействия волн различной длины, а также взаимодействия волн и течений . *
Методы расчета волновых нагрузок на гидротехнические сооружения; которые лежат в основе действующего.нормативного документа (СНиП 2.06.04 — 32*) наиболее полно обобщены в монографии.Д.Д. Лаппо, С.С. Стрекалова и В.К. Завьялова. Теоретической базой большинства из этих методов является нлассй-" ческая потенциальная теория волн как в линейной, так и нелинейнойтюстановках. Так, например, волновые нагрузки на вертикальные сооружения определяются на основе зависимостей теории стоячих волн дет третьего приближения включительно. . Учет различных эффектов, не описываемых теоретически, Осуществляется с помощью эмпирических параметров, установленных в результате обобщения -большого экспериментального материала (Д.Д. Лаппо, Н.Н". Загрядская, С.М. Мищенко, П.П. Кульмач, Г.Н. Смирнов, В.К. Штенцель и др.).
Вместе с тем необходимо обратить внимание на то, что в нормативной литературе не нашли должного отражения результаты, полученные на основе,, так называемых, нелинейно - дисперсионных моделей.
В последние годы значительно возрос интерес к изучению пограничного слоя, формируемого волнением на мелководье. Это можно объяснить тем, что от характеристик течения в этом слое зависит и направленность перемещения осадков, и рельеф дна, и, в конечном счете, устойчивость берегового склона. Так, например, известно, что волны большой высоты асимметричны - гребни их больше по амплитуде и короче, чем впадины.. Следовательно, и характеристики пограничного слоя под гребнями волн будут отличаться от соответствующих характеристик по ц впадинами, а значит различной в зависимости от направления будет и транспортирующая способность придонного течения.
Тщательный обзор работ, посвященных исследованию волнового пограничного слоя, выполнен Р.Д. Косьяном и" Н.В. Пыховым. Отмечается,-что первые измерения в волновом пограничном слое были проведены в 1963 г. Йонсоном. Тонкие эксперименты, в которых измерялись и турбулентные характеристики пограничного слоя, были выполнены значительно позже Слисом. Самером и др. Теоретические исследования волнового пограничного слоя ведутся в направлении создания методов расчета интегральных и локальных характеристик (Ион-сон, Хунт и Темпервилл. М.И. Железняк. Кадзиура, Бэккер и др.). Однако в целом, исследований по волновому пограничному слою пока относительно немного, в частности, не решена задача тпгограшгчном слое, формируемом волнами конечной амплитуды на подводном береговом склоне.
Вопросы методики гидравлического моделирования транспорта наносов, расчета взаимодействия волн с подводным рельефом и сооружениями, в том чи-
еле с новыми типами конструкций, формирования придонного пограничного слоя и вдольбереговых и циркуляционных течений в приЗрежной зоне моря были предметом исследований данной работы.
Во второй главе исследованы вопросы расчета волнопродукторов, методики физического моделирования движения крупнозернистых и мелкозернистых наносов в прибрежной зоне моря. - - ■
Для создания волн в гидравлических лабораториях широко применяются щитовые и пневматические волнопродукторы, "ныряла", круглые и эллиптические цилиндры (A.C. Офицеров). При генерировании регулярных волн обеспечивается постоянство частоты и амплитуды движения волнообразующих тел или моногармоническое колебание объема воздуха под колоколом пневматического вол-нопродуктора. Движение волнообразующих тел осуществляется, как правило, с помощью электромеханического или-электрогидравлического привода.
На пространственных моделях при проведении исследований с различным углом подхода волн к испытываемому сооружению применяются передвижные волнопродукторы или волнопродукторы змеевидного тшга. в которых фаза, колебаний волнообразующих элементов может изменяться вдоль волнолродуапюра. В волновых бассейнах, оборудованных стационарными волнопродукторами, генерирующими волны постоянного направления, изменение подхода волн к сооружению осуществляется путем изменения ориентации сооружения относительно направления распространения волн!
Нерегулярное волнение в лабораторных условиях моделируется с помощью волнопродукторов, оснащенных управляющими и следящими за частотой и амплитудой колебаний волнообразующих тел системами.
Методы расчета гидродинамических нагрузок на волнопродукторы и парафа
метров генерируемых волн рассмотрены в работах A.C. Оицерова, А.Н. Черкасова, О.Н. Машковича й Л.И. Лейтеса, В.П. Мальцева, Флика и Гузы, Массела. В данной работе разработал метод расчета волнопродукторов и параметров волн на основе теории мелкой воды. . —: ...
Так, например, для щитовых волнопродукторов в случае отсутствия зазора под щитом и отражения волн от торцевых стенок в линейном приближении полу-
чено:
при возвратно поступательном движении щита х = —Ао cos vt
при колебательном движении щита = — у>о соъиЬ с нижним расположением дата п
Л = 27Г(^г"Уа' = А(1)к■ (4)
> Ло, Т - амплитуда и период колебаний щита; '-ро - максимальный угол отгнил щита относительно вертикальной плоскости; Дд. - расстояние от дна до дата; Л - высота-генерируемых волк; Гтах - удельная максимальная волновая .'зка на щит волнопродуктора.
1ри погружении з вод}' ныряла прямоугольного сечения по гармоническому ¡у £ = .41 (1 — сови.^) высота волн /г и нагрузка Рто1 будут равны
2л-аА] / рдИу/дЗТ
(5)
- расстояние от лшш невозмущешгаи своооднои поверхности до нижнеи <ости ныряла; .4] - амплитуда колебаний ныряла; а - ширина профиля ныря-
3 работе выполнено сопоставление расчетных данных с экспериментальны-Установлено, что линейнал теория мелкой воды позволяет с удовлетвори-юй точностью оценить высоту волн и нагрузки на волнопродукторы при даровании длинных волн умеренной амплитуды к < 0.2в.. Однако процесс :ироваяия и профиль волн значительной высоты можно описать лишь с уче-1еллнейньЕх и дисперсионных эффектов. Такие расчеты были выполнены в ах нелинейно-дисперсионной модели иша Буссинесха. Получено, что вол-зльшой высоты асимметричны- Кроме того, следует отметить образование теных гармоник при генерировании волн большой амплитуды, которые мо-:ущественно снизить качество генерируемого волнения. Поэтому в случае содимости получения качественных волн относительно большой амплиту-олнопродукторы устанавливают в приямках, тем самым уменьшая эффекты зейности. В лабораториях, оснащенных управляемыми волнопродуктора-южно получить качественные волны большой амплитуды без использования мков, путем привода щита волнопродуктора по специальному закону, при ком исключается образование вторичных волн. Этот закон может быть найден гриментально илитеоретически.
Зыбор методики физического моделирования динамики рельефа дна в значи-юй степени-завислт от крупности наносов.
1ри воздействии волн на галечные пляжи гидродинамические силы, воздей-ощие на частицы наносов, пропорциональны квадрату скорости и, следова-
тельно, для обеспечения подобия переноса наносов на модели достаточно обеспечить подобие волнения по Фруду, геометрическое подобие модели и геометрическое подобие наносов, причем плотность материала наносов на модели и в натурных условиях должна быть одинаковой. Необходимым условием является также выбор такого геометрического масштаба, при котором течение на модели протекало бы в режиме развитой шероховатости. Как правило, в качестве минимального масштаба принимают такой, при котором диаметр частиц наносов в лабораторных условиях по аналогии с русловыми задачами был бы не менее 2 мм (И-И. Леви). Но известны и работы (Камфуис, В.П. Мальцев и Э.В. Иваненко), из которых следует, что для течений с повышенной турбулентностью, в том числе для течений в прибойной зоне, допустимый диаметр частиц, слагающих размываемое основание модели может быть уменьшен. Для изучения этого вопроса было проведено несколько серий масштабных опытов, в которых исследовалось поперечное и вдольбереговое движение крупнозернистых наносов в прибойной зоне. Целью исследований было определение минимального значения параметра «редаяя!к^ушаасть.нашаспав, h - высота, волн.на линии обрушения, v - киикматчеокаи дашншшь жидкости;),, яр® котором »ажно пренебречь влиянием моланулярнохй нязкастшна перенос наносов. Отметим, что этот параметр явля-еташ аналогам; числа* Гйшнолъдса,. тгокзак величина у/дК характеризует скорость ¡шддцялтвс^в&швшзшк:.
Дкдкшнгсттагед шзршш диапазоне ¿атредедяюащх: параметров исследования показали^ что процессы тареяоса галечных наносов в прибойной зоне достоверно воспроизводились не только в крупномасштабных, но и в мелкомасштабных опытах, когдавысота волн пел линии обрушения была около 3 см, а средняя крупность наносов 015 мм. Поэтому можно сделать вывод, что моделирование динамики галечных пляжей допустим® проводить при существенно меньших, по сравнению с общепринятыми, геометрических масштабах. В качестве минимального можно рекомендовать масштаб, при котором
&SS.ME = 300. (G)
v
Такой подход позволит значительно снизить материальные затраты и время на выполнение экспериментов, либо моделировать береговые процессы на достаточно протяженных участках береговой зоны.
Гидравлическое моделирование движения мелкозернистых (песчаных) наносов, как было отмечено, возможно только с использованием методов приближенного моделирования. В данной работе основное внимание уделено разработке
методики с применением на моделях в качестве размываемого материала натурного песка.
С целью получения масштабных соотношений для геометрических размеров берегового склона и времени обработки модели волнением были проведены-до-статочно-продолжительные опыты по формированию песчаного пляжа в широком диапазоне изменения определяющих параметров. Исходные величины в основной серии опытов приведены в табл.1. -
Таблица 1
N0 Лег, т, ■Во, г Ъг/дТ2. «А
опыта см с см см час -
1 7 1.15 23 78.6 0.31Э 12.6 0.00535 3.57 0.064
2 14 1.63 50 207 0.241 17.8 -11-' 0.127
3 21 2.00 225 (1-205 21.3 -0.191
4 2Э 2.31 ¿та 346, ахзз 25-2 -//- 0.255
5 Ш 4.30 431 45С1 01100 30.0 013047- 4.09 1.000
В этой таблице г - исходный уклон песчаного откоса; .Бо - ширина песчаного эткоса; в. - глубина воды перед основанием откоса; t - время обработки песчаного отката. злот/шжедл. С чшявгиягпел -аа-плтайа. ■эгы.соты золя аъ начальный уклон берегового скягшнза определялся па формплге —г., .
с = г» • ,
•де ¿а - ук.тоя исходной отсыпки з опыте N0 о, а в качеств е-масштаба времени
юработки модели волнением ас принята зависимость (Велинга)
= уЩ ■ (")
'редняя крупность песка в исходной отсыпке во всех опытах была примерно оди-аковой: 3 = 0.28 - 0.30 мм.
Опыт N0 о, для которого потребовалось более 1000 м3 песка, был проведен большом волновом лотке Днепродзержинского отделения ВНИИГ им. Б.Е. еденеева совместно с группой волновых исследований.-возглавляемой В.Х. Да-тетппг'ъш, а остальные в волновом лотке Черноморского отделения ПНИИС.
Основные параметры большого волнового лотка следующие:
длина - 100 м; - - -
ширина - 4 м;
высота стенок - 7 м;
рабочая г^убггао. -. - - до 5.5 м; ■■ -
высота генерируемых волн - до 2 м. " '
После окончания опытов профили подводного берегового склона были идентичными. Полученные данные позволили оценить масштабные зависимости для ширины а/ и высоты ад пляжа
он « а/, , (8)
а1 ~ 35 • (9)
Погрешности определения показателей степени масштабных функций с доверительной вероятностью 80% не превышают ±0.08.
Зависимости (8),(9) в пределах их точности согласуются с зфедадавгенаыыи в работе Велинга. Однако следует отметить тот факт, что относительные деформации берегового склона, в зоне мористее подводного песчаного вала поел« окончания мелкомасштабных опытов (Кт,° 1, № 2) были больше, чем после окончания крупномасштабных (№ 4, № 5). Естественно предположить, ше игезлтяетед лт этот результат следствием неправильного выбора масштаба времени обработю модели волнением (7), т.е. не соответствуют ли полученные профили различных фазам развития? Чтобы проверить данное предположение, были проанализиро ваны профили берегового склона в опытах № 1 - 5 после обработки волнение* исходного откоса в течение времени,определенного в соответствии с зависимо
стью --- --------- - - - - ............'
а< = ан . (Ю
Продолжительность опыта № 5 была выбрана той же - t = 50 час, & врем; других опытов равнялось № Г - < = Зчас 11мин; № 2* - < = бчас 21мин; № 3* -= 9час ЗЗмин; № 4* - < = 12час 44мин.
После статистической обработки экспериментальных данных получено, чп зависимости (8), (9) справедливы не только для размеров пляжа, но -и-для бере гового склона мористее подводного песчаного вала.
Следовательно, проведенный анализ дает основание рекомендовать в каче стве масштабных зависимостей для геометрических размеров песчаного, береге вого склона и времени обработки его волнением соотношения (8) - (10)." ¿' ^ "
Для работ, посвященных исследованию вдольберегового движения песчаных .носов, характерным является разработка или уточнение какой-либо полуэмпи-гческой зависимости. Относительно мало внимания уделяется изучению гидро-шамических процессов в прибойной зоне и обоснованию методики лаборатории эксперимента. Так, на основании проведенных ранее опытов нельзя уставить масштабную зависимость для вдольберегового расхода песка, поскольку .рактерные параметры в этих опытах изменялись произвольно. С целью получе-1Я такой масштабной оценки были проведены экспериментальные исследования [ольберегового транспорта песка в прибойной зоне при изменении абсолютных раметров волн в соответствии с критерием Фруда. . . -
Опыты по изучению вдольберегового движения песка выполнялись"в волно-м бассейне, оснащенным передвижными волнопродукторами. Береговой склон роился сначала с бетонным покрытием с профилем, близким профилю подвод-го берегового склона при наиболее сильном волнении, а затем на него отсыпал-песок толщиной 10 см. Длина модели вдоль берега составляла 20 м, ширина 2 м. Глубина воды в бассейне равнялась 0.5 м. Ловушки наносов устанавли-лись в 5 м от низового граничного створа. В качестве наносов использовался арцевый песок с удельным весом 2.65 г/см3 и средней крупностью 0.28 мм.
В опытах измерялись:
- высота волн до их подхода к береговому склону и по линии обрушения;
- направление волнения относительно береговой линии;
- профиль берегового склона; . : . -
- скорость вдольберегового течения, формируемого волнением в прибойной не; ' -
- крупность песка в различных точках берегового- склона;.
- расход взвешенных и влекомых наносов;
- суммарный объемный и массовый вдольбереговой расход наносов.'
Высота волн измерялась с помощью емкостных волнографов, направление
лнения на береговом склоне определялось с помощью фотосъемки, профиль регового склона - с помощью нивелира. Для измерения осредненнойвдольбе- — говой скорости течения в прибойной зоне использовался блок микровертушек, упность наносов определялась ситовым методом.
Новым в данной работе было применение ловушек песка.отдельно для вле-.1ых и взвешенных наносов, что позволило впервые экспериментально оценить ию этих наносов в общем вдоль береговом потоке.
Ловушка для влекомых наносов представляла собой узкую траншею, накры-
тую сверху пластиной с прорезью/ Поверхность пластины примерно совпадала с поверхностью песчаного пляжа, ширина траншеи была 25 см, глубина - 20 см и длина 4 м. Длина траншеи выбиралась-с.таким расчетом, чтобы пересечь по ширине весь движующийся поток песчаных наносов, а глубина и ширина выбирались из условия обеспечения песка. Ширина прорези равнялась 1 см. Такал прорезь обеспечивала улавливание цеска, движущегося у дна в слое толщиной не более 3-4 мм, т.е. порядка 10 диаметров песчаных частиц. По данным измерений скорость вдольберегового течения в опытах была 15-30 си/с, крупность песка, в прибойной зоне - 0.3-0.5 мм. Следовательно, время движения наносов над прорезькгравнялось 0.03-0.07с. За это время, учитывая, что скорость осаждения в воде частиц песка равнялась 3-5 см/с, в ловушку через прорезь могут попасть частицы из слоя толщиной не более 4 мм. Наносы, движущиеся в основной толще потока воды, т.е. взвешенные наносы, не осаждались в этой ловушке.
Кшг оперативного проведения измерений объема и веса песка, уловленного ловзгажоЕ, шхюл&зогшвдпь ••специальные и-шэстк. Обьш осажденных: в аовушке надо сов тотределял сж с шшшцьав мерной емкости, авес- спомощью динамометра.
Сразу 331. ловушкой для влекомых наносов устанавливалась ловушка для взвешенных нанссиа. Этадовуптва. представляла собой траншею шириной 1.5 м, длиной 4'як тагубкнсй ж. На дао хранится усгаиаътсзались ьсета.шхичес*ие поддоны^. на каторгге ©саждщшвеь взносы. Сверху траншее закрывалась решеткой из реек треугольного сечения со стороной около 2 см. Расстояние между рейкам!г было 2-3 мм. Решетка играла роль ложного дна.Она не препятствовала осаждению взносов, но исключала искажение характеристик вдольберегового течения и, следовательно, в до ль берегов ого потока наносов у ловушки.
Подпитка наносами в верховом граничном створе осуществлялась путем подачи в зону обрушения волн песка, уловленного ловушками.
Исследования на пространственной модели были проведены при 4-х волновых режимах и 3-х углах подхода волн—Соответствующие Значения высоты '1сг, периода Т и угла подхода 0СГ волн по линии обрушения приведены в табл.2.
Таблица 2
13 14 15
14 21 21 1.63 2 2 24 12 15.5
измерении суммарного расхода наносов приведены в табл. 3.
Таблица 3
N '6 7 8 9 10 11 12 13 14 15 опыта
(?.-105, 0.2 0.23 1.24 1.3 2 2.4 3.1 4.7 9.4 9.7 -я3/с -
(>т-102, 0.37 0.52 2.3 2.4 3.7 4.5 5.7 3.8 17 1Э кг/с
Следует отметить, что в опытах наблюдалось существенное (до 50% от среднего) колебание "мгновенного" вдольберегового расхода песка во времени. Эффект неравномерности вдольберегового расхода песка во времени наблюдался также в лабораторных исследованиях других авторов (Халлермейер) и натурных условиях. (В.В. Лонгинов).
Интересным является вопрос о соотношении влекомых и взвешенных наносов во вдольбереговом потоке. Выполненные исследования позволили оценить это соотношение. Полученные результаты при ©сг = 15.5° приведены в табл.4, где (¿Я и • расход взвешенных и влекомых наносов; С} = С}з -г <3в - суммарный расход наносов. _ _
Таблица 4
h„, см 3.5 7 14 21
Qs • 10s, м3/с 0 0.3 0.3 3.4
QB ■ Ю5, м3/с 0.2 1 2.3 6.3
Q ■ lObrVc 0.2 1.3 3.1 9.7
Qs/Q 0 0.23 0.26 0.35
N -- 6; 7 8 9 10 11 12 опыта-'- TV'--'--— . h„r: 3.503.50 7 7 7 14 14 ... см . ' Т, .:-. ' 0.32 . 0.82 1.15 1.15 1.15 1.63 1.63
С-
©сгГ 15.5 ¡24. 12 15.5 24 12 15.5
. град..-:-"" -
Из представленных "результатов можно сделать вывод,' что в лабораторных условиях песчаные наносы движутся, в основном, вблизи дна - в слое толщиной до 4 мы. Даже при_наибрльщей высоте волн =21 см расход взвешенных наносов составлял 35% от суммарного. Конечно, эти данные не дают оснований судить о характере движения песчаных наносов в натурных условиях. Однако следует отметить, что оценки соотношения влекомых и взвешенных наносов для больших высот волн, р_асчитанные путем экстраполяции результатов опытов, удовлетворительно "согласуются с оденкаш! И.О. Леонтьева.
Экспериментальное изучение вдольберегового расхода песка было выполнено при одном и том-же значении параметра hCT¡ дТ2, который является аналогом числа Фруда. И, следовательно, проведенная серия опытов фактически являлась масштабной. Если лабораторные данные сопоставить с данными натурных исследований при соответствующей величине hcr/gT2, то можно получить зависимость для масштаба вдольберегового расхода наносов. Для анализа были использованы результаты настоящей работы, лабораторные данные Витэйла, Шея и. Джонсона, Фэёрчайлда, а также натурные данные Q.B.. Войцеховича, полу-чзвнвздеж) вугешт;тсшаназ ргаЗвоглве ургвдхолкдггдгеша aobepsisset Чер&июа моря в теяениеШБСГ - lS&trr".. В' качестве характерной ншсптъг й^- в натурных условиях принята^ высока. ваян: 10.- 15% обеспеченности,, a периода Т - средний.
Б ста.тш.'шчеснпй aíí"pаБcttklí! чнн'.чтттутетр™,, "что при постоянных Л?„ rtkBrfójíF vi @^акахгяга'«1Еал явпшса хая ^эьп№ойз>«®э1эато ^и-схода. наносов имеет вид: ....... . „._."
... . " / _ , (11)
Масшхг.6 зременж обработки, ьцодрди азлнением асг для процессов динамики прибрежной зошг, обусловленных жЗ'КЕьберегоаыы далжением наносов, рассчи-тываетсЕ-а соответствии с уравнением баланса взносов по формуле
- - - а* 'а1 <*(; =--- (12)
Как следует- из уравнения (12), в зависимости от того, искажен плановый масштаб или. нет, .масштаб времени обработки модели волнением может быть различным. .'' . •
- Масштабные зависимости, которые были получены для геометрических размеров берегового склона, вдольберегового расхода наносов, времени обработки, модели волнением (8) - (12) могут использоваться при решении различных практических задач, например, о'заносимости судоходных каналов в прибрежной зо-
не-, интенсивности ■ аккумуляции наносов в волновой тени оградительных сооружений,-размыве искусственного лтляжа,-эффективности работы берегозащитных сооружений, переформировании берегового склона и других.
В третьей главе-теоретически решены задачи о трансформации волн в прибрежной зоне моря, включая прибойную, взаимодействии волн с неоднородностя-ми дна и нелинейно - дисперсионном взаимодействии волн (одномерная постановка). Разработан численный метод расчета трансформации волн и генерируемых ими течений в мелководной акватории с произвольным рельефом дна (плановая задача):
Исследования выполнены с использованием нелинейно - дисперсионной модели (Перегрин, Ю.И'. Шокин, А_А.- Атавин и С.М. Шугрин и др.). В одномерной постановке осредненные по глубине уравнения неразрывности и количества, движения имеют-аид. --'..... • - -
' ' " - = (13)
-dü- „ОС-у Оу 1 ,2 PU 1 .cPddU
... ;.dt дх 3 Шдх2 + dx dtdx + 2. Qt ' ^ '
Здесь t - время; i - горизонтальная координата; U - осредненная по глубине скорость жидкости: r¡ - отклонешге свободной поверхности от невозмущенного уровня.
Тренизг о дно можно учесть параметрически, введя в левую часть уравнения (14) чсяог fwU\U\Hd +- у], где fer - коэффициент трения о дно. Если ввести:
' - í = f/T0 ; d=d/d0; ij = rj/db ; .
- " х = x¡{y/gd^-T0) ; Ü = U/л/gdô ,
где -dô - характерная глубина; То - характерный период волны, то в новых обозначениях система (13), (14) с учетом трения о дно может быть записана в виде (знак "с".при безразмерных величинах опущен)
ou- ou-, on íttf \u\u d0 ( m .M&v i,очои\
Система.уравнений (13/), (15) при соответствующих начальных и граничных 'словиях решалаСь~численно по явно-неявной двухслойной конечно-разностной
схеме с итерациями по нелинейности. Были проведены расчеты трансформации волн для следующих характерных случаев: - ■
1) распространение волн конечной амплитуды над горизонтальным дном;
2) трансформация волн над подводной траншеей;
3) трансформация волн.на плоском береговом откосе.
Для оценки точности численных расчетов в волновом лотке были выполнены экспериментальные исследования. Результаты расчетных и экспериментальных данных удовлетворительно согласуются между собой. В частности, математическая модель описывает характерный профиль волн конечной амплитуды с высоким и коротким гребнем и длинной неглубокой впадиной. Модель описывает также такой интересный эффект как "развал" гребней волн относительно большой амплитуды при прохождении подводной траншеи. Для иллюстрации на рис.1 приведены хронограммы колебаний свободной поверхности в случае "гладкого" дна^и при наличии траншеи. • ---.-.._
При расчетах можно ставить различные условия в начальном створе. Таге, если на входе задать реализацию соответствующую хронограмме натур-
ного нерегулярного волнения, то можно теоретически оценить влияние рельефа дна на характеристики нерегулярных.волн.
Заслуживает внимания задача о нелинейно-дисперсионном взаимодействии волн различной длины. Пуг волн, в котором в начале относительно короткие волны, а за ними длинные, по мере распространения трансформируется, поскольку длинные волны догоняют короткие, и в какой-то момент времени концентрация волновой энергии достигнет максимума, что приведет к образованию волны с амплитудой, значительно большей амплитуды исходных волн.
В качестве примера, качественно иллюстрирующего этот эффект, были выполнены численные расчеты по отписанной математической модели. Параметры волн во входном створе задавались следующим образом:
- в течение интервала времени 0 — 41 задавались короткие регулярные волны с периодом Т\ = 1.8 с;
- в течение промежутка ^ <t < ¿2 частота волн изменялась по закону
л . " = ;
-1
- с момента времени "генерирование" волн прекращалось. ■ -
Амплитуда волн во входабм створе не изменялась и составляла 0.08м, период
волн изменялся от 1.8 с до 5 с, глубина воды была постоянной и равнялась 1 м. Было принято также: ^ = 5.4 с; <2= 13.4 с; Ь= 0.279.
.«Рис. 1. Хронограммы колебаний свободной поверхности: а) "гладкое дно"; б) за траншеей-расчёт; -- - - еаетзгаимент
Получено, что в промежуток времени от 12Т1 до 1ЗТ1 на расстоянии А\/дйцТ\ < х < Ъ\/дщТ\ сформировалась волна с высотой требнл-0.2 л,-'.то в 2.5 раза превышает исходную амплитуду золн. В. последующие моменты времени длинные волны опережают короткие, концентрация, волновой энергии уменьшается и со-
ответственно уменьшается амплитуда, волн.
Таким образом, даже для слабо дисперсионных волн при определенных условиях возможна концентрация волновой энергии и образование аномально "больших волн. " -7 _ -• -
В натурных условиях "генератором" длинных волн могут стать различные" явления - например, по-даодные землетрясения или извержения подводных вулканов, вызывающие цунами. Причем, следует отметить, что в определенных регионах вероятность цунами небольшой высоты достаточно велика. Как правило их воздействие на берега и сооружения незначительно. Иная картина может сложиться при штормовых условиях. Пунами, обычно распространяющиеся в виде цуга длинных волн, в результате взаимодействия со штормовыми волнами, могут вызвать появление аномально больших волн, представляющих опасность для судов и сооружений.
В настоящее время в нормативных методах расчета не учитывается взаимодействие штормовых волн с длинными неветровыми волнами. ~ По-видимому, ь процессе подготовки новой редакции СНиПа целесообразно разработать этот вопрос.
Основные уравнения, описывающие трансформацию волн в мелководной акватории с произвольным рельефом, дна (плановая задача) с учетам нелинейных и дисперсионных эффектов, в безразмерных переменных имеют вид
. ■ . (16) ди 4. Пди 4- V80 4- * + ПГтг _ ¿0 -у( , у
1 / ы эу ал
+2\СдхсНдх + дхгсК+дгдхду + дхду.д1+дхШу;\' ■ '
дУ ", „¿V, ггдУ , а. [Т-г , \У\У _ \л( РУ , ^ >
иж+уж+%+V ¿г {шщ;+¿щ?)+.
+ 2 \дх дгду + дхду дг дЬду ду + Зу2 & ду дгдх )\ " 1 _ /
В этих уравнениях х, у - декартовы координаты в горизонтальной плоскости; у, 17, V,- осредаенные по глубине вектор скорости и его компоненты по х и у.
с
Систёма уравнений (16)-(13) решалась численно в конечных разностях методом переменных направлений с итерациями по нелинейности.
Пример расчета свободной поверхности при распространении волн над под-юдным откосом с уклоном « = 0.09 и угле подхода волн к берегу 0 = 18° приве-;ен на рис. 2. Можно видеть, что разработанный метод позволяет рассчитать >ефракцию волн на береговом склоне с учетом нелинейных и дисперсионных эффектов. Причем программа составлена таким образом, что расчеты могут вы-юлняться для произвольного рельефа дна как при отсутствии, так и при нали-гии инженерных сооружений, т.е. с учетом дифракции волн. Эта задача давно ривлекает внимание исследователей, однако конкретных рекомендаций пока не заработано и в нормативных методах рефракция и дифракция волн оцениваются а- основе линейной теории.
Трансформация волн в прибойной зоне оценивалась по модифицированной елинейно - дисперсионной модели. Отметим, что уравнения количества движения (15), (16), (17) выписаны с точностью до членов порядка а0/с?0 и (¿0/Ао)2 ключительно, где (¿о,ао,Ао - характерные глубина, амплитуда и длина волны. I связи с тем, что при уменьшении глубины относительная длина гребня волн меньшаетсл, можно предположить, что при приближении к прибойной зоне су-[ественную роль может играть дисперсионный член второго порядка малости ^оАо)4- Осредненное по глубине уравнение количества движения в безразмер-ых переменных с точностью до членов порядка ао/^о и (¿оМо)4 при плавном зменении глубины в одномерной постановке можно записать в виде (А.А. Ата-ин* С.М. Шугрин)
Ж ,..ди дт, Гд Iи\и _
¿о 2(д>Ц , \ м9)
ЗдТ* \didx* ^ 15дТ*а .дгдх*) ' к
чевидно, что решение дифференциального уравнения пятого порядка(19) явля-:ся достаточно сложной задачей. С целью упрощения расчетов предположим, го:
- при прохождении впадины волны
15дТ* сКдх* З^х2 '
Рис. 2 Распространение волн над подводным откосом - при прохождении гребня волны
о3 д-и _ Ри
сНдх* дгдх- дх'1 А2 Ыдх'1 '
где Л - длина гребня волны. Обозначим ¿р ---размерная глубина.
Предположим, что в прибойной зоне соотношение пропорционально соответствующему выражению для уединенной волны максимального возвышения.
Примем'^р/А" равным 0.3. Тогда уравнение (19) можно представить в виде
дЬ дх дх у ¿о с1 + т]
" ¿41-ОЩ^ (20)
ЗдТ* 4 >тдхг
В этом уравнении к - параметр, который равен нулю при прохождении впадины волны и единице при прохождении гребня волны, если высота волны в данной точке близка к максимально возможной - например,при Л > 0.6с1 (Л - высота волны). Если же Л < 0.6(1, то параметр к принимается равным нулю. Кроме того, при достижении критической крутизны волны, дисперсионный член в зоне переднего склона гребня волны не учитывается. Таким образом, при подходе волн к прибойной зоне роль дисперсионного члена снижается, нелинейные эффекты начинают превалировать над дисперсионными, профиль волн приобретает асимметричный вид и трансформация его по мере продвижения волны к берегу качественно согласуется с данными наблюдений.
" С использованием предложенного метода численно была решена плановая задача о взаимодействии волн с плоским, однородным по длине подводным откосом с уклоном г = 0.09. Угол подхода волн к берегу был задан равным 18°, глубина воды у основания откоса с/о = 0.36 м, исходная высота волны К = 0.1 м, период Т =.3 с.
Результаты расчета осредненного за период поля течений представлены на рис. 3. Можно видеть, что вблизи берега от .нити уреза до глубины <1 ~ 0.1 м сформировалось вдольберегозое течение. Это удовлетворительно согласуется с экспериментальными данными.
Таким образом, предложенный метод позволяет рассчитать в прибойной зоне "трансформацию волн и вдоль береговые течений без привлечения дополнительных гипотез о радиационных напряжениях и диссипации энергии волн.
В четвертой главе рассмотрен вопрос о пограничном слое, формируемы;.! волнением на подводном береговом склоне. Эта задача неразрывно связана с задачей устойчивости берегового склона при фронтальном штормовом волнении.
В работе, на базе обширного экспериментального материала, полученного автором, анализируются особенности статистически нестационарных пристен-" ных турбулентных течений и различные подходы для описания таких течений.
Уравнения Рейнольдса для плоского пограничного слоя можно записать в
.... ю.а ■8.6 е. 4 7.2 е + .8 $.6 2.4 1.2 С
0
1.2 гл з.в
Рис. 3. Осредненное поле течений в прибойной зоне
виде
— + _ 5 < "/2 > & дх дг рдх .дх
5! I ^
дг
ди ди) —= 0 йх дг
где
- вертикальная координата;
(21) ■ - V (22)
р - давление; п - плотность;
и,и> - горизонтальнал и вертикальная компоненты скорости; и - кинетическая вязкость жидкости; и/, - пульсации компонент скорости;
О - оператор осреднения........
Поскольку толщина пограничного слоя 8 при волнении существенно меньше глубины воды (Косьян Р.Д., Пыхов Н.В.) и длзсны волвы, то можно пренебречь конвективными членами по сравнению с локальнтшгшер^окн^аги е.изменением кинематических характеристик по гортгзанзаяьвой оси.. При этлхзтредполоааени-ях уравнение (21) существ еяно упрощается
ди 1 др д2и дки^щ! > . .
дг - ■ (23)
Муш печении в -режиме развитой шеражовазастл? япзнгие наггряйтеягар с.уще-.-мешьтпе турбулена-етнх жас:атель"ньо. з/апр яжекзй. .по этому :мп>жш) зшшсать
ди _ 1 др д< \ц1ы1 >
Штрсатем
- < и1 и'1 >= = с^ч/е' , (25)
где е - энергия турбулентности; I - масштаб турбулентности; см - константа.
Уравнение для энергии турбулентности в пограничном слое при принятых предположениях можно записать в виде (Васильев О.Ф., Кэон В.И.)
де д де (дм\2 е . .
т=Т:С1иТШ+иТ{д-;) ~С2Р' (26)
где С1, сг - константы.
Масштаб турбулентности I зададим в виде функции от вертикальной координаты - - -/
¿ = ^ + +С5и/ • (27)
где 5 - толщина пограничного слоя.
- . -Установлено, что математическая модель типа (23),(25)-(27) при
с^ = 0.2; - . С1 = 0.4; с2 = 1.57; : _ - сз --1.02; с4 = 0.52; с5 = -0.13, "достатсшо хорошо описывает распределение скорости и энергии турбулентности в случае однородного по длине нестационарного турбулентного течения в "канале. Поэтому можно ожидать, что она применима и для расчета нестационарного пристенного турбулентного пограничного слоя.
С целью проверки были выполнены расчеты турбулентного пограничного -слоя над шероховатым дном при гармоническом колебании скорости жидкости ..во внешней области. При атом задавались следующие граничные условия: на дне при г = го = к,[30
и = 0, де/д: = 0 , (28)
• на внешней границе при г >6
ди
где к5 - линейный размер элементов донной шероховатости. _ Толщина пограничного слоя определялась по формуле
¿=°-27Ш0'3' (з№)
где С/о - амплитуда колебаний скорости жидкости во внешней области.
Результаты расчетов были сопоставлены с экспериментальными данными Самера, Слиса и др. Получено, что математическая модель (24)-(27) в широком диапазоне определяющих параметров хорошо описывает распределение скорости и энергии турбулентности в нестационарном пограничном слое над шероховатым дном.
__В качестве примера выполнен также расчет пограничного слоя на плоском
шероховатом откосе при фронтальном волнении при следующих данных:
- глубина воды у основания откоса ¿о = 3 м;
- уклон дна г = 0.09;
- глубина воды в расчетном створе ¿ = 2м; т высота волн в расчетном створе Л = 0.8 м;
- период волн Т = 5 с;
- линейный размер элементов донной шероховатости к, = 5 мм.
Эта задача решалась в два.этапа. На-первом этапе решалась задача трансформации волн на подводном береговом склоне з рамках нелинейно - дисперсион-гой модели. ТЗ результате определялись профиль свободной поверхности, скорость и давление. На втором этапе найденная зависимость для градиента давления др/дх з расчетного створе использовалась как заданная функция на внешней ^раницр пограничного слоя и решалась задача (24)-(30). Получено, что абсолютное значения скорости и энергии турбулентности под гребнем существенно пре-зышают соответствующие характеристики под впадиной. Это можно объяснить гем; что профиль волны в-задаяном створе также асимметричен. Зная характери-;тики течения в придонном слое можно оценить направленность и интенсивность движения донных наносов.
В пятой главе обсуждаются вопросы взаимодействия волн с сооружениями различных типов: непроницаемыми и проницаемыми. Расчеты волновых нагрузок на непроницаемые гидротехнические сооружения, установленные в прибрежной зоне моря, предлагается проводить в рамках нелинейно-дисперсионной модели (12),(13). Путем сопоставления теоретических и экспериментальных данных показано, что такая модель с удовлетворительной точностью позволяет рассчитать трансформацию волн даже относительно большой амплитуды л .волновые нагрузки. В частности, теоретически описывается эффект раздвоения "гребня" нагрузок на вертикальную стену при большой амплитуде волн.
Ллг уменьшения штормового воздействия на берега широко применяются проницаемые прикрытия из камня или фигурных блоков. В последние годы наряду с традиционными.-прикрытиями в практике берегозащитного строительства все чаще применяются относительно тонкие проницаемые конструкции с волновыми камерами. Как показали исследования, такие конструкции в сочетании с прислоненным пляжем, даже при дефиците наносов, позволяют надежно защитить коренной берег и создать рекреационную зону. Вместе с тем следует отметить, что работ по обоснованию методов расчета оптимальных параметров проницаемых конструкций и волновых нагрузок на них относительно мало. Не отражены они и в нормативной. дш<у:гр;ггац:1п.
В работе в линейной и нелинейнойтгостаяавкях -растапттр«т задача о взаимодействии волн с различными типами проницаемых сооружений:
- наброской с неизменной по высоте шириной:
- затопленным волноломом или траншеей прямоугольного сечения;
- тонкой проницаемой стенкой.
Принято, что-за этими-сооружениями перед береговой границей с коэффициентом
отражения т/'з находится волновая камера шириной Ь.
Лля проницаемой наброски с волновой камерой зависимости для коэффициента отражения |г/>1| и коэффициента прохождения |аз/а! | волн имеют вид
1011 =
1- а2- (1 " - а)2фзе~2'кь - -(1- а.2)£-2 И,1 + (1 + ^ф^-ЩкЬ+Ы)
(1+ «у- "(1 -а2)ф3с~2М -(1- - + (1 - а2)ф3е-зНкь+1'1)
аз !а1)
, (31) (32)
где а] - амплитуда подходящих волн; аз - амплитуда прошедших волн;
Ф2 = (-(1 - о) + (1 + а)ф3е~заь)/(1 + а - (1 - а)ф,с~"а) ; а = кп/кг ;
к = ы/у/дЗо - волновое число;
и> - круговая частота;
¿о - глубина воды;
п -. пористость;
I - ширина эь£р«.еза; ■
кг = ку/1+е(1-п)- г\>/ч4 ;
е - коэффициент присоеданеннай массы;
ц - линеаризованный (размерный) коэффициент еопротивлевия наброски. В частных случаях, при ф3 =0и^ = 1, полученные решения согласуются с результатами Кондо.
Для затопленного волнолома или подводной траншеи формулы для коэффициента отражения и коэффициента прохождения имеют тот же вид, что и формулы для проницаемой наброски (31),(32). Однако в этом случае коэффициенты а и ¿2 определяются по зависимостям
/57
и
у/ЦЗг '
где ¿2 глубина воды над волноломом или траншеей.
Коэффициенты и |а^а11 при взаимодействии волн с относительно тонкой проницаемой стенкой определяются по формулам
Р — (Р — 2)фзе~шь
2 + Р- Рф3е-шь 32
аз (I-Vi)
ai eikh — фзе~'кь
где
Р = \/д/<10 ■ (ц! + ¿£]ш) ;
Ц\ - линеаризованный (размерный) коэффициент сопротивления прошщаемой стенки;
£1 - коэффициент (размерный) присоединенной массы. В частном случае, при = 0, получим
i|<Bi |
í35)
' ' ...... <3C>
Достсдаедшость теоретических аашиктлостейшравкрялассь путем отшоставле-ния с таспг^втлынхалшными девшвши. Полутени), -чзсэ щри лузк/тценной а^аггппиглде зотян -резушкзЕззза зшгчжтеш Ht Sanee. ^агм лы. "53) отшигаалпоъ ап эксщщиненпаихь-ных.
Применение линейной теории.-мелкой водыдгля расчет» воздействтпволн на сооружения правомерно литттъ три озтнасигеагасг! аслабомнолшении. Jhm джочет-тзых ппшгршпв редкой шовторле.искгн! "продшюжляпге и хсатясгп амплЕЭлудЕ'а<оян не выполняется. Поэтому в ответственных случаях расчеты следует "выполнять с использованием математических моделей более высокого уровня, в частности, нелинейно-дисперсионной. При этом вне зоны сооружений следует решать систему уравнений (14),(15), а в зоне проницаемых сооружений систему (в безразмерном виде) - -
| + + = .;- (37)
¡i+£(1 - + hjtjt+«g+V = _ <к (л д>и dd&u [КтЕЕ.
~ Зд7% \ atdI2 + dx didx + 2 дх2 di ) U\< ¿o d+v *
(38)
где £ - коэффициент сопротивления проницаемого сооружения единичной ширины.
Решение уравнений (14),(15) и (37),(38) выполнялись численно. Разработанная программа позволяет решать следующие задачи:
- расчет трансформации волн на береговом склоне с произвольным рельефом дна; - ' ' ' -
9
, - расчет.волновых нагрузок на сплошную стенку;
- ■ - расчет взаимодействия волн с проницаемым сооружением с волновой камерой. * : •
Достоверность математической модели оценивалась на основании результантов экспериментальных исследований. Установлено, что в широком диапазоне параметров волн расчетные волновые нагрузки на сооружения различных типов ^ погрешностью не более 5-7% согласуются с измеренными.
В диссертации обсуждаются также вопросы воздействия обрушающихся волн'на проницаемые сооружения и на вертикальную стенку.
-В шестой главе рассмотрены вопросы влияния проницаемых сооружений и неоднородностей рельефа дна на береговые процессы.
Эффективным способом уменьшения штормового воздействия на берега является использование проницаемых набросок из камня или бетонных блоков. Но такие сооружения требуют большого объема строительных материалов и, кроме того, нередко ухудшают природно- ландшафтное состояние береговой полосы. Более рационально применять относительно тонкие перфорированные стенки с волновой камерой. При оптимальных параметрах проницаемой стенки и волновой камеры можно обеспечить эффективное гашение волн прилшнимальной отражающей способности сооружения. В этом случае существенно снижается вдоль-оет^говой рпсг.од Л2Л0СС2 ;; у сооружения образуется надводная волногасящ&я лляжная полоса, которая может быть использована з рекреационных целях.
Методы расчета волновых нагрузок, гашения и отражения волн, позволяющие определить оптимальные размеры проницаемых сооружений рассмотрены в предыдущей главе.
С целью экспериментальной оценки влияния проницаемых конструкций с волновой камерой на динамику пляжевых наносов были проведены опыты на пространственной модели в волновом бассейне. Испытывались три вида берегозащитных соопу'-кг:г:а1:
- свободный пляж полного профиля;
- сплошная стенка;
- откосно-ступенчатал конструкция сквозностью 0.4 и шириной 0.23 м. Сооружения устанавливались морской гранью на урезе расчетного уровня моря. Дно модели было размываемым. В качестве наносов использовался песок со средней крупностью 0.3 мм. В бассейне генерировалось регулярное волнение с высотой волн по линии обрушения hcr = 0.1 м, периодом - 1.47 с. Угол подхода волн к линии обрушения составлял 30°. Продолжительность опытов составляла
8 часов. В процессе экспериментов через каждые 2 часа осуществлялось взвешивание наносов в ловушке и возврат наносов в верховую сторону модели.
В табл. 5 представлены экспериментальные значения вдольберегового расхода наносов.
Таблица 5
Ко Тип конструкции Средний вдольбереговой
опыта расход наносов, да^/час
1 Свободный пляж 93
2 Сплошная стенка 104
3 Откосно-ступенчатая
проницаемая 70.2
Из полученных результатов следует, что испытанная проницаемая конструкция снижает вдольбереговой расход наносов по сравнению со свободным пляжем на 25%. Кроме того, необходимо отметить, что в отличие от волноотбойных стен, вблизи которых при'волнении образуется яма размыва, проницаемые сооружения способствуют "подтягиванию" наносов к берегу с подводного берегового склона. Поэтому даже при дефиците наносов у сооружения формируется надводная пля-жевая полоса, которая в свою очередь снижает волновое воздействие на берег.
Наряду с сооружениями в практике берегозащиты широко применяются искусственные свободные пляжи. Для таких пляжей не требуется дефицитных строительных материалов, они, как правило, улучшают санитарное состояние прибрежных акваторий и сохраняют береговые ландшафты в естественном виде. Однако для свободных пляжей полного профиля необходимы значительные объемы пляжеобразующего материала на первоначальную отсыпку и подпитку в течение планируемого срока эксплуатации. Это требует изыскания и строительства карьеров для добычи инертных материалов и доставки их (часто на значительное расстояние) на защищаемый участок берега.
Для уменьшения волнового воздействия на береговую зону на подводном береговом склоне параллельно линии берега можно создать траншею, материал из которой использовать для отсыпок пляжа.
В третьей главе было показано, что подводная траншея частично отражает волны и, кроме того, вызывает "развал" гребней волн большой амплитуды, т.е. способствует снижению воздействия волн на берег.
Экспериментальная проверка влияния траншеи на транспорт наносов была
проведена в волновом бассейне. Модель представляла-собойбереговой склон < пар ал л с льными из о б атами, отсыпанный из песка со'средней крупностью 0.22 мы Траншея в сечешш имела форму треугольника и проходила вдоль бер'еговог< склона вне прибойной зоны. . " ' "- " ' '
Сравнение результатов опытов, проведенных с траншеей и;без неё показало что при определенных условиях- подводная траншея способствует уменьшению вдольберегового расхода наносов почти в 3 раза. ■ -
Влияние традиционных гидротехнических сооружений (молов,;бун, волноломов) на вдольбереговые процессы достаточно детально исследовано как теоретически, так и -экспериментально. Менее полно изучен-вопрос о влиянии неодно родностей.дна. являющихся местом стока наносов - каньонов, судоходных каналов, карьеров для добычи инертных материалов и др. По-видимому, одной из причин недостаточной изученности этих процессов является неявное предположение, что влияние стока наносов на деформацию прилегающей береговой зоны будет примерно таким же, как и влияние поперечных сооружений, т.е. размывы произойдут на. низовом участке, а верховой будет устойчив. Однако такая схема процесса является верной в случае однонаправленного потока наносов. На морском побережье процессы движения наносов имеют ряд особенностей. Одной из таких особенностей является возможность вдольберегового движения наносов в различных направлениях, в зависимости от угла подхода волн. Это обстоятельство приводит к качественному изменению характера.эволюции берега вблизи стока наносов.
Рассмотрим следующую задач}'. В начальный момент времени 4 = 0 имеем прямолинейный участок берега с однородным по длине береговым склоном. Примем, что ось-г совпадает с линией урёза при 4 = 0. Пусть в сечении х = 0 расположен локальный сток наносов. Таким стоком наносов может быть пересекающий прибойную зону судоходный канал, примыкающий к берегу каньон или открытый в приурезовой зоне карьер для добычи инертного материала. Требуется определить положение линии уреза 6 = Ь(хЛ) при воздействии на данный участок берега волнений различных направлений и продолжительности. Эффекты дифракции и рефракции волн, обусловленные неоднородностями дна у места стока наносов, не учитываем.
Уравнения для линж уреза, полученные из закона сохранения массы, может быть записано в виде (В.И. Вечорек) - ...... -
а ""а?- -(39}
г
где
- ; 1 Э9
' Н[1+(дЪ/дх)2} ж
Н - суммарная высота надводной и подводной части пляжа;
9 - угол подхода, волн к берегу по линии обрушения; ф - вдоль береговой расход наносов (задается по эмпирической зависимости).
В сечении 2=0 функция Ь имеет разрыв 1-го рода, поэтому в этом сечении задаются условия сопряжения, которые учитывают направление режима волнения и относительный расход осаждающихся наносов.
На рис. 4 иллюстрируются результаты расчета, линии берега в окрестности стока наносов после серии штормов различной продолжительности tst и направления волн вi, характеризующимися следующими параметрами:
ксг, м 9{, град ¿л, суток
3 20 2
3 -20 2
3 20 б
Принято, что д{ > 0, если фронт подходящих волн образует с осью х острый уток, и 3 < 0, если угол тупой.
Сплошной линией на рис. 4 показаны результаты расчетов для случая полного осаждения наносов з месте их стока, а штриховой для случая пятидесятипроцентного осаждения наносов".
Из приведенных данных следует, что несмотря на то, что осредненный по трем штормам вдольбереговой поток золновой энергии направлен по оси х , эрозия берега от места стока наносов распространяется не только по направлению этого потока энергии, но и в противоположном.
Таким образом, при исследовании эволюции морских подводных береговых склонов в окрестности естественных или искусственных неоднородностей дна, являющихся местом стока наносов, необходимо учитывать не только среднемно-голетний вдольбереговой поток волновой энергии, но и его составляющие по направлениям.
Рис. 4. Изменение линии берега после серии штормов
Заключение
_ .Основные результаты, полученные в работе, можно сформулировать еле ющим образом.
1. Разработана методика физического моделирования береговых .рроцес
I
на галечных и песчаных побережьях. Разработаны технические средства, в :
числе на уровне изобретений, позволяющие существенно улучшить качество мо-• делирования; '
Получены аналитические зависимости,- позволяющие с удовлетворительной точностью оценить параметры волн и нагрузки на'волнопродукторы при генерировании длинных волн умеренной амплитуды'.- Численно решена задача о генерировании длинных волн конечной амплитуды с учетом нелинейных и дисперсионных эффектов.
Установлено, что гидравлическое моделирование штормового воздействия на берега с крупнозернистыми наносами может выполняться без искажения геометрических масштабов при равенстве на модели и в натурных условиях характерных чисел Фруда и условии
Ле=МЕ> 300.
V
Лабораторные исследования волнового воздействия на песчаные пляжи могут выполнятся с использованием на моделях в качестве размываемого материала натурного песка. При этом обязательно искажение геометрических масштабов модели. По результатам масштабных серий опытов, проведенных в.широком диапазоне определяющих параметров, получены оценки вертикального и горизонтального масштабов модели, масштаба вдольберегового расхода наносов и масштаба времени обработки модели волнением.
2. В лабораторных условиях также,: как и в натурных, основная масса песка вдоль берега перемещается в прибойной зоне. Распределение вдольберегового расхода, песка по ширине прибойной зоны имеет сложный вид - получены, в частности, одномодальные и двухмодальные кривые распределения. Характерным является значительное колебание во времени вдольберегового расхода песка при неизменном волновом режиме. В лабораторных условиях движение песчаных наносов происходит, в основном, в тонком придонном слое. Относительный расход взвешенных наносов увеличивается с увеличением интенсивности волнения/
3. В рамках нелинейно-дисперсионной модели типа Буссинеска разработан численный метод расчета трансформации волн (как регулярных, так и нерегулярных) на береговом откосе с произвольным рельефом дна. Выполнены экспериментальные исследования трансформации волн на подводном береговом склоне. Получено удовлетворительное соответствие теоретических и опытных данных. Теоретически и экспериментально установлен эффект "'развала'' гребней волн большой амплитуды над подводной траншеей.
4. Решена задача о нелинейно-дисперсионном взаимодействии волн различной длины. Получено, что цуг слабодисперсионных волн, в которых длина последующих волн увеличивается, по мере распространения в определенный момент времени трансформируется в волну с амплитудой существенно больше амплитуды исходных волн. Представляется цеде гг\с\бпарным .ато явление учитывать в нормированных методах расчета для регионов с высокой степенью вероятности появления цунами. Пунами, даже небольшой высоты, обычно распространяющиеся в виде группы длинных волн, в результате взаимодействия со штормовыми ■волнами, могут вызвать появление аномально больших волн, представляющих опасность для судов и сооружений.
5. На основе нелинейно-дисперсионной модели типа Буссинеска разработан численный метод расчета трансформации длинных волн в акваториях с произвольным рельефом дна (плановая задача). Данный метод позволяет проводить расчеты рефракции, дифракции и отражения волн при их взаимодействии с дном и сооружениями с учетом нелинейных и дисперсионных аффектов й трения о дно. Предложен метод расчета параметров волн и течений в прибойной зоне без" использования дополнительных гипотез о радиационных напряжениях и диссипации энергии волн.
6. С учетом результатов исследований статистически нестационарного турбулентного течения в канале разработана математическая модель для расчета волнового турбулентного пограничного слоя. Результаты расчетов по этой модели профилей скорости и энергии турбулентности в волновом пограничном слое над шероховатым дном удовлетворительно согласуются с экспериментальными данными различных авторов. Выполнен расчет волнового турбулентного пограничного слоя на береговом откосе. При этом характеристики течения на внешней границе пограничного слоя в заданном створе определялись в результате решения задачи о трансформации волн конечной амплитуды.
7. Проведены теоретические и экспериментальные исследования волновых нагрузок на сооружения вертикального профиля. Получено качественное и количественное соответствие расчетных и опытных данных, в том числе для условий воздействия волн относительно большой высоты, когда наблюдается раздвоение "гребня" хронограммы нагрузок. Таким образом можно сделать вывод о правомерности включения нелинейно-дисперсионных моделей в нормированные методы расчета волновых нагрузок на гидротехнические сооружения в мелководной зоне моря. ....... --—-
■ " с
8. Разработаны и всесторонне экспериментально изучены новые берегоза-
щитные сооружения с проницаемой передней гранью и волновой камерой. В линейной и нелинейной постановках решены задачи о взаимодействии волн с различными типами проницаемых сооружений, методы расчета которых до настоящего времени не отражены в СНиПе.
9. Проанализирован вопрос о влиянии проницаемых сооружений и неодно-родностей дна на транспорт наносов. Установлено, что проницаемые сооружения с волновой камерой не только снижают вдольбереговой расход наносов, но и "подтягивают" наносы с подводного берегового склона, способствуя тем самым образованию надводной пляжевой полосы даже при дефиците наносов. Перспективным представляется, там где это позволяют природные условия; устройство вдоль берега подводной траншеи. Такая траншея может значительно снизить волновое воздействие на берег, а материал из нее целесообразно использовать для намыва пляжа.
10. Решена задача о влиянии стока наносов на деформацию берега. Установлено, что эрозия берега от места стока наносов распространяется не только по направлению осредненного вдольберегового потока волновой энергии, но и в противоположном. Следовательно, при исследовании эволюции морских берегов в окрестности естественных или искусственных неоднородностей дна, являющихся местом стока наносов, необходимо учитывать не только среднемноголетний вдольбереговой поток волновой энергии, но и его составляющие по направлениям.
11. Результаты работы внедрены при решении практических задач на различных участках берегов морей: Черного (Северо-Запад, Крым, Краснодарский край), Азовского (Краснодарский край), Балтийского (г. Светлогорск, г. Зеле-ногорск, Куршская Коса), Каспийского (г; Лербент, г. Махачкала). Методика гидравлического моделирования береговых процессов опубликована. Методы расчета проницаемых сооружений используются при практических расчетах в специализированных проектных организациях Россини Украины. Новые методы берегозащиты (с применением проницаемых сооружений с волновой камерой и подводной траншеей) запатентованы л находятся в различных стадиях внедрения.
Содержание диссертации опубликовано в следующих основных работах автора:
1. Экспериментальное исследование энергии турбулентности при неустано-
вившемся течении в трубе. - В сб. "Математические вопросы механики (Д1 мика сплошной среды, вып. 22)". Новосибирск, 1975, с. 65-72. (соавтор Букр В.И.). .. ' "
2. Методика измерений характеристик турбулентности при нестационар: пульсирующем течении. - Сб."'Всес. симпоз. по методам аэрофиз. исслед.6 2( апр. Тезисы докл.", Новосибирск, 197С, с. СЗ-С4. (соавтор Букреев В.И.).
3. Экспериментальное исследование турбулентного неустановившегося те ния в круглой трубе. - В сб. "Аэромеханика", И., Наука, 1976, с.180-187. (соав' Букреев В.И.). 4. Сравнительная оценка различных членов интегральных ур нений количества движения и анергии при неустановившемся течении в труб Сб. "Динамика жидкости со свободными границами (Динамика сплошной сре, вып.24)". Новосибирск, 197С, с. 163-168.
5. Экспериментальная установка и методика измерений нестадионарн турбулентного течения в трубе. - Изв. высш. учебн. заведений. Стр-во и хитектура, 197С, Ко 7, с. 101-105. (соавторы Букреев В.И., Зыков В.В., Ромаэ Е.М.).
' 6. Проверка некоторых математических моделей неустановившегося тур лентного течения в трубе. - Сб. "Динамика неоднородной жидкости (Динара сплошной среды, вып. 27)". Новосибирск, 1976, с. 152-158.
7. Сопротивление трения и потери вяерхтич дри турбулентном пульсируют течении в трубе. -.Изв. АН СССР, Механика жидк. и газа, 1977, N0 1, с. 160-1 (соавтор Букреев. В.И.).
8. Исследование неустановившегося турбулентного течения в круглой тру - Дисс. на соиск. уч. степ. канд. техн. наук. Новосибирск, Ин-т гидроданами: 1977.
9. Статистически нестационарное турбулентное течение в трубе. - Деп. ВИНИТИ, N0 866-81, 1981, -76 с. (соавтор Букреев В.И.).
10. Моделирование вдольберегового движения песка в прибойной зоне ь ря. - Сб. "Проблемы транспорта наносов в береговой зоне моря". Всесоюзи семинар, 19-22 апр. Тезисы докл. Тбилиси, 1983. (соавторы Кошельник Л., Мальцев В.П.).
11. Методика и результаты экспериментального исследования турбулент* го пульсирующего течения в круглой трубе. - Тр. Инст. по корабна хидродщ мика. Болгария, Варна, 1984. (соавтор Букреев В.И.).
12. Моделирование вдольбереговых течений и потоков наносов. - Сб. нау ных трудов ЦНИИСа "Натурные и экспериментальные исследования в облас
морской берегозащиты". M.: ИНИИС, 19S4, с. 128-139. (соавтор Мальцев В.П.).
13. Влияние оградительных сооружений на динамику песчаных наносов. -Сб. научных трудов ЦНИИСа "Натурные и экспериментальные исследования в области морской берегозащиты". М.: ЦНИИС, 1984, с. 67-71. (соавтор Котельник Л.-А.)- ........
14. Генерирование волн и гидродинамическое воздействие на волнопродук-тор-ш. Транспортное строительство, 19S4, No 5, с. 21-22.
ÏÔ'. Устройство для моделирования вдоль береговых течений. - A.C. No П4~312'. Б.И., 1985, Кг» 32. {соавторы Львуовский C.B., Мальцев В.П.).
!ЫЗ. "Рекомендации но -гидравлическому моделированию волнения и его воздействий на песчаные-побережм; морей и водохранилищ. - М., ПНИИС, 1987, -84-с. (соавтора Мальцев В.П., Mïjcc Е.И.).
"27. Вдольбер-еговое движение песка в прибойной -зоне. - Сб. научн. трудов "ЕЬптросы инжеигршой защиты берегов Черного моря".. М.: ПНИИС, 19S7, с. 111Д:121.
2К. Формирсшагниеззолн в бассейне. - Сб. научн. трудов ЦНИИСа "Пробле-мыззащиты морсЕ-ЕХ берегов". Деп. в ВНИИПС Госстроя СССР, No 7949 от 1S ма^1Г987 г. М.
"DJ. Создание, защита и рациснальнге: использование икзгуесхвенньгх территорий и прибрежной "зине. - Тезисы докл. III Всесоюзн. конф. по географии ш ¿картографированию океана. Ростов- на-Дою,-, май 1987, М., 1987. (соавтор Ж1«льцев В.П.).
20. Взаимодействие длинных волн <с неоднородвостями дна. - Тезисы докл. Квесоюзн. ссиггщаниЕ ""¡ВычислптельныЕ методы в проблеме цунами" (пос. Шу-Еветское, сетпмгбрь 1937^ Ьраснаярск, 1SS7. {соавтор Кошельник Л.А.)
22- Генерация и трансформация волн в л.отке переменной глубины. - Тезисы докж. IV Республ. научно-технич. конференции по прикладной гидромеханике "Поверхностные и внутренние волны в океане и прибрежной зоне шельфа (Киев, ноябрь 19S7), Киев, 19S7.
22. Установка для волновых исследований. - A.C. No 1335830. Б.И., 1987, No 33. (соавтор Кошельник Л. А.).
23. Взаимодействие волн.с проницаемыми сооружениями в прибойной зоне. - Труды 17-ой сессии Научно-методического семинара по гидродинамике судна (Варна, октябрь 19SS r.)i Варна, 1988.
24. Взаимодействие длинных- волн с проницаемыми сооружениями - Транспортное строительство, 1990, No 1,-с. 27-28.
25.- Взаимодействие на вълни с проницаеми съорьжения в прибойната зона. - София, 1990, с. 99-105. ' ' - '
26. Гидравлическое моделирование динамики галечных пляжей. - В сб. научи. трудов "Вопросы совершенствования методов берегоза.тттиты". М., ЦНИИС, 1990, с. 49-53. (соавтор Петров В.А.).
27. Принципы и перспективы морской берегозащиты. - Тезисы докл. конф. "Съвременни проблеми на брегоукрепителната хидротехника в условията на бъ-лгарского Черноморско край брежие._ (Варна, октябрь 1990 г.), Варна, 1990, с. 28-29. (соавторы Гречищев Е.К., Мальцев В.П., Морозов Л.А., Рыбак О.Л., Яро-славцев Н.А.).
28. Проблемы защиты берегов Черного.л Азовского морей. - Транспортное строительство, 1990, No 2, с. 28-31. (соавтор Морозов Л.А.).
29. Способы защиты берегов морей и водохранилищ от размыва штормовым волнением. - А.С. No 1654426. 1991, No 21. (соавторы Гребнев Ю.С., Лащенков В.М., Мальцев В.П.).
30. Способ моделирования воздействия волн на прибрежную зону. - А.С. No 1680855. 1991. Б.И- No 36. (соавтор Ермакова.Н.А.).
31. Эволюция прибрежной зоны моря в окрестности стока наносов. - Известия ВНИИГ им. Б.Е. Веденеева. 1992. т. 226, с. 64- 67.
32. The impact of wave on vertical wall.- Abstracts int. session ''Wave and vortices in the ocean and their laboratory analonues"", sept. 23-29. Vladivostok. 1991. p.60. (coauthor Koshelnik E.I.).
33. VVave interaction with bottom noii-uiiifomitv and permeable structures in littoral zone. - Abstracts int. session "Wave and vortices in the ocean and ther laboratory analoques", sept. 23-29 Vladivostok. 1991. p.61. (coauthors: Makarov K.N., Malcev V.P.).
34. Wave - boundary layer above, the submerged coastal zone. - Coastlines of the Black Sea. Proc. ASCE, New York. 1993. p. 75-S1.
35. Waves and currents near the Kinburn Spit extremity. - Coastlines of the Black Sea. Proc. ASCE. New York. 1993. p. 447- 451 (coauthor Shakhina T.Y.).
-
Похожие работы
- Разработка экспресс-методики расчета гидро- и литодинамики прибрежной зоны за продольными гидротехническими сооружениями
- Методика определения коэффициентов гидравлического сопротивления проницаемых волногасящих гидротехнических сооружений
- Проницаемые волногасящие гидротехнические сооружения в жестком каркасе
- Разработка и обоснование проницаемого вдольберегового берегозащитного сооружения
- Взаимодействие волн большой амплитуды с гидротехническими сооружениями в зонах влияния подводных каньонов
-
- Строительные конструкции, здания и сооружения
- Основания и фундаменты, подземные сооружения
- Теплоснабжение, вентиляция, кондиционирование воздуха, газоснабжение и освещение
- Водоснабжение, канализация, строительные системы охраны водных ресурсов
- Строительные материалы и изделия
- Гидротехническое строительство
- Технология и организация строительства
- Здания и сооружения
- Проектирование и строительство дорог, метрополитенов, аэродромов, мостов и транспортных тоннелей
- Строительство железных дорог
- Строительство автомобильных дорог
- Мосты и транспортные тоннели
- Гидравлика и инженерная гидрология
- Строительная механика
- Сооружение подземного пространства городов
- Экологическая безопасность строительства и городского хозяйства
- Теория и история архитектуры, реставрация и реконструкция историко-архитектурного наследия
- Архитектура зданий и сооружений. Творческие концепции архитектурной деятельности
- Градостроительство, планировка сельских населенных пунктов