автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Моделирование и оптимизация систем управления движением морских подвижных комплексов
Автореферат диссертации по теме "Моделирование и оптимизация систем управления движением морских подвижных комплексов"
На правах рукописи
Маттис Алексей Валерьевич
МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ СИСТЕМ УПРАВЛЕНИЯ ДВИЖЕНИЕМ МОРСКИХ ПОДВИЖНЫХ КОМПЛЕКСОВ
Специальность: 05.13.18 - «Математическое моделирование, численные методы и комплексы программ»
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата технических наук
/и у/
■М
Ульяновск-2010
1 8 НОЯ 2010
004612979
Работа выполнена на кафедре «Телекоммуникации» Ульяновского государственного технического университета.
Научный руководитель - доктор технических наук, профессор
Васильев Константин Константинович
Официальные оппоненты - доктор технических наук, профессор
Кумунжиев Константин Васильевич
- кандидат технических наук, доцент Ушаков Николай Ульянович
Ведущая организация - ФГУ 1 ЦНИИ МО РФ, г. Санкт-Петербург
Защита диссертации состоится 24 ноября 2010 г. в 15 00 на заседании диссертационного совета Д 212.277.02 при Ульяновском государственном техническом университете по адресу: 432027, г. Ульяновск, ул. Северный Венец, 32 (ауд. 211).
С диссертацией можно ознакомиться в библиотеке Ульяновского государственного технического университета.
Автореферат разослан «15» октября 2010 г.
Ученый секретарь диссертационного совета, доктор технических наук, профессор
В.Р. Крашенинников
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. В настоящее время для проведения подводных океанологических исследований создаются и широко используются морские подвижные комплексы (МПК), состоящие из надводного судна и необитаемого подводного аппарата (НПА). Работа МПК происходит в условиях случайных ветро-волновых возмущений, поверхностных и подводных течений, сопровождается ошибками в определении местоположения судна и НПА и характеризуется высокой сложностью управления. Для повышения эффективности работ создаются различные системы автоматического управления движением (САУД) элементов МПК, реализующие режимы отслеживания заданной траектории и динамического позиционирования.
В процессе проведения исследовательских операций один из элементов МПК, как правило, является ведущим и движется по заданной траектории, а второй удерживает заданную относительно него позицию, при этом ведущий должен максимально точно отслеживать заданную траекторию, а ведомый лишен возможности маневрирования. Это приводит к необходимости перехода на ручное управление в случае движения МПК в сложных навигационных условиях, например, при обследовании фарватера, появлении навигационных опасностей и т.д. Алгоритмы координированного управления движением элементов МПК, при котором судно и НПА должны следовать каждый по своей траектории с точным соблюдением заданной скорости, смогли бы обеспечить оперативную коррекцию траекторий и автоматизировать процесс управления в условиях навигационных ограничений. Однако такие алгоритмы недостаточно исследованы.
Кроме того, в известных МПК, как правило, используется раздельное оценивание параметров движения судна и НПА, что не позволяет достичь потенциальной точности. Алгоритмы совместного оценивания параметров движения МПК практически не исследованы.
Следует отметить также, что существующие САУД морских подвижных объектов (МПО) ориентированы на относительно простые, в основном, прямолинейные, траектории, задаваемые набором путевых точек. Управление движением при этом реализуется в связанной системе координат (СК) и сводится, по сути, к управлению только курсом. При этом алгоритмы управления движением в базовой СК исследованы недостаточно.
Вместе с тем, именно создание, моделирование и оптимизация алгоритмов совместного оценивания параметров и координированного управления в базовой СК позволит обеспечить движение элементов МПК с высокой точностью по различным криволинейным траекториям, что приведет к уменьшению затрат на проведение исследований Мирового океана.
Таким образом, задача моделирования и оптимизации систем управления движением МПК является весьма актуальной.
Цели н задачи работы. Целью работы является повышение эффективности подводных океанологических исследований за счет моделирования и оптимизации алгоритмов совместного оценивания параметров движения элементов
МПК и автоматического управления их движением по заданным траекториям. Для достижения поставленной цели необходимо решить следующие задачи.
1. Провести сравнительный анализ известных математических моделей систем управления движением МПК по заданной траектории.
2. Разработать математические модели движения МПК в базовой СК.
3. Разработать алгоритмы оптимального оценивания параметров и управления движением элементов МПК в базовой СК, учитывающие модели движения управляемых объектов, а также модели навигационных средств.
4. Выполнить сравнительное исследование эффективности разработанных оптимальных алгоритмов оценивания и управления с помощью численного моделирования на ЭВМ.
5. Разработать комплекс программ для исследования и практической реализации алгоритмов оптимального оценивания параметров и управления движением МПК.
Методы исследований. Для решения поставленных задач применялись методы математического моделирования, теории оптимальной фильтрации и управления, теории вероятностей и математической статистики. При разработке программных средств применялись методы объектно-ориентированного программирования и проектирования распределенных вычислительных систем.
Научная новизна положений, выносимых на защиту- В диссертации получены следующие новые научные результаты.
1. Предложены и исследованы математические модели движения МПК в горизонтальной плоскости в базовой СК. Показано, что разработанные модели могут использоваться при разработке рекуррентных алгоритмов оценивания и управления движением МПК.
2. Разработаны алгоритмы оптимального оценивания параметров и управления движением МПК, позволяющие с использованием моделей движения в базовой СК реализовать различные режимы оптимального управления, в том числе при движении по заданной криволинейной траектории и динамическом позиционировании.
3. Исследована эффективность процедур совместного оценивания параметров и управления движением МПК с помощью численного моделирования на ЭВМ. Установлено, что применение алгоритмов совместного оценивания параметров МПК позволяет снизить среднеквадратическую ошибку (СКО) оценивания координат судна и НПА до 40% по сравнению с известными алгоритмами раздельного оценивания.
4. Разработан программный комплекс «Интегрированная система управления движением», позволяющий проводить настройку и испытания алгоритмов автоматического управления движением различных МПК, состоящих из надводного судна и телеуправляемого подводного аппарата.
Практическая ценность. Предложенные в работе математические модели и алгоритмы управления совместным движением судна и НПА оформлены в виде законченных программных модулей и использованы при разработке САУД специализированных кораблей ВМФ. Разработанный программный комплекс «Интегрированная система управления движением», реализующий имитацию
4
внешних воздействий, датчиков навигационной информации, а также средств активного управления движением, предоставляет разработчикам САУД возможность исследования и настройки алгоритмов управления движением различных МПК, состоящих из надводного судна и телеуправляемого подводного аппарата.
Результаты диссертационных исследований внедрены в производственную деятельность ФНПЦ ОАО «НПО «Марс» (г.Ульяновск) и ОАО ЦМКБ «Алмаз» (г.Санкт-Петербург), что подтверждается соответствующими актами о внедрении.
Апробация работы. Основные положения диссертационной работы докладывались и обсуждались на ежегодных конференциях профессорско-преподавательского состава Ульяновского государственного технического университета (2008-2010 г.), плановых заседаниях Научно-технического совета ФНПЦ ОАО «НПО «Марс» (2008-2010 г.), седьмой Международной конференции «Математическое моделирование физических, экономических, технических, социальных систем и процессов» (Ульяновск, УлГУ, 2009 г.), научно-технической конференции «Состояние, проблемы и перспективы создания корабельных информационно-управляющих комплексов» (г. Москва, ОАО «Концерн «Моринформсистема - Агат», 2009 г.), шестой Всероссийской научно-практической конференции (с участием стран СНГ) (Ульяновск, УлГТУ, 2009 г.), Всероссийской конференции с элементами научной школы для молодежи «Проведение научных исследований в области обработки, хранения, передачи и защиты информации» (Ульяновск, УлГТУ, 2009 г.), ЬХУ научной сессии, посвященной Дню радио (Москва, 2010 г.).
Публикации. По теме диссертации опубликовано 14 научных работ, в том числе две в изданиях, входящих в перечень ВАК РФ.
Объем и структура диссертации. Диссертация состоит из введения, четырех глав, заключения, списка литературы из 107 наименований и приложений. Работа содержит 152 страницы текста, 37 рисунков и 6 таблиц.
СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы, сформулированы цели и задачи работы, указывается научная новизна и практическая значимость полученных результатов, приводится краткое содержание и структура диссертации.
В первой главе проводится аналитический обзор работ в области разработки и моделирования систем управления движением морских подвижных комплексов с подводными аппаратами: рассмотрены основные конфигурации комплекса и принципы автоматического управления движением его элементов; приведены математические модели движения элементов комплекса; выполнен аналитический обзор основных источников навигационной информации судна и подводного аппарата; рассмотрены методы комплексирования навигационной информации, используемые в современных подводных аппаратах.
Показано, что существующие САУД элементов МПК ориентированы на относительно простые, в основном, прямолинейные, траектории, задаваемые набо-
ром путевых точек. Управление движением при этом реализуется в связанной либо траекторной системе координат и сводится, по сути, к управлению курсом. Алгоритмы координированного управления совместным движением элементов МПК, при котором судно и подводный аппарат должны следовать по своим траекториям в базовой системе координат с точным соблюдением заданной скорости движения или времени прохождения определяющих точек, недостаточно исследованы.
Кроме того, в большинстве реальных САУД надводных судов и подводных аппаратов управляющие воздействия формируются на основе методов теории автоматического управления, как правило, с использованием пропорционалыю-интегрально-дифференциального (ПИД) регулятора, реализующего обратную связь по отклонению курса от заданного, интеграла от этого отклонения, и производной от него. В отдельных, преимущественно зарубежных, НПА используются алгоритмы, основанные на элементах теории оптимальной фильтрации, при этом алгоритмы оптимального оценивания, основанные на математических моделях движения управляемого объекта и моделях навигационных средств, также недостаточно исследованы.
Во второй главе синтезируются и исследуются алгоритмы оптимального управления и оценивания параметров МПК при движении по заданной траектории с использованием математических моделей в базовой системе координат.
Рассматривается движение МПК в горизонтальной плоскости: судна - по поверхности воды, НПА — на заданной глубине, при этом используются следующие системы координат (СК): 0%Х 2г - базовая СК, начало которой связано с некоторой точкой на поверхности Земли, ось ОеХе направлена на север,
- на восток; 0X2 - связанная СК, начало которой совмещено с центром масс МПО, ось ОХ направлена вдоль диаметральной плоскости, ось 02 — перпендикулярно ОХ в направлении правого борта.
Объединим кинематические параметры движения МПО в связанной СК в один вектор х =(х,г,<р,Ухуг,а) )' и запишем математическую модель движения МПО в связанной СК в дискретном времени: х, = /V, -хм + Вм •, I = /0, /'„ +1,/д,, где
1 0 0 со$(<р,_,) ■ ¿и — вшС^»,.,) - А/ 0 0 0 0
0 1 0 соз(рм) • А/ 0 0 0 0
0 0 1 0 0 м 0 0 0
0 0 0 1 0 0 Ы/тх 0 0
0 0 0 0 1 0 0 Дг//и, 0
0 0 0 0 0 1 0 0 ыи,
«м = С, -»*..*>,^ + т,У,о>у, Му -(и, ~>п,)Уу. +А„Кй\)';
тх=т + А„; тг-т + Jy=Jyy + Я55; т- масса МПО; J>у- момент инерции
МПО; X,- присоединенные массы и моменты инерции МПО; Ух,Уг,е)у- проек-
ции вектора линейной и угловой скорости МПО на оси связанной СК;
Му— составляющие вектора и момента внешних сил.
С целью определения эффективного метода решения системы уравнений (1) было проведено исследование точности различных методов интегрирования. Исследовались режимы слабого ( ш-0.001 рад/с), среднего (о— 0.01 рад/с) и сильного (о =0.1 рад/с) маневрирования МПО при движении с параметрами, характерными для совместного движения судна и НПА: К =2 м/с, К=0 м/с. В результате моделирования на ЭВМ было установлено, что при использовании метода Рунге-Кутта 4 порядка с уменьшением интервала дискретизации результат решения системы уравнений (1) стремится к истинному значению «снизу», в то время как при использовании простого одношагового метода - «сверху» (рис. 1). х, м 3500
0 0.0005 0.002 0.0078 0.0312 0.125 м, с
Рис. 1. Зависимость параметра х от интервала дискретизации Д/: 1-метод Рунге-Кутта 4 порядка; 2-простой одношаговый метод интегрирования
Сходимость результатов позволила оценить возможность применения различных методов интегрирования.
Использование выражений (1) для синтеза алгоритмов автоматического управления движением МПО по заданной траектории вызывает значительные трудности, так как требует задания требуемой траектории движения в связанной СК. Введем вектор параметров движения МПО в базовой СК х = (х,г,<р,У^ V ,а У и запишем выражения для математической модели в базовой СК: х, = • *м + Вм • нм, / = ;0, /0 +1,..., ,
1 0 0 ги 0 0
0 1 0 0 д< 0
0 0 1 0 0 Д/
0 0 0 1 -со-& 0
0 0 0 й)-Д/ 1 0
0 0 0 0 0 1
Д_.=
т,
) • Л
т, О
т.
т. О
0 0 0 О
О
ли.
= (К, -тУ,юг -\»а>1, Р, + ту,а,, Му -(т, -т,+ ЛпУ,(оуУ ■
В результате моделирования на ЭВМ было установлено, что точность разработанных моделей в базовой СК определяется, в основном, точностью решения системы дифференциальных уравнений и, следовательно, зависит от величины интервала дискретизации. С уменьшением интервала дискретизации результаты моделирования движения МПО в базовой СК стремятся к результатам, полученным с использованием эталонной модели в связанной СК. При одном и том же интервале дискретизации модели в базовой СК проигрывают моделям в связанной СК по точности в 4-5 раз, по количеству вычислительных операций — в 2.2-2.5 раза, что может быть объяснено наличием большего количества нелинейных членов в моделях в базовой СК.
Таким образом, математические модели движения МПО в базовой СК адекватны моделям в связанной СК и могут использоваться для имитации движения на малых интервалах времени, например, при разработке рекуррентных алгоритмов оценивания и управления. При этом для вычисления координат и параметров истинного движения МПО целесообразно использовать модели в связанной СК.
Рассмотрим решение задачи оптимального управления движением МПО по заданной траектории. Модель движения МПО (2) при наличии случайных возмущений будет иметь вид:
X, = /V, • 5М + 5М •+ £г(М), 1 = /'„, /„ +1.....;„, (3)
где £,«-■) = (° 0 0 С05|?> -6м,-,)!"П¥> £.„.„у, - последовательность гаус-
совских независимых векторов в базовой СК; — случайные возму-
щения, вызванные ветро-волновыми воздействиями, в связанной СК.
Требуемую траекторию движения МПО в базовой СК зададим уравнением:
хп ~ ^та-пхт-\) » '— 'о»'о 1.....> (4)
где - последовательность независимых гауссовских векторов с ковариационными матрицами Уп
Поставим основной задачей управления минимизацию следующего локального критерия качества управления, характеризующего точность и экономичность системы:
/«лф,(5)
где Q - весовая функция ошибок оценивания параметров движения МПО по заданной траектории; К - матрица, определяющая затраты энергии на управление.
Тогда оптимальное управление будет находиться по формуле:
йм=-Л,.Д.„ (6)
где +
Для получения оптимальных оценок параметров движения МПО в дискретном времени запишем наблюдения со всех навигационных средств в виде:
г,= Н,х, + (7)
где = 1,2,..., — гауссовские независимые случайные величины с ковариационными матрицами УН1
Уравнение оптимального оценивания параметров движения МПО в дискретном времени запишется следующим образом:
% =*„ +КМ~НХ\ (8)
где = + Д_,йм - экстраполированное на 1 шаг значение вектора параметров движения МПО; К,=Р,НТ,У^ - матричный коэффициент усиления; /) = Р, (£ + Я/У^'Я, - ковариационная матрица ошибок оценивания; Р„ = - ковариационная матрица ошибок экстраполяции; Р, = К,.
Существенную роль при реализации оптимальной САУД играют матрицы штрафов Кпд (5). Анализ показывает, что целесообразно выбрать элементы матрицы штрафов К и следующим образом:
Го 0 0 0 0 0>
к 0 <г 0 0 0 0 0 0
I 0 0 0 0 0 0
0 к2 0 , б= 1, 0 0 0 0
0 0 К, 0 Я; 0 0 Ъ- 0
1° 0 % 0 0 )
Соотношения между коэффициентами кх> к. и к9 позволяют сформировать «энергетические» требования к САУД. При необходимости минимизировать число перекладок руля следует увеличить к■ . Если необходимо обеспечить точное поддержание скорости движения МПО, то увеличивается кх. В частности, для режима динамического позиционирования более важным может быть удержание МПО в точке с нулевыми скоростями К и V, при менее жестких требованиях к величине курса <р. Тогда необходимо увеличивать кх и к1 по сравнению с кг. Таким образом, в САУД должен задаваться диапазон коэффициентов в зависимости от режимов работы и уточняться по результатам функционирования системы самонастройки и адаптации.
Коэффициенты дх, д., дг, цУх, цу_ и дш, определяющие точность САУД, зависят от режимов стабилизации. Например, при динамическом позиционировании можно положить цп = <7,,. = 0, = 0, а штрафы дх = дг назначить больше, чем штраф д за неточное удержание курса. При стабилизации на заданном курсе следует назначить нулевые штрафы дх=д1 = 0, = 0.
Выполним линеаризацию модели (3), для чего аппроксимируем заданную траекторию движения МПО хт стационарными участками, на которых компоненты г/),., сог постоянны. Заменив <р,а> на срт, ат в матрицах В;1, £г(М1 выражения (3), получим стохастическую модель движения МПО в базовой СК, ли-
неаризованную относительно заданных значений курса и угловой скорости. Отметим, что в случае стабилизации МПО на прямолинейном галсе О = 0, а <р будет соответствовать заданному курсу.
Компьютерное моделирование алгоритма оценивания с использованием модели, линеаризованной относительно заданных значений курса и угловой скорости, показало, что дисперсия случайных возмущений а\0 оказывает значительное влияние на сходимость процесса фильтрации. При значениях дисперсии случайных возмущений о\а >0.0001 процесс фильтрации начинает расходиться, что объясняется значительным отклонением параметров <р и ш от соответствующих заданных значений.
Линеаризуем модель (3) относительно значений оценок угловой скорости <ом и курса с предыдущего шага для чего аппроксимируем фактическую траекторию движения МПО стационарными участками, на которых компоненты (р,а постоянны. Размер этих участков будет определяться интервалом дискретизации фильтра. Заменив , ш на <рм, с5,_, в матрицах , Вн, £е(М) выражения (3), получим стохастическую модель движения МПО в базовой СК, линеаризованную относительно оценок курса фы и угловой скорости <5М.
В результате моделирования на ЭВМ было установлено, что в случае линеаризации модели (3) относительно оценок параметров, полученных на предыдущей итерации фильтра, процесс фильтрации начинает расходиться только при значениях дисперсии случайных возмущений <7^>0.01.
Таким образом, при разработке алгоритмов оптимального оценивания параметров и управления движением МПО следует использовать математическую модель в базовой СК (3), линеаризованную относительно оценок курса фы и угловой скорости .
Рассмотрим конкретизацию полученных алгоритмов оценивания-управления применительно к оптимальному управлению движением МПК, состоящего из надводного судна и НПА.
В большинстве существующих САУД осуществляется раздельное оценивание параметров движения судна и НПА. При этом информация о курсе <ра и угловой скорости со1 с инерциальной навигационной системы (ИНС), координатах х,, г, и составляющих скорости Уо, с приемоиндикатора спутниковой навигационной системы (СНС) поступает в контур обработки навигационной информации судна, где с использованием фильтра Калмана (ФК) осуществляется оценка вектора параметров движения судна х1 (рис. 2, а).
Аналогичная схема используется для оценки вектора параметров движения НПА ха. При этом абсолютные координаты НПА ха, га определяются косвенно по информации о координатах судна хг, г, с приемоиндикатора СНС и относительном положении НПА Дх,, по данным гидроакустической навигацион-
Ю
ной станции (ГАНС). Информация об абсолютной скорости НПА-Ки, У1а поступает с гидроакустического лага (ГАЛ).
а) б)
Рис. 2. Схемы алгоритмов раздельного (а) и совместного (б) оценивания параметров движения МПК
Так как наблюдения абсолютных координат НПА, получаемые с помощью СНС и ГАНС, включают как элементы вектора состояния судна (хг, г,), так и координаты НПА (Ах,, Ага), то оптимальные оценки вектора параметров движения судна х1 и НПА ха должны находиться с помощью общего алгоритма оптимальной фильтрации (рис. 2, б). Рассмотрим алгоритмы раздельного и совместного оценивания параметров МПК.
Алгоритм раздельного оценивания. Введем вектор параметров движения судна х, -(х, г, <р, Ух^ У^ а,У, вектор наблюдений гг = (2,,2!112г<2п г^г )т и запишем наблюдения с навигационных средств судна в виде:
где - единичная матрица размером 6x6, = (игп^п^п^)' - гаус-совские независимые случайные величины с ковариационной матрицей УШ1 = М } по главной диагонали которой расположены элементы N NN N N N
Выражения (8) позволяют записать процедуру оптимального оценивания параметров движения судна хп подставив в них соответствующие значения компонент вектора х1.
Отличительной особенностью оценивания параметров НПА является отсутствие прямых наблюдений абсолютных координат НПА, а также зависимость их ошибок определения от ошибок оценивания координат судна.
И
Введем вектор параметров движения НПА ха = (ха za <ра Vxga VJg¡¡ coü)T, вектор наблюдений za - (z^ztzr z^z^z)' и запишем наблюдения в виде:
где На, - единичная матрица, = (и, +пАха,пг_ + niüa,n^,nyxg,nrig,nel)r - гаус-совские независимые случайные величины с ковариационной матрицей УНа, = }, по главной диагонали которой расположены элементы
N,s + Л^л™. N:s + . Nr.. > > Nc. • Наблюдения координат НПА осуществляются косвенно по формулам zx = z + z4t , z, = z + .
Выражения для оптимального оценивания параметров НПА запишутся аналогично (8).
Алгоритм совместного оценивания.
Введем вектор параметров движения МПК х = (xi ха)т, вектор наблюдений 2 = и запишем наблюдения в виде
zi =Н,х, +!"„,, где f„ =(«,_ пг% п^п^,п<п^п^п^nVxgnV4:па_ )т, Н- матрица размером 12x12 с единицами на главной диагонали и элементами H7i= Hs2 — -1.
Заданные траектории движения судна и НПА будем описывать следующими разностными уравнениями, аналогичными (4):
где и — гауссовские векторы с ковариационными матрицами VtTl и F(1 соответственно.
Выражения для совместного оптимального оценивания параметров судна и НПА запишем в виде (8), при этом будем использовать раздельное управление движением в соответствии с (6).
В третьей главе проводится сравнительное исследование алгоритмов совместного и раздельного оценивания параметров и управления движением МПК при движении по заданной прямолинейной траектории.
В результате моделирования на ЭВМ было установлено, что экспериментальные значения дисперсии ошибок оценивания координат судна и НПА, вычисленные путем усреднения 1000 реализаций случайного процесса, практически совпадают с теоретическими значениями, вычисленными в ковариационной матрице ошибок фильтра.
На рис. 3 приведены зависимости СКО оценивания координат судна и НПА от СКО спутниковой навигационной системы (СНС) и СКО гидроакустической навигационной станции (ГАНС) при совместном и раздельном оценивании параметров движения МПК.
Анализ графиков (рис. 3) показывает, что применение алгоритмов оптимальной калмановской фильтрации позволяет значительно уменьшить СКО оценивания координат судна (до 5-10 раз) по сравнению с СКО измерений СНС. Уменьшение СКО оценивания координат НПА достигает 7-11 раз по сравнению с суммарной С КО измерений СНС и ГАНС. Отметим, что приведенный резуль-
12
тат является максимально возможным, так как в реальных условиях наблюдается отклонение законов распределения погрешностей случайных возмущений и наблюдений от гауссовского, несоответствие реальных и моделируемых процессов, в результате чего эффект от использования алгоритмов может быть существенно меньше. В связи с этим, для определения эффективности разработанных алгоритмов целесообразно производить сравнительную оценку точности алгоритмов совместного и раздельного оценивания параметров движения МПК.
а) б)
Рис. 3. Зависимость СКО оценивания координат судна (а) и НПА (б) от СКО СНС и СКО ГАНС при совместном (сплошная линия) и раздельном (пунктирная линия) оценивании параметров МПК: 1 - оганс=10 м; 2 - стганс=8 м; 3 -Оганс=6 м; 4 - (7Гаис=4 м
На рис. 4 приведены результаты сравнения точности оценивания координат судна и НПА для алгоритмов совместного и раздельного оценивания параметров МПК при различной СКО С НС и СКО ГАНС.
Анализ зависимостей, представленных на рис. 4, показывает, что использование алгоритма совместного оценивания параметров движения МПК позволяет уменьшить СКО оценивания координат судна на 3-13% и НПА на 1-12% по сравнению с алгоритмом раздельного оценивания. Наибольший эффект от использования алгоритма наблюдается в случае минимальных ошибок определения места НПА с помощью ГАНС при значительных ошибках определения положения судна с помощью СНС.
Повышение точности оценивания координат судна объясняется тем, что в случае совместного оценивания координат МПК появляется дополнительное измерение координат судна относительно НПА, полученное с помощью ГАНС, которое не учитывается в алгоритме раздельного оценивания. Проводя аналогию с определением места судна по донным гидроакустическим маякам-ответчикам, придем к выводу, что в случае совместного оценивания НПА играет роль подвижного донного маяка-ответчика. При этом, чем выше будет точность определение позиции НПА, тем точнее будут определены и координаты судна. Данное предположение подтверждается экспериментально (рис. 3, а): с уменьшением СКО ГАНС точность определения координат судна увеличивается.
а) б)
Рис. 4. Разность СКО оценивания координат судна (а) и НПА (б) для алгоритмов совместного и раздельного оценивания параметров МГЖ при различной СКО СНС и СКО ГАНС: 1 - стГАНс=Ю м; 2 - аГАнс=8 м; 3 - оГАнс=6м; 4 -Ога11С=4 М
Следует отметить, что увеличение точности ГАНС свыше 4-6 м при значительных ошибках СНС порядка 15-20 м не приводит к увеличению точности определения места НПА, так как в этом случае погрешность оценки координат НПА определяется, в основном, погрешностью оценки координат судна.
Результаты (рис. 3-4) были получены для случая использования гидроакустического лага (ГАЛ) средней точности с СКО измерения скорости 0.2 м/с. В ряде случаев работа МПК происходит в условиях отсутствия достоверной информации об абсолютной скорости движения НПА. В этом случае счисление координат НПА по данным инерциальной навигационной системы и ГАЛ сопровождается значительными ошибками, и основным источником навигационной информации о положении НПА становится ГАНС. Отметим, что низкая точность ГАЛ характерна для режимов движения НПА при больших расстояниях до дна, когда лаг работает в относительном режиме и выдает вектор скорости движения относительно воды.
Исследование точности алгоритмов оценивания для случая отсутствия достоверных измерений скорости НПА с помощью ГАЛ показало, что при использовании алгоритма совместного оценивания точность оценивания координат судна увеличивается незначительно (до 3-4%) по сравнению с алгоритмом раздельного оценивания. Это объясняется уменьшением точности определения координат НПА (вследствие отсутствия измерений скорости) и уменьшением веса дополнительного измерения координат судна по данным ГАНС. При этом точность ГАНС не оказывает значительного влияния на точность оценивания координат судна. В случае отсутствия достоверных данных о скорости НПА наблюдается ухудшение точности оценивания координат НПА для обоих алгоритмов. При этом алгоритм совместного оценивания характеризуется большей точностью (до 28%) по сравнению с точностью алгоритма раздельного оценивания.
В результате исследований было установлено значительное влияние погрешностей измерений скорости НПА на эффективность разработанных алгоритмов. На рис. 5 приведены зависимости СКО оценивания координат судна и
НПА от СКО ГАЛ для различных СКО СНС и СКО ГАНС при совместном и раздельном оценивании параметров движения МПК. На рис. 6 приведены результаты сравнения точности оценивания координат судна и НПА для алгоритмов совместного и раздельного оценивания параметров МПК при различных СКО ГАЛ, СКО СНС и СКО ГАНС.
а) б)
Рис. 5. Зависимость СКО оценивания координат судна (а) и НПА (б) от СКО ГАЛ, СКО СНС и СКО ГАНС при совместном (сплошная линия) и раздельном (пунктирная линия) оценивании параметров МПК: 1 — Стснс=20 м, оганс=ю м; 2 - стсцс=20 м, стганс=4 м; 3 - стСнс=5 м. ^глнс=ю м; 4 - <тснс=5 м, сгганс=4 м
а) б)
Рис. 6. Разность СКО оценивания координат судна (а) и НПА (б) для алгоритмов совместного и раздельного оценивания параметров МПК при различной СКО ГАЛ, СКО СНС и СКО ГАНС: 1 - сгСнс=20 м, стглнс=10 м; 2 - аСнс=20 м, СТганс=4 м; 3 - с?снс=5 м, Оганс=Ю м'> 4 - аснс=5 м, аглмс=4 м
Анализ графиков позволяет сделать следующие выводы. С уменьшением СКО ГАЛ увеличивается точность оценивания координат как судна, так и НПА. Практически для всех комбинаций погрешностей СНС, ГАНС, ГАЛ алгоритм совместного оценивания показывает лучшие результаты оценивания. Наибольший эффект от использования алгоритма совместного оценивания наблюдается в случае малых значений ошибок ГАНС (СКО ГАНС порядка 4-6 м) и больших
ошибках СНС (СКО СНС порядка 20 м). При этом в случае использования ГАЛ высокой точности (СКО порядка 0.05 м/с) наблюдается значительное повышение точности координат судна до 40%. В случае использования ГАЛ средней и низкой точности (СКО выше 0.2 м/с) наблюдается повышение точности оценки координат НПА свыше 12%.
Таким образом, моделирование алгоритмов совместного и раздельного оценивания параметров МПК на ЭВМ показало более высокую точность оценивания координат как судна, так и для НПА для алгоритма совместного оценивания. Выигрыш алгоритма по точности в отдельных случаях достигает 40%. Наибольший эффект от использования алгоритма совместного оценивания наблюдается в случае малых значений ошибок ГАНС (СКО ГАНС порядка 4-6 м) при больших ошибках СНС (СКО СНС порядка 20 м).
Результаты исследования алгоритма совместного оценивания параметров движения МПК были получены исходя из предположения о том, что в процедуре фильтрации точно известны дисперсии ветро-волновых возмущений , сг|в, действующих на судно. В действительности, эти параметры известны с определенной ошибкой, кроме того, они подвержены изменению во времени. В связи с этим важно определить зависимость ошибки оценивания параметров движения МПК от ошибки определения дисперсии возмущений Дсг{3 = а* 1аг*тшр° _ где
w уфюыпра
— реальная дисперсия возмущении, а - дисперсия возмущении, учиты-
ваемая в процедуре фильтрации.
В результате исследований было установлено, что ошибка определения дисперсии возмущений влияет на точность оценивания координат и скорости судна (рис. 7) и не оказывает заметного влияния на точность оценивания параметров НПА. В случае, когда реальная дисперсия возмущений превышает дисперсию возмущений фильтра, происходит увеличение ошибки оценивания.
а) б)
Рис. 7. Зависимость дисперсии оценивания координат (а) и скорости (б) судна от ошибки определения дисперсии возмущений ДАа)а\ 1 -Дст^=Д<г^=3; 2 - Дст^=Дог^=2; 3 - Дсг^=Дст£,=1; 4 - Дст^=Дст;а=0.5
Ошибка определения дисперсии возмущений в большей мере влияет на точность оценивания скорости и мало влияет на точность оценивания координат судна. Так, например, в случае, когда реальная дисперсия возмущений в 3 раза больше дисперсии возмущений фильтра наблюдается увеличение дисперсии оценивания координат всего на 10%, а скорости - в 5 раз. Поэтому для реализации эффективного управления в подобных условиях следует увеличивать значения весов qx, qi и уменьшать q[s, qV: (9).
При движении МПК с малыми скоростями отработка заданных управляющих воздействий (составляющих силы тяги и момента) осуществляется с помощью средств активного управления (САУ): подруливающих устройств (ПУ) и выдвижных поворотных колонок (ВПК). Вследствие инерционности исполнительных механизмов САУ заданное управляющее воздействие отрабатывается не сразу, а только через определенное время и с определенной погрешностью, что отрицательно сказывается на качестве управления.
С целью изучения влияния инерционности САУ на эффективность управления были разработаны их математические модели, алгоритм распределения упоров между САУ и проведено численное моделирование разработанных алгоритмов на ЭВМ.
Результаты моделирования показали, что при движении МПК с малыми скоростями (порядка 0.5-1 м/с) наблюдается значительное боковое (—25..5 м) и продольное (-20..60 м) отклонение судна от заданной траектории и формирование «петель» в моменты притормаживания (рис. 8). Это явление объясняется синхронным вращением обеих ВПК с малой скоростью (0.4 об/мин), в результате чего создается дополнительная боковая сила, достаточно длительное время действующая на судно и приводящая к его боковому смещению. При движении со скоростями выше 1 м/с также наблюдается боковое (-30..35 м) и продольное (-30..40 м) отклонение.
Рис. 8. Влияние инерционности САУ на эффективность управления
Таким образом, наибольшее влияние на эффективность управления оказывает инерционность ВПК при отработке заданного угла поворота. Скорость поворота ВПК, равная 0.4 об/мин, не достаточна для точного следования судна по заданной траектории. В результате моделирования определена необходимая скорость поворота ВПК, равная 2 об/мин, обеспечивающая достаточно точное движение по заданному маршруту (с ошибкой не превышающей 10 м).
В четвертой главе рассматриваются особенности построения программного комплекса «Интегрированная система управления движением» (ПК ИСУД), предназначенного для практической реализации и испытаний алгоритмов автоматического управления движением МПК, состоящего из надводного судна и телеуправляемого НПА, соединенных посредством кабель-троса.
При разработке структуры ПК учтены современные подходы к проектированию программных средств, требования государственных и международных стандартов, а также особенности реализации реальных САУД.
В функциональной структуре ПК ИСУД выделены следующие программные компоненты:
- модуль «Планирование»;
- модуль «Имитация»;
- модуль «Комплексирование»;
- модуль «Управление движением».
Модуль «Планирование» предназначен для ввода требуемых траекторий движения судна и подводного аппарата.
Модуль «Имитация» предназначен для выработки исходных данных для модулей «Комплексирование» и «Управление движением» и выполняет следующие функции:
- ввод технических характеристик судна, подводного аппарата и соединяющего их кабель-троса;
- имитацию ветро-волновых возмущений и течения;
- имитацию движения судна, подводного аппарата, кабель-троса;
- имитацию данных, поступающих от навигационных средств судна;
- имитацию данных, поступающих от ЛСУ судна, с учетом инерции исполнительных механизмов;
- имитацию данных, поступающих от навигационных средств и ЛСУ ТПА.
Модуль «Комплексирование» осуществляет комплексную обработку навигационной информации с целью получения точных координат судна и подводного аппарата.
Модуль «Управление движением» реализует автоматический и полуавтоматический режимы управления.
В полуавтоматическом режиме реализуется управление движением судна заданием управляющего вектора от единого задающего устройства (джойстика), при этом результирующий вектор силы тяги раскладывается на составляющие сил тяги средств активного управления движением.
В режиме автоматического управления реализуются следующие задачи:
- управление движением судна, движущегося на высокой скорости;
18
- динамическое позиционирование судна в заданной точке;
- управление совместным движением судна и ТТ1А.
В рамках решения задачи управления движением судна на высокой скорости реализуются три подрежима управления, в том числе:
- режим стабилизации курса;
- режим стабилизации скорости;
- режим движения по заданной траектории.
При написании исходных текстов ПК с целью обеспечения кроссилатфор-менности использовался язык программирования ANSI «С», при этом в ряде программных модулей применялся объектно-ориентированный подход.
Все расчетные модули выполнены в виде библиотек программ и легко пор-тируются под операционные системы семейства Windows, Linux.
При разработке учитывались эргономические требования к человеко-машинному интерфейсу. Внешний вид ПК ИСУД приведен на рис. 9.
fc6ocoiw)ii |Ц | tAtlOt»! _ ... ^
гд_г».....■'•'•••'••''•Тг^'--'-'-'''-----'-''-:
Cöoco»w:©ft I : О&готъгЗД |
I I ' I " I * I'
Рис. 9. Интерфейс ПК ИСУД
Для внедрения разработанного ПК ИСУД в реальную систему управления был разработан механизм его адаптации к установленному на судне сочетанию источников навигационной и метеорологической информации, локальных систем управления двигательно-движительным и рулевым комплексами судна, локальной системе управления подводным аппаратом.
Адаптация ПК ИСУД для установки на конкретный проект судна заключается:
— в разработке и поставке аппаратных средств: аппаратуры электропитания, аппаратуры организации локальной вычислительной сети, аппаратуры сопряжения с внесистемными абонентами, автоматизированных рабочих мест;
19
- в разработке программных средств сопряжения, выполняющих преобразование данных из формата внесистемного абонента в формат ПК ИСУД;
- в разработке настроечных файлов, описывающих конфигурацию комплекса.
В заключении формулируются следующие основные научные результаты и выводы.
1. Предложены и исследованы математические модели движения МПК в горизонтальной плоскости в базовой СК. Установлено, что математические модели движения в базовой СК адекватны моделям в связанной СК. Однако при обеспечении одинаковой точности модели в базовой СК уступают моделям в связанной СК по количеству вычислительных операций в 9-10 раз, вследствие чего их целесообразно использовать для имитации движения на малых интервалах времени, например, при разработке рекуррентных алгоритмов оценивания и управления.
2. Разработан алгоритм оптимального оценивания параметров и управления движением МПК, позволяющий с использованием модели в базовой СК реализовать различные режимы оптимального управления, в том числе, при движении по заданной криволинейной траектории и динамическом позиционировании.
3. Разработан алгоритм координированного управления движением элементов МПК, при котором судно и НПА должны следовать каждый по своей траектории с точным соблюдением заданной скорости. Установлено значительное негативное влияние инерционности средств активного управления движением судна на точность его движения по заданной траектории. В результате численного моделирования на ЭВМ определены допустимые технические характеристики средств активного управления движением судна, обеспечивающие требуемую точность движения по заданной траектории.
4. Разработан алгоритм совместного оценивания параметров движения МПК, состоящего из надводного судна и НПА. На основе математического моделирования установлено, что применение алгоритма совместного оценивания параметров МПК позволяет снизить СКО оценивания координат судна и НПА до 40% по сравнению с алгоритмом раздельного оценивания. Наибольший эффект от использования алгоритма совместного оценивания наблюдается в случае малых значений ошибок ГАНС (СКО ГАНС порядка 4-6 м) при больших ошибках СНС (СКО СНС порядка 20 м).
5. Разработан ПК «Интегрированная система управления движением», предназначенный для практической реализации и испытаний алгоритмов автоматического управления движением комплекса, состоящего из надводного судна и телеуправляемого ПА, соединенных посредством кабель-троса. Особенностью ПК является возможность его настройки и адаптации для имитации различных типов судов и ПА. Отдельные программные модули, реализующие имитацию внешних воздействий, имитацию навигационных средств, имитацию движи-тельно-рулевого комплекса судна и подводного аппарата, могут использоваться для создания технологических средств проверки сопряжения, а также в специализированных обучающих тренажерах.
В приложении содержатся акты внедрения результатов диссертационной работы в производственную деятельность ФНПЦ ОАО «НПО «Марс» и ОАО ЦМКБ «Алмаз».
Основные результаты работы изложены в следующих публикациях.
В изданиях из перечня ВАК:
1. Васильев, К. К. Моделирование и оптимизация систем управления движением морских подвижных комплексов / К. К. Васильев, А. В. Маттис // Автоматизация процессов управления. - 2010. - № 2 (20). - С. 13-19.
2. Маттис, А. В. Математическое моделирование алгоритмов раздельного и совместного оценивания параметров движения морского подвижного комплекса // Автоматизация процессов управления. - 2010. - № 3 (21). - С. 23-27.
В других изданиях:
3. Васильев, К. К. Система управления совместным движением судна и телеуправляемого подводного аппарата / К. К. Васильев, А. В. Маттис // Состояние, проблемы и перспективы создания корабельных информационно-управляющих комплексов: сборник докладов научно-техн. конф. - М.: ОАО «Концерн «Моринформсистема - Агат», 2009. - С. 78-81.
4. Васильев, К. К. Моделирование системы управления совместным движением судна и телеуправляемого подводного аппарата / К. К. Васильев, А. В. Маттис // Математическое моделирование физических, экономических, технических, социальных систем и процессов: труды VII международной конференции. - Ульяновск: УлГУ, 2009. - С. 66-68.
5. Корноухов 10. JI. Выбор и обоснование варианта построения интегрированной системы управления движением судна и телеуправляемого подводного аппарата / Ю. Л. Корноухов, А. В. Маттис // Автоматизация процессов управления. - Ульяновск: ФНПЦ ОАО «НПО МАРС», 2009. -№ 1 (15), С.79-83.
6. Маттис, А. В. Математические модели движения морских комплексов // Современные проблемы создания и эксплуатации радиотехнических систем: труды шестой всероссийской научно-практ. конф. (с участием стран СНГ). - Ульяновск: УлГТУ, 2009. - С. 67-71.
7. Васильев, К. К. Оптимальное управление и оценивание состояния для морских комплексов / К. К. Васильев, А. В. Маттис // Современные проблемы создания и эксплуатации радиотехнических систем: труды шестой всероссийской научно-практ. конф. (с участием стран СНГ). - Ульяновск: УлГТУ, 2009. -С. 72-75.
8. Маттис, А. В. Программный комплекс для моделирования движения управляемых МПО / А. В. Маттис, А. С. Полканов // Современные проблемы создания и эксплуатации радиотехнических систем: труды шестой всероссийской научно-практ. конф. (с участием стран СНГ). - Ульяновск: УлГТУ, 2009. -С. 306-309.
9. Маттис, А. В. Исследование гидродинамических свойств морских подвижных объектов с применением САПР / А. В. Маггис, А. А. Коптилкин // Проведение научных исследований в области обработки, хранения, передачи и за-
21
щиты информации: сборник научных трудов Всероссийской конференции с элементами научной школы для молодежи. - Ульяновск: УлГТУ, 2009. - Т. 1. -С. 186-189.
10. Маттис, А. В. Оптимальное управление движением морского подвижного объекта в дискретном времени // Проведение научных исследований в области обработки, хранения, передачи и защиты информации: сборник научных трудов Всероссийской конференции с элементами научной школы для молодежи. -Ульяновск: УлГТУ, 2009. - Т. 1. - С.189-193.
11. Васильев, К. К. Оценивание состояния и оптимальное управление движением морского подвижного комплекса / К. К. Васильев, А. В. Маттис // LXV научная сессия, посвященная Дню радио: труды Российского научно-технического общества радиотехники, электроники и связи им. A.C. Попова. -М.: РНТОРЭС им. A.C. Попова. - 2010. - С. 181-183.
12. Маттис, А. В. Влияние инерционности средств активного управления на эффективность алгоритмов оценивания состояния и управления движением морского подвижного комплекса // LXV научная сессия, посвященная Дню радио: труды Российского научно-технического общества радиотехники, электроники и связи им. A.C. Попова. -М.: РНТОРЭС им. A.C. Попова. -2010. - С. 183-184.
13. Пат. 2381140 Российская Федерация, МКИ6 В 63 Н 25/00. Система автоматического управления движением судна / Васильев А.Н., Васильев К.К., Маттис A.B., Павлов В.И., Яковенко В.П.,; заявитель и патентообладатель ФНПЦ ОАО «НПО «Марс». - № 2008126626/11; Заявл. 30.06.2008; Опубл. 10.02.2010.
14. Пат. 2392182 Российская Федерация, МКИ6 В 63 Н 25/00. Способ динамического позиционирования судна при возникновении шквала / Васильев К.К., Полканов A.C., Гладких Е.А., Яковенко В.П., Маттис A.B.; заявитель и патентообладатель ФНПЦ ОАО «НПО «Марс». - № 2009110336/11; Заявл. 20.03.2009; Опубл. 20.06.2010.
Матгнс Алексей Валерьевич Моделирование и оптимизация систем управления движением морских подвижных комплексов
Автореферат
Подписано в печать 14.10.2010. Формат 60x84/16. Бумага офсетная. Усл. печ. л. 1,0. Тираж 100 экз. Заказ №
Типография ФНПЦ ОАО'«НПО «Марс», 432022, Россия, г. Ульяновск, Солнечная, д.20.
Оглавление автор диссертации — кандидата технических наук Маттис, Алексей Валерьевич
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ
ВВЕДЕНИЕ
ГЛАВА 1. Математические модели систем управления движением морских подвижных комплексов
1.1. Постановка задачи
1.2. Математические модели систем автоматического управления дви- 13 жением морских подвижных комплексов по заданной траектории
1.3. Математические модели движения морских подвижных объектов
1.3.1. Системы координат и кинематические параметры, опреде- 22 ляющие положение объекта в пространстве
1.3.2. Уравнения динамики движения морского подвижного объ- 24 екта в пространстве
1.4. Основные источники навигационной информации морского под- 30 вижного комплекса
1.4.1. Инерциальная навигационная система
1.4.2. Спутниковая радионавигационная система
1.4.3. Гидроакустическая навигационная система
1.4.4. Гидроакустический лаг
1.5. Методы комплексирования навигационной информации
1.6. Выводы
ГЛАВА 2. Алгоритмы оценивания параметров и управления движением морского подвижного комплекса
2.1. Постановка задачи
2.2. Математические модели движения элементов комплекса
2.2.1. Математическая модель движения морского подвижного 49 объекта в связанной системе координат
2.2.2. Математические модели движения морского подвижного 55 объекта в базовой системе координат
2.3. Математические модели наблюдений параметров движения элемен- 59 тов комплекса
2.3.1. Инерциальная навигационная система
2.3.2. Спутниковая навигационная система
2.3.3. Гидроакустическая навигационная система
2.3.4. Гидроакустический лаг
2.4. Обобщенные алгоритмы оптимального оценивания параметров и 63 управления движением морского подвижного комплекса
2.4.1. Оптимальное оценивание параметров и управление движе- 63 нием в непрерывном времени
2.4.2. Оптимальное оценивание параметров и управление движе- 67 нием в дискретном времени
2.5. Алгоритмы оптимального оценивания параметров и управления 70 движением судна по заданной траектории
2.5.1. Управление движением судна с использованием средств ак- 70 тивного управления
2.5.2. Управление движением судна с использованием движитель- 73 но-рулевого комплекса
2.5.3. Алгоритмы оптимального оценивания параметров и управ- 75 ления движением судна в дискретном времени
2.6. Алгоритмы оптимального оценивания параметров и управления 80 движением подводного аппарата по заданной траектории
2.7. Совместное оптимальное оценивание и управление судном и БОЛА 82 при движении по заданной траектории
2.8. Выводы
ГЛАВА 3. Исследование алгоритмов оценивания параметров и управления движением морского подвижного комплекса
3.1. Постановка задачи
3.2. Исследование точности алгоритмов оценивания параметров движе- 89 ния морского подвижного комплекса
3.3. Исследование влияния ошибок знания масс и гидродинамических 97 характеристик элементов комплекса на эффективность алгоритмов оценивания
3.4. Исследование влияния ошибок определения параметров случайных 98 внешних воздействий на эффективность алгоритмов оценивания
3.5. Исследование влияния инерционности исполнительных механизмов 100 средств активного управления на эффективность алгоритмов управления движением
3.6. Выводы
ГЛАВА 4. Программная реализация модели системы автоматического управления совместным движением элементов морского подвижного комплекса
4.1. Постановка задачи
4.2. Структура программного комплекса
4.3. Особенности реализации программных модулей
4.4. Особенности построения реальных систем автоматического управ- 114 ления движением
4.5. Выводы
Введение 2010 год, диссертация по информатике, вычислительной технике и управлению, Маттис, Алексей Валерьевич
Актуальность темы. В настоящее время для проведения подводных океанологических исследований создаются и широко используются морские подвижные комплексы (МПК), состоящие из надводного судна и необитаемого подводного аппарата (НПА). Работа МПК происходит в условиях случайных ветро-волновых возмущений, поверхностных и подводных течений, сопровождается ошибками в определении местоположения судна и НПА и характеризуется высокой сложностью управления. Для повышения эффективности работ создаются различные системы автоматического управления движением (САУД) элементов МПК, реализующие режимы отслеживания заданной траектории и динамического позиционирования.
В процессе проведения исследовательских операций один из элементов МПК, как правило, является ведущим и движется по заданной траектории, а второй удерживает заданную относительно него позицию, при этом ведущий должен максимально точно отслеживать заданную траекторию, а ведомый лишен возможности маневрирования. Это приводит к необходимости перехода на ручное управление в случае движения МПК в сложных навигационных условиях, например, при обследовании фарватера, появлении навигационных опасностей и т.д. Алгоритмы координированного управления движением элементов МПК, при котором судно и НПА должны следовать каждый по своей траектории с точным соблюдением заданной скорости, смогли бы обеспечить оперативную коррекцию траекторий и автоматизировать процесс управления в условиях навигационных ограничений. Однако такие алгоритмы недостаточно исследованы.
Кроме того, в известных МПК, как правило, используется раздельное оценивание параметров движения судна и НПА, что не позволяет достичь потенциальной точности. Алгоритмы совместного оценивания параметров движения МПК практически не исследованы.
Следует отметить также, что существующие САУД морских подвижных объектов (МПО) ориентированы на относительно простые, в основном, прямолинейные, траектории, задаваемые набором путевых точек. Управление движением при этом реализуется в связанной системе координат (СК) и сводится, по сути, к управлению только курсом. При этом алгоритмы управления движением в базовой СК исследованы недостаточно.
Вместе с тем, именно создание, моделирование и оптимизация алгоритмов совместного оценивания параметров и координированного управления в базовой СК позволит обеспечить движение элементов МПК с высокой точностью по различным криволинейным траекториям, что приведет к уменьшению затрат на проведение исследований Мирового океана.
Таким образом, задача моделирования и оптимизации систем управления движением МПК является весьма актуальной.
Цели и задачи работы. Целью работы является повышение эффективности подводных океанологических исследований за счет моделирования и оптимизации алгоритмов совместного оценивания параметров движения элементов МПК и автоматического управления их движением по заданным траекториям. Для достижения поставленной цели необходимо решить еле-* дующие задачи.
Провести сравнительный анализ известных математических моделей систем управления движением МПК по заданной траектории.
2. Разработать математические модели движения МПК в базовой СК.
3. Разработать алгоритмы оптимального оценивания параметров и управления движением элементов МПК в базовой СК, учитывающие модели движения управляемых объектов, а также модели навигационных средств.
4. Выполнить сравнительное исследование эффективности разработанных оптимальных алгоритмов оценивания и управления с помощью численного моделирования на ЭВМ.
5. Разработать комплекс программ для исследования и практической реализации алгоритмов оптимального оценивания параметров и управления движением МПК.
Методы исследований. Для решения поставленных задач применялись методы математического моделирования, теории оптимальной фильтрации и управления, теории вероятностей и математической статистики. При разработке программных средств применялись методы объектно-ориентированного программирования и проектирования распределенных вычислительных систем.
Научная новизна положений, выносимых на защиту. В диссертации получены следующие новые научные результаты.
1. Предложены и исследованы математические модели движения МПК в горизонтальной плоскости в базовой СК. Показано, что разработанные модели могут использоваться при разработке рекуррентных алгоритмов оценивания и управления движением МПК.
2. Разработаны алгоритмы оптимального оценивания параметров и управления движением МПК, позволяющие с использованием моделей движения в базовой СК реализовать различные режимы оптимального управления, в том числе при движении по заданной криволинейной траектории и динамическом позиционировании.
3. Исследована эффективность процедур совместного оценивания параметров и управления движением МПК с помощью численного моделирования на ЭВМ. Установлено, что применение алгоритмов совместного оценивания параметров МПК позволяет снизить среднеквадратическую ошибку (СКО) оценивания координат судна и НПА до 40% по сравнению с известными алгоритмами раздельного оценивания.
4. Разработан программный комплекс «Интегрированная система управления движением», позволяющий проводить настройку и испытания алгоритмов автоматического управления движением различных МПК, состоящих из надводного судна и телеуправляемого подводного аппарата.
Практическая ценность. Предложенные в работе математические модели и алгоритмы управления совместным движением судна и НПА оформлены в виде законченных программных модулей и использованы при разработке САУД специализированных кораблей ВМФ. Разработанный программный комплекс «Интегрированная система управления движением», реализующий имитацию внешних воздействий, датчиков навигационной информации, а также средств активного управления движением предоставляет разработчикам САУД возможность исследования и настройки алгоритмов управления движением различных МПК, состоящих из надводного судна и телеуправляемого подводного аппарата.
Результаты диссертационных исследований внедрены в производственную деятельность ФНПЦ ОАО «НПО «Марс» (г.Ульяновск) и ОАО ЦМКБ «Алмаз» (г.Санкт-Петербург), что подтверждается соответствующими актами о внедрении.
Апробация работы. Основные положения диссертационной работы докладывались и обсуждались на ежегодных конференциях профессорско-преподавательского состава Ульяновского государственного технического университета (2008-2010 г.), плановых заседаниях Научно-технического совета ФНПЦ ОАО «НПО «Марс» (2008-2010 г.), седьмой Международной конференции «Математическое моделирование физических, экономических, технических, социальных систем и процессов» (Ульяновск, УлГУ, 2009 г.), научно-технической конференции «Состояние, проблемы и перспективы создания корабельных информационно-управляющих комплексов» (г. Москва, ОАО «Концерн «Моринформсистема — Агат», 2009 г.), шестой Всероссийской научно-практической конференции (с участием стран СНГ) (Ульяновск, УлГТУ, 2009 г.), Всероссийской конференции с элементами научной школы для молодежи «Проведение научных исследований в области обработки, хранения, передачи и защиты информации» (Ульяновск, УлГТУ, 2009 г.), ЬХУ научной сессии, посвященной Дню радио (Москва, 2010 г.).
Публикации. По теме диссертации опубликовано 14 научных работ, в том числе две в изданиях, входящих в перечень ВАК РФ.
Содержание работы. В первой главе проводится сравнительный анализ работ в области разработки и моделирования систем управления движением МПК с подводными аппаратами: рассмотрены основные конфигурации комплекса и принципы автоматического управления движением его элементов; приведены математические модели движения элементов комплекса; выполнен аналитический обзор основных источников навигационной информации судна и подводного аппарата; рассмотрены методы комплексирования навигационной информации, используемые в современных подводных аппаратах.
Во второй главе синтезируются алгоритмы оптимального управления и оценивания параметров МПК при движении по заданным траекториям в базовой СК: предложены и исследованы математические модели движения МПО в базовой СК; рассмотрены математические модели измерителей пара-' метров движения элементов комплекса; приведены обобщенные алгоритмы оптимального оценивания параметров и управления движением элементов комплекса в непрерывном и дискретном времени; синтезированы и исследованы алгоритмы совместного оптимального оценивания параметров и управ- -ления судном и НПА при их движении по заданной траектории.
В третьей главе проводится исследование эффективности предложенных алгоритмов: приведены результаты сравнительного исследования алгоритмов совместного и раздельного оценивания параметров МПК при движении по заданной прямолинейной траектории; выполнено исследование влияния ошибок задания масс и гидродинамических характеристик элементов МПК на эффективность алгоритмов оценивания и управления; выполнен анализ влияния ошибок определения параметров случайных внешних воздействий на эффективность алгоритмов оценивания; приведены алгоритм распределения упоров и результаты исследования эффективности алгоритмов оценивания и управления с учетом инерционности средств активного управления движением.
Четвертая глава посвящена особенностям реализации программного комплекса «Интегрированная система управления движением»: рассмотрены особенности построения архитектуры программного комплекса; рассмотрены особенности реализации программных модулей имитации, комплексирова-ния навигационной информации и управления движением; рассмотрены вопросы построения реальных систем автоматического управления движением, в том числе механизм адаптации разработанного программного комплекса к установленному на судне сочетанию технических средств.
Заключение диссертация на тему "Моделирование и оптимизация систем управления движением морских подвижных комплексов"
4.5. Выводы
1. Реализован программный комплекс «Интегрированная система управления движением», предназначенный для практической реализации и испытаний разработанных математических моделей, методов и алгоритмов.
2. При разработке структуры ПК использованы современные подходы к проектированию программных средств, требования государственных и международных стандартов, а также особенности реализации реальных систем автоматического управления движением.
3. Отличительной особенностью разработанной функциональной структуры является интеграция в одном программном изделии функций управления движением комплекса объектов, включающего судно, подводный аппарат и соединяющий их кабель управления и связи. Комплекс функционирует как в реальном, так и ускоренном времени.
4. ПК может быть использован проектантами судов и подводных аппаратов для оценки ходовых и маневренных характеристик проектируемых объектов на ранних этапах работ. Отдельные программные модули, реализующие имитацию внешних воздействий, имитацию навигационных средств, имитацию движительно-рулевого комплекса судна и подводного аппарата могут использоваться для создания технологических средств проверки сопряжения, а также в специализированных обучающих тренажерах.
ЗАКЛЮЧЕНИЕ
В диссертации получено решение актуальной научно-технической задачи разработки алгоритмов и программного комплекса для моделирования систем автоматического управления движением морских подвижных комплексов по заданным траекториям. Основные результаты и выводы могут быть сформулированы следующим образом.
1. Предложены и исследованы математические модели движения МПК в горизонтальной плоскости в базовой СК. Установлено, что математические модели движения в базовой СК адекватны моделям в связанной СК. Однако при обеспечении одинаковой точности модели в базовой СК уступают моделям в связанной СК по количеству вычислительных операций в 9-10 раз, вследствие чего их целесообразно использовать для имитации движения на малых интервалах времени, например, при разработке рекуррентных алгоритмов оценивания и управления.
2. Разработан алгоритм оптимального оценивания параметров и управления движением МПК, позволяющий с использованием модели в базовой СК реализовать различные режимы оптимального управления, в том числе, при движении по заданной криволинейной траектории и динамическом позиционировании.
3. Разработан алгоритм координированного управления движением элементов МПК, при котором судно и НПА должны следовать каждый по своей траектории с точным соблюдением заданной скорости. Установлено значительное негативное влияние инерционности средств активного управления движением судна на точность его движения по заданной траектории. В результате численного моделирования на ЭВМ определены допустимые технические характеристики средств активного управления движением судна, обеспечивающие требуемую точность движения по заданной траектории.
4. Разработан алгоритм совместного оценивания параметров движения МПК, состоящего из надводного судна и НПА. На основе математического моделирования установлено, что применение алгоритма совместного оценивания параметров МПК позволяет снизить СКО оценивания координат судна и НПА до 40% по сравнению с алгоритмом раздельного оценивания. Наибольший эффект от использования алгоритма совместного оценивания наблюдается в случае малых значений ошибок ГАНС (СКО ГАНС порядка 4-6 м) при больших ошибках СНС (СКО СНС порядка 20 м).
5. Разработан ПК «Интегрированная система управления движением», предназначенный для практической реализации и испытаний алгоритмов автоматического управления движением комплекса, состоящего из надводного судна и телеуправляемого ПА, соединенных посредством кабель-троса. Особенностью ПК является возможность его настройки и адаптации для имитации различных типов судов и ПА. Отдельные программные модули, реализующие имитацию внешних воздействий, имитацию навигационных средств, имитацию движительно-рулевого комплекса судна и подводного аппарата, могут использоваться для создания технологических средств проверки сопряжения, а также в специализированных обучающих тренажерах.
Библиография Маттис, Алексей Валерьевич, диссертация по теме Математическое моделирование, численные методы и комплексы программ
1. Абрамович, Б. Г. Судовые измерители скорости // Методические указания для индивидуальных занятий по курсу «технических средств судовождения». — Владивосток: Морской государственный университет им. адм. Г. И. Невельского, 2005. -44 с.
2. Авиационные системы радиоуправления. Принципы построения радиоуправления. Основы синтеза и анализа / Под ред. А. И. Канащенкова и В. И. Меркулова. -М.: Радиотехника, 2003. Т. 1. - 192 с.
3. Автономные подводные роботы. Системы и технологии. / Под общ. ред. акад. М.Д. Агеева. -М.: Наука, 2005.-398 с.
4. Алямовский, А. А. SoldWorks. Компьютерное моделирование в инженерной практике / А. А. Алямовский, А. А. Собачкин, К. В. Одинцов и др. — СПб.: «БХВ-Петербург», 2005. -1022 с.
5. Анучин, О. Н. Интегрированные системы ориентации и навигации для морских подвижных объектов / О. Н. Анучин, Г. И. Емельянцев /Под ред.
6. B. Г. Пешехонова. СПб.: ГНЦ РФ ЦНИИ «Электроприбор», 2003.-389 с.
7. Бабий, В. И. Специфическая погрешность измерения вертикального распределения скорости звука в море / В. И. Бабий // Морской вестник. -2006. -№3 (19). С. 105-108.
8. Богородский, В. В. Физика океана / В. В. Богородский, A.B. Гусев, Л.Н. Кузнецова, К. С. Шифрин / Под ред. Ю. П. Доронина Л.: Гидрометео-издат, 1978. - 126 с.
9. Бурдаков, С. Ф. Системы управления движением колесных роботов /
10. C. Ф. Бурдаков, И.В. Мирошник, Р.Э. Стельмаков. СПб: Наука, 2001. -227 с.
11. Васильев, К. К. Моделирование и оптимизация систем управления движением морских подвижных комплексов / К. К. Васильев, A.B. Маттис // Автоматизация процессов управления. 2010. - № 2 (20). - С. 13-19.
12. Васильев, К. К., Алгоритмы совместной обработки разнородной навигационной информации / К. К. Васильев, А. С. Полканов // Инфокоммуника-ционные технологии. 2008. - Т. 6. -№ 1. - С. 30-34
13. Васильев, К. К. Теория автоматического управления (следящие системы): Учеб. пособие. 2-е изд./ К. К. Васильев. - Ульяновск: УлГТУ, 2001. -98 с.
14. Веремеенко, К. К. Управление и наведение беспилотных маневренных летательных аппаратов на основе современных информационных технологий / К. К. Веремеенко, М.Н. Красильщиков, К.А. Сыпало и др. М.: ФИЗМАЛИТ, 2003. -280 с.
15. Виноградов, Н. И. Привязные подводные системы. Прикладные задачи статики и динамики / Н. И. Виноградов, М. Л. Гутман, И. Г. Лев, М. 3. Нисневич. СПб.: Изд-во С.-Петерб. Ун-та, 2000. - 324 с.
16. Войткунский, Я. И. Судовые движители и управляемость: Справочник по теории корабля / Я. И. Войткунский, Р. Я. Першиц, И. А. Титов. Л.: Судостроение, 1973. — 512 с.
17. Гидроакустические навигационные средства / В. И. Бородин, Г.Е. Смирнов, H.A. Толстякова, Г.В.Яковлев. Л.: Судостроение, 1983. — 262с.
18. Дмитриев, С. П. Высокоточная морская навигация / С.П. Дмитриев. -СПб: Судостроение, 1991.-224 с.
19. Дмитриев, С. П. Информационная надежность, контроль и диагностика навгационных систем / С.П. Дмитриев, Н.В. Колесов, A.B. Осипов. СПБ: ГНЦ РФ ЦНИИ «Электроприбор», 2004. - 208 с.
20. Дмитриев, С. П. Задачи навигации и управления при стабилизации судна на траектории / С. П. Дмитриев, А. Е. Пелевин. СПб.: ГНЦ РФ-ЦНИИ "Электроприбор", 2004. - 160 с.
21. Егоров, С. А. Управление положением телеуправляемого подводного аппарата в режиме совместного с носителем движения: Дис. . канд. тех. наук. М.: МГТУ им. Н.Э.Баумана, 2002. - 366 с.
22. Киселев, Л. В. Организация пространственного движения автономного подводного аппарата при траекторном обследовании объектов, областей, физических полей: Дис. . докт. техн. наук: 05.13.01.-Владивосток, 1997. — 201 с.
23. Киселев, JI. В. Навигация, управление и ориентирование в подводном пространстве / Л. В. Киселев, Ю.В. Ваулин, A.B. Инзарцев, Ю.В. Матвиенко // Мехатроника, автоматизация, управление. — 2004. — № 11. — С. 35-42.
24. Коровкин, М. В. Методы и алгоритмы оптимизации систем управления движением судов в нестационарных режимах: Дис. . канд. техн. наук: 05.13.01. СПб., 2002. - 153 с.
25. Крутько, П. Д. Задачи гашения энергии и алгоритмы управления движением динамических систем. Нелинейные модели / П. Д. Крутько // Изв. РАН. Серия ТиСУ. 1999. - № 6. - С. 5-24.
26. Кузнецов, Н. А. Управление движением судна по траектории / Н. А.Кузнецов, А. В. Лубков // Теоретические вопросы построения АСУ крупнотоннажными транспортными судами: сб.—М: Наука, 1978. С. 19-23.
27. Кузовков, Н. Т. Инерциальная навигация и оптимальная фильтрация / Н. Т. Кузовков, О. С. Салычев. М.: Машиностроение, 1982. - 216 с.
28. Лободин, И. Е. Малогабаритный морской измеритель скорости звука «МИСЗ-100» / И. Е. Лободин, И.И. Микушин, Г.Н. Серавин // Прикладные технологии гидроакустики и гидрофизики: 7-я Международная конф СПб., 2004. -С. 41-43.
29. Лукомский, Ю. А. Управление морскими подвижными объектами / Ю. А. Лукомский, В.М. Корчанов. СПб: Элмор, 1996. - 320 с.
30. Лукомский, Ю. А. Навигация и управление движением судов: Учебник / Ю. А. Лукомский, В. Г. Пешехонов, Д. А. Схороходов. СПб.: Элмор, 2002. - 360 с.
31. Лукомский, Ю. А. Системы управления морскими подвижными объектами: Учебник / Ю. А. Лукомский, B.C. Чугунов. — Л.: Судостроение, 1988.-272 с.
32. Магомедов, И. А. Оптимальные алгоритмы управления траекторным движением морского подвижного объекта / И. А. Магомедов, К. Д. Курбанмагомедов // Известия Института инженерной физики. — 2010. — Т. 2. № 16. - С. 49-54.
33. Матвиенко, Ю. В. Гидроакустический комплекс навигации подводного робота: Дис. . докт. тех. наук. Владивосток: ИПМТ ДВО РАН, 2004. -271 с.
34. Материалы 4-ой Российской Научно-технической конференции по современному состоянию и проблемам навигации и океанографии (Н0-2001). СПб: ГНИНГИ МО РФ, 2001.
35. Маттис, А. В. Математические модели движения морских комплексов//Современные проблемы создания и эксплуатации радиотехнических систем: труды шестой всероссийской научно-практ. конф. (с участием стран СНГ). Ульяновск: УлГТУ, 2009. - С. 67-71.
36. Маттис, А. В. Математическое моделирование алгоритмов раздельного и совместного оценивания параметров движения морского подвижного комплекса // Автоматизация процессов управления.— 2010. №3(21).— С. 23-27.
37. Методы обработки сигналов: Учебное пособие / К. К. Васильев. -Ульяновск: УлПИ, 1990. 96 с.
38. Морская интегрированная малогабаритная система навигации и стабилизации «Кама-НС»: технические условия. — Пермь.: Пермская научно-производственная приборостроительная компания, 2002.
39. Онищук, О. В. Обобщенная модель доплеровского сигнала гидроакустического лага / О. В. Онищук, С. Т. Барась // Науков1 пращ ВНТУ. 2008. -№1.-С. 1-9.
40. Ориентация и навигация подвижных объектов: современные информационные технологии / Б. С. Алешин, К. К. Веремеенко, А. И. Черноморский, и др. М.: ФИЗМАЛИТ, 2006. - 424 с.
41. Павленко, В. Г. Ходкость и управляемость судов. — М.: Транспорт, 1991.-318с.
42. Пантов, Е. Н. Основы теории движения подводных аппаратов / Е. Н. Пантов, Н. Н. Махин, В. В. Шереметов. Л.: Судостроение, 1978.-216 с.
43. Пат. 2381140 Российская Федерация, МКИ6 В 63 Н 25/00. Система автоматического управления движением судна / Васильев А.Н., Васильев
44. К.К., Маттис A.B., Павлов В.И., Яковенко В.П.,; заявитель и патентообладатель ФНПЦ ОАО «НПО «Марс». № 2008126626/11; Заявл. 30.06.2008; Опубл. 10.02.2010.
45. Проспект НИИ Севморгеологии навигационно-управляющего комплекса «Мореход», 1998.
46. Проспект НПФ «Навис» программного модуля авторулевого, 1998.
47. Пшихопов, В. X. Аналитический синтез позиционно-траекторных систем управления подвижными объектами: Автореф. дисс. . док. тех. наук. Таганрог, 2009. - 31 с.
48. Разумовский, О. А. Синтез дискретной системы автоматического удержания судна на заданной траектории с учетом воздействия ветра, течений и погрешностей измерений / О. А. Разумовский // Навигация и управление судном. — JL: Транспорт, 1986. С. 3-18.
49. Резниченко, В. И. Организация взаимодействия спутниковых и автономных навигационных средств морских объектов / В. И. Резниченко, В. И. Лапшина. СПб.: ГНЦ РФ - ЦНИИ "Электроприбор", 2004. - 88 с.
50. Резниченко, В. И. Определение скорости по сигналам спутниковых навигационных систем / В. И. Резниченко, Г. А. Левит. СПб.: ГНИНГИ РФ, 2004. - 88 с.
51. Резниченко, В. И. Определение курса по сигналам спутниковых навигационных систем / В. И. Резниченко, А. А. Мониев. СПб.: ГНИНГИ РФ, 2004.
52. Сейдж, Э. Теория оценивания и ее применение в связи и управлении / Э. Сейдж, Дж. Меле. М.: Связь, 1976. - 496 с.
53. Справочник по теории корабля. В 3-х т. / Под ред. Я. И. Войткуновского. Л.: Судостроение, 1985. — 554 с.
54. Степанов, О. А. Применение теории нелинейной фильтрации в задачах обработки навигационной информации / О. А. Степанов. — СПб: ГМЦ РФ ЦНИИ «Электроприбор», 2003. 370 с.
55. Степанов, О. А. Применение теории нелинейной фильтрации при решении задач обработки навигационной информации / О. А. Степанов. — СПб.: ГНЦ РФ ЦНИИ «Электроприбор», 1998. 370 с.
56. Страуструп, Б. Язык программирования С+. Специальное издание. Пер. с англ. — М.: ООО «Бином-пресс», 2004 г. 1104 с.
57. Тетюев, Б. А. Системы автоматического управления движением судна по курсу / Б. А. Тетюев, С. Я. Березин. — JL: Судостроение, 1990. 254 с.
58. Юдин, Ю. И. Моделирование выхода танкера в условную точку по заданной траектории / Ю.И. Юдин, А. Ю. Юдин, Г. И. Мартюк // Вестник МГТУ, 2006. Т. 9. - № 2. - С. 229 - 233.
59. Якушенков, А. А. Синтез оптимальной системы автоматического удержания судна на заданной траектории / А. А. Якушенков, Б. К. Федуков, Л. М. Карпенко // Тр. ЦНИИ МФ. Вып. 291. 1984. - С. 8 - 17.
60. Aguiar, А. P. Position tracking of underactuated underwater vehicles / A. P. Aguiar, A. P. Hespanha // In Proc. Of the 2003 Amer. Contr. Conf. Denver. CO. USA. 2003. — № 1. - P. 15-22.
61. Aguiar, A. P. Hespanha Trajectory tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty / A. P. Aguiar, J. P. Hespanha // IEEE Transactions on Automatic Control. 2007. -№ 52 (8). - P. 1362-1379.
62. Alstom. Guide to Dynamic Positioning of Vessels Электронный ресурс. Paris, Alstom, 2000. - Режим доступа: http://sylvain.andre.perso.neuf.fr/officier pont/Alstom.pdf.
63. Alves, J. Vehicle and mission control of the DELFIM autonomous surface craft / J. Alves, P. Oliveira, R. Oliveira, A. Pascoal, M. Rufino, L. Sebastiao,
64. С. Silvestre // In Proc. 14th Mediterranean Conference on Control and Automation. 2006. - June. - P. 1 - 6.
65. Balch, T. Behavior-based formation control for multirobot teams / T. Balch, R.C. Arkin // IEEE Transactions on Robotics and Automation. Vol. 14. -1998. -№6.-P. 926-939.
66. Behal, A. Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics / A. Behal , D. M. Dawson, W. E. Dixon, Y. Fang // IEEE Trans, on Automat. Contr. 2002. - № 3. - P. 495 - 500.
67. Das, A. A vision based formation control framework / A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzer, C. Taylor // IEEE Transactions on Robotics and Automation. Vol. 18. 2002. - № 5. - P. 813-825.
68. Do, K. D. Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems / K. D. Do, J. Pan. Springer, 2009. - 420 p.
69. Dynamic positioning DP systems - Kongsberg Maritime. Электронный pe-cypc.-2008.-Режим доступа: http://www.km.kongsberg.com.
70. Egerstedt, M. Formation constrained multi-agent control / M. Egerstedt, X. Ни // IEEE Transactions on Robotics and Automation. Vol. 17. 2001. - № 6. - P. 947-951.
71. Encarnacao, P. Combined trajectory tracking and path following: an application to the coordinated control of autonomous marine craft / P. Encarnacao, A. Pascoal // in Proc. 40th IEEE Conf. on Decision & Control. Orlando: FL, USA, 2001.-P. 964-969.
72. Encarnacao, P. Path Following for Autonomous Marine Craft / P. Encarnacao, A. Pascoal , M. Areak // Proceeding of the IF AC Conference of Maneuvering and Control Marine Craft (MCMC2000). Aalborg, Denmark, 23-25 August 2000.-P. 117-122.
73. Feddema, J. T. Decentralized control of cooperative robotic vehicles: theory and application / J. T. Feddema, C. Lewis, D. A. Schoenwald // IEEE Transactions on Robotics and Automation, 2002. 18(5). - P. 852-864.
74. Fossen, Т. I. Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, 2002. — 570 p.
75. HiPAP. High precision Acoustic Positioning Model 2007. Product description, Kongsberg Simrad AS Электронный ресурс. — Horten, Norway, 2007. -Режим доступа: http://www.km.kongsberg.com.
76. HiPAP. High precision Acoustic Positioning Model 501/451/351/101. Product description, Kongsberg Simrad AS Электронный ресурс. Horten, Norway, 2009. - Режим доступа: http://www.km.kongsberg.com.
77. Ihle, I.-A. F. Observer design for synchronization of vessels with unreliable position measurements. Master thesis. Norway, Trondheim: Norwegian University of science and technology, 2003. 90 p.
78. Ihle, I.-A. F. Nonlinear formation control of marine craft with experimental results / I.-A. F. Ihle, R. Skjetne, Т. I. Fossen // in Proc. 43rd IEEE Conf. on Decision & Control, Atlantis, Paradise Island: The Bahamas, 2004. P. 680-685.
79. Jonathan, R. T. A decentralized approach to formation maneuvers / R. T. Jonathan, R.W. Beard, B. Young // IEEE Transactions on Robotics and Automation. Vol. 19.- 2003. №. 6. - P. 933-941.
80. Kaminer, I. Trajectory tracking controllers for autonomous vehicles: An integrated approach to guidance and control /1. Kaminer, A. Pascoal, E. Hallberg, C. Silvestre // J. of Guidance, Control and Dynamics. 1998. - № 1. - P. 29-38.
81. Kyrkjebo, E. Ship replenishment using synchronization control / E. Kyrkjebo, K. Y. Pettersen // In Proc. 6th IF AC Conference on Manoeuvring and Control of Marine Crafts, Girona, Spain. 2003. - P. 286 - 291.
82. Lapierre, L. Nonlinear path following with the applications to the control of autonomous under-water vehicles / L. Lapierre, D. Soetanto, A. Pascoal // In Proc. of 42nd IEEE conference on decision and control, 2003. P. 1256 - 1261.
83. Leader, D. Kalman Filter Estimation of Underwater Vehicle Position and Attitude Using a Doppler Velocity Aided Inertial Motion Unit // Requirements for the Degree of Ocean Engineering. Massachusett's institute of technology, 1994. — 104 p.
84. Leonard, N. E. Virtual leaders, artificial potentials and coordinated control of groups / N. E. Leonard, E. Fiorelli // Proceedings of IEEE Conference on Decision and Control: Orlando, FL, 2001. P. 2968 - 2973.
85. Lewis, M. A. High precision formation control of mobile robots using virtual structures / M. A. Lewis, K.H. Tan // Autonomous Robots. Vol. 4. 1997. -№4.-P. 387-403.
86. Mandt, M. Integrating DGPS-USBL Position Measurements with Inertial Navigation in the HUGIN 3000 AUV / M. Mandt, K. Gade, B. Jalving // 8th Saint-Petersburg International Conference on Integrated Navigation Systems. 2001. -P. 173-181.
87. Medwin, H. Speed of Sound in Water: A simple Equation for Realistic parameters: Journal Acoustic Society Am. Vol.56. №6.
88. Olfati-Saber, R. Flocking for multi-agent dynamic systems: algorithms and theory // IEEE Transactions on Automatic Control. Vol. 51. 2006. - № 3. -P. 401-420.
89. Pascoal, A. Vehicle and mission control of single and multiple autonomous marine robots. In Advances in unmanned marine vehicles / A. Pascoal, C. Silvestre, P. Oliveira // EEE Control Series, 2006. P. 353 - 386.
90. Ren, W. Formation feedback control for multiple spacecraft via virtual structures / W. Ren, R. W. Beard // IEEE Proc. Control Theory and Applications. Vol. 151. - 2004. - № 3. -P. 357 - 368.
91. Rimon, E. Robot navigation functions on manifolds with boundary / E. Rimon, D. E. Koditschek // Advances in Applied Mathematics.Vol. 11. 1990. -№4.-P. 412 - 442.
92. Skjetne, R. Nonlinear formation control of marine craft / R. Skjetne, S. Moi, Т. I. Fossen // Proceedings of IEEE Conference on Decision and Control: Las Vegas, NV, 2002. -P. 1699 1704.
93. Stipanovica, D. M. Decentralized overlapping control of a formation of unmanned aerial vehicles / D. M. Stipanovica, G. Inalhana, R. Teo, C. J. Tomlina // Automatica. Vol. 40. 2004. - № 8. - P. 1285 - 1296.
94. Tanner, H. G. Towards decentralization of multi-robot navigation functions / H. G. Tanner, A. Kumar // Proceedings of IEEE International Conference on Robotics and Automation, 2005. P. 4143 - 4148.
95. The ABB Group. Positioning n DP Class 3. 25 June Электронный pe-cypc.- 2003. Режим доступа: http://www.abb.com.
96. Wahl, A. Model Predictive Versus Linear Quadratic Control for the Tracking Problem of Automatic River Navigation / A. Wahl, E. D. Gilíes // Proceeding of European Control Conference, 1999, 31.08-03.09, Karlsruhe, Germany.
97. Wang, P. К. C. Navigation strategies for multiple autonomous robots moving in formation // Journal of Robotic Systems. Vol. 8. 1991. - № 2. - P. 177195.
98. Yun, X. An Inertial Navigation System for Small Autonomous Underwater Vehicles / X. Yun, E. R. Bachmann, S. Arslan // Proceedings of the 2000 International Conference on Robotics & Automation: San Fransisco, California, USA, 2000.-P. 1781-1786.
99. Zielinski, A. Precision acoustic navigation for remotely operated vehicles (ROV) / A. Zielinski, L. Zhou. Victoria, British Columbia, Canada.
-
Похожие работы
- Цифровые законы управления движением судов в условиях морского волнения
- Модели и алгоритмы координированного управления морскими подвижными объектами
- Алгоритмы оптимизации переходных режимов в цифровых системах управления подвижными объектами
- Моделирование алгоритмов комплексирования разнородных навигационных наблюдений
- Оптимальная стабилизация морских подвижных объектов в условиях волнения
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность