автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Численное решение интегродифференциально-алгебраических уравнений с запаздывающим аргументом, моделирующих некоторые прикладные задачи

кандидата физико-математических наук
Дмитриев, Станислав Сергеевич
город
Москва
год
2009
специальность ВАК РФ
05.13.18
цена
450 рублей
Диссертация по информатике, вычислительной технике и управлению на тему «Численное решение интегродифференциально-алгебраических уравнений с запаздывающим аргументом, моделирующих некоторые прикладные задачи»

Автореферат диссертации по теме "Численное решение интегродифференциально-алгебраических уравнений с запаздывающим аргументом, моделирующих некоторые прикладные задачи"

На правах рукописи Дмитриев Станислав Сергеевич

Численное решение интегродифференциально-алгебраических уравнений с запаздывающим аргументом, моделирующих некоторые прикладные задачи

Специальность 05.13.18 - Математическое моделирование, численные методы и комплексы программ

- 3 ЛЕН 2009

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Москва - 2009

003486549

Работа выполнена на кафедре дифференциальных уравнений Московского авиационного института (государственного технического университета)

Научный руководитель

доктор физико-математических наук, профессор

Кузнецов Евгений Борисович

Официальные оппоненты:

доктор физико-математических наук, профессор

Исаев Вячеслав Константинович

кандидат физико-математических наук, старший научный сотрудник Филиппов Сергей Сергеевич

Ведущая организация Учреждение Российской академии наук

Вычислительный центр им. А. А. Дородницына РАН

Защита состоится 18 декабря 2009 г. в 10.00 на заседании диссертационного совета Д 212.125.04 в Московском авиационном институте по адресу: 125993, г. Москва, А-80, ГСП-3, Волоколамское ш., 4, Ученый совет МАИ.

С диссертацией можно ознакомиться в библиотеке Московского авиационного института (государственного технического университета).

Отзыв на автореферат, заверенный печатью организации, просьба направлять по указанному адресу в двух экземплярах.

Автореферат разослан "Л2. " кОЯд РЯ 2009 г. Ученый секретарь

диссертационного совета Д 212.125.04, кандидат физико-математических наук

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Изучение многих процессов, происходящих в природных и технических системах, сводится к анализу свойств их математических моделей, что приводит к необходимости исследования систем обыкновенных дифференциальных уравнений (ОДУ). Часто в приложениях встречаются системы ОДУ, у которых матрица при производной является вырожденной. Такие системы называются системами сингулярных дифференциальных уравнений или дифференциально-алгебраических уравнений (ДАУ). К решению систем ДАУ приводят многие из задач механики, кинетики химических реакций, теории управления, электрических цепей.

В случае, если процесс обладает последействием, математическая модель также может включать в себя запаздывание и интегральные уравнения. В этом случае мы получаем систему взаимосвязанных дифференциальных, алгебраических уравнений и интегро-дифференциальных уравнений типа Воль-терра.

Такие системы уравнений возникают при моделировании многих прикладных задач, например, при исследовании электрических цепей.1,2

Подобные задачи возникают также и в механике. Например, процесс сверления с вибровозбудителем описывается при помощи систем ДАУ с запаздывающим аргументом.3

Диссертационная работа посвящена разработке численных методов решения систем ДАУ, а также систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом с использованием метода продолжения по наилучшему аргументу.

Сложность решения систем ДАУ определяется так называемым дифференциальным индексом системы, т.е. наименьшим числом аналитических дифференцирований, необходимых для того, чтобы посредством алгебраических преобразований записать систему ДАУ в нормальной форме Коши (т.е. свести к ОДУ).

Численное решение систем ДАУ впервые, по-видимому, исследовалось в работе Гира 1971 года (C.W. Gear). Рассматривалось решение системы разрешенных относительно производных уравнений, описывающих процессы, протекающие в электрических цепях. Для дискретизации данной системы использовались формулы дифференцирования назад (ФДН). Система нелинейных уравнений, возникающая на каждом шаге процедуры интегрирования,

1Ушаков ЕЛ. Статическая устойчивость электрических систем - Новосибирск: Наука, 1988. - 273 с.

2Jiang Y.L. Mathematical Modelling on RLCG Transmission Lines // Nonlinear Analysis: Modelling and Control, 2005, Vol. 10, No. 2, P. 137-149.

3Гуськов A.M., Воронов C.A., Квашнин A.C. Влияние крутильных колебаний на процесс вибросверления. - Вестник МГТУ им Н.Э. Баумана. Серия Машиностроение. № 1, Москва, 2007. - с. 3-19.

решалась при помощи метода Ньютона.

Первый результат по сходимости для методов ФДН был получен П. Лот-стедом (P. Lotstedt) в 1985 году для систем индекса 1. Позже сходимость методов ФДН исследовалась в работах JI. Петзолд (L. Petzold), К. Брена-на (К.Е. Brenan) и Б. Энгквиста (В.Е. Engquist).

Многошаговые методы, отличные от ФДН, рассматриваются, в частности, в работах Р. Марц (R. Marz), Г. Содерлинда (G. Soderlind). В монографии Е. Грипентрога (Е. Griepentrog) проведено исследование сходимости общих многошаговых методов.

Первые результаты о сходимости неявных методов Рунге-Кутты для ДАУ индекса 1 были получены в работах П. Дефлхарда (P. Deuflhard), Э. Хайре-ра (Е. Hairer), Дж. Зюка (J. Zugck), Е. Грипентрога. Исследованию сходимости методов Рунге-Кутты для ДАУ высших индексов посвящены работы К. Бренана и Л. Петзолд. В работе Э. Хайрера, Ч. Любиха (С. Libich), М. Ро-ша (М. Roche) данные результаты были улучшены.

Серия работ Г.Ю. Куликова посвящена рассмотрению частного случая систем ДАУ индекса 1. Для таких систем предложен ряд комбинированных методов Рунге-Кутты-Ныотона и получены оценки глобальной погрешности, которая складывается из погрешности дискретизации и погрешности метода Ньютона.

В работе В.К. Горбунова в 1979 году был предложен метод параметризации задач оптимального управления, который позднее был применен для решения систем ДАУ. Согласно данному подходу приближенное решение представляется в виде сплайна с подвижными узлами, параметры которого определяют^ ся из условия минимизации невязки сингулярной части системы ДАУ. Такой сплайн назван вариационным.

Большое число работ посвящено исследованию линейных систем ДАУ. Здесь прежде всего следует отметить работы Ю.Е. Бояринцева, М.В. Булатова и В.Ф. Чистякова, а также Е. Грипентрога.

Необходимо отметить, что решение ДАУ является более сложной задачей по сравнению с решением ОДУ. Отмечаются следующие трудности:4'5

• начальные условия должны быть согласованы с недифференциальными соотношениями;

• система уравнений плохо обусловлена для мелких шагов интегрирования;

• ошибка метода чувствительна к несогласованности в начальных условиях и к резкому изменению решения;

4 Bren an К.Е., Campbell S.L., Petzold L.R. Numerical Solution of initial-value problems in differential-algebraic equations.-N.Y.,Amsterdam, London: North-Holland, 1989. - 210 p.

'Gear C.W. Simultaneius numerical solution of differential-algebraic equations // IEEE Tians. Circuit Theory. - 1971. - CT. 18.- № 1. - Pp. 89-95.

• численное решение в большей степени зависит от точности аппроксимации, чем для ОДУ.

Несмотря на большое число работ, посвященных численному решению систем ДАУ, трудности их численного решения, перечисленные выше, актуальны и на сегодняшний день. В работах Е.Б. Кузнецова и В.И. Шалашилина решение систем ДАУ рассмотрено с позиции метода продолжения по наилучшему аргументу, которым является длина дуги интегральной кривой и предложен подход, названный непрерывным продолжением. Данный подход, основанный на дифференцировании недифференциальных соотношений и введении наилучшего аргумента, позволяет ослабить отмеченные выше трудности. Так, система уравнений продолжения, решаемая на каждом шаге процедуры интегрирования, получается наилучшим образом обусловленной, а в силу выбора аргумента, ошибка становится менее чувствительной к резкому изменению решения. Недостатком указанного подхода является необходимость дифференцирования недифферепциальных соотношений, т.е. система ДАУ сначала сводится к системе ОДУ и лишь затем преобразуется к наилучшему аргументу.

В данной работе для решения систем ДАУ предлагается применить метод дискретного продолжения, в котором уравнения продолжения получаются без дифференцирования недифференциальных соотношений. Таким образом, метод может применяться непосредственно к ДАУ высших индексов.

В отличии от систем ДАУ, число работ, посвященных численному решению систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом, крайне невелико. Тем не менее к необходимости решения таких систем приводит рассмотрение многих прикладных задач, поэтому развитие численных методов решения данных систем является актуальной задачей.

Некоторые подходы к численному решению таких систем рассмотрены в работах У. Джианг (Y. Jiang) и У. Рен (Y. Ren).

В работах М.В. Булатова и Е.В. Чистяковой рассматривается численное решение систем линейных интегро-дифференциальных уравнений с вырожденной матрицей при производной.

Следует отметить, что все трудности, присущие численному решению систем ДАУ, перечисленные выше, остаются справедливыми и для систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом. Кроме того, добавляются трудности, связанные с наличием запаздывания и интеграла. Для преодоления этих трудностей в данной работе предлагается метод продолжения по наилучшему аргументу, которым является длина дуги интегральной кривой задачи.

Цель работы. Целью работы является разработка численных методов решения систем дифференциально-алгебраических уравнений и интегродифференциально-алгебраических уравнений с запаздывающим аргументом.

В работе ставились следующие задачи:

1) Рассмотреть применение метода дискретного продолжения по наилучшему аргументу для численного решения систем ДАУ.

2) Получить необходимые и достаточные условия преобразования системы интегродифференциально-алгебраических уравнений с запаздывающим аргументом к наилучшему аргументу. Построить численные методы на основе непрерывного и дискретного варианта метода продолжения. Реализовать данные методы в комплексе программ.

3) Применить указанные подходы к решению задач, моделирующих различные явления природы и техники.

Методы исследования. В диссертационной работе использованы методы теории продолжения по параметру, методы из теории обыкновенных дифференциальных уравнений и интегральных уравнений типа Вольтерра, а также методы вычислительной математики, функционального анализа и линейной алгебры.

Достоверность результатов. Достоверность результатов обеспечивается строгостью постановок задач, строгостью доказательств, разнообразными тестовыми примерами, а также сравнением с результатами, полученными другими авторами.

Научная новизна. Все существенные результаты диссертационной работы, выносимые на защиту, являются новыми. Отметим основные из них.

На основе метода дискретного продолжения по наилучшему аргументу предложен соответствующий алгоритм для численного решения систем дифференциально-алгебраических уравнений. Получена оценка погрешности метода Ньютона при решении системы нелинейных уравнений, получающейся после преобразования задачи к наилучшему аргументу.

Для систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом получены необходимые и достаточные условия преобразования к наилучшему аргументу. Показано, что таковым является длина дуги интегральной кривой задачи. Для численного решения указанной задачи предложены два подхода, основанные на методе продолжения по наилучшему аргументу: непрерывное и дискретное продолжение.

Разработан комплекс программ для численного решения соответствующих начальных задач, в котором реализованы разработанные в работе численные методы.

С использованием предложенных алгоритмов решена система уравнений, описывающая процесс вибросверления, а также системы уравнений, моделирующие линейные и нелинейные нестационарные электрические цепи.

Теоретическая и практическая значимость. С одной стороны, в работе получены теоретические результаты - доказано, что наилучшим, в некотором смысле, аргументом для системы интегродифференциальнсь алгебраических уравнений с запаздывающим аргументом является длина дуги интегральной кривой задачи. Получена оценка погрешности метода Ньютона при решении системы нелинейных уравнений, получающейся после преобразования системы ДАУ к наилучшему аргументу. С другой стороны, полученные результаты имеют и практическую ценность - подходы, предложенные в работе, могут использоваться при численном решении различных прикладных задач (из области механики, теории управления, кинетики химических реакций, теории электрических цепей). С использованием разработанного программного комплекса была решена система уравнений модели процесса вибросверления, а также системы уравнений, моделирующие нестационарные электрические цепи.

Апробация работы.Результаты, излагаемые в диссертации, докладывались и обсуждались на ряде научных семинаров и международных конференций:

1) XII международный симпозиум "Динамические и технологические проблемы механики конструкций и сплошных сред" (13-17 февраля 2006 г., Ярополец).

2) VIII Харитоновские чтения по проблемам физики высоких плотностей энергии (21-24 марта 2006 г., Саров).

3) VII Международная научная конференция "Дифференциальные уравнения и их приложения" (17-19 мая 2006 г., Саранск).

4) VI Международная конференция по неравновесным процессам в соплах и струях NPNJ-2006 (26 июня - 1 июля 2006г., Санкт-Петербург).

5) General Linear methods and Differential Equations 2008 (GLADE'08) (Auckland, New Zealand, 14-25 July 2008).

6) XVI международная конференция по вычислительной механике и современным прикладным программным системам ВМСППС'2009. (25-31 мая 2009 г., Алушта).

7) 12th Seminar NUMDIPF on Numerical Solution of Differential and Differential-Algebraic Equations (Halle, Germany, 14-18 September 2009).

8) XX крымская осенняя математическая школа-симпозиум "Спектральные и эволюционные задачи" (18-29 сентября 2009 г., Севастополь, Украина).

9) Совместный семинар кафедр дифференциальных уравнений и теоретической механики Московского авиационного института (г. Москва, 8 октября 2009 г.).

Исследования выполнены при поддержке Российского фонда фундаментальных исследований (проект № 06-08-00371), а также программы министерства образования и науки РФ «Развитие научного потенциала высшей школы на 2009—2010 годы», регистрационный номер 2.1.1/5267.

Публикации. По теме диссертации опубликовано 12 работ, в том числе 4 статьи и 8 тезисов; из них 2 статьи - в изданиях из перечня, рекомендованного ВАК.

Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения и списка литературы. Общий объем работы составляет 119 страниц. Библиография содержит 81 наименование.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, приведен обзор современного состояния области исследования и дано краткое описание содержания диссертации.

В первой главе приводится обзор известных численных методов решения задачи Коши для систем дифференциально-алгебраических уравнений

| = /(У,М), (1)

С(2/,М) = 0,

2/(0) = уо, «(0) = х0. (2)

у : К1 —► К", х : К1 —► Кт, * е Ж1, / ; —> К", в: Е"+т+1 —> Ет.

и вырожденных интегро-дифференциальных систем.

Во второй главе численное решение задачи (1), (2) рассматривается с позиции метода продолжения по наилучшему аргументу.

Наилучшим аргументом задачи (1), (2) называется аргумент, доставляющий системе уравнений продолжения наилучшую обусловленность.

Пусть интеграл задачи (1), (2)

/(у> х, Ь) = 0, /(у0,*о) = 0,

/ — (/ь • • •, /п+т)

т (3)

задает в (п+т+1)-мерном евклидовом пространстве Е"+т+1 интегральную кривую К. Процесс построения этой кривой можно рассматривать как задачу

I =-J<5>

построения множества решений системы нелинейных уравнений (3), содержащих параметр-аргумент I, для различных значений Ь. Для построения кривой множества решений системы (3) применим метод продолжения по параметру. Пусть, х = х(£), у = у(1) являются функциями параметра /., тогда уравнения продолжения строятся дифференцированием (3) по параметру £

д/ёу д! Ах д{

—— + —---1- — = 0. (4)

ду (й дх (¡1 дЬ к >

Разрешим (4) относительно производных

Ж

где ■] = " матрица Якоби.

Существенные вычислительные трудности будут возникать в тех точках кривой множества решений системы уравнений (3), где якобиан с!е1;(.7) становится малым. В тех точках, в которых якобиан обращается в ноль, эти трудности становятся непреодолимыми. Встает вопрос о смене параметра продолжения и о выборе наилучшего параметра продолжения решения системы (3), а значит, и наилучшего аргумента системы (1), (2).

В работах Е.Б. Кузнецова, В.И. Шалашилина доказано, что наилучшим аргументом системы ДАУ является длина дуги интегральной кривой А и предложен алгоритм непрерывного продолжения по наилучшему аргументу, согласно которому система (1) сводится к системе ОДУ путем дифференцирования недифференциальных соотношений, после чего преобразуется к наилучшему аргументу.

В данной главе рассматривается применение дискретного варианта метода продолжения по наилучшему аргументу к системе ДАУ. Согласно данному подходу решение (хк+1, Ук+\Лк+1) = (х, у, £) на (к+1)-м шаге процедуры интегрирования в точке, соответствующей значению параметра А = А/ь+1, ищется из следующей системы уравнений:

G{y,x,L)= 0,

п тп

- уад)2 + - + - - ДА* - о. i=l j=l .

(6)

Здесь Xk — к), Ук = У(А^), tk — t(\k) — приближенное значение решения, соответствующее параметру А = Xk, ДА^ = A^+i — Ait — длина шага по параметру А.

Если аргумент Л отсчитывать от начальной точки задачи (1), (2), то начальные условия примут вид

2/(0) = 2/о, *(0)=*о, ¿(0) = ¿о- (7)

Геометрически решение системы (6) означает, что решение на (к + 1)-м шаге в точке, соответствующей значению параметра А = ищется как пересечение интегральной кривой задачи (1), (2) и сферы радиуса ДА^ с центром в к-тХ точке.

После замены производных в системе (6) конечными разностями требуемого порядка, получается система нелинейных уравнений, которую необходимо решать на каждом шаге процедуры интегрирования.

Серьезной проблемой при численном решении систем нелинейных уравнений является выбор начального приближения, которое, для того, чтобы метод сходился, должно быть выбрано достаточно близко к решению задачи. Хорошим начальным приближением для системы (6) являются значения:6

ж(0) = хк + (1 + ) {хк - 2^-1),

V /

У(0)=й+(1 4--^-(8)

+ (и-^г).

V )

Геометрически начальное приближение (8) представляет собой точку пересечения сферы радиуса ДА^ с центром в точке {хк, ук, Ь) и прямой, проведенной через точки {хк-иУк-иЬ-г) и {хк,ук,1к).

Важным преимуществом метода дискретного продолжения по сравнению с непрерывным является отсутствие необходимости дифференцирования недифференциальных соотношений, т.е. система ДАУ преобразуется к наилучшему аргументу сразу, без сведения к ОДУ.

Рассмотрим решение системы (6) с постоянным шагом ДА. После замены производных конечными разностями первого порядка, система примет вид:

' У ~ Ук = 1{Ук, Хк, tk)(t — Ьк),

в{у,х,г) = о,

< п т (9)

Х>(0 - УЩ))2 + Х>(й - хт)2 + {I - 1к)2 - ДА2 = 0.

I 1=1 ^=1

0Кузнецов Е.В. Наилучшая параметризация при построении кривой итерационным методом // Докл. РАН. 2004. Т. 396. № 6. С. 745-748.

С учетом обозначений

у — ук~ 1{Ук, Хк, — Ък) С(у,М)

= Ф*+х(г)

Х>м - УЩ)2 + ][>ь) - хт)2 + (< - ? ~ АА2,

¿=1

система (9) может быть записана в виде

Рк+1(2) =0.

Итерации метода Ньютона для данной системы имеют вид

Жн (¿)

-1

(И)

(12)

Здесь через 2-К обозначено значение приближенного решения, найденное на к-м (предыдущем) шаге, г - номер итерации. Доказана следующая теорема.

Теорема. Пусть выполняются следующие условия:

1. В шаре 5(ло, К) решение задачи (1), (2) существует и единственно;

2. Для невязки на последнем шаге по г выполняется условие ||.?*(,г*)|| < £, к =1,2, ...р — 1;

3. Выполняется неравенство

\\Fkizi) - КЫ\\ < Фх ~ 221!, V*,, 22 € Б(г0, Я);

I 3 [Щг)}-1 : || [ВД]"1 ¡1 < т, V* е Б(г0) В); 5. ||/(2)|| < М, ||С'(г)|| < г е 5(2о,Л);

Пусть е выбирается так, чтобы имело место неравенство е <

2/)гп

Г717

где а = т27(£ + С АХ), С = тах{1 + М, К}. Тогда при выборе шага сетки из соотношения

1 - 2£7т2

ДА <

27т2С '

последовательные приближения вычисленные по итерационной схеме (12) сходятся к решению г^. При этом имеет место оценка ошибки:

Также в данной главе приведены различные примеры решения начальной и краевой задач для систем ДАУ, демонстрирующие эффективность предложенного подхода.

В третьей главе рассматривается численное решение системы интегродифференциально-алгебраических уравнений с запаздывающим аргументом

ду

"^ — f(y> Ут, Ут, X, Хт, %т, Z, ZT, ZT, í), G(y,yT,x,xT,z,zT,t) ~ 0,

Fi ^t, У, Ут, Ут, x, xr, ¿t, 2, ¿, zT, ¿T, f К{[х(£), y(0, z(£), ^ =0,

i — 1, к

удовлетворяющее начальным условиям

í у®=m, я*)=ш

¿ x(t) = ï(i), x(t) = x(t), te[t0- T, ta), \z{t) = z{t)> ¿(í) = 2(í). 2/(*o) = î7(io) = Уо, x(to) = x(í0) = xa, z(t0) = z(í0) = -zo,

(14)

(15)

y : Ш Rn, x : К -> Rm, г:8-»Г, t 6 К,

y . j£3(n+m+i:)+l _^ jjn g . jg2(7i+m+fc)+l _> ]gmi p . |j3n+3m+4fc+l _t j^fc

Здесь y(t), y(t), x(t), î(i), z(t), z(t) - заданные непрерывные функции, индекс г > 0 определяет запаздывание аргумента функции, т.е. yT(t) = y(t — г), (£) = - г), zT(t) = z(i - т), yT{t) = y(t - r), xT(t) = ¿(t - т), Zr(t) = ¿(i - T).

Решение задачи (14), (15) рассматривается с позиции метода продолжения по наилучшему аргументу.

Получен следующий результат.

Теорема. Для того, чтобы задачу Коши (Ц), (15) для системы интегродифференциально-алгебраических уравнений с запаздывающим аргументом преобразовать к наилучшему аргументу, необходимо и достаточно выбрать в качестве такового длину дуги А, отсчитываемую вдоль интегральной кривой задачи.

Наилучший аргумент задается соотношением

п m к

d\2 = Y,dyl+Y,dx2j+Hdz2j+dt2- (16)

«=1 J=1 (=1

Для системы уравнений, разрешенных относительно производной

в(у,ут,х,хт,г,гт,1) - О,

Лг1 ( 4 \ (17)

1 = 1,к

с начальными условиями (15) предложены алгоритмы непрерывного и дискретного продолжения.

Метод непрерывного продолжения состоит в дифференцировании вектор-функции С по Л, после чего с учетом смысла наилучшего аргумента, система (17) записывается в виде

- ит = 0, » = м

п го к

¿=1 ¿=1 /=1

п та к

+(Е С**У* + Е + Е + Ол)Т = 0, (18)

•=1 _¡=1

г1 - пт = о5 I -1, к

п т к

Е ум+Е вд+Еад+тт=1,

¿=1 ¿=1 ¡=1

Здесь использованы обозначения

Е-* й-2- <19>

Систему (18) следует разрешить относительно производных, после чего мы придем к системе дифференциальных уравнений в нормальной форме (19), которая может быть решена каким-либо численным методом решения систем обыкновенных дифференциальных уравнений.

Соотношения метода Эйлера для системы (19) имеют вид

У^ = уМ+ЬХкЩу«\ у?\ *(*), х?\ г<*\ ¿к\ 5^),

= у?\ *?>, х[к\ 4к\ 5«, *<»),

= х?\И)

¿(Ж) = !<*>, х^, ¿1Ь),

где = ¡,(¿(4 _ т), х(к) = - г), = *(«<*> - г), А(*+1> = А<*> + Ад*.

Здесь интеграл вычисляется по формуле трапеций

«<*> к

I

где К^ =

Правые части соотношений (20) зависят от функций у(№ — т), — т), — г), — г), — т), — т), причем, в общем случае, точки в = № — т не входят в состав точек сетки интегрирования. Для нахождения значений 2/(6), у{0), х(6), х(0), г(9), ¿(9) предлагается использовать интерполяционные полиномы Лагранжа второго порядка, которые имеют вид

<22>

1=3 к '

Здесь = /({*'') — значение интерполируемой функции в точке № <0< зеК

Также для систем вида (17) предложен метод дискретного продолжения по наилучшему аргументу. Согласно данному подходу, решение (у, х, г, I) на (г'+1)-м шаге в точке, соответствующей параметру А = А,+1, ищется из следующей системы уравнений:

^ - /(У, Ут, ут, х, хт, хт, г, гт, ¿т, = 0,

С(у,ут,х,хт,г1гт,г) = 0,

^-Р1(1,У,Ут,Ут,х,хт,хг,г,гг,гт,31^))— = 0, 1 = 1, к, ^

771 П к

- 4})2+Е& - +-

7=1 7=1 7=1

+(«- ¿»)2 - ДА? = 0.

Как и в непрерывном продолжении, интеграл вычисляется по формуле трапеций (21).

После замены производных конечными разностями получаем систему из (и+т+&+1)-го нелинейного уравнения относительно неизвестных которую необходимо решать каким-либо итерационным методом решения систем нелинейных уравнений.

Приведен ряд примеров, демонстрирующих эффективность предложенного подхода. Рассмотрена модельная задача, которая не решается без преобразования к наилучшему аргументу. Численные результаты показали, что дискретное продолжение обладает большей точностью, чем непрерывное.

Четвертая глава посвящена численному решению различных прикладных задач с использованием предложенных методов.

Рассматривается решение системы уравнений, списывающей процесс вибросверления. Полная система уравнений модели процесса вибросверления состоит из уравнений движения инструмента и уравнений образования новых поверхностей. Уравнения движения инструмента в безразмерных переменных имеют вид

= ((2тгР)Мо«п(2^г) - (2ir}axY\rf) fy

dr __ 1 dip

П "I1/®

где fj — 2(^(^1 + Vi))4] ~ приведенная толщина снимаемого слоя.

Здесь £ - безразмерное осевое смещение инструмента, ф - безразмерный угол поворота сверла вокруг оси, т - безразмерное время, ß - безразмерный угол поворота инструмента(правого сечения сверла) относительно детали, q

- параметр нелинейности закона резания, /Ы1, /г0( - безразмерные собственные частоты осевых и крутильных колебаний инструмента, к - безразмерная жесткость резания, С - безразмерный коэффициент демпфирования, ßp, /Z(

- некоторые масштабирующие множители.

Уравнения образования новых поверхностей для инструмента с двумя режущими кромками имеют вид

A,(ß) = [ZQ(r(ß))-Z0(T(m +№ - Я + T{ß) -A2(ß- 0.5), A2(ß) = [Zo(t(j9))-Zo(t(0))I Hiß) - H + r{ß) - A\(ß- 0.5), < Tji(ß) = max(0, Ai(/3)), r]2(ß) = max(0, A2(ß)), (25)

Miß) = Miß - 0.5) + T]i(ß), , Miß) = Miß — 0-5) + rftiß)-

Здесь Ajiß) - безразмерное расстояние от j-й режущей кромки до необработанной поверхности, Ajiß) - поверхность, получаемая за счет снятия мгновенной толщины снимаемого слоя r]j(ß) с поверхности, сформированной "предыдущей" режущей кромкой, Я - безразмерное расстояние от инструмента до средней поверхности торца детали в начальный момент времени, Zait) = i4osin(wo<) - закон, по которому вибратор задает движение левому сечению крепления инструмента.

Полная система уравнений модели процесса вибросверления представляет

собой систему дифференциально-алгебраических уравнений с запаздывающим аргументом (24), (25).

Данная система решалась с использованием непрерывного и дискретного продолжения по наилучшему аргументу. В ходе решения вычислялась невязка алгебраической части системы, которая для метода дискретного продолжения оказалось значительно меньше, чем для непрерывного.

Также в данной главе проведено исследование моделей нестационарных электрических цепей. Рассмотрена модель двухконтурной электрической цепи, описываемой системой интегродифференциально-алгебраических уравнений (вырожденных интегро-дифференциальных уравнений)7

О

Здесь Л - узловая матрица, В - контурная матрица, й, Ь, С - диагональные матрицы сопротивлений, индуктивностей и величин, обратных емкости соответственно, г - вектор распределения токов по ветвям цепи, 3 = (0,0,0,0)т, j(t) - ток источника.

Для решения данной задачи применялись два подхода: метод, основанный на формулах дифференцирования назад (предложенный в работе Е.В. Чистяковой) и метод дискретного продолжения по наилучшему аргументу. В первом случае для дискретизации дифференциальной части системы использовались формулы дифференцирования назад 2 порядка, а интегральный член аппроксимировался при помощи формулы трапеций. Во втором случае при решении преобразованной задачи использовались конечно-разностные аппроксимации второго порядка, а интеграл также вычислялся по формуле трапеций. Получающаяся система нелинейных уравнений решалась при помощи метода Ньютона.

Шаг преобразованной задачи выбирался так, чтобы задача была проинтегрирована за то-же число шагов, что и непреобразованная. При этом погрешность при решении задачи, преобразованной к наилучшему аргументу получилась значительно меньше, чем при решении непреобразованной зада-чи(для вычисления погрешности использовалось решение, полученное с меньшим шагом).

Также рассмотрен случай нелинейной цепи, состоящей из диода, катушки индуктивности, конденсатора и резистора.8 Данная цепь описывается следу-

'Чистякова Е.В. Методы исследования и решения вырожденных интегро-дифференциальных уравнений и их приложения. - Дисс.... к.ф.-м.н. Иркутск, 2007.

8Влах И. Машинные методы анализа и проектирования электронных схем. //И. Влах, К Сингхал.-М.:Радио к связь, 1988.-560С.

ющей системой дифференциально-алгебраических уравнений 92 - Щ + и2 = О,

ql - Си2 = О,

<72 ~ ¿¿х, = О,

¿¿ + [ехр(Ь1)- 1]-М) = 0, . ¿х, - гс - (?И2 = О,

где - заряд на конденсаторе, (¡2 - магнитный поток через катушку индуктивности, гс, г£ - токи, текущие через конденсатор и катушку индуктивности соответственно, }{Ь) - ток источника.

Задача также решалась при помощи двух подходов: без преобразования к наилучшему аргументу и с использованием дискретного продолжения по наилучшему аргументу. Для дискретизации непреобразованной задачи применялись формулы дифференцирования назад 2 порядка, при решении преобразованной задачи также использовались конечно-разностные аппроксимации 2 порядка. Система нелинейных уравнений в обоих случаях решалась при помощи метода Ньютона.

При одинаковом числе шагов погрешность, получаемая при решении задачи методом дискретного продолжения, получилась значительно меньше, чем при решении непреобразованной задачи.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

1) На основе метода дискретного продолжения по наилучшему аргументу предложен подход для численного решения систем дифференциально-алгебраических уравнений. Преимущество предлагаемого подхода продемонстрировано на тестовых примерах.

2) Получена оценка погрешности метода Ньютона при решении системы нелинейных уравнений после преобразования задачи к наилучшему аргументу.

3) Разработан ■ численный метод решения задачи Коши для системы интегродифференциально-алгебраических уравнений с запаздывающим аргументом преобразованной к наилучшему аргументу. Получены необходимые и достаточные условия преобразования задачи к наилучшему аргументу и доказано, что таковым является длина дуги интегральной кривой задачи. Предложены алгоритмы непрерывного и дискретного продолжения по наилучшему аргументу. На численных примерах продемонстрировано преимущество предлагаемого подхода.

4) Разработан комплекс программных средств для численного решения соответствующих начальных задач, в котором реализованы разработанные в работе численные методы и выполнена визуализация результатов расчетов.

5) На основе методов и подходов, предложенных в работе, численно решена система уравнений, моделирующих процесс вибросверления. Решены системы уравнений, моделирующих линейную и нелинейную нестационарные электрические цепи. Погрешность, возникающая при решении данных задач с использованием предложенного в работе преобразования к наилучшему аргументу, получилась значительно мепыне, чем при решении этих задач без использования наилучшей параметризации.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Публикации в изданиях, рекомендованных ВАК

1) Дмитриев С.С., Кузнецов Е.Б. Численное решение систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом // Журнал вычислительной математики и математической физики. 2008. Т. 48. № 3. С. 430-444.

2) Дмитриев С.С., Кузнецов Е.Б. Оптимальная параметризация систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом // Вестник Московского авиационного института. 2008. Т. 15. № 2. С. 36-44.

Публикации в других изданиях

3) Дмитриев С.С., Кузнецов Е.Б. Исследование больших перемещений математического маятника // Материалы XII международного симпозиума "Динамические и технологические проблемы механики конструкций и сплошных сред". Тезисы докладов. М.: Изд-во МАИ, 2006. С. 124-126.

4) Кузнецов Е.Б., Дмитриев С.С. Параметризация решения задачи проектирования прямоточного реактора // Сборник тезисов докладов VIII Харитоновских научных чтений. Саров: Изд-во ИПК ФГУП РФЯЦ-ВНИИЭФ, 2006. С. 85-87.

5) Дмитриев С.С., Кузнецов Е.Б. Дискретное продолжение при решении систем дифференциально-алгебраических уравнений // Труды Средне-волжского математического общества. 2006, Т.8, № 1. С. 60-69.

6) Кузнецов Е.Б., Дмитриев С.С. Параметризация решения задачи проектирования прямоточного реактора // Сборник докладов VIII Харитонов-ских чтений по проблемам физики высоких плотностей энергии. Саров: Изд-во ИПК ФГУП РФЯЦ-ВНИИЭФ, 2006. С. 277-281.

7) Дмитриев С.С., Кузнецов Е.В. Реализация метода дискретного продолжения для систем дифференциально-алгебраических уравнений в системе MAPLE // "Новые информационные технологии". Тезисы докладов XIV Международной студенческой школы-семинара - М.: Изд-во МГИ-ЭМ, 2006. С. 110.

8) Дмитриев С.С., Кузнецов Е.Б. Перенос тепла и массы в пористом катализаторе. // Материалы VI международной конференции по неравновесным процессам в соплах и струях (NPNJ-2006). М.: Изд-во МГУ, 2006. С. 159-160.

9) Дмитриев С.С., Кузнецов Е.Б. Наилучшая параметризация при решении интегро-дифференциально-алгебраических уравнений с запаздывающим аргументом. // Материалы VII Международной научной школы-семинара "Импульсные процессы в механике сплошных сред". Николаев. 2007. С. 8-9.

10) Dmitriev S.S, Kuznetsov Е.В. Numerical Solution to Systems of Delay Integrodifferential Algebraic Equations. Proceedings of GLADE-2008 conference and workshop, Auckland, New Zealand. 14-25 July 2008. P. 17-18.

11) Дмитриев C.C., Кузнецов Е.В. Численное решение систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом, преобразованных к наилучшему аргументу. // Материалы XVI международной конференции по вычислительной механике и современным прикладным программным системам (ВМСППС'2009). М.: Изд-во МАИ-ПРИНТ, 2009. - С. 276-277.

12) Kuznetsov Е.В, Dmitriev S.S. Numerical solution of DAE's using method of continuation with respect to a parameter. Book of Abstracts of 12-th Seminar NUMDIFF on Numerical Solution of Differential and Differential-Algebraic Equations. Halle, Germany. September 14-18, 2009. P.52.

Подписано в печать:

10.11.2009

Заказ № 2979 Тираж -100 экз. Печать трафаретная. Объем: 1 усл.п.л. Типография «11-й ФОРМАТ» ИНН 7726330900 115230, Москва, Варшавское ш., 36 (499) 788-78-56

Оглавление автор диссертации — кандидата физико-математических наук Дмитриев, Станислав Сергеевич

Введение

1 Численные методы решения сингулярных систем

1.1 Обыкновенные дифференциальные уравнения.

1.2 Дифференциально-алгебраические уравнения.

2 Наилучшая параметризация при решении систем дифференциально-алгебраических уравнений

2.1 Две формы метода продолжения решения по параметру

2.2 Наилучший аргумент системы дифференциально-алгебраических уравнений.

2.3 Непрерывное продолжение по наилучшему аргументу

2.4 Дискретное продолжение7^ наилучшему аргументу.

2.5 Сходимость метода Ньютона.

2.6 О применении дискретного продолжения к решению краевой задачи для дифференциально-алгебраических уравнений

2.7 Результаты численного эксперимента

3 Метод продолжения по наилучшему аргументу при решении систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом

3.1 Постановка задачи.

3.2 Наилучший аргумент задачи.

3.3 Непрерывное продолжение по наилучшему аргументу

3.4 Дискретное продолжение по наилучшему аргументу.

3.5 Результаты численного эксперимента.

4 Численное решение прикладных задач

4.1 Уравнения, описывающие движение математического маятника

4.2 Система уравнений, описывающая процесс вибросверления

4.3 Исследование нестационарных электрических цепей.

Введение 2009 год, диссертация по информатике, вычислительной технике и управлению, Дмитриев, Станислав Сергеевич

Изучение многих процессов, происходящих в природных и технических системах, сводится к анализу свойств их математических моделей, что приводит к необходимости исследования систем обыкновенных дифференциальных уравнений (ОДУ). Часто в приложениях встречаются системы ОДУ, у которых матрица при производной является вырожденной. Такие системы называются системами сингулярных дифференциальных уравнений или дифференциально-алгебраических уравнений (ДАУ). К решению систем ДАУ приводят многие из задач механики, кинетики химических реакций, теории управления, электрических цепей (см., например, [14, 40, 41, 42, 44]).

В случае, если процесс обладает последействием, математическая модель также может включать в себя запаздывание и интегральные уравнения. В этом случае мы получаем систему взаимосвязанных дифференциальных, алгебраических уравнений и интегро-дифференциальных уравнений типа Вольтерра.

Подобные задачи возникают, например, при исследовании электрических цепей. В работе [70] электрические цепи моделируются при помощи систем, состоящих из взаимосвязанных интегро-дифференциальных уравнений с запаздывающим аргументом и интегральных уравнений с запаздывающим аргументом, названных автором системами интегрально-дифференциально-алгебраических уравнений. В работах [41, 42] нестационарные электрические и гидравлические цепи описываются системами интегро-дифференциальных уравнений с вырожденной матрицей при производной.

В работе [80] процесс каталитического горения описывается при помощи системы взаимосвязанных дифференциальных, алгебраических уравнений, а также интегральных уравнений Фредгольма.

Подобные задачи возникают также и в механике. В работе [14] процесс вибросверления описывается при помощи системы ДАУ с запаздывающим аргументом.

Диссертационная работа посвящена разработке численных методов решения систем дифференциально-алгебраических уравнений, а также систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом с использованием метода продолжения по наилучшему аргументу.

Система дифференциально-алгебраических уравнений представляется двумя группами функций у{Ь) и х(^), связанных системой дифференциальных и недифференциальных соотношений

В литературе для систем вида (1) использовались различные термины: вырожденные системы обыкновенных дифференциальных уравнений, неявные системы дифференциальных уравнений, сингулярные системы дифференциальных уравнений, системы ОДУ, не разрешенные относительно производной. К настоящему времени устоялся термин

1) у : К1 —> Мп, х : Ж1 —>• Мт, * Е М1 / : Еп+т+1 —► Кп, <2 : Шп+т+1 —> Ет. Начальные условия имеют вид

У(0) = Уо, ж(0) = х0.

2) дифференциально-алгебраические уравнения", которого мы будем придерживаться в дальнейшем.

Задачи вида (1), (2) сочитают в себе как трудности решения обыкновенных дифференциальных уравнений, так и трудности решения систем нелинейных алгебраических или трансцендентных уравнений. Здесь начальные условия должны быть согласованы, т.е. в начальной точке (уо, Xq, to) должно выполняться равенство

G(y0, xq, t0) = 0.

Сложность решения таких систем определяется так называемым дифференциальным индексом системы, т.е. наименьшим числом аналитических дифференцирований, необходимых для того, чтобы посредством алгебраических преобразований записать систему (1) в нормальной форме Коши [66, 67, 44].

Численное решение начальной задачи (1), (2) впервые, по-видимому, исследовалось в работе 1971 года (Gear C.W.) [65]. В данной работе рассматривалось решение системы разрешенных относительно производных уравнений, описывающих процессы, протекающие в электрических цепях. Для дискретизации данной системы использовались формулы дифференцирования назад (ФДН). Система нелинейных уравнений, возникающая на каждом шаге процедуры интегрирования, решалась при помощи метода Ньютона.

Первый результат по сходимости для методов ФДН был получен в 1985 году (P. Lotstedt) [74]. Доказано, что для систем индекса 1 ФДН-метод сходится с тем-же порядком, что и для ОДУ.

В работах [55, 75] получены результаты о сходимости схем, основанных на ФДН для систем индекса 2. Доказано, что /с-шаговая ФДН-схема при к < 6 сходится с порядком р — к, если погрешность стартовых значений имеет порядок 0{hv+l). В работе [67] доказательство сходимости схем, основанных на ФДН дано для случая переменной длины шага.

Многошаговые методы, отличные от ФДН, также представлены в литературе, посвященной численному решению ДАУ. Так, в работе [81] предложен метод, согласно которому система (1) разделяется на жесткую систе- -му, которая включает в себя алгебраические уравнения и нежесткую подсистему. Нежесткая подсистема решается классическим явным методом Рунге-Кутты 4 порядка, тогда как жесткая (алгебраическая) подсистема решается при помощи трехшагового метода ФДН. Достоинством данного подхода является возможность решения части системы явным методом. Недостатком же является то, что эффективность и устойчивость данного метода зависит от самой возможности такого разделения и от того, как оно было выполнено.

В работах R. Marz [76] рассмотрен частный случай системы (1): применялись многошаговые методы.

Исследование сходимости общих многошаговых методов проведено в работе [68].

Однако, как отмечается в монографии [54], среди многошаговых методов наилучшие результаты при решении прикладных задач показывают методы, основанные на ФДН. Причиной этому являются хорошие свойства устойчивости и точности данных методов.

Первые результаты о сходимости неявных методов Рунге-Кутты были получены в работах [62, 68] для ДАУ индеска 1. При помощи теоремы о неявной функции доказано, что если метод является жестко точным, то порядок метода будет таким-же, как и для ОДУ.

Для методов Рунге-Кутты, не являющимися жестко точными, чьи решения обычно не удовлетворяют уравнениям связи (недифференциальным где / : Ж2тг+1 —> Mn, C(t) - матрица п х п. Для решения таких задачсоотношениям), в работе [59] предложен следующий подход: решение ищется из системы нелинейных уравнений тогда как уи+х вычисляется при помощи неявного метода Рунге-Кутты. При таком подходе метод имеет такой-же порядок, как и для ОДУ. Недостатком является увеличение размерности нелинейной системы.

В [56] аналогичные исследования были проведены для ДАУ высших индексов. Были получены оценки погрешности для х и у-компоненты. В работе [69] данные результаты были улучшены (использовался другой подход - локальная и глобальная погрешности исследовались отдельно).

В работах [53, 69] для систем индекса 2 предложен полуявный метод Рунге-Кутты, основная идея которого заключается в том, чтобы дискре-тизировать дифференциальную переменную у явным образом, а алгебраическую переменную х - неявным. При таком подходе возможна более эффективная реализация, чем при дискретизации с помощью неявных методов, поскольку размерность нелинейной системы получается меньше. Такие методы очень эффективны, в частности, для механических систем со связями при их формулировке в виде задач индекса 2.

Серия работ Г.Ю. Куликова (см., например [33, 34]) посвящена рассмотрению весьма частного случая систем ДАУ индекса 1 вида

Для таких систем предложена серия комбинированных методов, построенных на основе неявных методов Рунге-Кутты с использованием для решения системы нелинейных уравнений итерационных методов, таких как метод простой итерации, метод Ньютона и модифицированный метод Ньютона. Для этих комбинированных методов доказаны теоремы сходимости

Ук+Ъ хк+1, Ь+г) = 1(у,х), у(0) = уо, х^) = д(у,х), х{0) = х0. и получены оценки полной погрешности, которая складывается из погрешности дискретизации и погрешности метода Ньютона.

В работе [11] был предложен метод параметризации задач оптимального управления, который позднее (см., например, [13, 36]) был применен для решения задач вида (1), (2). Согласно данному методу приближенное решение представляется в виде сплайна с подвижными узлами, параметры которого определяются из условия минимизации невязки сингулярной части системы (1). Такой сплайн назван вариационным.

Большое число работ посвящено исследованию линейных систем ДАУ, имеющих вид

A(t)x(t) + B(t)x(t) = f(t), х(0) = Xq, где det A{t) = 0.

В работе Ю.Е. Бояринцева [4] для систем вида (3) с постоянными матрицами А и В предложен метод возмущения, который состоит в переходе от исходной системы с вырожденной матрицей при производной к нахождению решения системы ОДУ с матрицей невырожденной, но близкой к исходной. Данные алгоритмы предложены для случая регулярного пучка матриц Л А + В. Дальнейшее развитие методы возмущения получили в работах [45, 68]. В работе [6] предложен алгоритм возмущения, который применим и для систем с сингулярным пучком матриц XA(t) + В(t). В данной работе система (3) сначала записывается в интегральной форме, затем системе интегральных уравнений сопоставляется возмущенная система, после чего полученное равенство дифференцируется и вновь получается задача Коши для системы ОДУ, но уже с невырожденной матрицей при производной.

В работах М.В. Булатова и В.Ф. Чистякова [8, 9] предлагается понижать индекс систем вида (3) при помощи левого регуляризирующего оператора, определенного через полуобратные матрицы. В результате применения данного метода, основаного на достаточно сложной алгебраической теории и итерационном построении полуобратных матриц получается система, которая может быть решена каким-либо явным методом решения систем ОДУ.

В.К. Горбуновым в работе [12] для решения систем вида (3) предложен метод нормальной сплайн-коллокации, который заключается в переходе от системы дифференциальных уравнений к конечной системе дифференциальных соотношений в узлах коллокационной сетки и в определении элемента, удовлетворяющего этим соотношениям и начальным условиям и имеющего минимальную норму гильберто-соболевского пространства!^^.

На сегодняшний день численному решению систем вида (1), (2) посвящено очень большое количество работ. Достаточно полно современное состояние проблемы отражено в монографиях Э.Хайрера и Г. Ваннера [44], Ю.Е. Бояринцева [5], В.И. Шалашилина и Е.Б. Кузнецова [49], докторских диссертациях М.В. Булатова [8], Г.Ю. Куликова [35] и В.Ф. Чистякова [46], а также в работах [1, 13, 54].

Необходимо отметить, что решение ДАУ является более сложной задачей по сравнению с решением ОДУ. В [54, 65] отмечаются следующие трудности:

• начальные условия должны быть согласованы с недифференциальными соотношениями;

• система уравнений плохо обусловлена для мелких шагов интегрирования;

• ошибка метода чувствительна к несогласованности в начальных условиях и к резкому изменению решения;

• численное решение в большей степени зависит от точности аппроксимации, чем для ОДУ

Несмотря на большое число работ, посвященных численному решению систем ДАУ, трудности их численного решения, перечисленные выше, актуальны и на сегодняшний день. В работе [30] решение систем вида (1), (2) рассмотрено с позиции метода продолжения по наилучшему аргументу, которым является длина дуги интегральной кривой и предложен подход, названный непрерывным продолжением. Данный подход, основанный на дифференцировании недифференциальных соотношений и введении наилучшего аргумента, позволяет ослабить отмеченные трудности. Так, система уравнений продолжения, решаемая на каждом шаге процедуры интегрирования, получается наилучшим образом обусловленной, а в силу выбора аргумента, ошибка становится менее чувствительной к резкому изменению решения. Недостатком указанного подхода является необходимость дифференцирования недифференциальных соотношений, т.е. система ДАУ сначала сводится к системе ОДУ и лишь затем преобразуется к наилучшему аргументу.

В данной работе система (1), (2) решается при помощи метода дискретного продолжения [73], в котором уравнения продолжения получаются без дифференцирования недифференциальных соотношений. Таким образом, метод может применяться непосредственно к ДАУ высших индексов.

Перейдем к рассмотрению интегродифференциально-алгебраических уравнений с запаздывающим аргументом, которые представляют собой систему взаимосвязанных дифференциальных, нелинейных алгебраических и интегро-дифференциальных уравнений с запаздывающим аргументом (У) У: Ут) Ут) X, Хт, ХТ) ¿г; = 0) 0(у,ут,х,хт,г,2т,1) = 0,

4)

0 / г = 1, к. у : M Rn, X : R M™, z : R Rfc, t <E M, jg)4n+3m+3&+l ^ j^n q . jg>2(n+m+fc)+l ^ jgmz q . ]g>37i+3m+4&+l > -jj^fc

Здесь индекс г > 0 определяет запаздывание аргумента функции, т.е. 2/тСО = - т), £r(£) = x(t - г), zT(£) = z(t - г).

Начальные условия для системы (4) имеют вид y(t) = y(t), № = Ш x(t) = x(t), ±(t) = x(t), t G [¿о - T, to), [z(t) = z(t), = y(tо) = y(tо) = 2/0, z(i0) = = х0, z(t0) = z(t0) = z0.

Начальные условия должны быть согласованными, т.е. должно выполняться равенство

G(y(to),yT(to),x(to),xT(t o),z(tQ),zT(t0),t0) = 0.

В отличие от задачи (1), (2), численному решению которой посвящено множество работ, численное решение систем вида (4), (5) практически не изучено.

В работе [71] система, названная авторами системой интегрально-дифференциально-алгебраических уравнений, состоящая из интегро-дифференциальных уравнений и интегральных уравнений, решается при помощи метода "waveform relaxation", основанного на расщеплении нели-нейностей и методе Ньютона, а также при помощи многошаговых методов.

В работе [80] для системы, состоящей из дифференциальных, алгебраических уравнений и уравнений Фредгольма, предложен метод сведения такой системы к системе ДАУ.

При отсутствии интеграла, система (4), (5) представляет собой систему ДАУ с запаздывающим аргументом. Количество работ, посвященным таким системам, также невелико. В работе [37] для линейных дифференциально-алгебраических систем управления с запаздыванием, доказана экспоненциальная оценка роста решений. В работе [32] решение систем ДАУ с запаздывающим аргументом исследовано с позиции метода продолжения решения по наилучшему аргументу и доказано, что таковым является длина дуги интегральной кривой задачи.

Некоторое количество работ посвящено рассмотрению так называемых вырожденных интегро-дифференциальных уравнений (ИДУ), имеющих вид где йеЬ А(€) = 0.

В работе [7] выделен класс систем вида (6), которые имеют единственное непрерывное решение. Для таких задач предложен численный метод решения, основанный на неявном методе Эйлера и квадратурной формуле левых прямоугольников.

В работе [47] для решения задачи (6) предложена следующая явно-неявная разностная схема: для дискретизации части системы, не содержащей интеграла, применяется формула дифференцирования назад, а для аппроксимации интегрального члена применяется квадратурная формула Адамса. Такой подход позволяет избежать решения на каждом шаге системы нелинейных уравнений.

Следует отметить, что все трудности, присущие численному решению систем вида (1), (2), перечисленные выше, остаются справедливы и для систем вида (4), (5). Кроме того, добавляются трудности, связанные с наличием запаздывания и интеграла. Для преодоления этих трудностей в данной работе предлагается метод продолжения по наилучшему аргументу, которым является длина дуги интегральной кривой задачи.

Диссертация состоит из 4 глав. В первой главе приводится обзор основных методов решения систем ДАУ и вырожденных интегро-дифференциальных уравнений. Вторая глава посвящена численному реб) о ж(0) = х0, шению систем ДАУ при помощи метода продолжения по наилучшему аргументу. Излагаются общие идеи метода и алгоритм, названный непрерывным продолжением [30], основанный на дифференцировании недифференциальных соотношений. Предлагается метод, названный дискретным продолжением [27], в котором уравнения продолжения получаются без дифференцирования недифференциальных соотношений. Получена оценка погрешности решения системы нелинейных уравнений, решаемой на каждом шаге процедуры интегрирования. Эффективность метода дискретного продолжения демонстрируется на тестовых примерах. В третьей главе рассматривается численное решение систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом. Доказано, что для того, чтобы преобразовать такую систему к наилучшему аргументу, необходимо и достаточно выбрать в качестве такового длину дуги интегральной кривой. Предложены методы непрерывного и дискретного продолжения для таких систем. Эффективность предложенного преобразования демонстрируется на ряде тестовых примеров. Глава 4 посвящена численным результатам решения прикладных задач. Рассмотрено численное решение уравнений модели процесса вибросверления, а также численное решение систем уравнений, моделирующих линейную и нелинейную нестационарные электрические цепи. Продемонстрированы преимущества предложенного преобразования, а также произведено сравнение эффективности методов непрерывного и дискретного продолжения.

Результаты, излагаемые в диссертации, докладывались и обсуждались на ряде научных семинаров и международных конференций, в том числе:

• XII международный симпозиум "Динамические и технологические проблемы механики конструкций и сплошных сред" (13-17 февраля 2006 г., Ярополец).

• VIII Харитоновские чтения по проблемам физики высоких плотностей энергии (21-24 марта 2006 г., Саров).

VII Международная научная конференция "Дифференциальные уравнения и их приложения" (17-19 мая 2006 г., Саранск).

VI Международная конференция по неравновесным процессам в соплах и струях NPNJ-2006 (26 июня - 1 июля 2006 г., Санкт-Петербург).

General Linear methods and Differential Equations 2008 (GLADE'08) (Auckland, New Zealand, 14-25 July 2008).

XVI международная конференция по вычислительной механике и современным прикладным программным системам ВМСППС'2009. (2531 мая 2009 г., Алушта).

12th Seminar NUMDIFF on Numerical Solution of Differential and Differential-Algebraic Equations (Halle, Germany, 14-18 September 2009).

XX крымская осенняя математическая школа-симпозиум "Спектральные и эволюционные задачи" (18-29 сентября 2009 г., Севастополь, Украина).

Совместный семинар кафедр теоретической механики и дифференциальных уравнений Московского авиационного института (г. Москва, 2009 г.).

Заключение диссертация на тему "Численное решение интегродифференциально-алгебраических уравнений с запаздывающим аргументом, моделирующих некоторые прикладные задачи"

Заключение

• На основе метода дискретного продолжения по наилучшему аргументу предложен подход для численного решения систем дифференциально-алгебраических уравнений. Преимущество предлагаемого подхода продемонстрировано на тестовых примерах.

• Получена оценка погрешности метода Ньютона при решении системы нелинейных уравнений после преобразования задачи к наилучшему аргументу.

• Разработан численный метод решения задачи Коши для системы интегродифференциально-алгебраических уравнений с запаздывающим аргументом преобразованной к наилучшему аргументу. Получены необходимые и достаточные условия преобразования задачи к наилучшему аргументу и доказано, что таковым является длина дуги интегральной кривой задачи. Предложены алгоритмы непрерывного и дискретного продолжения по наилучшему аргументу. На численных примерах продемонстрировано преимущество предлагаемого подхода.

• Разработан комплекс программных средств для численного решения соответствующих начальных задач, в котором реализованы разработанные в работе численные методы и выполнена визуализация результатов расчетов.

• На основе методов и подходов, предложенных в работе, численно решена система уравнений моделирующих процесс вибросверления, а также рассмотрено решение систем уравнений, моделирующих линейную и нелинейную нестационарные электрические цепи.

Библиография Дмитриев, Станислав Сергеевич, диссертация по теме Математическое моделирование, численные методы и комплексы программ

1. Балакина Е.А., Кузнецов Е.Б. Решение систем дифференциально-алгебраических уравнений высоких индексов. //Ж. вычисл. матем. и матем. физ. 2000. № 2. Т. 40. С.199-206.

2. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: БИНОМ. Лаборатория знаний, 2008.

3. Белов И.И. Задача Коши для линейных нагруженных интегро-дифференциальных уравнений типа Вольтерра с вырожденной матрицей при производной // Краевые задачи: Сб. научн. тр. Иркутск: Иркутский гос. универститет, 1997. - С. 99-102.

4. Бояринцев Ю.Е. Регулярные и сингулярные системы линейных обыкновенных дифференциальных уравнений. Новосибирск: Наука, 1980. 222 с.

5. Бояринцев Ю.Е. Методы решения непрерывных и дискретных задач для сингулярных систем уравнений. Новосибирск: Наука, 1996. 262 с.

6. Булатов М.В. Метод возмущения дифференциально-алгебраических систем // Изв. вузов. Математика. 1997. № 11. С. 3-9.

7. Булатов М.В. Об интегро-дифференциальных системах с вырожденной матрицей перед производной. // Дифференциальные уравнения. 2002. Т. 38. № 5. С.692-697.

8. Булатов M.B. Методы решения дифференциально-алгебраических и вырожденных интегральных систем. Дисс. .докт. физ-мат. наук. Иркутск, 2002. - 244 с.

9. Булатов М.В., Чистяков. В.Ф. Об одном численном методе решения дифференциально-алгебраических уравнений. //Ж. вычисл. матем. и матем. физ. 2002. Т. 42. № 4. С. 459-470.

10. Влах И. Машинные методы анализа и проектирования электронных схем. //И. Влах, К Сингхал.-М.:Радио и связь, 1988.-560с.

11. Горбунов В.К. Метод параметризации задач оптимального управления. // Ж. вычисл. матем. и матем. физ. 1979. Т. 19. № 2. с.292-303.

12. Горбунов В.К., Петрищев В.В. Метод нормальных сплайнов в вырожденных системах дифференциальных уравнений // Уч.- зап. Ул-ГУ. Сер. "Фундаментальные пробл. матем. и механ." Вып. 3. Ульяновск, 1997. С.125-132.

13. Горбунов В.К., Лутошкин И.В., Мартыненко Ю.В. Метод параметризации для сингулярных обыкновенных дифференциальных уравнений. // Труды Средневолжского математического общества. 2006, Т.8, № 1. С. 36-50.

14. Гуськов А.М., Воронов С.А., Квашнин A.C. Влияние крутильных колебаний на процесс вибросверления. Вестник МГТУ им Н.Э. Баумана. Серия Машиностроение. № 1, Москва, 2007. - с. 3-19.

15. Давиденко Д.Ф. Об одном новом методе численного решения систем нелинейных уравнений // ДАН СССР. 1953. Т. 88. No 4. С. 601-602.

16. Давиденко Д.Ф. О приближенном решении систем нелинейных уравнений // Укр. мат. журн. 1953. Т. 5. No 2. С. 196-206.

17. Дмитриев С.С., Кузнецов Е.Б. Дискретное продолжение при решении систем дифференциально-алгебраических уравнений // Труды Сред-неволжского математического общества. 2006, Т.8, № 1. С. 60-69.

18. Дмитриев С.С., Кузнецов Е.Б. Перенос тепла и массы в пористом катализаторе. // Материалы VI международной конференции по неравновесным процессам в соплах и струях (NPNJ-2006). М.: Изд-во МГУ, 2006. С. 159-160.

19. Дмитриев С.С., Кузнецов Е.Б. Численное решение систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом // Журнал вычислительной математики и математической физики. 2008. Т. 48. № 3. С. 430-444.

20. Дмитриев С.С., Кузнецов Е.Б. Оптимальная параметризация систем интегродифференциально-алгебраических уравнений с запаздывающим аргументом // Вестник Московского авиационного института. 2008. Т. 15. № 2. С. 36-44.

21. Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайн-функций. М.: Наука. 1980.

22. Каменский Г.А. Общая теория уравнений с отклоняющимся аргументом // ДАН СССР. 1958. Т.120. N0 4. С.697 700.

23. Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: Наука. 1984. 752 с.

24. Кузнецов Е.Б. Наилучшая параметризация при построении кривой итерационным методом // Докл. РАН. 2004. Т. 396. № 6. С. 746-748.

25. Кузнецов Е.Б., Дмитриев С.С. Параметризация решения задачи проектирования прямоточного реактора // Сборник докладов VIII Харитоновых чтений. Саров: Изд-во ИПК ФГУП РФЯЦ-ВНИИЭФ, 2006. С. 277-281.

26. Кузнецов Е.В., Шалашилин В.И. Задача Коши как задача продолжения по наилучшему параметру // Дифференц. уравнения. 1994. Т. 30. № 6. С. 964-971.

27. Кузнецов Е.Б., Шалашилин В.И. Решение дифференциально-алгебраических уравнений с выбором наилучшего аргумента // Ж. вычисл. матем. и матем. физ. 1997. Т. 37. № 6. С. 711-722.

28. Кузнецов Е.Б., Шалашилин В.И. Решение сингулярных уравнений, преобразованных к наилучшему аргументу // Изв. вузов. Математика. 1998. № 11. С. 56-63.

29. Кузнецов Е.Б., Микрюков В.Н. Численное интегрирование системы дифференциально-алгебраических уравнений с запаздывающим аргументом // Ж. выч. математ. и матем. физ. 2007. Т.47. № 1. С.83-95.

30. Куликов Г.Ю. Об использовании итерационных методов Ньютоновского типа для решения систем дифференциально-алгебраических уравнений индекса 1. // Ж. вычисл. матем. и матем. физ. 2001. Т. 41. № 8. С.1180-1189.

31. Куликов Г.Ю. Теоремы сходимости для итеративных методов Рунге-Кутты с постоянным шагом интегрирования // Ж. вычисл. матем. и матем. физ. 1996. Т. 36. № 8. С.73-89.

32. Куликов Г.Ю. Численные методы с контролем глобальной ошибки для дифференциальных и дифференциально-алгебраических уравнений индекса 1. Дисс. . д.ф.-м.н. Ульяновск, 2002.

33. Мартыненко Ю.В. Метод вариационных сплайнов для сингулярных дифференциальных уравнений. Дисс. . к.ф.-м.н. Ульяновск, 2008.

34. Марченко В.Н., Поддубная О.Н. Линейные стационарные дифференциально-алгебраические системы. / / Известия РАН. Теория и системы управления. 2006. № 4. С. 15-18.

35. Ортега Дж., Пул У. Введение в численные методы решения дифференциальных уравнений. М.: Наука, 1986.

36. Ортега Дж., Рейнболдт В. Итерационные методы решения нелинейных систем уравнений со многими неизвестными. М.: Мир, 1975.

37. Сенди К. Современные методы анализа электрических цепей. М., 1971.

38. Серов Е.П., Корольков Б.П. Динамика парогенераторов М.: Энерго-издат, 1981. - 408 с.

39. Ушаков Е.И. Статическая устойчивость электрических систем Новосибирск: Наука, 1988. - 273 с.

40. Хайрер Э., Нёрсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи. М. Мир, 1990. - 512 с.

41. Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. -М. Мир, 1999. 685 с.

42. Чистяков В.Ф. Алгебро-дифференциальные операторы с конечномерным ядром. Новосибирск: Наука, 1996. 278 с.

43. Чистяков В.Ф. Системы интегро-дифференциальных уравнений с тождественно вырожденной главной частью. Дисс. . д.ф.-м.н. Иркутск, 2002.

44. Чистякова Е.В. Методы исследования и решения вырожденных интегро-дифференциальных уравнений и их приложения. Дисс. . к.ф.-м.н. Иркутск, 2007.

45. Шалашилин В.И., Кузнецов Е.В. Наилучший параметр продолжения решения // Докл. РАН. 1994. Т. 334. № 5 С. 566-568

46. Шалашилин В.И., Кузнецов Е.Б. Метод продолжения решения по параметру и наилучшая параметризация в прикладной математике и механике.-Эдиториал УРСС, Москва, 1999.

47. На Ц. Вычислительные методы решения прикладных граничных задач. М.: Мир, 1982.

48. Эльсгольц Л.Э., Норкин C.B. Введение в теорию дифференциальных уравнений с отклоняющимся аргументом. М.: Наука, 1971.

49. Ascher U.M., Petzold L.R. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM. Philadelphia. 1998. 314 p.

50. Brasey V., Hairer E. Half-explicit Runge-Kutta methods for Dierential-Algebraic Systems of index 2. SIAM J. Numer. Anal. 1993. V. 30. Pp.538552.

51. Brenan K.E., Campbell S.L., Petzold L.R. Numerical Solution of initial-value problems in differential-algebraic equations.-N.Y., Amsterdam, London: North-Holland, 1989. 210 p.

52. Brenan K.E., Engquist B.E. Backward differentiation approximations of nonlinear differential/algebraic systems, Math. Comp. 1988. V. 51 Pp.659676.

53. Brenan K.E., Petzold L.R. The numerical solution of higher index differential algebraic equations by implicit Runge-Kutta methods. SIAM J. Numer. Anal. 1989. V. 26. Pp.976-996.

54. Butcher J.C. On Runge-Kutta processes of high order //J. Austral. Math. Soc. V. IV. Part 2. 1964. Pp.179-194.

55. Butcher J.C. Numerical methods for ordinary differential equations. John Wiley. Chichester. 2008. 463p.

56. Cameron I.T. Solution of differential-algebraic systems using diagonally implicit Runge-Kutta methods. IMA J. Numer. Anal. V. 3. 1983. P.273-289.

57. Campbell S.L. Singular system of differential equations. San-Francisco: Pitman, 1982. - 234 p.

58. Campbell S.L. Non-BDF methods for the solution of linear time varying implicit differential equations // Proc. Amer. Contr. Conf. San Diego, Calif. 5-6 June. 1984. - V.3. - P.1315 - 1318.

59. Deuflhard P., Hairer E., Zugck J. One step and extrapolation methods for differential-algebraic systems // Numer. Math. 1987. V.51. Pp.501-516.

60. Dmitriev S.S, Kuznetsov E.B. Numerical Solution to Systems of Delay Integrodifferential Algebraic Equations. Proceedings of GLADE-2008 conference and workshop, Auckland, New Zealand. 14-25 July 2008. P. 1718.

61. Feldstein A., Neves K.W. High order methods for state dependent delay differential equations with nonsmooth solutions // SIAM J. Numer. Analys. 1984. V.21. P.844-863.

62. Gear C.W. Simultaneius numerical solution of differential-algebraic equations // IEEE Trans. Circuit Theory. 1971. - CT. 18.- № 1. - Pp. 8995.

63. Gear C.W., Petzold L.R. ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal. 1984. V. 21. Pp.716728.

64. Gear C.W., Gupta G.K., Leimkuhler B. Automatic integration of Euler-Lagrange equations with constraints. J. Comp. Appl. Math. 1985. V. 12&13. Pp.77-90.

65. Griepentrog E., Marz R. Differential-algebraic equations and their numerical treatment. Leipzig: Teubner, 1986. 220 p.

66. Hairer E., Libich C., Roche M. The numerical solution of differential-algebraic systems by Runge-Kutta methods. Berlin etc.: Springer, 1989.

67. TO. Jiang Y.L. Mathematical Modelling on RLCG Transmission Lines // Nonlinear Analysis: Modelling and Control, 2005, Vol. 10, No. 2, P. 137-149.

68. Jiang Y.L. Waveform relaxation methods of nonlinear integral-differential-algebraic equations // J.Comp.Math, Vol.23, No.l, 2005, 49-66.

69. Lahaye M.E. Une metode de resolution d'une catégorie d'équations transcendentes // Compter Rendus hebdomataires des seances de L' Academie des sciences. 1934. V. 198. No 21. P. 1840-1842.

70. Lahaye M.E. Solution of system of transcendental equations // Acad. Roy. Belg. Bull. CI. Sci. 1948. V. 5. P. 805-822.

71. Lotstedt P. Discretization of singular perturbation problems by BDF methods. Report № 99. Uppsala Univ., Dep. of Comp. Sci.

72. Lotstedt P., Petzold L. R. Numerical solution of nonlinear differential equations with algebraic constraints I: Convergence results for backward differentiation formulas. Math. Comput. 1986. V. 46: Pp.491-516.

73. Marz R. Multistep methods for initial value problems in implicit differential-algebraic equations // Beitrage zur Num. Mathem. 1984. № 12. Pp. 107-123.

74. Na T.Y., Habib I.S. Noniterative solution of a boundary value problem in reactor design by parameter differentiation // Chem. Eng. Sci. 1974. v.29. p.1669-1670.

75. Petzold L. Order results for implicit Runge-Kutta methods applied to differential/algebraic systems. // SIAM J. Numer. Anal. 1986. V. 23. Pp.837-852.

76. Potra F.A., Rheinboldt W.C. Differential-geometric techniques for solving differential algebraic equations. In E.J. Haug & R.C. Deyo, eds, Real-Time1.tegration of Mechanical System Simulation, Springer-Verlag, Berlin. Pp. 155-191.

77. Ren Y. Approximation method for differential-algebraic-integral system arising in catalytic combustion model with radiant heat exchange // Numerical Heat Transfer Part B: Fundamentals. 1999. V. 36. № 1. pp. 83-93

78. Soderlind G., DASP3 A program for the numerical integration of partitioned stiff ODE's and differential-algebraic systems. Technical Report TRITA-NA-8008. Dept. of Numerical Analysis and Computing Science, Royal Institute of Technology. Sweden. 1980.