автореферат диссертации по транспортному, горному и строительному машиностроению, 05.05.06, диссертация на тему:Влияние ударных и технологических нагрузок на работу вибропитателей-грохотов с самосинхронизирующимся виброприводом

кандидата технических наук
Привалов, Алексей Игоревич
город
Екатеринбург
год
2008
специальность ВАК РФ
05.05.06
Диссертация по транспортному, горному и строительному машиностроению на тему «Влияние ударных и технологических нагрузок на работу вибропитателей-грохотов с самосинхронизирующимся виброприводом»

Автореферат диссертации по теме "Влияние ударных и технологических нагрузок на работу вибропитателей-грохотов с самосинхронизирующимся виброприводом"

На правах рукописи

003457Э85

ПРИВАЛОВ АЛЕКСЕЙ ИГОРЕВИЧ

ВЛИЯНИЕ УДАРНЫХ И ТЕХНОЛОГ ИЧЕСКИХ НАГРУЗОК

НА РАБОТУ ВИБРОПИТАТЕЛЕЙ-ГРОХОТОВ С САМОСИНХРОНИЗИРУЮЩИМСЯ ВИБРОПРИВОДОМ

специальность 05.05.06 - «Горные машины»

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

1 5 Ш 2003

Екатеринбург - 2008

003457985

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Уральский государственный горный университет»

Научный руководитель - доктор технических наук

Мальцев Виктор Алексеевич

Официальные оппоненты: доктор технических паук, доцент

Ляпцев Сергей Андреевич; кандидат технических наук, доцент Косолапов Анатолий Николаевич

Ведущая организация - ОАО «Уралгипроруда»

Защита состоится « ЗО

» qszk.cl^}-isl 2008 г. в 13 часов на заседании диссертационного совета Д 212.280.03 при ГОУ ВПО «Уральский государственный горный университет» в зале заседаний ученого совета по адресу:

620144, г. Екатеринбург, ул. Куйбышева, 30.

С диссертацией можно ознакомиться в научной библиотеке ГОУ ВПО «Уральский государственный горный университет».

Автореферат разослан «££» н-0-я-с>р.Д-' 2008 г.

Ученый секретарь диссертационного совета

Хазин M.JI.

Общая характеристика работы

Актуальность темы. Рост глубины разработки месторождений предопределили применение в карьерах комбинированных видов транспорта. Эксплуатация показала, что повышение эффективности комбинированного транспорта связано с введением перегрузочных систем с гибкими свойствами, построенных на основе модульных принципов. Обзор опыта проектирования вибротранспортных машин (ВТМ) как отечественного, так и зарубежного производства показывает, что в настоящее время такие машины оснащаются самобалансным либо комбинированным приводом, так как механический перенос освоенной теории ВТМ при проектировании машин с самосинхронизирующимся приводом (ССП) не всегда обеспечивает требуемый результат. В то же время исследованиями установлено, что использование ССП позволяет получить дополнительные преимущества за счет адаптации машины к изменению технологической нагрузки.

Данная работа направлена на исследование работы сверхтяжелых ВТМ с ССП, работающих в составе перегрузочных систем (ПС) в условиях сложного технологического и ударного нагружения. Актуальность работы определена отсутствием в конструкторских организациях отработанной методики расчета и выбора параметров ВТМ, оснащенных ССП. В настоящее время не до конца изучен вопрос о влиянии технологической нагрузки на характер движения рабочего органа (РО), скорость транспортирования горной массы (ГМ) и производительность ВТМ с ССП.

Объектом исследований являются сверхтяжелые ВТМ, оборудованные ССП и работающие в условиях ПС при комбинированном транспорте карьеров.

Предмет исследования - длительность послеударных переходных процессов и влияние адаптационных свойств ССП на скорость вибротранспортирования ГМ.

Идея работы заключается в том, что повышение эксплуатационных параметров сверхтяжелых вибропитателей-грохотов, работающих в условиях карь-

ерных перегрузочных пунктов, возможно за счет учета адаптивных свойств вибропривода и сокращения длительности послеударных переходных процессов.

Целью работы является выявление условий повышения производительности сверхтяжелых ВТМ.

Методы исследования: анализ и синтез, математическое моделирование, экспериментальные исследования на физической модели ВТМ, основанные на стандартных методах измерений с использованием измерительной аппаратуры, математическая статистика.

Научные положения, выносимые на защиту:

1. Длительность послеударных переходных процессов у машин с самосинхронизирующимся приводом на 40 — 60 % меньше, чем у машин с самобалансным приводом.

2. Наибольшее влияние на скорость вибротранспортирования горной массы у машин с самосинхронизирующимся приводом оказывает величина изменения угла вибрации при воздействии технологической нагрузки, в отличие от самобалансных машин, где наибольшее влияние оказывают переходные процессы, вызванные угловыми колебаниями рабочего органа.

3. Расчет скорости вибротранспортирования горной массы необходимо проводить с учетом влияния величины технологической нагрузки, воздействующей на рабочий орган машины.

Научная ценность работы заключается в выявлении факторов, оказывающих наибольшее влияние на скорость вибротранспортирования ГМ у ВТМ с ССП.

Практическая ценность диссертации заключается в усовершенствовании методики проектирования и выбора параметров, сверхтяжелых вибропитателей-грохотов, оборудованных ССП.

Достоверность научных положений, выводов и рекомендаций диссертации обусловлена использованием фундаментальных положений динамики машин, теории колебаний и удара, математическим моделированием вибропро-

цессов, использованием апробированных методов исследований и решений. Достоверность результатов подтверждается экспериментальными исследованиями, объемом измерений, обеспечивающим с вероятностью не менее 0,95 относительную погрешность не более 6 %, сходимостью теоретических и экспериментальных исследований с погрешностью не более 9-19 %.

Реализация работы. Полученные результаты использованы ЗАО «Урал-механобр-инжиниринг» при выполнении рабочего проекта по сушке концентрата с производительностью 1 млн. тонн в год на Качканарском ГОКе.

Апробация работы. Основные положения диссертации обсуждены на V отчетной конференции молодых ученых УГТУ-УПИ (2003 г.) и VIII отчетной конференции молодых ученых УГТУ-УПИ (2005 г.).

Публикации. Основные положения и результаты работы опубликованы в четырех научных статьях, из них одна в ведущем рецензируемом научном журнале.

Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, трех приложений и списка литературы из 49 наименований, содержит 104 машинописные страницы, 25 рисунков и 9 таблиц.

Автор выражает глубокую признательность проф. A.B. Юдину за ценные советы и консультации, а также проф. Г.Г. Кожушко за помощь и поддержку при выполнении настоящей работы.

Основное содержание работы Введение посвящено краткому обоснованию актуальности темы диссертации, в нем приведена общая характеристика работы.

Глава 1. Разработки, исследования и опыт применения вибротехники в перегрузочных системах горных предприятий

Опыт эксплуатации и обзор технических решений ПС при комбинированном транспорте карьеров показал, что их наиболее рациональная и эффективная структура формируется на основе вибропроцессов, реализованных в ВТМ с совмещенными технологическими функциями, способной осуществлять

одновременно прием, вибровыпуск, вибротранспортирование и разделение ГМ. Применение вибропитателей-грохотов (типа ГПТ) позволяет значительно снизить габариты и металлоемкость всего перегрузочного пункта, повысить производительность установок и снизить затраты на перегрузку ГМ.

В разработку теории вибропроцессов и практику создания ВТМ большой вклад внесли отечественные и зарубежные ученые И.И. Блехман, И.Ф. Гончаревич, Н.И. Каварма, В.Н. Потураев, А.Я. Тишков, А.Д. Учитель, В.П. Франчук, А.Г. Червоненко, A.B. Юдин. В исследование динамики ВТМ с самосинхронизирующимися ВВ значительный вклад внесли работы И.И. Блехмана, JI.A. Вайсберга, А.Н. Косолапова, Б.П. Лаврова, В.А. Мальцева, С.А. Румянцева, A.B. Юдина и других исследователей.

Известно, что одной из основных характеристик ВТМ является ее производительность, зависящая от скорости вибротранспортирования горной массы. Исследованиями установлено, что воздействие ударных нагрузок приводит к снижению скорости вибротранспортирования, при этом возникают неустановившиеся переходные процессы, длительность которых и определяет величину снижения скорости вибротранспортирования. В работах A.B. Юдина и В.А. Мальцева дана оценка влияния ударных нагрузок на скорость вибротранспортирования применительно к машинам с самобалансным приводом. Характер и продолжительность переходных процессов у машин с ССП на сегодняшний день остаются неисследованными. Не исследован вопрос о влиянии адаптационных свойств, присущих машинам с ССП, на изменение скорости вибротранспортирования в условиях воздействия как ударных, так и технологических нагрузок.

В результате изучения опыта проектирования, теории ВТМ и результатов испытаний вытекают следующие задачи исследования:

1) оценить влияние геометрических и физических параметров машины с ССП на длительность послеударных переходных процессов и дать рекомендации по проектированию ВТМ с ССП;

2) выявить влияние величин ударных и технологических нагрузок, воздействующих на рабочий орган вибротранспортных машин с ССП, на длительность послеударных переходных процессов и скорость вибротранспортирования ГМ;

3) уточнить методику выбора и расчета параметров ВТМ применительно к машинам с ССП.

Глава 2. Динамика вибротранспортных машин с

самосинхронизирующимся виброприводом в условиях карьерных перегрузочных систем

Одним из основных параметров ВТМ является ее производительность Производительность зависит от средней скорости вибротранспортирования, которая, в свою очередь, зависит от динамических параметров ВТМ, а также величины и периодичности ударных нагрузок.

Для проведения исследований динамики ВТМ использовалась математическая модель, описывающая поведение вибромашины с ССП, впервые полученная профессором И.И. Блехманом, доработанная Мальцевым В.А., Румянцевым С.А. и дополненная автором.

Система дифференциальных уравнений этой модели имеет вид:

х =

_1_ М

- М - ^Ф - с„х - с^ср + £т,е,(ф/ втф,. + ф,2 соэф,) ,

п

1

- куу - к^р -суу-с„9 + £ (ф,2 Бт 9, - ср, соэ ф,) - Руд ,

Ф = 7 +

+ X [ф? ^пСф/ - 5, - 9) - 9/ С05(9,. - 8, - 9)] + Муа ,

(I)

(1 = 1,...,и).

где х, у - координаты центра масс РО в некоторой неподвижной декартовой системе координат; сх,суЛс^,с — обобщенные коэффициенты жесткости

упругих опор; кх,ку,к^,кщ,кп - обобщенные коэффициенты вязкости упругих

опор; ф - угловая координата, т.е. угол поворота подвижной системы координат, жестко связанной с РО относительно неподвижной системы координат (от-считывается против часовой стрелки); ср( - угловая координата 1-го вибровозбудителя, т.е. угол, который составляет радиус-вектор /-го дебаланса с осью Ох (отсчитывается против часовой стрелки); ¿¡(фДЛДф,) — соответственно вращающий момент электродвигателя и момент сил сопротивления вращению системы «электродвигатель - передающий механизм - вибровозбудитель»; / -индекс направления, т.е. коэффициент, принимающий значения «+1», если вращение данного ВВ происходит против часовой стрелки, и значение «-1» — в противном случае; М, / - соответственно масса и момент инерции РО; т, -соответственно момент инерции и статический момент /-го ВВ; Гул и Муд - соответственно сила и момент ударного воздействия относительно центра масс; 8, - угол, задающий начальное положение дебаланса; остальные обозначения понятны из рисунка 1.

РО имеет три степени свободы. Каждый ВВ совершает независимое вращательное движение, причем оси вращения ВВ параллельны друг другу и перпендикулярны плоскости движения РО. Движение рассматривается в абсолютной системе координат Оху, связанной с фундаментом машины. Положение начала координат может быть выбрано произвольно. Для описания плоского движения дополнительно введена система координат Рт, жестко связанная с рабочим органом машины.

При моделировании рассмотрен абсолютно неупругий удар, форму импульса считаем прямоугольной (П - образной), при этом упавший кусок горной массы «прилипает» к рабочему органу и в дальнейшем не перемещается относительно него.

Рисунок 1 Расчетная схема ВТМ

Отличие данной модели состоит в том, что продолжительность ударного воздействия не считается одинаковой для различных физических параметров машин.

Величина ударной силы вычисляется по формуле:

где тк - масса падающего куска, кг; Кс - скорость соударения массы с приемным устройством, м/с; р - частота собственных колебаний системы, рад/с; Ао - осадка системы под действием статической нагрузки, м.

Знаменатель формулы (2) представляет собой полную продолжительность ударного воздействия для системы с одной степенью свободы, совершающей свободные колебания.

Скорость соударения массы с приемным устройством Кс:

где g - ускорение свободного падения, м/с2; /)к - высота падения куска ГМ, м.

Математическая модель реализована в виде программного комплекса, способного решать следующие основные задачи:

Р

(2)

(3)

• Численное решение полученной системы дифференциальных уравнений;

• Графическое представление получаемых решений в реальном времени решения задачи.

В качестве базовых параметров при проведении исследования использовались физические и геометрические параметры сверхтяжелого вибропитателя-грохота ГПТ-2.

В ходе исследования оценивалось влияние различных параметров ВТМ на длительность послеударных переходных процессов. При этом варьировались следующие параметры: расстояние от загрузочной опоры до центра масс машины /загр, жесткость пружин упругих опор су, плечо приложения ударной нагрузки / , величина ударной нагрузки Руд. Результаты моделирования приведены на рисунках 2, 3.

Изменение величины плеча удара от 0 до 1,5 м приводит к увеличению времени синхронизации от 0,3 до 2,3 с (см. рисунок 2).

Г "

—-----

О 0,25 0,5 0,75 1 1,25 1,5

'м. м

♦ вертикальные колебания ■ угловые колебания А время синхронизации

Рисунок 2 Изменение времени затухания послеударных колебаний рабочего органа в зависимости от величины плеча удара при М=30000 кг, тк=1500 кг, Ик=3 м

Угловые колебания прекращаются через 3,0 с после удара, а вертикальные колебания только через 3,9 с. Время затухания вертикальных колебаний центра масс РО остается постоянным при любых значених величины плеча удара и не зависит от точки приложения ударной нагрузки. Напомним, что в данном случае рассматриваются вертикальные и угловые колебания центра масс машины. Таким образом, можно сделать вывод о том, что вертикальные колебания РО являются определяющими в послеударном переходном процессе у машин с ССГ1. Для сокращения длительности послеударного переходного процесса рекомендуется снижать величину ударных воздействий на РО.

Руд, мн

♦ вертикальные колебания ■ угловые колебания а время синхронизации

Рисунок 3 Изменение времени затухания послеударных колебаний рабочего органа в зависимости от величины ударной нагрузки при М=30000 кг, /уд=1,5 м, йк=3 м

Анализ влияния ударных нагрузок (рисунок 3) показывает, что время послеударной синхронизации ВВ при изменении ударной нагрузки носит практически линейный характер. Для данного диапазона нагрузок оно составило по-

рядка 0,5-1,9 с. Затухание угловых и вертикальных колебаний происходит несколько позже. При этом величина запаздывания составляет 1,2-1,6 с для угловых колебаний и 0,5-0,8 с для вертикальных. Очевидно, вертикальные колебания определяют длительность всего послеударного процесса.

Для снижения величины ударных нагрузок может быть рекомендовано использование защитного слоя ГМ, который должен постоянно присутствовать на РО, либо в конструкции бункера необходимо предусмотреть приемную плиту, воспринимающую основные ударные нагрузки.

Глава 3. Скорость вибротранспортирования горной массы

Исследована скорость вибротранспортирования горной массы в условиях воздействия ударных нагрузок применительно к ВТМ с ССП. Проведено сравнение снижения скорости ВТМ с ССП и самобалансным приводом вызванное ударным нагружением.

Исследованиями A.B. Юдина и В.А. Мальцева установлено, что в результате ударного воздействия средняя скорость вибротранспортирования ГМ снижается. Это снижение зависит от следующих факторов: величины и времени ударного импульса; от частоты ударного воздействия; от ударозащитных свойств системы и др. Целесообразно оценить снижение средней скорости вибротранспортирования для ВТМ с ССП.

Для проведения исследований использовалась математическая модель ВТМ, разработанная А.Н. Косолаповым. На рисунке 4 приведена расчетная схема ВТМ. Материальная точка (частица) массы т движется по поверхности РО, обозначенной 1. Движение РО рассматривается в абсолютной системе координат Оху, связанной, например, с фундаментом машины. Ось Oy параллельна силе тяжести, а ось Ох перпендикулярна оси Oy (горизонтальна).

Рисунок 4 Расчетная схема движения час- Рисунок 5 Схема системы сил, дей-тицы по поверхности ВТМ ствующих на материальную точку

Для описания плоского движения частицы введена вспомогательная система координат Рх'у', сонаправленная с системой Оху (где начало координат находится в точке Р, являющейся центром масс системы ВТМ). Также введена система координат Ри'V, жестко связанная с РО и повернутая относительно системы Рх'у' на угол (р против часовой стрелки. Угол ф - это одна из обобщенных координат в математической модели движения ВТМ (уравнение 1). На рисунке 5 представлена схема сил, действующих на материальную точку: это сила тяжести С, сила нормальной реакции плоскости И, сила трения скольжения Т и сила взаимного вязкого сопротивления Рвс. Расстояние до поверхности И можно рассматривать как еще один параметр, зависящий от конкретной конструкции ВТМ.

В конечном виде система дифференциальных уравнений, совместно с системой уравнений движения РО (1) описывающая движение материальной точки по поверхности РО, имеет вид:

2 ПО к

и — -X сое в - у 5Ш0 + 2уф + иф + +--g вшв---(х СО3 0+ у 8Ш0 + Й-уф);

т т

N(1) к

V = х Бтв- у созв-2йф + - ыф +--2 соэб —-(-х ктв + усоз8 + иф + у).

т т

(4)

Пренебрегая силами вязкого сопротивления и с учетом того, что уравнения включают в себя две неизвестные функции 7(0 и N(0, решение уравнений

(4) распадается на несколько фаз, которые позволяют определять значения неизвестных функций. Шаг по времени для данной задачи, а также значения х, Яф>Ф> Ф принимаются из решения задачи о движении PO (1). Фаза I. Частица в полете

В этом случае отсутствуют силы трения скольжения и реакции поверхности О, Т = 0, и тогда уравнения (4) будут иметь вид

{ü = -x cosß-j> зт8 + 2уф + иф2 +vcp-g sinö; v = je sinG-y cosQ — 2йф-ь уф2 -мер-g cosö.

При этом условие v > h служит признаком того, что частица в данный момент времени находится над рабочей плоскостью и движение частицы описывается уравнениями (5). Фаза II. Соударение с рабочим органом

В модели принято, что удар частицы о поверхность абсолютно неупругий, То есть значение вертикальной составляющей скорости v = 0, а значение горизонтальной составляющей скорости после удара йпу равно значению горизонтальной составляющей скорости до удара мду. При этом, если выполняется условие vfly < h, то полагаем, что vny = h.

vm = h< ^ПУ = 0, vny = 0, «rly = «Ду, йт = йду, мпу = мду. (6)

Фаза III. Частица находится на рабочем органе

В данном случае считается, что v = h. Из второго уравнения системы (4) определяется значение нормальной реакции:

Л,= /й(у-Х8т0 + >'СО8 0 + 2иф-/2ф2+Иф + ^ COS0 +

к . (7)

+—(-* smö + ycosö + i^+v)), т

где значения всех обобщенных координат и их производных берутся из предыдущего этапа.

При значениях ./У;»0частица будет находиться на плоскости. В противном случае она ее покинет. В этом случае возможны два варианта: III-1, Относительный покой, когда й = 0, и = 0, v = 0, v = 0, v = h.

При соблюдении условия |7"| < /0 |7V| получим:

к

Т = m(5c cos0 + y sinQ-мф2 -йср + g sin0 + — (х cos6 + _y sinO-Лф));

(8)

N = Бт0 + 3> соз0-/гф2 +u(p + g соя0 +—(-л зт0 + ^соз0 + иф)).

ш

Ш-2. При невыполнении условия |Г| < /д осуществляется безотрывное перемещение при и О, V = = = И.

(9)

ü = —ic cos 8 - у sin в + и ф2 + h ср -—sign(u) / N - g sin 0 -

m

к

--(x cos0 + y sinG+ú ~Иц>),

m

где значение N вычисляется по формуле:

N-т(-х sin0 + 3> соз0 + 2мф-Лфа + u(p + g cosQ +

к (10> +—(-х sinQ + ycosQ + z^)). т

Сравним снижение скорости вибро1ранспортирования после удара для машин с ССП и с самобалансным приводом (рисунок 6). Рассмотрим частный случай, когда удар приложен над центром масс машины. Исходные данные и график снижения скорости для машины с самобалансным приводом приняты из работы В.А. Мальцева: масса РО М=19000 кг, масса падающего куска ГМ да=2000 кг, приведенная высота падения /7пр=3,2 м, угол вибрации р=30°, угловая частота вращения вибропривода са= 80 рад/с, частота собственных колебаний системы р=16 рад/с, амплитуда колебаний Л-0,004 м.

При центральном ударе с равными параметрами, абсолютная величина снижения скорости вибротранспортирования после удара одинакова как у машин с ССП, так и у самобалансных машин. Время затухания послеударных колебаний у машины с ССП оказалось на 8 с меньше, чем у машины с самобалансным приводом (2 и 10 с соответственно).

1t

0,25 S 0,15

0,05 0,00

0 2 4 6 8 10 12 14 16 Время, с

Л __— "* ■— ""

/

/........:............ .—■ ^

--1

У: -- --2

Рисунок 6 Изменение средней скорости вибротранспортирования при центральном ударе: 1-ВТМ с самосинхронизирующимся приводом; 2-ВТМ с самобалансным приводом

Согласно рекомендациям по проектированию системы бункер-ВТМ наиболее вероятная точка приложения ударных нагрузок смещается в загрузочную зону. Как следствие, при разгрузке автосамосвала происходит изменение положения центра масс системы, которое в свою очередь приводит к изменению направления вектора возмущающих сил вибропривода, благодаря наличию адаптационных свойств у ВТМ с ССП.

По результатам, полученным во второй главе, отметим, что наибольшее влияние на длительность послеударного переходного процесса, а значит и скорость вибротранспортирования ГМ, оказывает величина ударной нагрузки и жесткость пружин упругих опор.

В главе приведено моделирование изменения скорости вибротранспортирования ГМ для машины с ССП, при падении на РО кусков массой 1000 и 1500 кг с высоты 3 м. Сила удара при взаимодействии ГМ с РО определялась из выражения (2).

Полученные значения ударных нагрузок Fmax действующих на РО вибропитателя-грохота были использованы для определения скорости виброперемещения ГМ после удара с помощью систем дифференциальных уравнений (1) (4) (рисунок 7).

о ж и

0,25 0,20 0,15 0,10 0,05 0,00

. . .. ^ - — ----!-----*-----:-----!-----:---

' у

....... /7 } // I Г/ •/ V -изменение скорости вибротранспортирования горной массы при падении куска массой 1000кг --- изменение скорости вибротранспортирования горной массы при падении куска массой 1500 кг

6 8 10 Время, с

12

14

Рисунок 7 Изменение скорости вибротранспортирования горной массы при воздействии ударных нагрузок

Результаты моделирования показывают, что воздействие ударных нагрузок приводит к снижению скорости вибротранспортирования после удара. Следовательно, при расчете общей производительности машины с ССП необходимо вносить поправку на снижение скорости вибротранспортирования ГМ в зависимости от величины ударных нагрузок.

2

л" н и о о. о ¡й О

♦ без технологической нагрузки А под воздействием технологической нагрузки

25 30 35 Угол вибрации, град

Рисунок 8 Изменение скорости вибротранспортирования горной массы при отсутствии и воздействии технологической нагрузки массой 5 т

В то же время воздействие технологической нагрузки на РО приводит к изменению положения центра масс ВТМ и как следствие к изменению угла вибрации. Увеличение угла вибрации при воздействии технологической нагрузки приводит к большему снижению скорости вибротранспортирования (рисунок 8).

Известно, что наибольшая эффективность работы ВТМ достигается при значениях угла вибрации, лежащих в диапазоне 30-40 град. Если при проектировании ВТМ изначально принять такое значение угла вибрации, то при воздействии технологической нагрузки, в зависимости от ее величины, есть вероятность, что угол вибрации станет более 40 град., что может снизить эффективность работы ВТМ. Можно рекомендовать предварительно уменьшать угол вибрации на такую величину, чтобы при воздействии технологической нагрузки его значение приблизилось к рекомендуемому диапазону. Так, для машины ГПТ 2 при воздействии технологической нагрузки массой 5 т рекомендуется задавать начальный угол вибрации в диапазоне 20-30 град.

На основе проведенных исследований можно сделать вывод, что при расчете общей производительности ВТМ с ССП необходимо учитывать снижение скорости вибротранспортирования горной массы, вызванное воздействием как ударных, так и технологических нагрузок:

[1-е-'-7(Г-"] 30g 'ср 0,l[5,2(l + r)-r2]'»-tgß0

V^kk.-^-i-(П)

где К - коэффициент снижения скорости, обусловленный силами сцепления и застревания кусков между колосниками при их перемещении, V. - 0,91 - 0,93; кул - коэффициент влияния ударных нагрузок на скорость вибротранспортирования ГМ при загрузке ВТМ автосамосвалами или экскаваторами; кт - коэффициент влияния массы технологической нагрузки на скорость вибротранспортирования ГМ; Г - коэффициент режима, 1,5 < Г < 2,2; g - ускорение свободного падения, м/с2;

п - число оборотов вибратора, об/мин; Р0 - угол вибрации, град;

ка - поправочный коэффициент угла наклона РО, при а = 5,10,15° значения ка соответственно равны 1,18, 1,36 и 1,54.

Глава 4. Экспериментальные исследования и практическая реализация полученных результатов

Глава посвящена проверке достоверности теоретических исследований. Для проведения экспериментальных исследований был рассчитан, спроектирован и изготовлен вибрационный стенд.

Конструкция стенда позволяет менять угол вибрации р в диапазоне от 30 до 45 градусов, а также изменять угол наклона РО в диапазоне от минус 10 до плюс 5 градусов, с шагом 5 градусов. Вибрационный стенд представляет собой одномассную колебательную систему, работающую в зарезонансном режиме. Вибропривод состоит из двух вибраторов ИВ-127, механически не связанных друг с другом.

Для измерения колебаний РО использовалась виброизмерительная аппаратура ВИ6-5МАД (погрешность ±3%). Регистрация результатов измерений производилась на цифровом запоминающем двухканальном осциллографе АСК-3106 (погрешность ±2,5%) через магазин шунтов и добавочных сопротивлений Р157. Полученные данные выводились на компьютер, а затем анализировались. Вертикальные и горизонтальные амплитуды контролировались индукционными датчиками перемещения типа ДП 2, которые были установлены на загрузочной опоре во взаимно перпендикулярных плоскостях. Для определения скорости вибротранспортирования, с помощью секундомера, замерялось время прохождения частицей пути равного, 700 мм. Угол вибрации (3 в центре тяжести вибрационного стенда измерялся контактно-графическим способом с последующим измерением угломером.

С целью оценки точности математической модели сравнивались значения амплитуд вертикальных колебаний РО в установившемся (безударном) режиме, время затухания послеударных вертикальных колебаний РО, а также значения скоростей вибротранспортирования в номинальном и ударном режимах. По результатам каждой серии экспериментов рассчитывались характеристики выборки (среднее арифметическое, стандартное отклонение и доверительный интервал при доверительной вероятности 0,95). Полученные экспериментальные значения и расхождения теоретических и экспериментальных данных приведены в таблице.

Наименование параметра Теоретич. значение• Эксперим.. значение Расхождение теор. и эксп. данных,%

Амплитуда верт. колебаний РО, мм 1,01 0,984 - 1,070 3 - 6

Время затухания послеуд. колеб., с 3,80 3,374 - 3,440 9 - 11

Скорость трансп. в ном. режиме, м/с 0,173 0,171 - 0,185 1 - 7

Скорость трансп. в удар, режиме, м/с 0,130 0,142 - 0,154 9 - 19

В главе приведены дополнительные материалы к методике расчета и выбора параметров вибропитателей-грохотов с совмещенными технологическими функциями, оборудованных ССП.

В предложенной методике, при выполнении рабочего проекта, необходимо рассчитать точное положение центра масс машины, определить угол вибрации и сравнить полученные значения со значениями, принятыми в техническом проекте. Если величина угла вибрации и положение центра масс машины не соответствуют проектному значению, необходимо изменить конструкцию рабочего органа ВТМ или предусмотреть возможность регулировки расположения вибропривода.

Заключение

В диссертационной работе решена актуальная научная и практическая задача по повышению эффективности работы сверхтяжелых вибропитателей-

грохотов с совмещенными технологическими функциями, работающими в условиях карьерных ПС.

Основные выводы и результаты работы сводятся к следующему:

1. Характер динамики у ВТМ с ССП при воздействии технологической и ударных нагрузок отличается от динамики самобалансных машин.

2. Использование ССП позволяет ВТМ адаптироваться к изменению технологической нагрузки.

3. Оценено влияние геометрических и физических параметров ВТМ с ССП на длительность послеударных переходных процессов, при этом установлено, что вертикальные колебания рабочего органа машины с самосинхронизирующимся приводом являются наиболее длительными и определяют продолжительность всего послеударного переходного процесса. Их продолжительность определяется силой ударного нагружения и слабо зависит от загрузочного расстояния и плеча удара. В ходе моделирования с параметрами машины ГПТ-2 их длительность превысила время затухания угловых колебаний в 1,3 раза и в 2 раза превысила длительность послеударной синхронизации вибровозбудителей. Следовательно, необходимо снижать ударные нагрузки, воздействующие на рабочий орган, изменяя условия его загрузки.

4. При воздействии ударных нагрузок длительность послеударных переходных процессов у машин с ССП на 40 - 60 % меньше, чем у самобалансных машин.

5. Математическое моделирование и экспериментальные исследования показывают, что воздействие технологической нагрузки на РО ВТМ с ССП оказывает наибольшее влияние на скорость вибротранспортирования ГМ. При этом происходит изменение положения центра масс машины и изменение значения угла вибрации. Для машин с самосинхронизирующимся приводом целесообразно уменьшать проектный угол вибрации на такую величину, чтобы при воздействии технологической нагрузки и изменении положения центра тяжести его значение приблизилось к рекомендуемому значению 3040 град.

6. При расчете общей производительности машины с ССП необходимо вносить поправку на снижение скорости вибротранспортирования ГМ в зависимости от величины технологической нагрузки, воздействующей на РО.

7. Экспериментальные исследования подтвердили достаточную точность принятой математической модели движения вибромашины и перемещения частицы по рабочему органу. Расхождение теоретических и экспериментальньк данных при моделировании послеударных колебаний РО не превышает 11 %, а при моделировании перемещения частицы — 19 %.

8. По результатам исследований в известную методику расчета и выбора параметров ВТМ внесены дополнительные материалы для расчета машин с ССП.

Основные результаты диссертации опубликованы в следующих работах:

Работа, опубликованная в ведущем рецензируемом научном журнале:

1. Привалов, А. И. Оптимизация параметров вибромашин с самосинхронизированными вибровозбудителями / А. И. Привалов, С. А. Румянцев // Изв. вузов. Горный журнал. - 2004. - №4. — С. 79-83.

Работы, опубликованные в других изданиях:

2. Привалов, А. И. Исследование и разработка вибрационных машин с использованием адаптивных свойств вибропривода // Сборник статей. В 2 ч. - Екатеринбург: ГОУ ВПО «УГТУ-УПИ» 2003. - Ч. 1. - С. 55-57.

3. Привалов, А. И. Исследование влияния расположения центра масс вибрационной машины на ее динамические характеристики // Сборник статей. В 2 ч. - Екатеринбург: ГОУ ВПО «УГТУ-УПИ» 2005. - Ч. 1. - С. 59-62.

4. Привалов, А. И. Особенности протекания переходных процессов вызванных ударным нагружением карьерных грохотов - питателей / А. И. Привалов, В. А. Мальцев // Вестник УГТУ-УПИ. Конструирование и технология изготовления машин: Сборник научных трудов. В 2-х частях. Ч. 2. - Екатеринбург: ГОУ ВПО «УГТУ-УПИ» 2005 .-№18 (70). - С. 221 -228.

Подписано в печать 27_. 11.2008 г. Печать на ризографе. Бумага писчая. Формат 60x84 1/16. Гарнитура Times New Roman. Печ. л. 1,0. Тираж 100 экз. Заказ

Издательство УГГУ 620144, г. Екатеринбург, ул. Куйбышева, 30 Уральский государственный горный университет Отпечатано с оригинал-макета в лаборатории множительной техники издательства УГГУ

Оглавление автор диссертации — кандидата технических наук Привалов, Алексей Игоревич

Условные обозначения и сокращения.

Введение

Глава 1 Разработки, исследования и опыт применения вибротехники в перегрузочных системах горных предприятий.

1.1 Применение вибрационных машин в циклично-поточных технологиях.

1.2 Разработки и опыт применения машин с самосинхронизирующимися вибровозбудителями.

1.3 Исследования в области теории синхронизации вибропривода.

1.4 Исследования влияния ударных нагрузок на параметры вибротранспортирующих машин.

Выводы и задачи исследования.

Глава 2 Динамика вибротранспортных машин с самосинхронизирующимся виброприводом в условиях карьерных перегрузочных систем.

2.1 Производительность вибротранспортирующей машины.

2.2 Математическое моделирование работы вибромашины.

2.2.1 Особенности графического представления численных результатов.

2.2.2 Основные термины и понятия.

2.3 Исследование длительности послеударных переходных процессов.

2.3.1 Методика вычислительного эксперимента.

2.3.2 Влияние положения центра масс машины на длительность послеударного переходного процесса.

2.3.3 Влияние величины жесткости упругих опор на длительность послеударного переходного процесса.

2.3.4 Влияние величины плеча удара на длительность послеударного переходного процесса.

2.3.5 Влияние величины ударных нагрузок на длительность послеударного переходного процесса.

Выводы.

Глава 3 Скорость вибротранспортирования горной массы.

3.1 Математическое моделирование перемещения горной массы.

3.2 Скорость вибротранспортирования при ударной нагрузке, приложенной над центром масс машины.

3.3 Скорость вибротранспортирования при ударной нагрузке приложенной над загрузочной опорой.

Выводы.

Глава 4 Экспериментальные исследования и практическая реализация полученных результатов.

4.1 Экспериментальный стенд.

4.2 Методика и результаты экспериментальных исследований.

4.3 Методика расчета и выбора параметров вибротранспортирующих машин с самосинхронизирующимся виброприводом.

Выводы.

Введение 2008 год, диссертация по транспортному, горному и строительному машиностроению, Привалов, Алексей Игоревич

Актуальность темы. Диссертационная работа посвящена исследованию поведения вибротранспортных машин (ВТМ) с самосинхронизирующимся виброприводом (ССП) в условиях ударного нагружения.

Исследуемый класс вибромашин представляет собой установленные на одном рабочем органе (РО) неуравновешенные роторы, которые приводятся в движение электродвигателями. Такие машины при определенных условиях работают синхронно, несмотря на различия параметров электродвигателей и отсутствие кинематических или электрических связей между их роторами. Отличительной особенностью работы таких вибрационных машин является зависимость движения РО -его амплитуды и траектории от чисто динамических факторов - величины возмущающей силы привода, жесткости упругих элементов, масс движущихся частей, а также от условий внешнего воздействия горной массы (ГМ).

Рабочий процесс в ВТМ осуществляется в результате суммарного воздействия отдельных импульсов, следующих с большой частотой один за другим. Хотя за один производственный цикл выполняется небольшая работа, но, благодаря высокой частоте колебаний на ВТМ, достигается значительный производственный эффект.

ВТМ нашли широкое применение на обогатительных и агломерационных фабриках, цехах металлургических заводов, предприятиях строительных материалов, в различных технологических процессах. Наблюдается большой интерес к использованию ВТМ в комплексах циклично-поточной технологии (ЦПТ) в карьерах. Широкому применению ВТМ обязаны целому ряду их достоинств, и, прежде всего, высокой производительности, малой энергоемкости и металлоемкости процесса, простоте конструкции и обеспечению высокой эксплуатационной готовности. При тесном сотрудничестве научно-исследовательских и конструкторских организаций с машиностроительными заводами отработаны надежные схемы вибровозбудителей колебаний и методы их расчета, найдены рациональные технические решения и методы проектирования рабочих органов ВТМ, разнообразные по назначению и свойствам упругие связи, методики расчета параметров виброизоляции и снижения производственного шума. Освоенные промышленностью ВТМ имеют самое различное технологическое назначение.

Эксплуатация ВТМ в условиях карьерных перегрузочных пунктов показала, что механический перенос теории ВТМ общего назначения не дает положительных результатов без учета особенностей взаимодействия ВТМ со значительным по высоте слоем горной массы и наличием ударных нагрузок при их загрузке средствами карьерного транспорта. В последние годы разработай новый класс ВТМ, предназначенных для применения в перегрузочных системах (ПС) карьеров и фабрик. Такие ВТМ получили название - ВТМ с совмещенными технологическими функциями благодаря тому, что выполняют одновременно функции питателей и грохотов, но при этом способны принимать ГМ из автосамосвалов или экскаваторов.

В данной работе рассматриваются вибропитатели-грохоты с совмещенными технологическими функциями, оснащенные ССП. Совмещенные технологические функции в данном случае означают, что машина осуществляет не только перемещение и разделение материала, но и обладает функцией приема материала от автосамосвалов, при выпуске его через загрузочный бункер. В этом случае ВТМ испытывает значительные динамические нагрузки.

Данная работа направлена на исследование поведения сверхтяжелых ВТМ в условиях сложного технологического и ударного нагружения, при их работе в составе перегрузочных систем (ПС) при комбинированном транспорте в карьерах. Актуальность работы определена отсутствием в конструкторских организациях отработанной методики расчета и выбора параметров ВТМ с совмещенными технологическими функциями, оснащенных ССП. В настоящее время не до конца изучен вопрос о влиянии технологических нагрузок на характер движения РО, скорость транспортирования ГМ и производительность ПС.

В основу исследования положена математическая модель динамики вибромашины, разработанная Уральскими учеными [2 6, 27, 34] . В основе модели лежит численное решение системы дифференциальных уравнений движения ВТМ. Такой подход позволяет рассматривать не только установившиеся синхронные движения (чем ограничивается большинство исследователей данного вопроса), но и описывать переходные динамические процессы, связанные с пуском машины из состояния покоя до установления (или неустановления) синхронного движения, а также с последствиями удара, вызванного падением на РО машины крупнокусковой ГМ.

Объектом исследований являются сверхтяжелые ВТМ, оборудованные ССП и работающие в условиях ПС при комбинированном транспорте карьеров.

Предмет исследования - длительность послеударных переходных процессов и влияние адаптационных свойств ССП на скорость вибротранспортирования ГМ.

Идея работы заключается в том, что повышение эксплуатационных параметров сверхтяжелых вибропитателей-грохотов работающих в условиях карьерных перегрузочных пунктов, возможно за счет учета адаптивных свойств вибропривода и сокращения длительности послеударных переходных процессов.

Целью работы является выявление условий повышения производительности сверхтяжелых ВТМ.

Методы исследования: анализ и синтез, математическое моделирование, экспериментальные исследования на физической модели ВТМ, основанные на стандартных методах измерений с использованием измерительной аппаратуры, математическая статистика.

Научные положения, выносимые на защиту: 1) Длительность послеударных переходных процессов у машин с самосинхронизирующимся приводом на 4 0 - 60 % меньше, чем у машин с самобалансным приводом.

2) Наибольшее влияние на скорость вибротранспортирования горной массы у машин с самосинхронизирующимся приводом оказывает величина изменения угла вибрации при воздействии технологической нагрузки, в отличие от самобалансных машин, где наибольшее влияние оказывают переходные процессы, вызванные угловыми колебаниями рабочего органа .

3) Расчет скорости вибротранспортирования горной массы необходимо проводить с учетом влияния величины технологической нагрузки, воздействующей на рабочий орган машины.

Научная ценность работы заключается в выявлении факторов, оказывающих наибольшее влияние на скорость вибротранспортирования ГМ у ВТМ с ССП.

Практическая ценность диссертации заключается в усовершенствовании методики проектирования и выбоpa параметров сверхтяжелых вибропитателей-грохотов, оборудованных ССП.

Достоверность научных положений, выводов и рекомендаций диссертации обусловлена использованием фундаментальных положений динамики машин, теории колебаний и удара, математическим моделированием вибропроцессов, использованием апробированных методов исследований и решений. Достоверность результатов подтверждается экспериментальными исследованиями, объемом измерений, обеспечивающим с вероятностью не менее 0,95 относительную погрешность не более б %, сходимостью теоретических и экспериментальных исследований с погрешностью не более 919 %.

Реализация работы. Полученные результаты использованы ЗАО «Уралмеханобр-инжиниринг» при выполнении рабочего проекта по сушке концентрата с производительностью 1 млн. тонн в год на Качканар-ском ГОКе.

Апробация работы. Основные положения диссертации обсуждены на V отчетной конференции молодых ученых УГТУ-УПИ (2003 г.) и VIII отчетной конференции молодых ученых УГТУ-УПИ (2005 г.).

Публикации. Основные положения и результаты работы опубликованы в четырех научных статьях, из них одна в ведущем рецензируемом журнале, рекомендованном ВАК России.

Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, трех приложений и списка литературы из 4 9 наименований, содержит 104 машинописные страницы, 25 рисунков и 9 таблиц.

Заключение диссертация на тему "Влияние ударных и технологических нагрузок на работу вибропитателей-грохотов с самосинхронизирующимся виброприводом"

Основные выводы и результаты работы сводятся к следующему:

1) Характер динамики у ВТМ с ССП при воздействии технологической и ударных нагрузок отличается от динамики самобалансных машин.

2) Использование СС привода позволяет ВТМ адаптироваться к изменению технологической нагрузки.

3) Оценено влияние геометрических и физических параметров ВТМ с ССП на длительность послеударных переходных процессов, при этом установлено что:

- Вертикальные колебания рабочего органа машины с самосинхронизирующимся приводом являются наиболее длительными и определяют продолжительность всего послеударного переходного процесса. Их продолжительность определяется силой ударного нагружения и слабо зависит от загрузочного расстояния и плеча удара. В ходе моделирования с параметрами машины ГПТ-2, их длительность превысила время затухания угловых колебаний в 1,3 раза и в 2 раза превысила длительность послеударной синхронизации вибровозбудителей. Следовательно, необходимо снижать ударные нагрузки, воздействующие на рабочий орган, изменяя условия его загрузки.

- Жесткость упругих опор оказывает существенное влияние на длительность послеударного переходного процесса. При определении жесткости пружин упругой подвески рекомендуется принимать соотношение оо/р=3,5-S-5 и использовать упругие опоры с нелинейными характеристиками и амортизаторами удара.

4) При воздействии ударных нагрузок длительность послеударных переходных процессов у машин с ССП на 40 - 60 % меньше, чем у самобалансных машин.

5) Математическое моделирование и экспериментальные исследования показывают, что воздействие технологической нагрузки на РО ВТМ с ССП оказывает наибольшее влияние на скорость вибротранспортирования ГМ. При этом происходит изменение положения центра масс машины и изменение значения угла вибрации. Для машин с самосинхронизирующимся приводом целесообразно уменьшать проектный угол вибрации на такую величину, чтобы при воздействии технологической нагрузки и изменении положения центра тяжести его значение приблизилось к рекомендуемому значению 30-4 0 град.

6) При расчете общей производительности машины с ССП необходимо вносить поправку на снижение скорости вибротранспортирования ГМ в зависимости от величины технологической нагрузки воздействующей на РО.

7) Экспериментальные исследования подтвердили достаточную точность принятой математической модели движения вибромашины и перемещения частицы по рабочему органу. Расхождение теоретических и экспериментальных данных1 при моделировании послеударных колебаний РО не превышает 11 %, а при моделировании перемещения частицы - 19 %.

8) По результатам исследований в известную методику расчета и выбора параметров ВТМ внесены дополнительные материалы для расчета машин с ССП.

129

Заключение

В диссертационной работе на базе выполненных исследований решена актуальная научная и практическая задача по повышению эффективности работы сверхтяжелых вибропитателей-грохотов с совмещенными технологическими функциями, работающими в условиях карьерных ПС.

Библиография Привалов, Алексей Игоревич, диссертация по теме Горные машины

1. Блехман, И. И. Самосинхронизация вибраторов некоторых вибрационных машин // Инженерный сб. -1953. - Т. 16. - 162 с.

2. Блехман, И. И. Синхронизация динамических систем. М.: Наука, 1971. - 894 с.

3. Блехман, И. И. Вибрационные машины с механическими возбудителями колебаний. Применение вибротехники в горном деле: Сб. статей. М.: Госгор-техиздат. - I960. - 87 с.

4. Блехман, И. И. О самосинхронизации механических вибраторов // Изв. АН СССР. ОТН. 1958. - №6. -С. 26-29

5. Блехман, И. И. Теория самосинхронизации механических вибраторов и ее приложения // Труды второго Всесоюзного совещания по основным проблемам теории машин и механизмов. Динамика машин. М.: Машгиз, 1960. - 240 с.

6. Блехман, И. И. Обоснование интегрального признака устойчивости движения в задачах о самосинхронизации вибраторов // Прикладная математика и механика. 1960. - Т. 24. - №6. - 198 с.

7. Блехман, И. И. Интегральный критерий устойчивости периодических движений некоторых нелинейных систем и его приложения // Труды Международногосимпозиума по нелинейным колебаниям, Т. II, Киев: Изд-во АН УССР, 1963. 214 с.

8. А.с. 112448. Инерционный грохот / И. И. Блехман Заявлено 13.05.57; Опубл. 1959, Бюл. №24.

9. Блехман, И. И. Явления самосинхронизации неуравновешенных роторов и его использование при создании грохотов и других вибрационных машин / И. И. Блехман, JI. А. Вайсберг // Обогащение руд. -2001. №1. - С. 20-26.

10. Блехман, И. И. Об одном интегральном признаке устойчивости движения /И. И. Блехман, Б. П. Лавров Б.П. // Прикладная математика и механика. -1960. Т. 24. - №5.

11. А. с. 1524 07. Вибрационный питатель / И. И. Блехман, Б. П. Лавров Заявлено 19.09.61; Опубл. 1962, Бюл. №24.

12. А. с. 163524. Вибрационный конвейер / И. И. Блехман, Б. П. Лавров Заявлено 2 4.07.63; Опубл. 1964, Бюл. №12.

13. Вайсберг, Л. А. Проектирование и расчет вибрационных грохотов. М.: Недра, 1986. 143 с.

14. Барзуков, О. П. Влияние технологической нагрузки на самосинхронизацию вибровозбудителей / О. П. Барзуков, Л. А. Вайсберг, Л. К. Балабатько и др. // Обогащение руд. -1978. № 2. - С. 31-34.

15. Воробьев, С. А. К расчету производительности самобалансных машин больших типоразмеров / С. А.

16. Воробьев, А. Н. Косолапов, В. И. Гладких // Расчеты и исследования обогатительного оборудования: Сб. трудов / ВНИИМетМаш. М. 1985. - С. 109-123.

17. Гончаревич, И. Ф. Определение скорости вибротранспортирования вибрационного питателя-грохота /И. Ф. Гончаревич, А. В. Юдин //Труды ИГД Минчер-мета. Свердловск, 1970. -№25. - С.172-179.

18. А. с. 155391. Вибрационный грохот / С. Н. Горшков, Б. П. Лавров Заявлено 21.05.62; Опубл. 1963, Бюл. №12.

19. Гюйгенс, X. Три мемуара по механике / Пер. с латин. М.: Изд-во АН СССР, 1951.

20. Испытания грохота ГСТ-91 /А. Н. Косолапов, Г. В. Дакалов, В. А. Оленева и др. // Исследования обогатительного оборудования: Сб. трудов / ВНИИМетМаш. М. 1989.

21. Косолапов, А. Н. Адаптивное свойство колебательной системы с самосинхронизирующимися вибровозбудителями // Доклады АН СССР. Механика. -1989. Т.309. - № 2. - С. 293-296.

22. Косолапов, А. Н. Адаптивное свойство вибрационных машин с самосинхронизирующимися вибровозбудителями // Изв. Вузов. Горный журнал. 1989. -№11. - С. 103-108.

23. Косолапов, А. Н. Влияние технологической нагрузки и расположения самосинхронизирующихся вибровозбудителей на их относительную фазировку //

24. Исследования обогатительного и металлургического оборудования: Сб. Трудов / ВНИИМетМаш. М.: 1989.

25. Косолапов, А. Н. Проверка эффективности адаптивного и регулировочного свойства вибротранспортных устройств в промышленных условиях /А. Н. Косолапов, А. В. Юдин // Изв. вузов. Горный журнал.- 1990. № 5. - С.103-108.

26. Мальцев, В. А. Экспериментальные исследования колебаний рабочего органа при динамическом нагру-жении вибропитателя // Изв. вузов. Горный журнал -1994. № 4. С. 87-90.

27. Докторская диссертация. Уральская государственная горно-геологическая академия. Екатеринбург, 2002.

28. Мальцев, В. А. Стабильность фазировки самосинхронизирующихся вибровозбудителей карьерных грохотов-питателей /В. А. Мальцев, С. А. Румянцев, А. Н. Косолапов, А. В. Юдин // Обогащение руд.2002. № 2.

29. Мальцев, В. А. Особенности проявления адаптационных свойств вибросистем с самосинхронизирующимся приводом в условиях ударного нагружения / В. А. Мальцев, С. А. Румянцев, А. В. Юдин // Изв. вузов. Горный журнал. 2002. - № б. - С. 68-75.

30. Мальцев, В. А. Производительность вибропитателей-грохотов в условиях перегрузочных пунктов в карьерах /В. А. Мальцев, А. В. Юдин // Изв. вузов. Горный журнал. 1992. - № 5. - С. 64-67.

31. Нагаев, Р. Ф. Синхронизация в системе существенно нелинейных объектов с одной степенью свободы // Прикл. матем. и мех., 1965. -Т. 29. Вып. 2.

32. Нагаев, Р. Ф. Синхронные движения в системе объектов с несущими связями / Р. Ф. Нагаев, К. Ш. Ходжаев // Прикл. матем. и мех., 19 67. Т. 31 -Вып. 2.

33. Плисс, Д. А. Сепарация сыпучих материалов на вибрирующих поверхностях. Кандидатская диссертация. Рижский политехнический институт. Рига, 19 68.

34. Потураев, В. Н. Об идентификации реологической модели сыпучей среды при взаимодействии с вибрационной машиной /В. Н. Потураев и др. // Вибротехника. 1973. - №3(20). - С. 215-261.

35. Румянцев, С. А. Динамика переходных процессов и самосинхронизация движений вибрационных машин. -Екатеринбург: УрО РАН, 2003.

36. Стретт, Дж. (лорд Рэлей). Теория звука. Т. II.- М.: Гостехиздат, 1955. 476 с.

37. Юдин, А. В. Динамика вибропитателей в условиях перегрузочных пунктов комбинированного транспорта // Изв. вузов. Горный журнал. 1990. - № 4. - С. 64-68.

38. Юдин, А. В. Тяжелые вибрационные питатели и питатели-грохоты для горных перегрузочных систем.- Екатеринбург: Изд-во УГГГА, 1996. - 188 с.

39. Юдин, А. В. Формирование типоразмеров модулей перегрузочных пунктов комбинированного транспорта в глубоких карьерах // Изв. вузов. Горный журнал.- 1989. № 5. - С. 79-87.

40. Юдин, А. В. Применение гибких транспортно-перегрузочных систем путь интенсификации комбинированного транспорта в глубоких карьерах // Изв. вузов. Горный журнал. - 1989. - № 1.

41. Юдин, А. В. Экспериментальное определение влияния ударных нагрузок на скорость перемещения материала вибропитателем / А. В. Юдин, В. М. Батятин, В. С. Пекарский // Изв. вузов. Горный журнал. 1977. - № 11. - С. 109-112.

42. Юдин, А. В. Расчет скорости руды на вибропитателе с учетом ударного воздействия при загрузке /

43. A. В. Юдин, А. Н. Косолапов, В. А. Мальцев // Изв. вузов. Горный журнал. 1986. - №8. - С. 62-68.

44. Юдин, А. В. Эволюция перегрузочных комплексов на глубоких карьерах / А. В. Юдин, В. А. Мальцев // Горный журнал. 2002. - № 4 - С. 41-4 4.

45. Юдин, А. В. Исследование послеударного движения рабочего органа вибропитателя под воздействием импульсного нагружения / А. В. Юдин, В. А. Мальцев // Изв. Уральского горного ин-та. Сер. Горная электромеханика. 1993. - Вып.4. - С. 8186.

46. Юдин, А. В. Моделирование ударозащитных свойств слоя технологической нагрузки на вибропитателе /А. В. Юдин, В. А. Мальцев // Изв. вузов. Горный журнал. 1989. - №6. - С. 7 6-8 3.

47. Юдин, А. В. Моделирование процессов ударного нагружения вибропитателя в условиях перегрузочного пункта /А. В. Юдин, В. А. Мальцев // Изв. вузов. Горный журнал. 1991. - №6. - С. 66-70.

48. Юдин, А. В. Результаты промышленных испытаний вибрационного питателя-грохота ГПТ / А. В. Юдин,

49. B. А. Панов, В. С. Пекарский // Изв. вузов. Горный журнал. 1987. - № 10. - С. 45-48.

50. Юдин, А. В. Расчет максимальных нагрузок в системе бункер-вибропитатель при загрузке ее автосамосвалами /А. В. Юдин, В. С. Пекарский, В. М. Батянин // Изв. вузов. Горный журнал. 1978. - № 11. - С. 85-89.

51. Kyran Casteel. ALBERTA rollers and shakers. World Mining Equipment, March 2002.

52. Пат. 2 034 437 Великобритания, МКИ 2 В 07 1/36. Regulating the vibrations of a vibrating sieve. Erik Rolf Ericsson (Швеция), Morgardshamar (Швеция). №7931440; Заявлено 12.09.78; Опубл. 11.09.79.