автореферат диссертации по транспортному, горному и строительному машиностроению, 05.05.04, диссертация на тему:Развитие научных основ взаимодействия рабочих органов перегрузочных машин с насыпными грузами
Автореферат диссертации по теме "Развитие научных основ взаимодействия рабочих органов перегрузочных машин с насыпными грузами"
На правах рукописи
Филяков Александр Борисович
РАЗВИТИЕ НАУЧНЫХ ОСНОВ ВЗАИМОДЕЙСТВИЯ РАБОЧИХ ОРГАНОВ ПЕРЕГРУЗОЧНЫХ МАШИН С НАСЫПНЫМИ ГРУЗАМИ
Специальность: 05.05.04- «Дорожные, строительные и подъемно-транспортные машины»
Автореферат
диссертации на соискание ученой степени доктора технических наук
Астрахань - 2004
Диссертационная работа выполнена в Астраханском государственном техническом университете Государственного комитета Российской Федерации по рыболовству на кафедре подъемно-транспортных машин.
Научный консультант доктор технических наук, профессор
Панасенко Николай Никитович
Официальные оппоненты: доктор технических наук, профессор
Ляшенко Юрий Михайлович
доктор технических наук, профессор Кожушко Герман Георгиевич
доктор технических наук, профессор Кобзев Анатолий Петрович
Ведущее предприятие' Кафедра ПТМ Тульского государствен-
ного университета, г. Тула
Защита состоится «28» декабря 2004 г. в 10 час, на заседании диссертационного совета Д 212.304.04 при Государственном образовательном учреждении высшего профессионального образования «Южно-Российский государственный технический университет (Новочеркасский политехнический институт)» по адресу. 346428, г. Новочеркасск, Ростовской обл., ул. Просвещения, 132, 107 ауд. Главного корпуса.
С диссертацией можно ознакомиться в библиотеке Государственного образовательного учреждения высшего профессионального образования «ЮжноРоссийский государственный технический университет (Новочеркасский политехнический институт)».
Автореферат разослан 2004 г.
Ученый секретарь
диссертационного совета Д 212.304.04 доктор технических наук, профессор
Общая характеристика работы
Актуальность работы. В настоящее время в нашей стране сформирована сложная система грузопотоков насыпных грузов, которая включает в себя железнодорожный, речной, морской и автомобильный транспорты. Стабильность этих грузопотоков обеспечивается бесперебойной работой самого транспорта и перегрузочной техники в местах перевалки груза с одного вида транспорта на другой как и при его загрузке в начальной, так и разгрузке в конечной стадиях транспортного процесса. Механизация одного из наиболее трудоемких процессов - перегрузка насыпных грузов обеспечивается кранами, оборудованными грейферными механизмами. Использование грейферов рациональных конструкций и параметров значительно увеличивает производительность перегрузочных машин, снижает энергозатраты и себестоимость перегрузочных работ, повышает их надежность и долговечность, что особенно актуально при увеличении нагрузок на рабочие органы погрузо-разгрузочных машин, что обусловлено потерей свойства сыпучести грузов в связи с их слипанием, спеканием или смерзанием при их транспортировке и хранении. Кроме того, некоторые материалы при транспортировке от вибрации сильно уплотняются, а при хранении навалом - слеживаются. Применение отечественных ваго-норазгрузочных машин при разгрузке сильно слежавшихся, спекающихся и смерзшихся грузов является малоэффективным из-за больших сопротивлений груза захвату, быстрого износа и разрушения рабочих органов. Работоспособность перегрузочных машин в значительной степени зависит от надежности и эффективности работы заборных рабочих органов, осуществляющих захват и дальнейшее перемещение материала. Поэтому задача создания перегрузочных машин для транспортировки насыпных грузов, утративших свойства сыпучести, обладающих большей производительностью, высокой эффективностью, надежностью в работе при меньшей металлоемкости и конкурентности на рынке является актуальной.
Цель и задачи работы. Целью настоящей работы является создание теоретических основ расчета параметров напряжено-деформированного состояния сыпучей и связной сред, позволяющих для любого насыпного груза определить весь комплекс характеристик, описывающих напряженное состояние среды в процессе ее взаимодействия с рабочими органами перегрузочных машин, учитывающих изменение физико-механических свойств среды при изменении скорости их движения. Разработка новых и уточнение существующих методов расчета рабочих органов подъемно-транспортных и погрузо-разгрузочных машин, перерабатывающих
практически всю гамму насыпных грузов, от легко сыпучих до смерзшихся, направлены на а) разработку математических моделей, характеризующих динамическое напряженное состояние деформируемых сыпучей и связной сред, б) разработку математической модели, характеризующей динамическое напряженное состояние деформируемой связной среды при внедрении в нее деформатора, в) исследование напряженного состояния сыпучей и связной сред при взаимодействии их с де-форматорами, внедряющимися с различными скоростями, для определения влияния скорости движения деформатора на напряженное состояние сред; г) разработку методов анализа напряженного состояния сыпучей и связной сред при интенсивном внедрении и сдвиге в них деформаторов, д) обобщение исследований процесса зачерпывания двухканатным грейфером насыпных грузов для уточнения влияния всех факторов, влияющих на зачерпывающую способность грейферов, и учета их в аналитических методиках расчета грейферов, е) обобщение исследований процессов взаимодействия заборных органов перегрузочных машин с насыпными, слежавшимися и смерзшимися грузами для разработки инженерных методов силовых расчетов рабочих органов перегрузочных машин, перерабатывающих эти грузы
Идея работы состоит в разработке теоретических основ и методов силового расчета заборных органов перегрузочных машин, взаимодействующих с насыпными грузами, учитывающих динамический характер их деформации, направленных на создание более совершенных перегрузочных машин
Основные положения диссертации, выносимые на защиту.
1 Математическая модель, характеризующая динамическое напряженное состояние деформируемой сыпучей и связной сред
2 Математическая модель динамического напряженного состояния деформируемой связной среды при внедрении в нее деформатора
3 Способ расчета сопротивлений на рабочих поверхностях деформатора и заборных органов перегрузочных машин для сыпучих и связных сред, учитывающий объемный характер воздействия и скорость движения
4 Совершенствование аналитического метода расчета грейфера, учитывающего реально возникающие сопротивления от груза и воздействие присоединяемой массы груза
5 Инженерные методики силовых расчетов рабочих органов перегрузочных машин, предназначенных для переработки насыпных грузов
Методы исследования. При выполнении диссертационной работы использо-
вались фундаментальные положения, общие законы и методы теоретической и прикладной механики и математики, механики фунтов и сыпучих сред, аналитические исследования с решением дифференциальных уравнений и математическое моделирование на вычислительных машинах; физическое моделирование с использованием теории подобия; экспериментальные исследования с использованием методов скоростной киносъемки, затвердевания и электротензометрии.
Научная новизна. Результаты исследований по совокупности составляют решение проблемы по созданию теоретических основ проектирования рабочих органов перегрузочных машин, взаимодействующих с широкой гаммой насыпных грузов, использующей новые методы определения нагрузок, действующих на рабочие органы перегрузочных машин, перемещающихся в насыпном грузе с различными скоростями. Внесен определенный научный вклад в развитие теории прочности и динамики сыпучей и связной сред, механики грунтов и виброударного внедрения, получены следующие научные решения:
1. Разработаны математические модели, характеризующие динамическое напряженное состояние сыпучей и связной сред, которые учитывают изменение их физико-механических свойств в процессе деформации Это дает возможность перейти на новый аналитический уровень расчета сопротивлений, возникающих при взаимодействии рабочих органов перегрузочных машин, который характеризуется переходом от статических расчетов сопротивлений к динамическим, позволяющим учесть влияние скорости деформации среды, ее дискретные свойства, сплошности и т.д.
2. В динамической постановке в общем виде решена задача внедрения плоского штампа в полупространство связной среды, построена модель напряженно-деформированного состояния среды в любой момент процесса внедрения в нее деформатора, которая позволяет определить нормальные с* и с,, касательные т напряжения и составляющие скорости V, и V, в любой точке деформируемой среды и в процесса внедрения.
3. Используя экспериментальные результаты, разработаны упрощенные аналитические методы расчета процессов внедрения деформаторов как простой (типа ножа), так и сложной формы (в том числе и грейфера) в сыпучую и связную среды.
4. Установлено, что направление плоскостей (линий) скольжения деформируемой сыпучей и связной сред и давление на рабочих стенках внедряющихся деформаторов зависят от скорости их движения, а изменение давления на стенках внедряющегося деформатора связано с изменением направления угла наклона
плоскостей скольжения;
5. Разработаны принципиально новые физические модели процесса сдвига стенкой как сыпучего, так и связного клиньев, которые значительно отличаются от существующих представлений о процессах сдвига и резания грунтов.
Достоверность полученных данных подтверждается адекватностью математических моделей и лабораторных экспериментальных исследований, удовлетворительной сходимостью теоретических и экспериментальных результатов, использованием современных методов исследований, критическим анализом работ, посвященных данному вопросу (максимальная относительная погрешность не превышала 6,8%).
Научное значение работы заключается:
- в разработке научных основ расчета заборных органов перегрузочных машин, взаимодействующих с насыпными грузами, который учитывает динамический характер воздействия деформируемого груза на рабочие органы при определении сопротивлений их внедрению, что позволило перейти от существующих статических расчетов к динамическим;
- в установлении закономерностей динамического воздействия насыпного груза на заборные органы в зависимости от вида и состояния груза и скорости их зачерпывания,
- в установлении общих закономерностей, характеризующих динамическое напряженное состояние сыпучих и связных сред, которые позволяют математически описать широкую гамму спектра известных нагружении и объяснить физические процессы, происходящие в деформируемой среде
Практическая значимость работы заключается в разработке методики расчета сопротивлений внедрению и зачерпыванию заборных органов в насыпной груз, которые учитывают динамические свойства деформируемой среды, что позволит более обоснованно вести проектирование не только самого заборного рабочего органа, но и всей машины, т к. некоторые реально действующие нагрузки на рабочие органы могут в 2 - 3 раза превышать статические нагрузки, по которым ведется расчет большинства заборных органов перегрузочных машин Предложенный в работе метод расчета сопротивлений внедрению применим не только к грейферным и ковшовым заборным органам, его можно применять при расчетах скребковых и винтовых конвейеров, а также аналогичных рабочих органов технологических и дорожных машин.
Реализация результатов работы. Результаты исследований были внедрены
в Астраханском речном порту, где была апробирована методика расчета грейферов для определения рационального использования парка грейферов с целью получения наибольшей производительности кранов. На основании проведенных исследований Астраханским филиалом Всесоюзного научно-исследовательского института бумаги (ВНИИБ) при участии автора была разработана, испытана и внедрена на Астраханском целлюлозно-картонном комбинате (АЦКК) и других предприятиях серия нескольких типов малогабаритных вагоноразгрузочных машин
Результаты исследований были использованы в курсах лекций «Строительные и дорожные машины», «Механизация ПРТС работ», «Портовые грузоподъемные машины» (ПГМ) и «Портовые машины непрерывного транспорта» при подготовке специалистов в АГТУ по специальности 150900 «Эксплуатация перегрузочного оборудования портов и транспортных терминалов»
Грунтовой канал и стенды по исследованию процесса внедрения деформато-ров в сыпучую среду и виброударная экспериментальная установка использовались в лабораторных работах по курсу «Строительные и дорожные машины» по специальности 290300 Уточненная инженерная методика расчета грейферов использовалась при выполнении курсовых проектов по ПТМ, ПГМ и «Механизации ПРТС работ» и дипломном проектировании по специальности 150900
Апробация работы. Основные положения и результаты, разработанные в диссертации, докладывались и получили одобрение на республиканском семинаре по строительным и дорожным машинам в Киевском инженерно-строительным институте (1982 г); Всесоюзной конференции НТО им АН Крылова в г. Горьком (1985 г.); на Всесоюзной научно-технической конференции «Механизация и автоматизация переместительных работ на предприятиях лесного комплекса» в г. Москва (1989 г); на республиканских научно-технических конференциях «Проблемы качества и надежности машин» в г. Могилеве 1991; 1994, 1996 гг.; Всероссийской научно-технической конференции «Судовые и береговые подъемно-транспортные машины и устройства» в г. С.-Петербурге (1993 г.); международной конференции «Новое в подъемно-транспортной технике» г. Москва 1994 г., международном семинаре «Современные проблемы механики фунтов и охраны окружающей среды» г. Ростов-на-Дону (1998 г.); международной научно-технической конференции, посвященной 85-летию высшего рыбного образования в России, г Калининград (1998 г.), научно-технической конференции «Подъемно-транспортные машины на рубеже веков», МВТУ им. Баумана, г. Москва, 1999 г; международной научно-технической конференции «Современные проблемы геофизики, геологии, переработки и ис-
пользования углеводородного сырья» г. Атырау, 2000 г.; международной научно-технической конференции, посвященной 70-летию основания КГТУ, г. Калининград, 2000 г.; международной научно-технической конференции, посвященной 70-летию АГТУ, г. Астрахань, 2001 г.; научной конференции «Проблемы динамики и прочности исполнительных механизмов и машин», г. Астрахань, 2002 г. и 2004 г.; научных конференциях АТИРПиХ (АГТУ) в период с 1984 по 2002 гг.
Работа заслушана на заседании учебно-методической комиссии по специальности 170900 «ПТМ» 15.09.04 г., одобрена и рекомендована к защите.
Публикации по работе. По материалам диссертационной работы опубликованы 60 работ, в том числе монография, 16 статей в теоретических, научно-практических и отраслевых журналах, 8 тезисов докладов на Всесоюзных и Международных научно-технических конференциях, 8 тезисов докладов на научных конференциях, 27 статей в сборниках трудов различных ВУЗов России.
Структура и объем диссертации. Диссертационная работа состоит из введения, семи глав, заключения и приложения, изложенных на 463 страницах машинописного текста, списка литературы, составляющего 253 наименования, содержит 123 рисунка и 13 таблиц.
Содержание работы В первой главе проведен теоретический анализ явлений, протекающих при взаимодействии деформаторов с различными грузами, который стал возможным благодаря развитию физики твердого тела и особенно физической и математической теории пластичности и теории предельного состояния грунта. Работы В.В. Соколовского, С С. Голушкевича, Д.Д. Ивлева, Л.И. Седова, ГА. Гениева, И А. Цыто-вича в области теории пластичности и механики фунтов, получившие развитие в прикладном направлении в трудах Н.Г. Домбровского, А Н. Зеленина, Э.В. Дженике, В.А. Флорина, Р.Л. Зенкова, Ю.А Ветрова, В.И. Баловнева, ПИ. Хазановича, Л.Шукле и др., создали хорошие предпосылки для разработки основных положений динамической теории резания грунтов и динамики сыпучих сред, которые были осуществлены автором настоящей работы. Анализ методов расчета заборных органов перегрузочных машин показывает, что, несмотря на огромный объем исследований и значительный вклад в эти исследования большого количества ученых, существующие методы расчета сопротивлений внедрению рабочих органов в насыпной груз, в большинстве случаев, по-прежнему основаны на эмпирических зависимостях, полученных для конкретного рабочего органа и зачерпываемого материала, или базируются на положениях статики сыпучей среды и механики фунтов
При этом правомерность этих расчетов не всегда подтверждается экспериментальной проверкой. Несмотря на то, что ранее установлено влияние на сопротивление внедрению скорости движения заборного органа, практически во всех существующих расчетах рабочих органов перегрузочных машин, оно не учитывается. Неизвестной до настоящей работы оставалась и физическая природа увеличения сопротивления, так как объяснение этого явления только отбрасыванием частиц фунта от внедряющегося рабочего органа является далеко не полным. Анализом установлено, что практически во всех расчетах заборных органов не учитывается влияние присоединяемой массы груза на процесс зачерпывания, хотя установлено, что при больших скоростях зачерпывания оно соизмеримо с сопротивлением внедрению рабочего органа в груз. Показано, что за исключением некоторых работ, существующие методы экспериментального исследования, базирующиеся на измерении тягового усилия, усилия резания и зачерпывания, служили не для исследования физической картины происходящих процессов, а для экспериментального подтверждения теоретических расчетов. Это не позволяло исследователям вникнуть вглубь физических процессов, происходящих при заполнении рабочего органа грунтом или грузом Таким образом, обзор литературы показывает, что задача исследования процессов взаимодействия с насыпным грузом заборных рабочих органов перегрузочных машин решена пока не полностью, несмотря на ее большую практическую и теоретическую важность Основываясь на проведенном анализе сформулированы основные задачи диссертационного исследования:
1. Перейти от статических расчетов, на которых базируется определение сил сопротивления рабочих органов перегрузочных машин при их взаимодействии с насыпными грузами - на динамические, которые позволяют учесть скорость движения рабочих органов, дискретность и сплошность среды, и физико-механическое состояние груза.
2. Разработать теоретические основы расчета рабочих параметров напряженно-деформированного состояния сыпучей и связной сред, взаимодействующих с рабочими органами перегрузочных машин с целью совершенствования практических методов их проектирования и изготовления.
3 Разработать математические модели процесса заполнения грейфера насыпным грузом, которые позволяли бы учесть влияние скорости зачерпывания и присоединяемой массы груза, а полученные результаты проверить экспериментально Уточнить существующие аналитические методы расчета грейферов, основанные на более точном учете факторов, влияющих на процесс зачерпывания.
4. Разработать аналитические модели процесса взаимодействия заборных органов с кусковыми, слежавшимися и смерзшимися грузами, проверить их качественные параметры экспериментально.
5. Разработать инженерные методики расчета заборных органов перегрузочных машин, перерабатывающих различные виды насыпных грузов, на их основе разработать новые типы перегрузочных машин и внедрить их в промышленность.
Вторая глава посвящена теоретическому исследованию напряженного состояния сыпучей и связной сред при взаимодействии их с деформаторами. Экспериментальные исследования автора [5, 6] процесса интенсивного перемещения в сыпучей среде различных деформаторов с помощью киносъемки и тензометрии показали, что давление на рабочих поверхностях деформатора значительно превышают предельные статические напряжения, установлено, что давление и направление плоскостей скольжения зависят от скорости передвижения деформатора в среде и они связаны между собой, а физическая картина «динамического* сдвига принципиально отличается от статического. Условие предельного «динамического» равновесия сыпучей среды можно характеризовать аналогичным закону Кулона соотношением.
где Хдх = fd, и - динамический коэффициент внутреннего трения, который характеризует напряженное состояние деформируемой среды при определенной скорости деформации, ат - касательное иа - нормальное напряжения на плоскости скольжения. В связи с тем, что угол наклона плоскостей скольжения щ оказался связанным с динамическим углом внутреннего трения соотношением то можно считать, что динамический коэффициент внутреннего трения % и физически, и математически отражает сложные механические процессы, происходящие в сыпучей среде, связанные с перемещением элементарных объемов, дезагрегацией частиц (их переукладкой), изменением плотности влиянием инерционных сил и масс, вовлекаемых в движение Уравнение (1) характеризует динамическое напряженное состояние сыпучей среды во всем диапазоне ее свойств, которые она может принимать: от жидкости
установлена математическая зависимость от скорости де-
формации [5, 6] Известно, что условие предельного равновесия связной среды описывается уравнением Кулона-Навье:
"Сл = огп + С, (2)
где Tn - предельное касательное напряжение, возникающее от действия нормального ап, ф - угол внутреннего трения, а С - сцепление среды. Экспериментальные исследования автора [10, 12] также показали зависимость напряжений на рабочих плоскостях деформаторов и направления плоскостей скольжения от скорости их движения, причем полученные результаты не вписываются в уравнение (2). Кроме того, установлено [35. 36], что при использовании уравнения предельного равновесия (2), возможны еще три случая: 1) tg«p = const; С ф const; 2) tgrp * const; С * const; 3) tg<p const; С = const.
При небольших степенях уплотнения груза, а именно, при пластическом деформировании до критического уплотнения, наиболее вероятным условием равновесия будет первый случай, т.к. увеличение числа контакта частиц при наличии влаги, выполняющей роль смазки, лишь незначительно может повлиять на коэффициент внутреннего трения f = tgcp, а увеличение числа контактов частиц и их сближение должно увеличить сцепление связной среды Это подтверждают исследования П.Н. Платонова, им установлено, что величина сцепления зависит от пористости и размера зерен среды, а коэффициент внутреннего трения в связной среде при изменении ее плотности не изменяется.
Второй случай равновесия возможен в зоне за критического уплотнения частиц, когда среда начинает проявлять упругие свойства. В начальной ее фазе большее влияние на предельное равновесие будет оказывать сцепление, меньшее -коэффициент внутреннего трения, в конечной фазе - наоборот.
Третий случай равновесия возможен на стадии уплотнения связной среды до плотности сплошного тела. В этом случае влияние сцепления на напряженное состояние стабилизируется, т.к. на этой стадии основная энергия будет расходоваться на разрушение связей между частицами и их уплотнение, а это прямым образом отразится на величине коэффициента внутреннего трения. Как показали исследования А.С. Слюсарева, в практической эксплуатации заборных органов перегрузочных машин наблюдается докритическая стадия уплотнения частиц (первый расчетный случай). В этом случае условие (2) представим в следующем виде [10, 35].
t„ = o„tgq> + C(V), (3)
где C(V) можно считать условным сопротивлением начальному сдвигу, которое характеризует зависимость сцепления среды от скорости деформации. Результаты экспериментальных исследований автора [10, 12] полностью подтверждают данные предположения.
Проведено исследование процесса прямолинейного внедрения деформатора
в полуплоскость сыпучей среды. Известно, что при внедрении деформатора в сыпучую и связную среды, независимо от формы режущей кромки, перед деформато-ром образуется уплотненное ядро, имеющее форму, близкую к параболической. Поэтому, при рассмотрении процесса внедрения установлена целесообразность принятия формы ядра в виде параболы у = х2" и далее решать задачу о внедрении деформатора, контур которого описывается уравнением:
где h(t) - глубина внедрения деформатора в момент времени t; г(х) - форма деформатора. Деформатор имеет массу m и входит в среду с начальной скоростью Vo, которая по мере внедрения гасится силами сопротивления. Определим напряженное и деформированное состояние среды в любой момент времени, а также найдем время и максимальную глубину внедрения деформатора. В условиях плоской деформации связной среды неизвестными остаются сгх(х, у, t); оу(х, у, t); т(х, у, t); V„(x, у, t); (х, у, t); Vy(x, у, t); - три компоненты тензора напряжений и две проекции вектора скорости внедрения на оси хиу. Деформированное состояние связной среды в работе описано следующей системой уравнений [38].
(5)
(6)
(7)
(8)
(9)
где X, У - проекции массовых сил; р0 - плотность; V*, \/у - проекции скоростей; <р -
угол внутреннего трения; К - максимальное касательное напряжение сцепления. Уравнения движения (5). (6) записаны в переменных Эйлера Уравнение предельного равновесия (7) заключается в том, что в каждой точке среды максимальная разность касательного напряжения и соответствующего нормального напряжения, умноженного на 1§<р,, равна предельному напряжению сцепления К. При этом усло-
вие выполняется на двух площадках, составляющих с направлени-
ем максимального главного нормального напряжения острые углы
Уравнение (8) представляет собой уравнение сплошности для несжимаемой среды, а уравнение (9) дает связь между полем напряжений и скоростями деформаций. Оно отличается от подобного уравнения в теории пластичности (см В.В. Соколовского) дополнительными членами со знаком «плюс-минус». Для связной среды условие (9) определяет несовпадение главных осей напряжений и скоростей деформаций, так как линии скольжения составляют с направлением максимального напряжения Ст1 углы отличные от ж/4 равные (я/4 - <р/2). Таким образом, угол поворота главных осей равен половине угла внутреннего трения
Верхние знаки в (9) выбираются в том случае, когда первое семейство линий скольжения является активным, нижние - в противоположном случае. Экспериментальные исследования автора [6] позволили определить активное семейство линий скольжения. На рис. 1 представлена физическая картина процесса внедрения де-форматора в сыпучую среду.
Рис 1. Внедрение выпуклого штампа в сыпучую среду: 1 - контур деформатора; 2 - кривая выпучивания: 3 - плоскость скольжения;
I, II - семейство линий скольжения
Из рис. 1 видно, что для правой части первое семейство линий скольжения у является активным, так как по этому направлению происходит движение материала и надо выбирать верхние знаки в уравнении (9). В качестве начальных условий принято, что деформатор касается полуплоскости в начале координат Тогда
уравнение контура будет.
У = r(x), (10)
а глубина внедрения h(t) из (4) будет равна нулю. Будем считать, что в этот момент времени все точки полуплоскости находятся в покое, а внутренние напряжения отсутствуют. Тогда V|t_o=0; ах(х,у) = Оу(х,у)=т(х,у) = 0. Деформатор массой m имеет скорость:
Картина границ форм выпучивания, как показали исследования автора, достаточно хорошо может быть представлена уравнением плотности распределения Релея (из теории вероятностей):
(12)
при х> 0,, где ст -мода. Площадь криволинейного треугольника АОВ (см. рис. 1) определится:
P(t)= j[r(x)-h(x)]dx,
(13)
о
где - корень уравнения
г(х)-Ь(1) = 0. (14)
Определим напряженное состояние у свободной границы и границы движения среды. Для решения нелинейных дифференциальных уравнений (5) - (9) в частных производных от трех независимых производных со сложными граничными и простыми начальными условиями выполним преобразования. Примем, что функции - непрерывны в пластической области. ставим их полиномами вида: К = V*, \/у, ах, сгу, т:
п
i.j.k=0
(15)
Коэффициенты функций (15) подбираем так, чтобы с заданной точностью удовлетворить дифференциальным уравнениям вида (16) Сначала вычислим необходимые производные.
ЭК
Sx1 = i'U,,k'X
Рассмотрим дифференциальные операторы, образованные по уравнениям
(5), (6), (9):
Очевидно, что Д1, Дг, Дз из (17) - (19) являются функциями перемен м.ых^ . е . Д,= Д1(х, у, I); Д2= Дг(х, у, I); Д3= Д3(х, у, 1) После чего уравнения (5), (6), (9) с помощью дифференциальных операторов (17) - (19) запишутся в виде:
Будем искать напряженное и деформированное состояние в движущейся среде в определенный фиксированный момент времени. Для этого, начиная с момента
внедрения, изменяя время с шагом 41, рассмотрим ряд моментов времени 11, Ь.....
В каждый момент времени необходима проверка условия:
2jP* h'(t) dt < itiVq /2, О
(21)
где P*=-|(jj,-ds - нагрузка, действующая на деформатор, La- часть кривой
контура деформатора от точки А до точки В (см рис 1).
В момент достижения равенства (21), согласно (22), достигается максимальная глубина внедрения деформатора Решение уравнения движения деформатора будем искать в виде:
где гн - степень многочлена, обеспечивающего необходимую точность вычисления;
\Л, V2.....Vm - числовые коэффициенты, характеризующие изменение скорости во
времени Выберем нулевые значения коэффициентов в формуле (22). Тогда глубина внедрения h(t) будет известной функцией. После этого, решая систему уравнений, характеризующих напряженное состояние на свободной поверхности (12), находим координаты точки D (см. рис.1). Для решения этой системы приведем ее к одному уравнению:
а-(1-х?)2е"Х1 =0,
(23)
где
Образуем оператор:
(25)
После этого уравнение (25) запишется так:
(26)
Сравнивая значение координаты точки цд, полученной из условия, характеризующего напряженное состояние у свободной поверхности и Г|д, характеризующей границу движения среды, образуем еще один оператор:
Очевидно, что при выполнении граничных условий в (27)
Д5=0. (28)
Для определения граничных условий на контуре деформатора разделим интервал О В [0, у наг^астей:
(29)
Значение у находим по уравнению (4). Далее образуем оператор:
Дб = I Vx^i-Tli.0 + V> (Si.Л!,t)- yUi) ■ (30)
Очевидно, что при выполнении граничных условий
Дб = 0- (3D
Следует отметить, что функция h(t) с нулевыми коэффициентами в (22) в общем случае не удовлетворяет дифференциальному уравнению mh" = -Р-. Для его решения образуем функционал:
Д7=| m-h*(t) + P* |, (32)
где находится как вторая производная формулы (22) и имеет вид:
h'(t) = 2Vj + 6V2t + 12v|t2 +...+ (n[ + l)niVnjt"l(33) Очевидно, что при выполнении равенства в условии (21) функционал:
Д7=<>- (34) В точках деления (29) вычислим значения функции (4), а затем интервал [уи. Ли] (отрезок ОА) разделим на m частей точками (см. рис. 2): Y = Yuo, Yu, Yui, Yu2, .. , YUm = Пи- Разобьем интервал т.е. BD, на р частей точками: £, = Хо, Xi. Хг, .. , Хр = Сд. В каждой точке деления вычислим значения функции по уравнению (12): rio, П1. 12. •■•. Пр и по уравнению, характеризующему кривую скольжения АД' у0, Уь уг, ..., ур. Затем интервал [yJt t|J, т.е ВС, разделим на m частей точками. yj0 = yjT, yj2.....
Образуем функционал:
Рис. 2. Деление интервалов области напряженного деформированного пространства на ш,п2ир частей
Из характера построения функционала Э следует, что если выполняется граничное условие, то в (35) Э = 0 Обратное утверждение, к сожалению, неверно. Однако равенство нулю функционала означает, что получено одно из приближенных
решений. При построении функционала (35) мы предполагали, что коэффициенты в уравнениях (15) и (16), характеризующих Vx, V,, и„, ауитвуравнении (22) известны. Для их действительного определения необходимо провести минимизацию функционала (35) по этим коэффициентам.
Задача об определении напряженно-деформированного состояния сыпучей среды при наличии экспериментальных результатов исследований, гораздо проще решается полуэмпирическим методом, для этого представим стх в виде многочлена: НХТ*(х, у. t) = b„ + bit + b>tJ + bjx2 + bjy + bjv2 + br,x2y + b7xV + + bsxJt + b.A2t2 + b;„\t +
Аналогично можно записать формулы для НУТ - оу; VXT - Vx; VYT - Vy, но
вместо коэффициентов b0, bi......bi7 необходимо брать Со, Ci......Су/, do, di......di?,
ео, в!......ей. Всего получается 72 неизвестных коэффициента. Для уменьшения их
количества во всех четырех формулах:
HXT-cx;HYT ay;VXT-Vx;VYT-Vy
оставим первые 6 членов, чтобы сократить число неизвестных коэффициентов до 24. После чего составим сумму:
где с целью краткости обозначает точку с координатами которые берем
из полученных экспериментальных данных, а XYT - одномерные массивы для указанных координат, причем X на 21 элемент, Y на 13 элементов, Т на 4 элемента, и подставляем ах вместо НХЕ(Р), сту вместо HYE(P), Vx вместо VXE(P) и VY вместо VYE(P). Далее составляем сумму:
s3= I i([hxt(o)-hxed(q)]2+[hyt(o)-hyed(q)]2
k=Ii=P
+ [VXT(Q) - VXbD(Q)]2 + [VYT(Q) - VYED(Q)]2},
* Примечание: Здесь и далее принятые символы-НХТ - нормальные напряжения ох в точке по оси х во времени 1, НУТ - нормальные напряжения о1 в точке по оси у во времени Ц УХТ - скорость передвижения расчетной точки по оси х; \ЛТ - скорость передвижения расчетной точки по оси у.
где О - точка с координатами которые берем из экспериментальных
данных, - одномерные массивы Т. и М\1, на 7 массив Ттот же самый, и под-
ставляем экспериментальные значения в соответствующих точках ох вместо НХЕО(Р), оу вместо НУЕО, V* вместо \ZXED и Уу вместо \ZYED. После этого считаем сумму 34=32+3з- Для минимизации в« используем метод Хука-Дживса, где 84 -функция от 20 коэффициентов. После минимизации определяются: касательные напряжения:
^¡п2ф(ах + Оу + 2К -оу)2
и перемещение в среде деформатора.
(40)
где - начальная скорость внедрения и скорость перемещения деформатора в среде:
ЭУ(1) = а0 + 2а1И-За212, (41)
где изменяется от согласно экспериментальным данным, образуя массив
Т Величины Р, I3 вычисляем один раз в 12 точках. Далее надо минимизировать функцию'
где у, и V, - берутся из экспериментальных данных, а зависит от а, и а2. Минимизация по двум переменным проведена методом Хука-Дживса. Результаты расчета даны в приложении к диссертации.
Для практического использования математических моделей автором были продолжены исследования на конкретных средах и рабочих органах.
В третьей главе проведено исследование напряженного состояния сыпучей среды при ее взаимодействии с различными деформаторами с целью выяснения физической картины взаимодействия, сопровождающей процессы внедрения и силового воздействия на них деформируемой среды При воздействии на деформа-тор силы значительно превышающей предельную при которой возможно статическое равновесие среды, скорость движения частиц перед деформатором превышает скорость их передислокации, наблюдаемую при статическом воздействии При вертикальном внедрении деформатора в сыпучую среду с увеличением скорости
ОУ(1) = а0 • I + а]12 +
внедрения интенсивность увлечения частиц по направлению движения ножа будет увеличиваться, а скорость оттеснения в сторону - уменьшаться, в связи с чем уменьшается наклон плоскостей скольжения. Следовательно, угол наклона касательных напряжений к главным будет зависеть от скорости поэтому вместо известной из статики зависимости 1|/ст = 45" -ф/2 будет иметь место условие [5, 28]:
где - углы наклона касательных напряжений к главным при статическом и
динамическом воздействии деформатора; - угол внутреннего трения.
При вертикальном внедрении ножа в сыпучую среду (рис. 3), перед его режущей кромкой возникает уплотненное ядро полукруглой формы и показан ряд его последовательных положений [6, 7]. Кривые 1 и 2 являются траекториями движения частиц материала при статическом и динамическом внедрениях.
Изменение направления плоскостей скольжения связано с изменением плотности материала (в зоне взаимодействия ножа и среды) и напряжений, действующих по этим плоскостям, а следовательно, и с соотношением главных напряжений оцениваемых в статике коэффициентом подвижности среды
Влияние скорости деформатора на отношение главных напряжений (44) учте-
щ = цу) < 45" - ф/2,
(43)
Рис. 3. Схема процесса внедрения ножа в сыпучую среду. 1.2- траектории движения частиц материала
(44)
но в работе введением коэффициента динамической подвижности материала т^ = который по аналогии со статическим т из (44) равен [6, 8]:
где х - приведенный угол внутреннего трения, зависящий ют V, следовательно и п тоже пО/). На основании проведенных исследований предложена теоретическая диаграмма (рис. 4) - овал 1, характеризующий напряженное состояние сыпучей среды - сухого песка при внедрении в него деформатора (ножа) со скоростью V на глубину И при п = f(V) = 2,0.
Рис. 4. Диаграмма напряженного состояния сыпучей среды при интенсивном внедрении ножа: 1 - диаграмма напряжений при интенсивном внедрении; 2 - статическая диаграмма напряжений
Для сравнения приведен овал, который характеризует напряженное состояние сыпучей среды при «статическом» внедрении деформатора (при V близкой к нулю и п = 1). Овал 1 характеризует распределение нормальных напряжений на торце ножа в точке О (рис. 4), лежащей на вершине тела повышенного давления при различных углах о его внедрения в сыпучую среду; построенный по уравнению (при п = 2):
(46)
где И - глубина погружения ножа; у - насыпной вес; а - угол отклонения ножа от вертикали.
Экспериментальными исследованиями процесса вертикального внедрения ди-
Ь? /
„2п '
|со52сх + т2п5т2
намометрического но-ка в сыпучий груз (рис 5) получены осциллографические зависимости изменения давления на торцевой поверхности деформатора при внедрении его в сыпучую среду с различными скоростями (кривые 1 - 4) с помощью датчика, установленного в центральной части ножа при толщине 5 = 0,01 м и ширине Ь = 0,24 м [8, 28]
0 0.04 0,08 0,12 0,16 0,20 0,24 0,28 Им Рис 5 Экспериментальные зависимости изменения давления на торцевой поверхности деформатора при внедрении его в сыпучую среду с различными скоростями 1 -У, = 0 3, 2-Уг= 1 0, 3 - У3 =1,40, 4 - V,, = 2 25 м/с,
5 - теоретическая зависимость
Для сравнения на рис 5 приведена теоретическая зависимость 5, характеризующая статическое предельное напряжение, определяемое кака = у11/гп2
Анализ кривых 1 - 4 (см рис 5) показывает, что зависимость о(|1) является сложной величина о зависит не только от И, но и от V, кроме того, из рис 5 видно, что на глубинах внедрения 0,1 - 0,14 м углы наклона кривых резко возрастают Это характеризует критическую глубину внедрения, известную из механики грунтов, появление которой связано с изменением физико-механических свойств сыпучей среды Для математического описания этого явления каждый из участков айв аппроксимируем прямой линией (рис 6) Тогда зависимость Ьота предстанет в виде [8]
где Г = <р) ф - угол наклона участка а ломанной коси И а - текущее зна-
чение давления, соответствующее заглублению - функция зависимости
Гг. г-,_
(47)
а На участке [К-\у(ст)] = 0 прио<о5, а на участке 0<м(о)<1 приа<ст5,где
а$ - критическое напряжение на торце ножа, при котором изменяется интенсивность возрастания напряжения с его углублением в среду.
Рис. 6. Аппроксимация экспериментальной кривой 1 давления ломаной линией 2
Зная зависимость о = Г(Ь), определим функцию из (47):
(48)
при где - угол наклона участка ломан-
ной (см. рис. 6). Подставляя (48) в (47), получим:
Ь = Ео
' Е'-ЕГ, а,
1 +--I—'
Е ^ а
(49)
Математическая обработка результатов экспериментального исследования на тензометрических ножах позволила установить фактические значения параметров в зависимости от скорости движения деформатора в диапазоне исследуемых скоростей (0,1 + 3,0 м/с). Анализ характера изменения скорости и перемещения при начальных скоростях внедрения \/0 = 0; 1,5; 2,2; 3,0 м/с И показывает, что процесс внедрения идет с переменной скоростью и может быть разделен на три этапа: первый связан со свободным падением, когда деформатор, не встречая сопротивления, движется равноускоренно и даже при встрече с сыпучей средой на определенном участке его скорость продолжает увеличиваться, так как сопротивление в верхнем слое среды незначительно; на втором - скорость внедрения де-форматора начинает постепенно падать, так как с заглублением повышается сопротивление внедрению; на третьем этапе деформатор резко замедляет движение
и быстро останавливается. Три этапа наблюдаются и на осциллографических кривых, характеризующих изменение давления на всех четырех датчиках ножа, измеряющих торцевое давление (рис 7). Ы0,м а 10^Па V, м/с
30 • 10
27 9 . 3,0
24 ■ 8 ■
21 ■ 25
7 ■
18- 6 ■ 2.0
15 ■ 5 ' 1 5
12- 4 '
9 . 3 1,0
6 ■ 2 • 05
2 . 1 ■
0 0 0
1
! 2\ ' !\
| { ' ! ! \
— | I \
! I 'Л
/ \ 3
'/У
N
\
5
ию
1 2 3 4 5 6 7 8 9 10 11 12 13
Рис. 7. Осциллограмма процесса внедрения деформатора' 1 - перемещения, 2 - скорости, 3 - торцевое давление, измеренные первым; 4 - то же, вторым, 5 - то же, третьим; 6 - то же, четвертым датчиками
По результатам проведенных экспериментов [12] построены объемные эпюры нагружения ножа в конечный момент внедрения на боковой поверхности и три эпюры давления на торцевой поверхности деформатора на различных этапах его внедрения (рис. 8), по которым установлено, что характер воздействия среды по длине режущей кромки зависит от заглубления деформатора и скорости его внедрения На небольших глубинах внедрения эпюра давления характеризуется кривой 1, согласно которой максимальное давление имеет место в центральной части, минимальное - по концам деформатора. На этом этапе движения частицы материала, находящиеся перед уплотненным ядром, будут вытесняться вниз и в боковые стороны от ножа. В центральной части эпюра давления спрямляется, что говорит о том, что в данной части действует плоское напряженное состояние. На глубине, близкой к критической, переходит во При этом образуется 2 полюса повышенного давления, которые смещаются к концам ножа Плоская характеристика изменения давления в центральной части примерно совпадает с давлением по концам ножа, так как условия передвижения частиц выравниваются. Сыпучая среда по виду эпюры начинает проявлять свойства пластической среды и напоминает эпюру давления процесса резания грунтов
Рис. 8. Объемная эпюра нагружения деформатора при его вертикальном внедрении в сыпучуюсреду: I, II, III - эпюры торцевого давления на разных глубинах;
IV - эпюра на боковой стенке ножа; 1 - 4 - датчики торцевого давления;
5 - 13 - датчики бокового давления
На закритических глубинах (свыше 0,1 0,15 м) максимальное давление смещается непосредственно на концы торцевой кромки ножа (эпюра III). В более плотных слоях на концах деформатора не происходит сдвига материала в сторону от концов, потому что там будут действовать, кроме давления вызывающего сдвиг материала вниз и в сторону от ножа, дополнительные напряжения среза (среды), что и вызывает концентрацию напряжений на этих участках. На основании анализа проведенных исследований автором получена эмпирическая формула для расчета сопротивления на торцевой поверхности внедряющегося в сыпучую среду дефор-матора. учитывающая концевые эффекты и скорость внедрения ножа [11]
где - длина участка действия краевого эффекта, остальные обозначения - см. формулу (46). Очевидно, что использование (50) позволит значительно утонить
расчет сопротивлений внедрению заборных рабочих органов ПТМ и погрузо-разфузочных машин
Известно, что движение деформатора в среде происходит с переменной скоростью. Обычно деформатор входит в среду с какой-то начальной скоростью внедрения Уо, а затем его движение гасится силами трения Г,р и силой сопротивления внедрению N (рис. 9).
Рис. 9. Расчетная схема внедрения деформатора- G - вес ножа, N и Т - силы, действующие перпендикулярно к торцевой и боковой поверхностям ножа; сгт и Об - соответствующие им давление среды; Ртр- сила трения, - скорость движения ножа
При неравномерном движении деформатора дифференциальное уравнение его движения имеет вид.
«Л.
М—=- + N + 2^ = 0. с!г
(51)
где - масса ножа, - вес ножа, - перемещение ножа, - время перемещения в среде. Исследования автора показали, что зависят от глубины погружения
поэтому уравнение движения ножа в среде примет вид:
Гг(ь)-к(ьУ1 л2 I м )"
I4 ё-
(52)
где % - ускорение свободного падения. Как показали экспериментальные исследования автора [7, 9], зависимость ^И) получается довольно сложной (рис. 10), она
зависит от в, V и меняющихся в процессе внедрения физико-механических свойств среды. Зависимость ^И) 1 представим в виде нескольких простых линейных силовых функций 2, аппроксимируя экспериментальную кривую (см. рис. 10), выделяя четыре характерных этапа внедрения: И-!, Иэ, Ит, Иг. Решая поэтапно дифференциальное уравнение (52), в диссертационной работе определены все искомые параметры внедрения: на всех четырех участках.
Рис. 10. Характеристика процесса внедрения деформатора в сыпучую среду: кривая 1 -экспериментальная кривая нагрузочной характеристики; ломаная 2 - ее аппроксимация; кривая 3 - график изменения скорости
Установлено, что боковое давление среды в основном зависит от глубины погружения и близко по величине к пассивному давлению (ое = Иу/т). Экспериментальное исследование процесса сдвига стенкой сыпучего клина проводилось на лабораторной установке, состоящей из бассейна, заполненного песком, тележки, на которой крепилась под различными углами стенка; датчиков давления, динамометрического звена КЭД-500 и привода. Киносъемкой по следам скольжения частиц установлена кривая скольжения при интенсивном сдвиге - кривая 1 (рис. 11), которая существенно отличается от кривой статического сдвига 2, полученной А Н. Зелениным На кинограмме у кривой 2 видны два участка линий скольжений: прямолинейный и криволинейный. Величина прямолинейного и кривизна криволинейного зависят от скорости сдвига; при ее увеличении угол наклона плоскости скольжения уменьшается, а кривизна криволинейного участка увеличивается.
у,м/с11М,н
2 3
Сопоставляя результаты экспериментального исследования процесса сдвига, полученные методами киносъемки и электротензометрии [6], сделан вывод о том, что давление сыпучей среды на сдвигаемой и движущейся стенке зависит от скорости ее перемещения Обнаруживается связь значений угла наклона плоскостей скольжения с величиной давления сыпучей среды на стенку, полностью подтверждая уравнение (1) Эксперименты также показывают, что при увеличении скорости сдвига направление плоскостей скольжения приближается к горизонтали На основании проведенных исследований предложена схема характеристики напряженного состояния сыпучей среды при интенсивном сдвиге (рис 12)
г в_в в а а в в в г £ в з в
А
/5 / —-—<
чч
"1
Рис 11 Кинограмма процесса сдвига сыпучего клина вертикальной стенкой при скорости
Рис 12 Диаграмма напряженного состояния сыпучей среды при скоростном сдвиге
При начальном сдвиге наклонной стенки под углом и (см рис 12) распределения нормальных напряжений происходит по овалу напряжений 1, который построен по уравнению [5, 6], решение которого для аа, имеет вид
Ьу
ст„ =—-(вш'а + т соБ'а) т"
(53)
Во время движения сыпучего клина нормальные напряжения на сдвигаемой стенке (кроме а = 90°) падали до величин, распределение которых характеризуется эллипсами 2 и 4, построенными на осях главных напряжений [6, 8] На основании полученных экспериментальных данных установлена зависимость коэффициента динамической подвижности сыпучей среды от скорости движения как де-
форматора, так и стенки, она оказалась одинаковой
V
п = аУ +в,
(54)
где числовые коэффициенты уравнения (54) оказались равными а = 0,35; в = 1, к = 0,25. Результатом данного исследования явились аналитические модели, характеризующие взаимодействие рабочих органов с сыпучим грузом. Аналогичные исследования были проведены и на связной среде.
Четвертая глава посвящена исследованию взаимодействия рабочих органов перегрузочных машин со связной средой [10, 29, 35], отличающейся по своим свойствам от сыпучей, что доказано результатами, полученными при исследовании как процесса внедрения, так и сдвига. Для изучения воздействия объемного напряженного состояния связной среды на внедряющийся деформатор использовались фунтовой канал (рис. 15), установка по внедрению деформатора и тензометрические ножи, описанные ранее. Эксперименты велись на влажном песке (с плотностью по ударнику ДОРНИИ С = 2 и влажностью \Л/ = 15%) при весе деформатора от 26 до 80 кг и начальной скорости внедрения \/0 = 0; 1,5; 2,0; 2,5; 3,0 м/с. Анализ характера изменения кривых давления, скорости и перемещения показывает, что процесс внедрения деформатора в связную среду также идет с переменной скоростью, но характер процесса значительно отличается от процесса внедрения деформатора в сыпучую среду.
На рис. 13 осциллограммы 1 -4 показывают изменения давления на торцевых датчиках давления, 5 - изменение глубины внедрения, а 6 - скорости. Процесс движения деформатора разделен на три характерных этапа: на первом (участок «а») наблюдается интенсивное увеличение давления на торцевой поверхности ножа, поэтому падение скорости на первом этапе наиболее значительно. При дальнейшем заглублении (участок «б») скорость падает почти равнозамедленно, хотя интенсивность увеличения давления на торцевой поверхности несколько уменьшается. Второй этап охватывает основную часть внедрения и заканчивается практически перед остановкой деформатора. Конечный участок движения «в» происходит при постоянном давлении вне зависимости от начальных условий движения (т.е.Л/о).
Сравнение значительно отличающихся осциллографических кривых давления на торце деформатора сыпучего (см. рис. 7) и связного груза (см. рис. 13) позволило сделать два основополагающих вывода: 1) если у сыпучих материалов на первом этапе внедрения ножа давление среды на торце деформатора незначительно, и оно интенсивно возрастает на следующем этапе, то у связных материалов давление возрастает интенсивно с самого начала внедрения, а затем интенсивность его увеличения снижается; 2) анализ результатов измерения бокового давления подтвердил ранее сделанный вывод [10, 12] о том, что боковое давление практически
не зависит от скорости движения деформатора, а по величине близко к пассивному давлению (а = Иу/т).
о с; •ч т я X Г\ I 5 ьг с ^^ а ^^^г } ^ 1 Д(5) V г ж ■ч. в а 5 Ф X
\ — ■^1(11) !,3(12)
•
4(14) . _:_ I ---
а I 6 !
Рис 13. Осцилограммы измерения давления на торцевой поверхности внедряющегося деформатора. 1 - концевой датчик давления, 2, 3 - промежуточные, 4 - центральный; 5 -датчик перемещения, 6 - датчик скорости
По результатам проведенных экспериментов получена объемная эпюра воздействия связной среды на внедряющийся деформатор и три эпюры давления на его торцевой поверхности на различных этапах его внедрения [30]. Эпюра на торцевой поверхности не меняется, как при внедрении деформатора в сыпучую среду, и сохраняет вид второй фазы внедрения в сыпучую среду на всем этапе внедрения (см. рис. 8), а это говорит о том, что пластические свойства связная среда в процессе внедрения не изменяет. На основе анализа теоретических и экспериментальных исследований автором получена эмпирическая формула для расчета сопротивления торцевому внедрению деформатора в связную среду, учитывающая влияние концевых эффектов:
(55)
где стт - давление на торце при плоском напряженном состоянии, Ок - максимальное давление на концевом участке, - коэффициент учитывающий неравномерность распределения нагрузки на участке концентрации Кроме того установлена зависимость сф) (рис. 14): кривая 1 показывает изменение давления среды на центральном торцевом датчике давления при \/о = 3 м/с ножа весом 44 кг; 2 - представляет собой ломаную линию, аппроксимирующую кривую 1 (участки а и в)
Для математического описания процесса внедрения каждый из участков аив представим прямой линией Тогда зависимость И от 0 будет
Ь = а-Е[1-со(о)], (56)
где - угол наклона ломаной на участке к оси
где - критическое напряжение связной среды, при котором интенсивность увеличения напряжений с дальнейшим заглублением падает, X = 1 - Е'/Е,, где Е' = (90° - У) У — угол наклона ломанной на участке в Подставляя значения о(о)и X в (56), получим
Математическая обработка результатов экспериментального исследования на тензометрическом ноже позволила установить фактические значения параметров ст3, ат, (риув зависимости от скорости движения деформатора в диапазоне исследуемых скоростей (0,1 - 3 0 м/с) [30]
Исследование процесса сдвига стенкой связного клина было проведено на специально разработанном для этих исследований грунтовом канале 1 (рис 15) жесткой конструкции длиной 9 м, шириной 1,8 м и глубиной 1,2 м Тележка 2 на которой под разными углами о = 30", 45°, 60°, 75° и 90° крепился деформатор (стенка) В = 0,24 и 0,4 м, приводилась в движение лебедкой 3 с V = 0,17 0,35, 0 7 и 1,5 м/с Исследования проводились при заглублении стенки 1л = 0,1, 0,15 0,20, 0,25, 0 30м на влажном (С = ^ей^е 15%) с использованием методов киносъемки и тензометрии
Физическая картина процесса сдвига стенкой связного клина при различных углах ее наклона дается в сравнении с исследованиями А Н Зеленина и Ратье и принятыми в этих исследованиях теоретическими моделями (рис. 16) Во всех случаях (Эь В1, и ст) перемещение клина по Зеленину происходит в направлении движения стенки В связи с тем, что скорость сдвига была небольшая (0,03 - 0,05 м/с) -близкая к статическим условиям, а деформатор протягивался не более 0,1 м, в работе Зеленина не успевала сформироваться истинная картина сдвига Несовершенными были также методы исследования, кроме того, киносъемка не использовалась Им установлено, что при срезании стружки в «лоб» вертикальной стенкой образование тела скольжения идет не на всю глубину Плоскость скольжения берет начало не от режущей кромки, а несколько выше ее чем меньше угол а, тем дальше от режущей кромки образуется плоскость скольжения
Э| в с-
Рис 16 Физическая картмна сдвига стенкой связного клина при различных углах ее наклона а, в,, с, - по А Н Зеленину, а2 в2 с2 - по теоретическим моделям А Н Зеленина, - по результатам экспериментов автора [12. 13]
Кроме того, в теоретических расчетах А Н Зелениным и др был ошибочно принят сдвигаемый клин углом у = 38 (рис 16 а2), и, как следствие, в качестве расчетных схем, применяемых для характеристики и расчета сопротивлений резанию грунтов, были некорректно приняты схемы а2, в2, Сг (см рис 16) Вот почему процесс резания оказался приведенным к движению весомых клиньев по плоскостям
скольжения аг, Вг или ножу - Сг- Анализ полученных кинограмм позволил установить, что при сдвиге вертикальной стенки перед деформатором по всей глубине его погружения образуется уплотненное ядро в виде обтекателя, которое само начинает выполнять роль режущего органа. При надвигании стенки образуются две напряженные зоны: верхняя I и нижняя II (рис. 16 аз). В верхней зоне, расположенной выше уплотненного ядра, происходит сдвиг связной среды, внешне напоминающий клин, описанный АН. Зелениным, но развернутый в противоположную сторону. Наблюдается перемещение клина по наклонной плоскости с углом наклона который является и углом верхней плоскости уплотненного ядра - обтекателя. Экспериментальными исследованиями было также доказано, что угол наклона плоскости скольжения клина р при увеличении скорости уменьшается. Аналогичная картина наблюдается и на углах наклона стенки а = 55° + 60° (рис. 16 Вз). И лишь при а = 30° физические картины, полученные А.Н. Зелениным, и результаты настоящей работы совпадают.
Рис. 17. Зависимость напряжений связной среды на сдвигаемой стенке от скорости ее сдвига: 1,2,3,4 -показания датчиков №№ 1 -4
Экспериментальное исследование процесса сдвига стенкой связного клина показало, что характер изменения напряжений согласуется с физической картиной процесса, полученной с помощью киносъемки. Зависимость напряжений от скорости характеризуется показаниями датчиков (рис. 17), установленных на глубинах 0,2м; 0,15; 0,10; 0,05 м. Рост давления на датчиках 3 и 4, расположенных в поверхностных слоях, при скоростях практически прекращается, что соответствует глубинам 0,025 - 0,075 м (см. рис. 17). Стабилизаи
|Л Н0М811ОИИП давления на РОС НАЦИОНАЛЬНАЯ БИБЛИОТЕКА С Петербург
О» МО «п •
.........
датчике №3 (глубина 0,15 м) происходит при V= 1,0-1,5 м/с, а на датчике №4 (глубине 0,20 м) не наблюдается. Напряжения на рабочей стороне сдвигаемой стенке зависят во всех точках от <j(V, h) и значительно превышают пассивное давление среды [13]. Для учета влияние скорости движения на напряженное состояние связной среды в работе [13] введен коэффициент «динамической» подвижности материала md = m", где n = f(V):
n = a VK + в. (58)
Для исследуемого материала (влажного песка W = 15% и С = 2) коэффициенты в (58) оказались равными: а =1,86, в = 1 и к = 0,0835.
Полученные модели, характеризующие динамическое взаимодействие элементарных рабочих органов с сыпучей и связной средой, были использованы при исследовании и расчете грейферного заборного органа.
В пятой главе представлено научное обобщение исследований процесса зачерпывания насыпного груза двухканатным грейфером. Исследование процесса заполнения грейфера и сопротивлений зачерпыванию осуществлено на экспериментальной установке, состоящей из грейфера, бассейна и вспомогательного оборудования [3, 4], Модель грейфера проекта №2587 ЦПКТБ МРФ имеет коэффициент геометрического подобия = 5 при сохранении подобия процессов деформации сыпучего фуза в модели и натуре. Исследования были проведены на сухом песке при кратности полиспаста от 2 до 6 и скоростях замыкающего каната от 0,01 до 2,0 м/с. Результаты исследования процесса зачерпывания грейфером подвергались статистической обработке. Движение материала внутри цветной клетки грейфера разделено на три фазы [4]. Первая начинается с того момента, когда внедрившиеся в материал челюсти начинают стягиваться замыкающим канатом. Установлено, что в результате сдвига материала образуется клин сыпучего тела (призма волочения), который, непрерывно увеличиваясь, перемещается по линиям скольжения в направлении наименьшего сопротивления внутрь грейфера (рис. 18 а).
Движение сыпучего клина по днищу грейфера в глубь препятствует большое сопротивление до тех пор, пока наблюдается условие - угол
наклона днища; <|>1 •- угол внешнего трения: ч' - угол скольжения сыпучего клина; ф -угол внутреннего трения. Когда это условие нарушается, наступает вторая фаза заполнения, в которой призма волочения начинает смещаться по днищу грейфера в глубь челюсти (рис. 18 6) интенсивно заполняя грейфер. С момента начала взаимодействия надвигающихся потоков, заполняющих грейфер, начинается 3-я фаза зачерпывания (рис. 18 в), фаза выпирания Для нее характерно сильное сжатие сы-
пучего материала в нижних слоях и интенсивное перемещение сыпучего груза снизу вверх по радиальным направлениям в центральной части грейфера, так как перемещению по днищу всей массы, находящейся в контуре грейфера, препятствуют большие сопротивления
Рис 18 Три фазы заполнения грейфера а - образование призмы волочения, б - смещение призмы по дчищу, в - выпирания надвигающихся потоков
Кино- и фотосъемка дали возможность получить картину движения материала только в районе боковой стенки Для изучения внутрислоевых процессов, происходящих в грейфере, было произведено исследование процесса зачерпывания во всех трех фазах методом затвердевания (с помощью парафинирования) деформированной цветной клетки Результаты данного эксперимента подтверждают общую картину процесса заполнения грейфера, полученную фото- и киносъемкой Исследование процесса зачерпывания грейфером сыпучего груза методом электротензометрии проводилось на модели грейфера с помощью датчиков давления, установленных на днище и внешних и внутренних боковых стенках грейфера в 30 точках при 10-ти кратной повторяемости [2, 3] Результаты измерения давления обрабатывались статистическими методами Полученные осциллограммы позволили построить объемные эпюры давления насыпного груза на днище и стенки грейфера в любой момент процесса, как функцию от угла зачерпывания Эпюры для конечной фазы зачерпывания (в момент смыкания челюстей) приведены на рис 19 Анализ результатов экспериментального исследования показал, что на характер внутри-слоевых процессов, происходящих при заполнении материалом грейфера, оказывает существенное влияние скорость зачерпывания
Рис 19 Объемная эпюра давления сыпучей среды на челюсть грейфера в конечный момент зачерпывания
С ее уменьшением наблюдается более интенсивное внедрение челюстей в груз, кривые зачерпывания становятся более глубокими, особенно в начальной фазе заполнения Количество зачерпнутого материала с увеличением скорости уменьшается Обнаружена также зависимость сопротивлений зачерпыванию от скорости внедрения челюстей в сыпучую среду, чем можно объяснить изменение характера процесса заполнения грейфера и количества зачерпнутого материала при варьировании скорости зачерпывания Исследованиями автора [1, 3] установлено 1) значительное расхождение экспериментальных результатов автора и теоретических расчетов сопротивлений, возникающих в процессе зачерпывания (Б А Таубера и Р Л Зенкова), определяемых на основе положений статики сыпучей среды, 2) доказано, что результаты исследования процессов внедрения деформаторов (ножа и стенки) в сыпучую и связную среды полностью применимы к процессу грейфирования, а, следовательно, их можно применять и при расчете ножевых, ковшовых, скребковых, винтовых и других рабочих органов перегрузочных машин, 3) уточнены формулы для расчета сопротивлений при вертикальном внедрении грейфера в сыпучую и связную среду, что позволило учесть начальную скорость внедрения (высоту броска или скорость его опускания), 4) составлено и решено дифференциальное уравнение вертикального внедрения грейфера в насыпной груз, которое учитывает влияние скорости его движения в среде и изменение свойств среды с глубиной погружения челюсти, 5) предложены формулы расчета
сопротивлений смыканию челюстей грейфера, которые позволяют уточнить расчет сил сопротивления, действующих на челюсти грейфера, так как они учитывают влияние скорости грейфирования на меняющиеся в процессе деформирования свойства насыпных грузов [1 - 3], что позволило уточнить: а) расчет зачерпывающей способности грейфера как для сыпучих, так и связных грузов; б) влияние присоединяемой массы груза на общее сопротивление зачерпыванию; 6) произведено уточнение аналитических методов расчета грейферов: проектного БА Таубера и проверочного Р.Л. Зенкова, благодаря учету влияния на процесс зачерпывания: а) скорости опускания грейфера; б) скорости зачерпывания; в) изменения сил сопротивления внедрению грейфера в сыпучий и связный грузы и присоединяемой массы груза.
С целью расширения области применения результатов данного исследования грейферных механизмов, они были адаптированы и на другие заборные органы перегрузочных машин [21 -23, 31, 32].
В шестой главе произведено исследование физической картины процесса зачерпывания насыпных, слежавшихся грузов многоковшовым рабочим органом для получения математической зависимости количества зачерпнутого материала от угла поворота ковша и сопротивления зачерпыванию ковшовым рабочим органом. Установлено, что переменная масса ковша (с грузом) определяется уравнением [32]:
М = М + тгр-1/Т3, (59)
где М - собственная масса ковша, тгр - присоединяемая масса груза, Т3 - время зачерпывания, - текущее время. Вращение ковша с учетом горизонтального движения представлено системой с двумя степенями свободы. За обобщенные координаты горизонтальное перемещение Э и угол поворота ковша <р. Для описания движения используем уравнение Лангранжа II рода [32].
(60)
(61)
где Qs - сила, препятствующая горизонтальному перемещению, Q,p - крутящий момент; Т - кинетическая энергия абсолютного движения. Решение системы (61) для установившегося стандартного режима при S = const, S = 0, <р = 0, приводит к вычислению крутящего момента:
и горизонтального напорного усилия:
=Рхсо5<р-Ру5т(р + — (У + саЯ-соэф)- М + ■а^Л-Бтф, (63)
где Я - радиус ковша; У = со = ф; Рх, Ру - касательная и нормальная составляющие напорного усилия на режущей кромке ковша. Решения (62) и (63) позволяют определить оптимальные соотношения конструкции и режима работы ковша на основе учета влияния на процесс зачерпывания переменной массы и деформационных свойств среды.
Используя специально разработанную конструкцию тензометрического ножа [23], произведено экспериментальное исследование сопротивлений резанию уплотненного рядового кускового груза (а = 0,002 0,08 м) плоским ножом при углах резания а = 30°, 45°, 60°, 90° на глубинах резания 0,05; 0,1; 0,15 и 0,2 м. Получены зависимости усилия резания и усилия отпора от угла резания при толщине срезаемой стружки 0,1 м (рис. 20), где кривая 1 имеет три характерных участка на первом установлено, что оценочное сопротивление резанию равно:
где - сопротивление резанию передней кромки ножа; - вес тела скольжения;
- угол внешнего трения. Процесс резания рассмотрен с позиций анализа: как процесс резания на кромке и как движение тела скольжения весом по наклонной плоскости. С увеличением а возрастают значения и первого и второго члена уравнения (64), в результате которого происходит прогрессирующее увеличение Р„. При значении нарушается условие возможного движения по на-
клонной плоскости. Установлено, что в этот момент меняется физическая картина резания: при дальнейшем увеличении угла резания угол скольжения практически не меняется.
Установлено, что наибольшее значение отпора Ы„.достигает при исследуемых глубинах наклона ножа при а = 551" - 70°. Это объясняется улучшением условий заклинивания кусков между ножевой кромкой и массивом груза. Кроме того, при углах наклона а = 60° - 90° выявлено врезание ножевой кромки в наклонную плоскость куска. Установлено также, что в этом случае условия чистого резания еще больше ухудшаются, поэтому заклинивающий кусок груза или вминается в груз, или сдвига-
(64)
ется вместе с ножом по направлению движения Выемка, остающаяся после прохождения ножа и ковша, подтверждает данные предположения Как показали результаты экспериментальных исследований, усилия отпора N при а = 50° -70" в полтора раза превышают усилие резания - Р, что необходимо учитывать при силовом расчете ковшей, отвалов, скребков и других заборных органов перегрузочных машин
Р, ьгс
175 150 125 100 75 50 25
/
2 у Y ,
/ "а
а,1р
о 18 36 54 72 80 Рис 20 'íaRHrMMnCTb vrwnL/cl резэнмв Р и угмпиа ОгГ'Ора N ОТ уг"3 рвЭЗ"1ЛО при толщине срезаемой стружки 0,1 м кривая 1 - Р(а), кривая 2 - N(a)
В связи с тем, что заборные органы перегрузочных машин работают с кусковыми грузами, имеющими различные фракции, были проведены экспериментально-теоретические исследования влияния фракционного состава насыпного груза на сопротивление внедрению периметра шириной 0,4 м на специально отсортированном глиноземе, предварительно уплотненном до начального сопротивления сдвигу С0 = 300 кг/мг, = 1,5%, имеющем фракционный состав зернистый, мелкокусковой и среднекусковой (в диапазоне от0,002 до 0 12 м) Установлена зависимость между сопротивлением внедрению ковша Рв„ с параметрами ковша, груза и глубиной внедрения
\2'
Рин =0,153
ак.е-2.25т_6<гт(а-65)
2,25-0,05Н
2,5
Кф.Су,
(65)
где а - типичный размер куска, кит- коэффициенты, учитывающие влияние на сопротивление размера типичного куска; Су - коэффициент, учитывающий степень уплотнения груза; Кф - коэффициент формы ковша. Анализ характера измерения Рвн и N по ширине внедряющегося ножа показывает, что наибольшие усилия возникают на краях ножа, где производится отрыв материала от массива (на 25 - 30% выше среднего усилия), а толщина срезаемой стружки (глубина внедрения) должна быть не менее (2,5 -5- 3)а, что уменьшает энергозатраты на объем перерабатываемого груза.
Наряду с теоретическими, в работе произведено экспериментальное исследование процесса внедрения в насыпной кусковой груз периметра с тензометриче-скими зубьями [37], имеющими клиновую и пирамидальную форму, при надвигании периметра со скоростью в уплотненный глинозем (с размером кусков а
= 0,05 -5- 0,08 м) с шагом установки зубьев I = 0,09: 0,15; 0,25; 0,37 м при заглублении на 0,1 и 0,2 м. Исследования велись при десятикратной повторяемости каждого вида эксперимента, полученные результаты подвергались статистической обработке. При этом установлено: 1) крайние зубья нагружены больше чем средние на 20 25%; 2) величина нагрузки, действующей на зуб, не зависит от количества зубьев на периметре, но зависит от размера куска и его ориентации при попадании на зуб; 3) величина нагрузки, действующая на зуб в 2 - 2,5 раза может превышать при резании среднюю нагрузку на зуб, при этом вертикальная составляющая усилия резания обычно действует снизу вверх, а не наоборот, как принимается в работах Г. В. Родионова и А.Д. Костылева; 4) усилие резания Р и отпора N являются величинами одного порядка; 5) удельные нагрузки на ножевой части периметра между зубьями (при рациональном шаге их установки) равны удельным нагрузкам при резании плоским ножом неуплотненного материала при прочих равных условиях. В связи с этим установлена целесообразность применения зубьев
Рупл^н+Х^. (66)
где - сопротивление резанию плоским ножом уплотненного кускового груза, - тоже, неуплотненного материала, а Рз^ - сопротивление внедрению 1 зуба. Что
касается смерзшихся грузов, то в диссертации доказано, что процессы разрушения смерзшихся грузов рабочими органами следует описывать двумя типами нагрузочных характеристик (рис. 21).
а) N
б)
N Nh,
3' b
Рис. 21. Типы нагрузочных характеристик разрушения смерзшихся грузов: а - одностадийное разрушение; б - двухстадийное разрушение
Простейшая (рис 21 а) соответствует контактному процессу, состоящему из двух стадий - стадии нагружения «01» и стадии разгрузки «13». Упругое взаимодействие N = § • Ь продолжается до некоторой критической нагрузки N5, при которой происходит хрупкое разрушение смерзшегося груза, и нагрузка на деформатор мгновенно падает до нуля. Здесь И -деформация, § - жесткость упругой системы
При сложном нагружении (рис. 21 б) наблюдается" стадия нагрузки «01'», течение материала «1'2'» и разгрузки «2'3'». В отличие от первого случая, во втором после разрушения (участок «01'») на стадии течения, сопротивление внедрению продолжает возрастать, что объясняется ухудшением условий истечения разрушенного материала из-под внедряющегося рабочего органа при разрушении хрупких материалов и возрастанием площади контакта при взаимодействии с пластичными материалами рабочего органа
Наряду с ковшовыми, в диссертации изучен процесс внедрения вибромолота в материал, уравнение неравномерного движения которого имеет вид (рис. 22)"
где М - масса ударных и ударяемых частей, h и t - перемещение деформатора и время его движения, С - жесткость пружин 3, А - амплитуда колебания вибромолота G,,p - вес пригруза (вибратора) 4 Принимая допущения' С А = const, G„p = const и пренебрегая силой трения FTp, определены все параметры внедрения вибромоло-
+ C-A + Gnn = N + 2F,
тр>
(67)
та I
'та*
Рис. 22. Расчетная схема внедрения вибромолота в материал 1 - ударяемая часть - деформатор; 2 - ударная масса, 3 - пружины, 4 - вибратор, 5 - дебаланс
Аналогично, решению стадии одноактного разрушения [25] рассмотрена задача многостадийного разрушения, характеристика решения которой приведена на рис. 21 б Для изучения процесса внедрения виброударного рушителя в смерзшийся глинозем и испытаний различных конструкций рушителей разработана экспериментальная виброударная установка [25], которая позволила варьировать величину возмущающей силы, при изменении, а) частоты колебания наголовника; б) эксцентриситета, в) собственной частоты колебания ударной системы (подбором пружин различной жесткости). С шестикратной повторяемостью каждого вида эксперимента производилось виброударное внедрение семи типов виброрушителей при температуре в смерзшийся рядовой глинозем (с размером типичного куска а
= 0,1 м) влажностью УУ = 20%, предварительно уплотненного ручной трамбовкой (100 ударов на 1мг) и увлажненного с суточной выдержкой [24].
Решение задачи позволило сделать следующие заключения: 1) зависимость нагрузочной характеристики носит стадийный характер; 2) установлено
влияние формы режущей кромки (формы зубьев и их шага) и формы рушителя (плоской, криволинейной, угловой) на процесс внедрения рушителя, 3) установлено, что при определенном заглублении зубьев теряется эффект зубчатой кромки, вследствие выравнивания общего сопротивления внедрению, а рациональная глубина погружения рушителя не превышает 20 40% высоты зубчатой кромки, 4) построена нагрузочная характеристика рушителя, состоящая из двух стадий - нагру-
жения и разгрузки, что соответствует первому расчетному случаю (рис 21 а) 5) сопоставление результатов теоретического расчета параметров внедрения с экспериментальными подтвердило правильность заложенных теоретических предпосылок
В седьмой главе представлены разработки инженерных методов проектного расчета рабочих органов перегрузочных машин, перерабатывающих насыпные грузы и их внедрение в промышленность Методика расчета сопротивлений зачерпыванию грейфером принята ЦКТБ ММФ г Одесса в 1972 г, а инженерная методика расчета грейфера - в 1990 г в Астраханском речном порту Известно, что существуют два этапа расчета грейфера - проектный и проверочный При проектном расчете на основании исходных данных определяется собственный вес грейфера, а при проверочном - по принятым конструктивным данным грейфера и собственному весу грейфера - его зачерпывающая способность
В диссертации разработана уточненная методика проверочного расчета грейфера, в которой, кроме уточнения расчета сопротивлений зачерпыванию, приводится новое решение автора по определению начальной глубины погружения грейфера [18] Расчет на ЭВМ [18] по программе составленной на основании приведенного алгоритма, позволяет определить возможность применения имеющегося грейфера с максимальной производительностью, в зависимости от зачерпываемого груза Используя экспериментальные результаты Б А. Таубера, разработана инженерная методика расчета грейфера Представив зависимость веса грейфера Grp от приведенной кратности полиспаста ап в виде уравнения второго порядка (по виду кривой этой зависимости) составлена функциональная зависимость Grf> = f{a„)
Получены уравнения, позволяющие определить собственный вес грейфера для мелкосыпучих и среднекусковых грузов [17]
Q,p=(39a2n-549a„+2575)Kv. (68)
где Км - коэффициент, учитывающий масштабный фактор Сравнение натурных и расчетных значений Q^ nQfp04, 0"эт и Qj^ac4, которые приведены в диссертационной работе для случаев использования уточненной методики дает хорошие результаты, относительная погрешность расчета находится в пределах 2,5 - 8,0%, а по инженерной -12,2 - 15,2%, что вполне допустимо для практических расчетов
Это дает основание рекомендовать уточненные методы расчета для проектирования новых грейферов, предназначенных для зачерпывания насыпных грузов и проверки существующих грейферов с целью рационального использования парка грейферов в зависимости от рода перегружаемого груза и скорости зачерпывания.
Теоретические и экспериментальные исследования автора послужили основой разработки инженерных методик расчета рабочих органов перегрузочных машин, перерабатывающих насыпные грузы и новых типов вагоноразгрузочных машин, предназначаемых для разгрузки насыпных грузов, поставляемых в крытых железнодорожных вагонах. Автором совместно с Астраханским филиалом Всесоюзного научно-исследовательского института бумаги разработаны вагоноразгрузочные машины: с дисковыми рушителями, с виброударным рушителем, элеваторно-бункерная и одноковшовая с боковой разгрузкой [20, 23, 26]. Все они в различное время были внедрены в производство с определенным экономическим эффектом, а вагоноразгрузочная ковшовая машина выпускалась мелкими сериями на Брянском машиностроительном заводе ирригационного оборудования.
Заключение
Диссертация является законченной научно-исследовательской работой, в которой решена крупная научно-техническая проблема по созданию теоретических основ проектирования заборных органов перегрузочных машин, взаимодействующих с насыпными грузами, и разработаны новые и уточнены существующие методы расчета рабочих органов перегрузочных машин, перерабатывающих практически всю гамму насыпных грузов, от легкосыпучих до смерзающихся.
Основные научные и практические результаты, полученные в процессе исследований, заключаются в следующем'
1. Разработана математическая модель характеристики напряженно-деформируемого состояния сыпучей среды, которая с помощью введенных в работе понятий коэффициента динамической подвижности материала и динамического коэффициента внутреннего трения позволяет учесть все сложные процессы, происходящие в деформируемой среде, вызывающие изменения физико-механических свойств сыпучей среды при воздействии с ней движущегося деформатора Установлена эмпирическая зависимость от скорости деформации среды ыв диапазоне V = 0,01 * 3,0 м/с. Полученные результаты позволяют описать любое стагти стическое и динамическое напряженное состояние сыпучей среды, в том числе и
тогда, когда сыпучая среда принимает свойства металла либо жидкости.
2. Разработана математическая модель характеристики напряженно-деформированного состояния связной среды. С помощью введенного в работе понятия условного сопротивления начальному сдвигу учтены процессы, которые происходят в деформируемой среде при описании предельного напряженного состояния среды в зависимости от скорости ее деформации в неограниченном диапазоне. Установлено, что коэффициент внутреннего трения в связной среде при существующих рабочих скоростях практически не изменяется, так как наличие влаги, выполняющей роль смазки между движущимися частицами, не позволяет увеличиваться коэффициенту трения.
3. Разработана математическая модель напряженно-деформированного состояния связной среды в любой точке и в любой момент времени в процессе прямолинейного внедрения деформатора в полуплоскость с переменной скоростью. При известных начальных условиях: весе и геометрических параметрах деформа-тора, начальной скорости его внедрения и физико-механических свойствах среды определены форма границ выпучивания и граница движения среды, нормальные и касательные напряжения и скорость движения среды в любой точке деформированного пространства в любой момент процесса внедрения, а, в конечном счете -основные параметры внедрения: время и глубина внедрения деформатора.
4. Установлена сложная картина зависимости напряжений на торцевой поверхности ножа от скорости движения деформатора и величины заглубления, состоящая из четырех этапов внедрения. Получено аналитическое решение уравнения движения ножа в сыпучей среде при его вертикальном внедрении, что позволило значительно уточнить промежуточные и конечные параметры внедрения, так как в этом случае учет изменяющихся свойств деформированной среды происходит в полном объеме.
5. Экспериментальные исследования процесса внедрения деформатора в сыпучую среду и процесса сдвига стенкой сыпучего клина подтвердило предположение о том, что направление плоскостей скольжения деформируемой среды зависит от скорости движения деформатора. Результаты измерения давления на торцевой поверхности ножа при его внедрении в сыпучую среду и на рабочей стороне сдвигаемой стенки показали, что давление среды зависит не только от глубины погружения и угла наклона деформатора, но и от скорости его движения и оно аналитически связано с изменением угла наклона плоскостей скольжения (при внедрении и при сдвиге).
6. Впервые получена объемная эпюра воздействия сыпучей среды на вертикально внедряющийся деформатор. Установлено, что в зависимости от глубины погружения ножа неоднократно меняется картина распределения давления на торцевой поверхности деформатора. В конечной фазе внедрения наибольшие давления действуют по концам деформатора. Предложен расчет торцевого сопротивления внедрению, который учитывает влияние скорости деформации и концевых эффектов, и определенных границах - ширина рабочего органа менее 0,3 -г- 0,4 м, при которых учет концевых эффектов обязателен. Измерение давления среды на боковой поверхности деформатора показали, что оно практически не зависит от скорости его движения и по своей величине близко к пассивному давлению.
7. Экспериментальные исследования процесса внедрения деформатора в связную среду показали, что характер его движения отличается от процесса внедрения деформатора в сыпучую среду. Процесс движения деформатора в связной среде разделен на три этапа Первый этап характеризуется интенсивным увеличением давления на торцевой поверхности и падением скорости из-за значительного сопротивления среды; далее рост давления снижается, а скорость падает равноза-медленно - это основной участок движения. Конечный участок движения происходит почти при постоянном давлении, а само перемещение незначительно. Давление связной среды на боковые поверхности деформатора не зависит от скорости его внедрения, а по величине близко к пассивному давлению.
8. Исследование процесса сдвига стенкой связного клина позволило определить физическую картину процесса сдвига принципиально отличающуюся от принятой, полученной А.Н. Зелениным Установлено, что при больших углах наклона сдвигаемой стенки по всей глубине ее погружения образуется уплотненное ядро в виде обтекателя - клина, который сам начинает выполнять роль режущего органа Этот клин, находящийся в нижней части, начинает вытеснять вверх по ходу движения верхний клин, повернутый в противоположную сторону, который передвигается по верхней грани обтекателя как по наклонной плоскости. Подтвердилось предположение о том, что направление плоскостей скольжения и давление на стенке зависят от скорости надвигания стенки.
9. Получена общая картина движения сыпучей среды в процессе заполнения грейфера, где обнаружены три качественно различные фазы его заполнения и установлено полное представление о движении материала у ножа челюсти и вне контура грейфера. С помощью использования метода электротензометрии получены объемные эпюры давления сыпучего тела, заполняющего грейфер, на элементы
челюсти грейфера для различных фаз зачерпывания. Обнаружена зависимость сопротивлений, возникающих при заполнении грейфера от скорости внедрения челюстей в сыпучую среду. Доказано, что с ее уменьшением наблюдается более интенсивное внедрение челюстей в материал: кривые зачерпывания становятся более глубокими, особенно в начальной фазе, а количество зачерпнутого материала при этом увеличивается. Уточнены формулы расчета сопротивлений при внедрении грейфера в сыпучую и связную среду, что позволяет учесть, в конечном счете, влияние скорости на процесс зачерпывания.
10. На основании исследований, проведенных в пятой главе, используя основные положения проектного и проверочного расчетов грейфера Б.А. Таубера, составлены алгоритмы для определения собственного веса грейфера и его зачерпывающей способности на ЭВМ, которые позволяют в достаточной мере учесть как конструктивные особенности грейфера, так и характер процесса грейфирования за счет уточнения расчета сопротивлений, возникающих в процессе зачерпывания, учитывающих изменение физико-механических свойств груза в процессе динамического воздействия грейфера и влияние присоединяемой массы груза. Расчеты на ЭВМ позволили определить рациональное значение собственного веса грейфера и его зачерпывающей способности для всей гаммы насыпных грузов: сыпучих, связных и кусковых.
Разработана инженерная методика расчета грейфера, которая в зависимости от кратности полиспаста и физико-механических характеристик груза позволяет определить собственный вес грейфера и его зачерпывающую способность, которая использовалась в производственных условиях.
11 Результаты исследования процесса виброударного внедрения деформато-ра в смерзшийся груз, с использованием дифференциального уравнения движения вибромолота и нагрузочных характеристик разрушения среды, позволило определить для различных материалов (в зависимости от количества стадий разрушения) основные параметры внедрения деформатора. Экспериментальные исследования процесса виброударного внедрения шести типов рушителей различных типов и видов режущей кромки [24] позволило определить их основные параметры внедрения: глубину внедрения за одни удар и максимальную глубину погружения в груз, число ударов для достижения этой глубины время внедрения, среднее заглубление за удар и среднюю и максимальную силы удара для каждого рабочего органа [25] Для этих рушителей получены нагрузочные характеристики разрушения смерзшегося глинозема, с помощью которых можно определить рациональную кон-
струкцию как типа рушителя, так и режущей кромки, обеспечивающих максимальную производительность виброударного рушителя. Сопоставление теоретических расчетов функции внедрения виброударного рушителя с полученными экспериментальными измерениями показало хорошую сходимость результатов, что подтверждает правильность заложенных ранее теоретических предпосылок [25].
12. Используя результаты исследования, проведенные в шестой главе, разработана методика расчета ковшовых заборных органов, шнековых и дисковых руши-телей и рекомендации к расчету виброударных органов. На основании этих расчетов при участии автора Астраханским филиалом Всесоюзного научно-исследовательского института бумаги изготовлены и внедрены на Астраханском целлюлозно-картонном комбинате вагоноразгрузочные машины: с дисковыми и лопастными рушителями [20], с виброударным рушителем [25], одноковшовая вагоно-разгрузочная машина с боковой выгрузкой ковша и элеваторно-бункерная вагоноразгрузочная машина [23]. Одноковшовая машина широко внедрена в целлюлозно-бумажной промышленности и изготавливалась мелкими сериями на Брянском заводе ирригационного машиностроения.
Таким образом, результаты и рекомендации, полученные на основе проведенных исследований, могут быть использованы при создании, рационализации и интенсификации работы заборных органов перегрузочных машин, взаимодействующих с насыпными грузами. Материалы диссертации использовались в учебном процессе в курсе лекций по ПТМ, ПГМ, ПМНТ, «Строительные и дорожные машины», в курсовом и дипломном проектировании при подготовке инженеров по специальностям 150900. 290300,170600.
Основное содержание диссертации опубликовано в следующих работах:
1. Филяков А.Б. К вопросу об определении зачерпывающей способности грейфера // Изв. вузов. Машиностроение. -1972, №9. - С. 141 - 145.
2. Филяков А.Б. Исследование напряженного состояния сыпучей среды при черпании фейфером//ЦНИИТЭСТРОЙМАШ.-1971, №2.-С. 15-21.
3. Филяков АБ. Экспериментальное исследование сопротивлений грейфиро-ванию // Труды XX юбилейной научной конференции АТИРПиХ: Сб. докл. - Астрахань, 1970. - С. 130 - 135.
4. Филяков А.Б., Медведик СИ. Исследование процесса заполнения грейфера // Труды XX юбилейной научной конференции АТИРПиХ: Сб. докл. - Астрахань,
1970.-С. 123-129.
5. Филяков АБ. О характеристике динамического напряженного состояния сыпучей среды // СИФЦНИИСстроймаш, ДР №30-СД-82. - 10 с.
6. Филяков А.Б. О динамическом напряженном состоянии сыпучей среды // Изв. вузов. Пищевая технология. - 1972, №2. - С. 146-150.
7. Филяков АБ. Исследование напряженного состояния сыпучей среды при интенсивном внедрении в нее деформатора // Изв. вузов. Строительство и архитекту-ра.-1974, №9.-С. 140-144.
8. Филяков А.Б. Исследование процесса внедрения деформатора в сыпучую среду при установившемся движении // Изв. вузов. Строительство и архитектура. -1981, №11. -С. 135-138.
9. Филяков А Б. Исследование процесса внедрения деформатора в сыпучую среду с переменной скоростью // Изв. вузов. Строительство и архитектура - 1981, №5. - С. 133-138.
10. Филяков АБ., Славин Б М Исследование динамического напряженного состояния связной среды // Вестник Астраханского технического университета — Астрахань, 1994, №1.- С 230-232.
11. Филяков АБ., Коган В.В., Выходцев В.Н. Распределение давлений на поверхности деформатора при его внедрении в сыпучую среду // Сб. Горные, строительные и мелиоративные машины: Изд. Техника. - Киев, 1994, №44. - С. 19-24.
12 Филяков АБ. Характеристика напряженного состояния деформированной связной среды // Современные проблемы механики грунтов и охраны геологической среды. Труды школы-семинара РГУ. - Ростов-на-Дону, 1998. - С. 53 - 54.
13. Филяков А.Б., Славин Б.М., Петрушенко НА Расчет сопротивления движению рабочих органов землеройных и дорожных машин. Астраханский межотраслевой территориальный центр научно-техн. информ. -Астрахань, 1984. - Вып. 145. -С. 1 - 6
14 Филяков А.Б. К определению напряженного и деформированного состояния сыпучей среды при внедрении в нее деформатора // Сб Горные, строительные и мелиоративные машины: Изд. Техника - Киев, 1989. - Вып. 42. - С. 45 - 50.
15. Филяков А.Б., Славин Б.М , Шабанов В.И. Влияние переменной массы материала на процесс зачерпывания грейфером // Всесоюзная научно-техническая конференция «Механизация и автоматизация переместительных работ на предприятиях лесного комплекса». - М.( 1989.-С. 103-104.
16. Филяков А Б., Славин Б.М., Шабанов В.И. Расчет сил сопротивления при
зачерпывании грейфером связных грузов // Судостроение судоремонт: Сборник научных трудов Волжско-Камского межобластного правления ВНТО им. акад. А.Н. Крылова: Совет ВНТО Астрыбвтуза. - Астрахань, 1990. - С. 74 - 80.
17. Филяков А.Б., Славин Б.М. Разработка инженерного метода расчета канатных грейферов с применением ЭВМ // Проблемы качества и надежности машин. Сб. докл. республиканской научно-технической конференции. Часть 1. -Могилев, 1994. -С.62-64.
18. Филяков А.Б., Славин Б.М. Определение начального заглубления грейфера в насыпной груз // Сб. Горные, строительные и мелиоративные машины: Изд. Техника. - Киев, 1986.-Вып. 39.-С. 110-113.
19. Филяков А.Б. Исследование напряженного состояния связной среды при зачерпывании грейфером // Сб. Вестник Астраханского технического института рыбной промышленности и хозяйства. -Астрахань, 1993. - Вып. 1. - С. 226 - 229.
20. Филяков А.Б., Кудинов А.А. Исследование шнекового и дискового рушите-лей при выгрузке насыпных материалов // Механизация и автоматизация производства. - М., 1974, №8. - С. 27 - 29.
21. Филяков А.Б., Кудинов А.А. К расчету шнекового и дискового рушителей // Сб трудов III научной конференции Брянского технологического ин-та. Брянское областное правление НТО МАШПРОМ. - Брянск, 1974. - С. 59 - 67.
22. Филяков А.Б., Сабанцев ВА. Определение усилия резания слежавшихся кусковых грузов от глубины резания и угла наклона // Сб. трудов. Совершенствование технологии производства полуфабрикатов, бумаги и картона. ВНИИБ. - Ленинград, 1979.-С. 61-63.
23. Филяков А.Б., Стогов В.Н., Байбеков И.И. Элеваторно-бункерная вагоно-разгрузочная машина // Промышленный транспорт. - Изд. Транспорт. - М., 1981, №3.-С. 9-10.
24. Филяков А.Б., Зайкин О.А. Экспериментальное исследование процесса виброударного внедрения деформаторов различной формы в смерзшийся глинозем // Сб. краткие результаты научной деятельности АТИРПиХ. - Астрахань, 1990. -С. 197-199.
25. Филяков А.Б. Исследование процесса виброударного внедрения деформа-тора в смерзшийся груз // Изв. вузов. Строительство и архитектура - 1982. №12. -С. 120-123.
26. Филяков А.Б., Сорокин В.И. Виброударная вагоноразгрузочная машина // Механизация и автоматизация производства. - М., 1984. - С. 60 - 63.
27. Филяков А Б, Славин Б М. Экспериментальное исследование влияние зубьев и их параметров на сопротивление внедрению рабочего органа в кусковой груз // Вестник Атырауского ин-та нефти и газа. - Изд. АИНГ. - Атырау, 2004, №5. -С. 147-151.
28. Филяков А.Б., Андреева ЕА Характеристика напряженного состояния сыпучей среды // Вестник Астраханского технического института рыбной промышленности и хозяйства. - Астрахань, 1996.-С. 185-190.
29. Филяков А.Б., Шабанов В.И. Описание напряженного состояния связной среды при внедрении в нее деформатора // Материалы I международной научно-технической конференции «Современные проблемы геофизики, геологии, освоения, переработки и использования углеводородного сырья Казахстана». - Атырау, 2000.-С. 11-13.
30. Филяков А Б. Исследование объемного напряженного состояния связной среды на внедряющийся деформатор при неустановившемся движении // Международная научно-техническая конференция, посвященная 70-летию основания КГТУ. Часть III. - Калининград, 2000. - С. 146 -147.
31. Филяков А Б., Рыженко АН., Александров А В. Исследование влияния зубьев на сопротивление грейфированию при зачерпывании кусковых грузов // Международная научно-техническая конференция, посвященная 70-летию основания КГТУ. Часть III. - Калининград, 2000. - С. 150 -152.
32. Филяков А.Б.. Локтев В.И. Определение влияния присоединяемой массы среды на процесс зачерпывания ковшовым органом // Международная научно-техническая конференция, посвященная 70-летию основания КГТУ. Часть III. - Калининград, 2000.-С. 156-157.
33. Филяков А.Б.. Михайлов И.В. Обзор существующих методов расчета на прочность двухчелюстных грейферов // Материалы международной научно-технической конференции, посвященной 70-летию АГТУ. В 3-х томах. Т. 3. - Астрахань, 2001.-С. 156-157.
34. Филяков А Б К анализу характеристик напряженного состояния сыпучих и связных сред // Материалы международной научно-технической конференции, посвященной 70-летию АГТУ. В 3-х томах. Т. 3. - Астрахань, 2001. - С. 149 -151.
35 Филяков А Б . Славин Б М О характеристике напряженного состояния интенсивно деформируемой связной среды // Материалы международной научно-технической конференции, посвященной 70-летию АГТУ. В 3-х томах. Т. 3. - Астрахань, 2001 .-С. 154 - 156.
52 М 5 8 8 3
36. Филяков А Б О физической модели сыпучей среды // Вестник Астраханского государственного технического университета. - Астрахань 2004/1(20). - С. 252 -254.
37. Филяков А.Б. Исследование влияния зубьев и их параметров на сопротивление внедрению рабочего органа в кусковой груз // «Изв. вузов. Сев.-Кавк. регион. Техн. науки», приложение к №3. - Новочеркасск, 2004. - С. 14 -19.
38. Филяков А.Б. К определению напряженного и деформированного состояний связной среды при внедрении в нее деформатора // «Изв. вузов. Сев.-Кавк. регион. Техн. науки», приложение к №3. - Новочеркасск, 2004. - С. 2 - 8.
39. Филяков А.Б. О напряженном состоянии деформируемой связной среды // «Изв вузов. Сев.-Кавк. регион. Техн. науки», приложение к №3. - Новочеркасск, 2004.-С. 9-13.
40 Филяков А.Б. Взаимодействие рабочих органов перегрузочных машин с насыпными грузами. - Изд. АГТУ-Астрахань, 2004. -176 с.
Типография Астраханского государственного технического университета. Заказ №840. Тираж 100 экз. 16.11.04.
450
Оглавление автор диссертации — доктора технических наук Филяков, Александр Борисович
Условные обозначения
Введение
Глава 1. Состояние теории взаимодействия рабочих органов пе- 28 регрузочных машин с насыпными грузами
1.1. Классификация грузов, перерабатываемых перегрузочными 28 и подъемно-транспортными машинами
1.2. Классификация механических заборных органов перегру- 32 зочных машин, взаимодействующих с насыпными грузами
1.3. Методы исследования и расчета процессов резания и зачер- 34 пывания грунтов и насыпных грузов заборными органами
1.3.1. Основные положения механики грунтов и сыпучей среды
1.3.2. Расчет сопротивлений резанию грунтов и зачерпыванию на- 36 сыпных грузов перегрузочными рабочими органами
1.3.3. Влияние скорости зачерпывания на сопротивление внедре- 41 нию рабочих органов в насыпной груз и грунт
1.3.4. Влияние присоединяемой массы материала на процесс за- 44 черпывания
1.3.5. Экспериментальные методы исследования сил сопротивле- 45 ния внедрению рабочих органов в грунты и насыпные грузы
1.4. Процесс внедрения в насыпной груз ковшового и грейфер- 47 ного органов
1.5. Краткие выводы и постановка задач исследования
Глава 2. Основы динамической теории напряженного состояния деформируемых сред
2.1. Основные положения теории напряженного состояния де- 57 формируемых сред
2.2. Физическая модель двойственной структуры сыпучей среды
2.3. Математическая модель напряженного состояния деформи- 63 руемой сыпучей среды
2.4. Математическая модель напряженного состояния деформи- 73 руемой связной среды
2.5. Физико-механическая модель свойств связности и сыпуче- 77 сти деформируемых сред
2.6. Исходные предпосылки для разработки математической мо- 83 дели динамического состояния среды
2.7. Математическая модель динамического состояния среды
2.7.1. Уравнения динамического равновесия
2.7.2. Начальные условия уравнений движения
2.7.3. Форма границ выпучивания
2.7.4. Напряженное состояние среды у свободной границы
2.7.5. Граница линий скольжения среды
2.7.6. Преобразование уравнений динамического напряженного 95 состояния связной среды
2.7.7. Удовлетворение граничных условий уравнений движения
2.7.8. Исследование процесса внедрения деформатора в сыпучую 102 среду
2.8. Выводы по второй главе
Глава 3. Исследование напряженного состояния сыпучей среды при взаимодействии ее с деформаторами
3.1. Анализ существующих исследований
3.2. Теоретическое исследование процесса интенсивного вне- 112 дрения деформатора (ножа) в сыпучую среду
3.3. Исследование физико-механических характеристик сыпучей 118 среды
3.4. Экспериментальное исследование процесса внедрения деформатора (ножа) в сыпучую среду при установившемся движении
3.5. Математическая модель давления на торцевой поверхности 135 деформатора (ножа), внедряющегося в сыпучую среду с постоянной скоростью
3.6. Физическая модель объемного напряженного состояния сы- 136 пучей среды при внедрении в нее деформатора
3.7. Анализ влияния объемного напряженного состояния дефор- 147 мируемой среды на расчет сопротивления внедрению деформатора (ножа) в сыпучую среду
3.8. Аналитическое определение параметров внедрения дефор- 150 матора в сыпучую среду при его вертикальном внедрении
3.9. Экспериментальное исследование процесса сдвига стенкой 157 сыпучего клина
3.9.1. Теоретический анализ процесса сдвига
3.9.2. Экспериментальное исследование процесса сдвига
3.9.3. Анализ результатов экспериментального исследования про- 161 цесса сдвига стенкой сыпучего клина
3.10. Выводы по третьей главе
Глава 4. Исследование напряженного состояния связной среды при взаимодействии ее с деформаторами
4.1. Общие положения
4.2. Экспериментальное исследование и анализ процесса вне- 171 дрения деформатора (ножа) в связную среду
4.3. Математическая модель давления на торцевой поверхности 177 деформатора (ножа), внедряющегося в связную среду с постоянной скоростью
4.4. Исследование процесса сдвига стенкой связного клина
4.4.1. Экспериментальная установка и методика исследования
4.4.2. Результаты экспериментальных исследований
4.5. Характеристика напряженного состояния связной среды при 195 интенсивном сдвиге и внедрении деформатора
4.6. Расчетная модель определения общего сопротивления пере- 198 движению стенкой связного клина
4.7. Выводы по четвертой главе
Глава 5. Научное обобщение исследований процесса зачерпывания двухканатным грейфером насыпного груза
5.1. Предварительные замечания
5.2. Аналитическое определение параметров внедрения началь- 206 ного заглубления грейфера в сыпучую среду
5.3. Аналитическое определение параметров начального 214 заглубления грейфера при внедрении в связную среду
5.4. Расчет сопротивлений зачерпыванию сыпучего груза грей- 218 фера, в процессе смыкания челюстей
5.5. Сопротивление зачерпыванию связного груза в процессе 225 смыкания челюстей
5.6. Определение сопротивления, возникающего от присоеди- 228 няемой массы зачерпываемого груза
5.7. Определение текущего веса зачерпнутого материала
5.8. Уточнение аналитических методов расчета грейфера
5.9. Исследование процесса зачерпывания методом киносъемки
5.10. Исследование процесса зачерпывания методом затвердева- 250 ния
5.11. Исследование процесса зачерпывания методом электротен- 253 зометрирования
5.12. Анализ результатов эксперимента по силовому воздействию сыпучей среды на грейфер при зачерпывании
5.13. Сопоставление теоретических расчетов определения сопро- 263 тивлений зачерпыванию грейферным механизмом сыпучих грузов и экспериментальных результатов
5.14. Выводы по пятой главе
Глава 6. Научное обобщение исследований процессов взаимодействия заборных органов перегрузочных машин с насыпным, слежавшимся и смерзшимся грузами
6.1. Предварительные замечания
6.2. Исследование процесса зачерпывания насыпного груза мно- 271 гоковшовым органом
6.3. Определение влияния присоединяемой массы груза на про- 278 цесс зачерпывания ковшовым органом
6.4. Экспериментальное исследование сопротивления резанию 281 уплотненного рядового насыпного груза плоским ножом
6.5. Исследование влияния фракционного состава насыпного 288 груза на сопротивление резанию
6.6. Анализ физической картины процесса внедрения периметра 294 в кусковой груз
6.7. Экспериментальное исследование влияния зубьев на сопро- 297 тивление внедрения периметра в кусковой груз
6.8. Анализ нагрузочных характеристик разрушения материалов
6.9. Теоретическое исследование процесса виброударного вне- 309 дрения деформатора в смерзшийся груз
6.10. Экспериментальное исследование процесса внедрения виб- 314 роударного рушителя в глинозем
6.10.1. Исследование физико-механических параметров глинозема
6.10.2. Устройство экспериментального комплекса
6.10.3. Оборудование для проведения экспериментов по виброудару
6.10.4. Методика и программа экспериментального исследования 322 процесса внедрения виброударного рабочего органа в смерзшийся глинозем
6.10.5. Анализ экспериментальных результатов исследования виб- 326 рорушителей
6.11. Выводы по шестой главе
Глава 7. Инженерные методы проектирования перегрузочных машин, оборудованных заборными органами
7.1. Предварительные замечания
7.2. Составление алгоритма для определения собственного веса 340 грейфера на ЭВМ
7.3. Составление алгоритма для определения зачерпывающей 345 способности грейфера на ЭВМ
7.4. Разработка инженерной методики расчета грейфера на осно- 348 ве анализа полученных результатов
7.5. Сопоставление результатов натурных испытаний грейферов 352 и их расчета по уточненной и инженерной методикам
7.6. Создание дискового (лопастного) рушителя для модерниза- 357 ции типовой вагоноразгрузочной машины МВС-4М
7.7. Анализ расчетных параметров внедрения винтовых и диско- 364 вых рушителей и сопоставление их с результатами производственных испытаний
7.8. Рекомендации к расчету виброударных установок, предна- 367 значенных для разработки смерзшихся грузов
7.9. Создание опытного образца вагоноразгрузочной машины с 368 виброударным рушителем и ее внедрение
7.10. Создание одноковшовой вагоноразгрузочной машины с боновой разгрузкой и ее серийное промышленное внедрение
7.11. Создание промышленного образца элеваторно-бункерной 375 вагоноразгрузочной машины и ее внедрение
7.12. Выводы по седьмой главе 378 Основные итоги и выводы по работе 382 Список использованной литературы 388 Приложения
УСЛОВНЫЕ ОБОЗНАЧЕНИЯ т„ - предельное касательное напряжение; сгп - предельное нормальное напряжение; р - угол внутреннего трения; С - сцепление связной среды;
СГ] - максимальное главное напряжение в сыпучей среде; сг2 - минимальное главное напряжение в сыпучей среде; h - глубина внедрения в среду режущей кромки деформатора; у - насыпной вес; т - коэффициент подвижности материала; х0 - начальное сопротивление сдвигу; /- коэффициент внутреннего трения; Ф - угол внутреннего трения; I - касательное напряжение; ^ сг — нормальное напряжение на плоскости скольжения; g - ускорение силы тяжести; % - приведенный угол внутреннего трения; п -f{V)- коэффициент, являющийся функцией скорости; fa - динамический коэффициент внутреннего трения; Фет угол внутреннего трения статический; у - глубина внедрения деформатора, контур которого описывается уравнением параболы у = х2п; h{t) - глубина внедрения деформатора в момент времени t\ р' - давление в точках контура; Р' - предельная нагрузка; ♦ г(х) - уравнение контура, описанного степенной параболой; X, У- проекции массовых сил; Ро - плотность среды;
Vx, Vy - проекции скоростей на оси хиу; К— максимальное касательное напряжение сцепления; е - основание натурального логарифма; * 8Г — деформация, соответствующая пределу текучести; Е - модуль упругости материала; 8 - относительная деформация среды; 0 - угол между осью Хи направлением линии скольжения; тху - касательные напряжения на площадке ХУ\ D\, D2, D3 - дифференциальные операторы; dS - элементарная площадка; D4, D5, D6, D7 - операторы; S — функционал;
N- сила сопротивления внедрению, действующая на торце ножа; Т- сила от давления материала на боковые поверхности ножа; Fjp - сила трения, действующая на боковых поверхностях ножа; щ G — вес ножа (грейфера);
- угол наклона касательных напряжений к главным; Уст - угол наклона касательных напряжений к главным при статическом воздействии;
- угол наклона касательных напряжений к главным при динамическом воздействии; md - динамический коэффициент подвижности материала; К- угловой коэффициент при статическом воздействии деформатора; Ка - угловой коэффициент при интенсивном внедрении деформатора; W - влажность насыпного груза; att2 - боковое давление среды на внедряющемся деформаторе; No — усилие, возникающее на торце внедряющегося ножа; F - сила трения; Р - сила внедрения;
N6 - сила давления на боковые стенки; fx - коэффициент внешнего трения; /, 5 - длина и толщина ножа; м'а ~ угловой коэффициент;
Nr - усилие на торцовой поверхности ножа, учитывающего концевые эффекты; ак - максимальное давление на торцах деформатора; ат - давление на торце деформатора при плоском напряженном состоянии; та - угловой коэффициент;
VCJ - скорость перемещения стенки в сторону активного воздействия материала; Vn - естественная скорость перемещения частиц при воздействии статической нагрузки; стр - расчетное давление на торце деформатора; Р - угол скольжения сыпучего тела; ста| - напряжение, действующее на торцевой поверхности внедряющегося ножа под углом а к вертикали; У! - угол наклона днища грейфера; Тс - сила трения среды о боковые стенки грейфера; Nc - сила торцевого сопротивления одной боковой стенки грейфера; Tq - сила трения среды о среднюю стенку челюсти грейфера; N - полная сила сопротивления вертикальному внедрению грейфера в насыпной груз;
Wh - запас энергии вертикально внедряющего в груз грейфера на глубине h; Vq - начальная скорость внедрения ножа (грейфера); hmas - конечная глубина внедрения ножа (грейфера); q\, q2 - нагрузочные характеристики, характеризующие сопротивление сыпучей среды на различных участках внедрения деформатора; q - нагрузочная характеристика среды;
- критическое напряжение на торце ножа, при котором изменяется интенсивность увеличения напряжения при его дальнейшем заглублении его в среду; am - напряжение на торце ножа в конечный момент его заглубления в среду;
F\ - сила трения на внутренней стороне стенки грейфера;
F2 - сила трения на внешней стороне стенки грейфера;
NT - общая сила торцевого внедрения грейфера в насыпной груз;
Н, ~ суммарная сила лобового внедрения грейфера в насыпной груз;
Л"л - лобовая сила сопротивления перемещению материала;
N'с - сопротивление внедрению боковых стенок грейфера в насыпной груз;
N'л- сопротивление внедрению режущей кромки днища; сб ~ боковое давление на стенках ножа при вертикальном внедрении в насыпной груз; ап - кратность грейферного полиспаста; М- масса сдвигаемого клина; Mq - масса сдвигаемого начального клина; ам - коэффициент приращения массы; R - сила давления клина; Ф - угол поворота ковша;
U2 - относительная скорость присоединенных масс; U- начальная скорость присоединяемой переменной массы; R„ - инерционное усилие от коэффициента переменной массы; Тс - кинетическая энергия среды;
- инерционное воздействие со стороны сыпучей среды; Шф - фиктивная присоединяемая масса;
81 - коэффициент, учитывающий идеализацию процесса изменения массы;
QM - текущее значение количества зачерпнутого материала; о - начальная глубина погружения челюсти грейфера в груз;
Kq - коэффициент просыпания; ос0б - угол естественного откоса в движении;
V„ - объем высыпающегося из грейфера при зачерпывании груза;
Кте0р - теоретический объем зачерпнутого материала груза;
X' - площадь груза, заполняющего челюсть;
- текущее значение веса зачерпнутого груза грейфером с учетом просыпания; тс - начальный угол сдвига материала; hH - начальное заглубление грейфера;
Ri - сопротивление при сдвиге ножа челюсти грейфера в начале процесса зачерпывания;
Яз - сопротивление от надвигания в челюсть грейфера тела скольжения; R5 - реактивная сила от присоединяемой массы; тст - статический угол скольжения;
Ть т2 - углы плоскостей скольжения при различных скоростях грейфирования; Уж - скорость замыкающего каната грейфера; С - число ударов ударника ДОРНИИ;
Rx, Ry - горизонтальная и вертикальная составляющие равнодействующей R силы внедрению грейфера;
Рт - сила сопротивления внедрению торцевой поверхности ковша;
Рд - сопротивление груза от внедрения днища челюсти;
Реум - суммарная сила сопротивления внедрению ковша;
Т— время зачерпывания ковшом;
S\ - горизонтальное перемещение ковша;
Qs — сила, препятствующая горизонтальному перемещению;
QM - вращающий момент;
Va - абсолютная скорость;
V — относительная скорость;
Ус - переносная скорость;
Рсв - сопротивление резанию передней кромки ножа; Рви - сопротивление внедрению ковша в кусковой груз;
Рупл - сопротивление резанию плоским ножом уплотненного кускового материала;
Рз - сопротивление внедрению зуба;
Рупл - удельное сопротивление резанию плоским ножом уплотненного материала;
Рз ~ удельное сопротивление внедрению зуба в уплотненный кусковой груз; Рн - сопротивление резанию ножевой частью неуплотненного груза; 2 - число зубьев; иФ - собственная масса грейфера; тм - масса зачерпнутого материала; QKр - грузоподъемность крана; Уф - объем ковша грейфера;
Wrp.min - минимальная масса грейфера из условия обеспечения его жесткости; Т0 - коэффициент жесткости, зависящий от материала, из которого изготовлены челюсти; i - коэффициент, зависящий от кусковатости материала; do - коэффициент, учитывающий влияние размера кусков материала;
Кр ~ средняя величина заглубления челюсти грейфера;
GKmax - вес материала, который может зачерпнуть грейфер одной своей половиной; Qrp°H ~ расчетный собственный вес грейфера;
- количество материала, зачерпнутое при натурных испытаниях;
QI™ - расчетное количество зачерпнутого материала;
2гнрат - собственный вес испытываемого грейфера;
Qd - количество материала, зачерпнутого при определенной скорости грейфе-рования
Введение 2004 год, диссертация по транспортному, горному и строительному машиностроению, Филяков, Александр Борисович
Несмотря на то, что в настоящее время экономика страны находится в сложном состоянии, объемы грузов, перерабатываемых подъемно-транспортными машинами, остаются достаточно большими. Разработка и приобретение новых технологий и, связанное с этим, расширение работ по механизации и автоматизации производственных процессов вызывают потребность в совершенствовании подъемно-транспортного оборудования.
В настоящее время в нашей стране сформирована сложная система движения грузопотоков насыпных грузов, которая включает в себя железнодорожный, речной, морской и автомобильный транспорты. Стабильность этих грузопотоков обеспечивается бесперебойной работой самого транспорта и перегрузочной техники как в местах перевалки груза с одного вида транспорта на другой, так и при его загрузке в начальной и разгрузке конечной стадии транспортного процесса. Механизация одного из наиболее трудоемких процессов — перегрузка насыпных грузов - обеспечивается применением грейферных механизмов. Грейферные краны, оснащенные ими, широко применяются в морских и речных портах, на железнодорожных станциях, в металлургической и машиностроительной промышленности, в строительстве, сельском хозяйстве, в лесотехнической и целлюлозно-бумажной промышленности и др. Следует отметить, что грейферные механизмы являются в некоторых случаях основой исполнительных органов механических роботов и манипуляторов.
Использование грейферов рациональных конструкций и параметров при эксплуатации грузоподъемных машин может значительно повысить производительность перегрузочной машины, снизить энергозатраты и себестоимость перегрузочных работ, повысить их надежность и долговечность. Поэтому задача создания широкого ряда грейферов наиболее оптимальной конструкции для различных отраслей промышленности является весьма актуальной.
Известно, что машины и механизмы, выполняющие перегрузочные oneрации с насыпными грузами, работают в весьма тяжелых условиях. Атмосферные осадки и колебания температуры в процессе транспортировки или хранении насыпных грузов в некоторых случаях значительно изменяют физико-механические свойства грузов, что может привести к увеличению нагрузок на рабочие органы погрузо-разгрузочных машин. Многие грузы от внешних воздействий теряют свойства сыпучести, в связи с тем, что между частицами образуются прочные связи за счет слипания, спекания или смерзания. Некоторые материалы при транспортировке от вибрации сильно уплотняются, а при хранении их навалом слеживаются. Особенно большие трудности возникают с перегрузкой таких материалов как сера, глинозем, сода, квасцы и др. при транспортировке их в крытых железнодорожных вагонах. Образующийся в процессе транспортировки монолит значительно усложняет процесс выгрузки. Около 60% грузооборота железнодорожного транспорта составляют грузы, в основном это уголь и руды, доставляемые в полувагонах. Около 10% этого объема составляют грузы, перевозимые в крытых железнодорожных вагонах. Большая
часть этих грузов разгружается на подъездных путях предприятий и железнодорожных станциях. Трудовые затраты на разгрузку одного четырехосного вагона составляет 6-8 человеко-дней. Выгрузка смерзшегося или спекающегося груза увеличивает трудоемкость разгрузки более чем в 10 раз.
Опыт Министерства путей сообщения показывает, что при небольших объемах работ применение для выгрузки не потерявших сыпучесть материалов аккумуляторных погрузчиков, оснащенных бульдозерно-грейферными ковшами, в 7 - 8 раз повышают производительность труда. Приблизительно такие же результаты получены при эксплуатации скребковой разгрузочной машины ХИИТа и разгрузочной машины типа МВС. Применение данных машин при разгрузке сильно слежавшихся, спекающихся и смерзающихся грузов является
• малоэффективным из-за слишком больших сопротивлений груза захвату, быстрого износа и разрушения рабочих органов.
На основании обширного материала предыдущих работ [70, 75, 96, 103,
104, 132, 139, 159, 232] и собственных исследований [163 - 167]. Таубером Б.А. предложена методика проектированного и проверочного расчета грейфера, которая учитывает влияние многочисленных факторов на его зачерпывающую способность [165]. Позднее Зенков Р.Л. разработал графо-аналитический метод расчета грейферов, в котором основное внимание уделяется определению их зачерпывающей способности [67].
Эти методы получили дальнейшее развитие и уточнение в работах Яси-новского A.M. [239], Филякова А.Б. [175 - 178], Шевченко Н.А. [231], Соловьева В.Г. [152], Каракулина Г.Г. [78 - 82], Пронина С.В. [130], Слюсарева А.С. [147], Славина Б.М. [146], Кафа Самир Нимр [84] и др.
Интенсивное исследование грейферных механизмов в последние годы позволило уточнить конструктивные расчеты грейфера, оптимизировать его параметры, что позволило вести их разработку на уровне автоматизированного проектирования [152 - 154]. Несмотря на большое количество проведенных упомянутыми и другими авторами теоретических и экспериментальных исследований, современные методы расчета грейферных механизмов остаются в определенной степени приближенными, а возможности технического прогресса в этой отрасли подъемно-транспортного машиностроения далеко не исчерпаны.
Работы по исследованию грейферных механизмов проводились в двух основных направлениях: по исследованию процесса заполнения грейфера насыпным грузом (кривой зачерпывания, текущего веса зачерпнутого груза, характера его движения в ковше в зависимости от вида материала и возникающих при этом сопротивлений зачерпыванию) и по исследованию факторов, в основном конструктивных, влияющих на зачерпывающую способность грейфера.
Данные многочисленных экспериментальных исследований показывают, что характер процесса заполнения грейфера различными насыпными грузами определяется, с одной стороны, параметрами самого грейфера (его весом, кратностью грейферного полиспаста, формой и шириной челюстей, величиной их раскрытия и т.д.), а с другой стороны, и не в меньшей мере, - комплексом присущим грузу физико-механических свойств (коэффициентами внутреннего и внешнего трения, сцеплением груза, кусковатостью и т.д.) и характером ведения процесса зачерпывания (высотой броска, скоростью зачерпывания и т.д.).
Известные методы исследования, до недавнего времени, не позволяли получить с достаточной точностью физическую картину процесса заполнения грейфера и судить о характере сопротивлений, возникающих в процессе зачерпывания. Результаты расчета сопротивлений зачерпыванию в методиках расчета грейферных механизмов [67, 78, 165, 231] и других были основаны на закономерностях статики сыпучей среды. Эти расчеты не подтверждаются экспериментальными исследованиями [146, 147, 179]. Применение аппарата статики сыпучей среды [68] для описания процесса грейфирования идеализирует процесс зачерпывания, так как при этом не учитывается влияние на величину сопротивления таких факторов, как скорость зачерпывания, уплотнение материала перед ножом челюсти и т.д. В настоящее время имеются данные многочисленных исследований, которые подтверждают зависимость сопротивлений Ф внедрению от скорости перемещения различных рабочих органов сельскохозяйственных, подъемно-транспортных и дорожных машин [9, 26, 61, 68, 71, 86, 170].
Проведенные нами исследования [179] процесса зачерпывания грейфером сыпучих материалов методами кино и фотосъемки, затвердевания и тензометрии позволило получить обширную информацию о процессах, происходящих при заполнении грейфера и возникающих при этом сопротивлениях. Была установлена экспериментально и обоснована теоретически зависимость сопротивлений, возникающих при зачерпывании сыпучего груза, и - как следствие -зачерпывающей способности от скорости зачерпывания. На основе теоретического и экспериментального исследования процессов интенсивного внедрения # деформатора в сыпучую среду и сдвига стенкой сыпучего клина, экспериментального исследования процесса зачерпывания автором предложен способ учета влияния скорости на сопротивление зачерпыванию и на этой основе проведено уточнение существующих аналитических методов расчета грейферов [68, 165]. Полученные результаты [179] были использованы при разработке новых методов расчета грейфера [231], при расчете сопротивлений зачерпыванию [146, 153] и прочностном расчете грейфера [239].
Позднее были разработаны оригинальные методики расчета грейферов [78, 147, 153, 231], которые более полно отражали различные факторы, сопровождающие процесс зачерпывания как внутри грейфера [78, 147], так и со стороны привода [153, 231], т.е. исследовано и влияние работы привода на процесс заполнения грейфера. Как известно, "классические" методы расчета грейферов [67, 165] базировались на фундаментальных работах по теории резания грунтов [65] и статики сыпучей среды [68]. Но, к сожалению, дальнейшее развитие теории резания, связанное с проявлением динамических свойств среды при скоростном резании, не получило дальнейшего развития, хотя совершенствование теории резания грунтов в определенной степени продолжалось [45, 92 - 94] в научных школах Ветрова Ю.А., Зеленина А.Н. и других. Поэтому последним исследователям грейферных механизмов пришлось уделить большое внимание изучению физической картины процесса зачерпывания и совершенствованию на этой основе расчетов сопротивлений грейфированию [130, 146, 147]. Как отмечается в работе [130], в настоящее время ряд вопросов, связанных с уточнением методов расчета грейферов требует дальнейшего развития. В частности, это относится к вопросу определения сил сопротивления зачерпыванию навалочных грузов. Поэтому необходимо более подробно проанализировать существующие методы определения этих сил.
Значительным этапом в исследовании грейферных механизмов явилась работа Слюсарева А.С. [147]. На основании исследования процессов, происходящих внутри грейфера и уплотнения сыпучей среды в жесткой матрице, автор
• предлагает теорию уплотнения сыпучего материала в жесткой матрице, позволяющей для любого исследуемого материала описать объемно-напряженное состояние материала в процессе его деформирования, что дало возможность разработать оригинальные методы расчета грейфера и других органов подъемно-транспортных машин. Хорошее совпадение теоретических и экспериментальных результатов подчеркивает справедливость теоретических предпосылок и рассуждений автора. Особо следует отметить экспериментальные исследования силовой картины нагружения грейфера и плотности материала в нем, которые выполнены на самом современном уровне.
Несмотря на большие успехи, достигнутые в области исследования грейферных механизмов, много вопросов, связанных с их расчетом, остается нерешенными. Так разработанная [147] теория уплотнения в жесткой матрице применима, скорее всего, к замкнутому объему. А в грейфере, как известно, имеется свободная поверхность. Рассмотрен только процесс уплотнения материала в третьей фазе зачерпывания, в момент смыкания челюстей и остается неясной картина на режущей кромке, где образуются ядра с более уплотненной структурой, чем внутри грейфера [65, 116, 117], которые в процессе внедрения заменяют режущую кромку. Обращая большое внимание исследованию процесса зачерпывания грейферным механизмом, ученые и в последних исследованиях [78, 130, 147] уделяли недостаточное внимание изучению сопротивлений, действующих на режущей кромке челюстей грейфера. Для создания теоретической расчетной базы проектирования различных типов рабочих органов погрузо-разгрузочных машин возникла необходимость силового и качественного исследования процессов взаимодействия различных типов забортных органов (от ножевых, ковшовых до виброударных) с широкой гаммой насыпных грузов: от легко сыпучих до смерзающихся.
Исследованием процесса виброударного взаимодействия рабочих органов со смерзшимися грузами занимались многие исследователи [11, 13, 14, 44, 60, 64, 100, 102], хотя чаще всего эти исследования относились к разработке мерзлых грунтов или транспортной переработке горных пород. На основании обширных экспериментальных исследований разработаны как методы расчета конкретных рабочих органов [100, 114, 116], так и универсальные методы расчета процесса разрушения мерзлых грунтов и горных пород, а также теория удара [4, 14, 44, 64, 148]. Однако применение этих методов к расчету заборных органов строительных, дорожных и подъемно-транспортных машин в чистом виде, без дополнительных теоретических и экспериментальных исследований, не представляется возможным, так как остаются неясными влияния многих, как конструктивных, так и технологических факторов на работу конкретного рабочего органа. К ним в первую очередь следует отнести: влияние размеров рабочих органов и концевых эффектов, возникающих на режущих кромках; влияние формы режущей кромки; конструкции зубьев и шага их установки; условия разрушения конкретных смерзшихся грузов, влияние присоединяемой массы захватываемого материала на процесс зачерпывания и др.
Актуальность работы. Проблема повышения эффективности работы перегрузочных машин является актуальной, что связано в значительной степени с увеличением в последние годы объемов грузов, перерабатываемых в нашей стране перегрузочными машинами, с одной стороны, и старением далеко не совершенного оборудования с другой, и необходимостью создания машин, отвечающих современным техническим требованиям.
Работоспособность перегрузочных машин в значительной степени зависит от надежности рабочих органов, осуществляющих захват и дальнейшее перемещение материала. Поэтому задача создания перегрузочных машин для обработки насыпных грузов, в том числе и утративших свойства сыпучести, обладающих большой производительностью, высокой эффективностью, надежностью в работе при меньшей металлоемкости, энергоемкости и конкурентоспособности на рынке является актуальной. Создание таких машин невозможно без исследований процессов, происходящих при взаимодействии рабочего органа с материалом, и создания теоретических основ их расчета.
Цель и задачи работы. Целью настоящей работы является создание теоретических основ расчета параметров напряженно-деформированного состояния сыпучей и связной среды, позволяющих для любого насыпного груза определить весь комплекс характеристик, описывающих напряженное состояние среды в процессе ее взаимодействия с рабочими органами перегрузочных машин, учитывающих изменение физико-механических свойств среды при изменении скорости их движения. Разработка новых и уточнение существующих методов расчета рабочих органов подъемно-транспортных и погрузо-разгрузочных машин, перерабатывающих практически всю гамму насыпных грузов, от легко сыпучих до спекающихся и смерзающихся, направлены на: а) разработку математических моделей, характеризующих динамическое напряженное состояние деформируемых сыпучей и связной сред; б) разработку математической модели, характеризующей динамическое напряженное состояние деформируемой связной среды при внедрении в нее деформатора; в) исследование напряженного состояния сыпучей и связной сред при взаимодействии их с деформаторами, внедряющимися с различными скоростями, для определения влияния скорости движения деформатора на напряженное состояние сред; г) разработку методов анализа напряженного состояния сыпучей и связной сред при интенсивном внедрении и сдвиге в них деформаторов; д) обобщение исследований процесса зачерпывания двухканатным грейфером насыпных грузов для уточнения влияния всех факторов, влияющих на зачерпывающую способность грейферов, и учета их в аналитических методиках расчета грейферов; е) обобщение исследований процессов взаимодействия заборных органов перегрузочных машин с насыпными слежавшимися и смерзшимися грузами для разработки инженерных методов силовых расчетов рабочих органов машин, перерабатывающих эти грузы.
Концепция работы состоит в разработке теоретических основ и методов силового расчета заборных органов перегрузочных машин, взаимодействующих с насыпными грузами, учитывающих динамических характер их деформации, направленных на создание более производительных и совершенных подъемно-транспортных и погрузо-разгрузочных машин.
Основные положения диссертации, выносимые на защиту:
1. Математическая модель, характеризующая динамическое напряженное состояние деформируемой сыпучей и связной сред.
2. Математическая модель, характеризующая динамическое напряженное состояние деформируемой связной среды при внедрении в нее деформатора.
3. Способ расчета сопротивлений на рабочих поверхностях деформатора и заборных органов перегрузочных машин для сыпучих и связных сред, учитывающий объемный характер и скорость движения.
4. Совершенствование аналитического метода расчета грейфера, учитывающего реально возникающее сопротивления груза и воздействие присоединяемой массы;
5. Инженерные методики силовых расчетов рабочих органов перегру-ф зочных машин, предназначенных для переработки насыпных грузов.
Методы исследования. При выполнении диссертационной работы использовались фундаментальные положения, общие законы и методы теоретической и прикладной механики и математики, механики грунтов и сыпучих сред, аналитические исследования с решением дифференциальных уравнений и математическое моделирование на вычислительных машинах; физическое моделирование с использованием теории подобия; экспериментальные исследования с использованием методов скоростной киносъемки, затвердевания и электротензометрии.
Научная новизна. Результаты исследований, представленные в диссертации, по совокупности можно квалифицировать как научно обоснованное ф техническое решение по созданию теоретических основ проектирования рабочих органов перегрузочных машин, взаимодействующих с широкой гаммой насыпных грузов. Научная новизна работы заключается в методах определения нагрузок, действующих на рабочие органы машин, перемещающихся в насыпном грузе с различными скоростями, внесен определенный научный вклад в развитие теории прочности и динамики сыпучей среды, механики грунтов и виброударного внедрения, получены следующие оригинальные решения:
1. Разработаны математические модели, характеризующие динамическое напряженное состояние сыпучей и связной сред, которые учитывают изменение их физико-механических свойств в процессе деформации.
2. В динамической постановке в общем виде решена задача внедрения плоского штампа в полупространство сыпучей среды, построена модель напряженно-деформированного состояния среды в любой момент процесса внедрения деформатора, получены силовая характеристика деформируемого поля среды, время и глубина внедрения.
3. Используя экспериментальные результаты, разработаны упрощенные аналитические методы расчета процессов внедрения деформаторов как простой (типа ножа), так и сложной формы (в том числе и грейфера) в сыпучую и связную среду.
4. Экспериментально установлено, что направление плоскостей (линий) скольжения деформируемой сыпучей и связной среды и давление на рабочих стенках внедряющихся деформаторов зависят от скорости их движения, а изменение давления на стенках внедряющегося деформатора связано с изменением направления угла наклона плоскостей скольжения.
5. Установлены принципиально новые физические модели процесса сдвига стенкой как сыпучего, так и связного клина, которые значительно отличаются от существующих представлений о процессах внедрения.
6. Решены дифференциальные уравнения движения ковша-ротора с учетом присоединяемой массы зачерпываемого груза, установлены границы, начиная с которых учет влияния присоединяемой массы на процесс зачерпывания ковшовым органом становится необходимым, экспериментально установлена трехфазная физическая картина материала, заполняющего грейфер.
7. На основании проведенных исследований разработаны теоретические основы расчета ножевых, грейферных и ковшовых органов и винтовых, дисковых и виброударных рушителей. ^ Достоверность полученных данных подтверждается адекватностью математических моделей и лабораторных экспериментальных исследований, удовлетворительной сходимостью теоретических и экспериментальных результатов, использованием современных методов исследований, критическим анализом работ, посвященных данному вопросу.
Научное значение работы заключается:
- в разработке научных основ расчета заборных органов перегрузочных машин, взаимодействующих с насыпными грузами, который учитывает динамический характер воздействия деформируемого груза на рабочие органы при расчете сопротивлений их внедрению;
- установлении закономерностей динамического воздействия насыпного груза на заборные органы в зависимости от вида и состояния груза и скороф сти его зачерпывания;
- установлении общих закономерностей, характеризующих динамическое напряженное состояние сыпучих и связных сред, которые позволяют математически описать широкую гамму спектра известных нагружений и объяснить физические процессы, происходящие в деформируемой среде.
Практическая ценность работы заключается в разработке методики расчета сопротивлений зачерпыванию и внедрению заборных органов в насыпной груз, которая учитывает динамические свойства деформируемой среды, что позволит более обоснованно вести проектирование не только самого заборного рабочего органа, но и всей машины, так как некоторые реально действующие нагрузки на рабочие органы могут в 2 - 3 раза превышать статические ф нагрузки, по которым ведется расчет большинства заборных органов. Расчет сопротивлений внедрению и сдвигу применим не только к грейферным и ковшовым заборным органам, его можно применять при расчетах скребковых и винтовых конвейеров, а также аналогичных рабочих органов технологических и дорожных машин.
Реализация результатов работы. Результаты исследований были внедрены в Астраханском речном порту, где была апробирована методика расчета грейферов для определения рационального использования парка грейферов с целью получения наибольшей производительности кранов. На основании проведенных исследований Астраханским научно-исследовательским институтом бумаги при участии автора была разработана, испытана и внедрена на Астраханском целлюлозно-бумажном комбинате серия нескольких типов малогабаритных вагоноразгрузочных машин.
Результаты исследований были использованы в курсах лекций «Строительные и дорожные машины», «Механизация ПРТС работ», «Портовые грузоподъемные машины» (ГПМ) и «Портовые машины непрерывного транспорта».
Грунтовой канал и стенды по исследованию процесса внедрения дефор-маторов в сыпучую среду, и виброударная экспериментальная установка использовались в лабораторных работах в курсе по строительным и дорожным машинам. Уточненная инженерная методика расчета грейферов использовались при выполнении курсовых проектов по ПТМ, ПГМ и «Механизации ПРТС работ» и дипломном проектировании по специальности 150900.
Апробация работы. Основные положения и результаты, разработанные в диссертации, докладывались и получили одобрение на республиканском семинаре по строительным и дорожным машинам в Киевском инженерно-строительном институте (1982 г.); Всесоюзной конференции НТО им. А.Н. Крылова в г. Горьком (1985 г.); на Всесоюзной научно-технической конференции "Механизация и автоматизация переместительных работ на предприятиях лесного комплекса" в г. Москве (1989 г.); на республиканских научно
• технических конференциях «Проблемы качества и надежности машин» в г. Могилеве 1991 г., 1994 г., 1996 г.; Всероссийской научно-технической конференции «Судовые и береговые подъемно-транспортные машины и устройства» в г. С-Петербурге (1993 г.); международной конференции «Новое в подъемно-транспортной технике» г. Москва (1994 г.); международном семинаре «Современные проблемы механики грунтов и охраны окружающей среды» г. Ростов-на-Дону (1998 г.); международной научно-технической конференции, посвященной 85-летию высшего рыбного образования в России в г. Калининграде (1998 г.); научно-технической конференции «Подъемно-транспортные машины на рубеже веков», МВТУ им. Баумана в г. Москве (1999 г.); международной научно-технической конференции «Современные проблемы геофизике, геологии, переработки и использования углеводородного сырья» в г. Атырау (2000г.); международной научно-технической конференции, посвященной 70-летию основания КГТУ в г. Калининграде (2000 г.); региональной научно-технической конференции «Научные разработки ученых - решению социально-экономических задач Астраханской области» в г. Астрахани (2001 г.); международной научно-технической конференции, посвященной 70-летию АГТУ в г. Астрахани (2001 г.); научной конференции «Проблемы динамики и прочности исполнительных механизмов и машин» в г. Астрахани (2002 г.); научных конференциях АТИРПиХ (АГТУ) в период с 1984 по 2002 гг.
Публикации по работе. По материалам диссертационной работы опубликованы 60 работ, в том числе монография, 16 статей в теоретических, научно-практических и отраслевых журналах, 16 тезисов докладов на Всесоюзных и Международных научно-технических конференциях, 27 статей в сборниках трудов различных ВУЗов.
Структура и объем работ. Диссертационная работа состоит из введения, семи глав, заключения и приложения, изложенных на 463 страницах машинописного текста, списка литературы, составляющего 253 наименования, содержит 123 рисунка и 13 таблиц.
Заключение диссертация на тему "Развитие научных основ взаимодействия рабочих органов перегрузочных машин с насыпными грузами"
11. Результаты исследования процесса виброударного внедрения деформатора в смерзшийся груз с использованием в дифференциальном уравнении движения вибромолота и нагрузочных характеристик разрушения среды позволило определить для различных материалов (в зависимости от количества стадий разрушения) основные параметры внедрения деформатора. Экспериментальные исследования процесса виброударного внедрения шести типов рушителей различных типов и видов режущей кромки позволило определить их основные параметры внедрения: глубину внедрения за одни удар и максимальную глубину погружения в груз, число ударов для достижения этой глубины, время внедрения, среднее заглубление за удар и среднюю и максимальную силы удара для каждого рабочего органа. Для всех типов рушителей получены нагрузочные характеристики разрушения смерзшегося глинозема. Сопоставление теоретических расчетов функции внедрения виброударного рушителя с полученными экспериментальными измерениями показало хорошую сходимость результатов, что подтверждает правильность заложенных ранее теоретических предпосылок.
12. На основании результатов исследования, изложенных в шестой главе, разработана методика расчета ковшовых заборных органов, шнековых и дисковых рушителей и рекомендации к расчету виброударных органов. С учетом этих расчетов при участии автора Астраханским филиалом Всесоюзного научно-исследовательского института бумаги изготовлены и внедрены на Астраханском целлюлозно-картонном комбинате вагоноразгрузочные машины: с дисковыми и лопастными рушителями, с виброударным рушителем, одноковшовая вагоноразгрузочная машина с боковой выгрузкой ковша и элеваторно-бункерная вагоноразгрузочная машина. Одноковшовая машина широко внедрена в целлюлозно-бумажной промышленности и до настоящего времени изготавливалась мелкими сериями на Брянском заводе ирригационного машиностроения.
Таким образом, результаты и рекомендации, полученные на основе проведенных исследований, могут быть использованы при создании, рационализации и интенсификации работы заборных органов подъемно-транспортных машин, взаимодействующих с насыпными грузами. Материалы диссертации использовались в учебном процессе в курсах лекций по «Подъемнотранспортным машинам», «Портовым грузоподъемным машинам», «Портовым машинам непрерывного транспорта», «Строительные и дорожные машины», в курсовом и дипломном проектировании при подготовке инженеров по специальности 150900,290300, 170900.
Библиография Филяков, Александр Борисович, диссертация по теме Дорожные, строительные и подъемно-транспортные машины
1. Абезгауз В.Л. Режущие органы машин фрезерного типа для разработки горных пород и грунтов. М: Машиностроение, 1965. - 182 с.
2. Адушкин В.В., Орленко Т.А. Прочностные характеристики и разуплотнение песчаного грунта // Механика твердого тела. М.: Изд. АН СССР. -1970, №2.-С.167- 171.
3. Айзеншток И .Я. О физической теории резания грунтов // Горный журнал. 1949, №5. - С. 51-54.
4. Александров Е.В., Соколинский В.Б. Прикладная теория и расчет ударных систем. М.: Наука, 1968. - 287 с.
5. Алипов Г.И. Распределение давления на площадках износа зубьев экскаваторных ковшей // Сб. "Горные, строительные и дорожные машины" вып.З. Киев: "Техника", 1966. - С. 34 - 37.
6. Андриуце М.Д. Формирование режущих рабочих органов землеройных машин на базе статистической теории процесса их взаимодействия с грунтом: Дис. докт. техн. наук. Кишинев, 1995. - 336 с.
7. Артемьев К.А. Теория резания грунтов землеройными машинами. -М.: Стройиздат, 1978. 217 с.
8. Атяскин О.П. Экспериментальное исследование процесса зачерпывания уплотненной силосной массы напорными гидравлическими грейферами II Земледельческая механика, 1968, т. 10. С. 12 - 26.
9. Багиров И.З. Исследование деформации и сопротивления резанию грунта периметром (ножом) на повышенных скоростях // Строительные и дорожные машины, 1963, №6. С. 25 - 28.
10. Баладинский В.Л. Динамическое разрушение грунтов. Киев.: Изд. КГУ, 1971.-224 с.
11. Баландин В.П. Экспериментальное исследование и выбор оптимальной формы и размеров рабочего органа ударного действия для разрушениямерзлых грунтов: Дне. . канд. техн. наук. Москва, 1959. - 161 с.
12. Баловнев В.И. Моделирование процессов взаимодействия со средой рабочих органов дорожно-строительных машин. М.: "ВС", 1981. -333с.
13. Баловнев В.И. Новые методы расчета сопротивлений резанию. М.: Росвузиздат, 1963. - 254 с.
14. Баркан Д.Л. Виброметод в строительстве. М.: Стройиздат, 1959.254 с.
15. Басс Б.А. Изыскание и исследование параметров оборудования для рыхления мерзлых грунтов падающим рабочим органом: Дис. . канд. техн. наук.-М., 1970.-173 с.
16. Безухов Н.И. Основы теории упругости, пластичности и ползучести.- М.: Высш. шк., 1967. 431 с.
17. Беляков Ю.И., Владимиров В.И, Рабочие органы роторных экскаваторов. М.: Машиностроение, 1967. - 382 с.
18. Березанцев В.Г. Механика грунтов, основания и фундаменты. М.: Транспорт, 1970. - 353 с.
19. Березанцев В.Г. Расчет оснований сооружений. J1.: Стройиздат, 1970,- 187 с.
20. Берон J1.H., Глатман Л.Б. Контактная прочность горных пород. М.: Недра, 1966.-305 с.
21. Бондарович Б.А. Корреляционный и спектральный анализ нагрузок землеройных машин. М.: Транспорт, труды ЦНИИС, 1973, №78. - с. 16 - 32.
22. Брауде В.И. Вероятностные методы расчета грузоподъемных машин.- JL: Машиностроение, 1978. 232 с.
23. Быдеровский С.М. Проходческие грейферы / НИИИНФОРМТЯЖ-MAU1.-M., 1965.- 180 с.
24. Быковцев Г.И., Ивлев Д.Д. Об определении предельной нагрузки тел, вдавливаемых в пластическую среду / Механика и машиностроение. М.: Изд. АН СССР, 1961, № 1.-С.
25. Быковский И.И. Основы теории виброационной техники. М.: Машиностроение, 1969. -314 с.
26. Василенко И.М., Коротевич П.С. О влиянии формы бокового профиля режущих рабочих органов и скорости на их тяговое сопротивление // Тракторы и сельхозмашины. 1965, №8. - С. 12-19.
27. Васин Б.Г. Исследование режимов нагружения и разработка методики расчета машин, разрушающих мерзлый грунт: Дис. . канд.техн.наук. М., 1968.- 167 с.
28. Вершинский А.В. и др. Строительная механика и металлические конструкции. М.: Машиностроение, 1984. - 231 с.
29. Ветров Ю.А. Трение между ножом и грунтом в процессе резания // Научные доклады высшей школы. М.: Строительство, 1958, №2. - С.42 - 49.
30. Ветров Ю.А. Резание грунтов землеройно-транспортным и машинами. М.: Машиностроение, 1971. - 357 с.
31. Ветров Ю.А., Баладинский В.А. Машины для специальных землеройных работ. Киев, "Виша школа", 1980. - 465 с.
32. Волков Д.П. Динамика и прочность многоковшовых экскаваторов. -М., Машиностроение, 1969. 408 с.
33. Гагин О.Д., Иванов О.П., Сильня В.Т. Некоторые вопросы теории взаимодействия ковшового погрузочного органа с породой // Вопросы рудничного транспорта. Сб. статей. М., 1965, Вып. 9. - С. 298 - 310.
34. Гальперин М.И., Николаев Б.А. Исследование разрушения мерзлых грунтов клиньями // Строительные и дорожные машины. 1962, № 11. - С. 48 -52.
35. Гаранин Н.П. Автоматическое выравнивание натяжений в канатах грейферной лебедки плавучих кранов // Эксплуатация флота и портов: Труды ГИИВТа. Горький, 1976, Вып. 134. - С. 52 - 56.
36. Гаранин Н.П. Теоретические основы повышения эксплуатационных качеств речных плавучих кранов: Дис. . докт. техн. наук. J1., 1974. - 292 с.
37. Гениев Г.А., Эетрин М.И. Динамика пластической и сыпучей сред. -М.: Стройиздат, 1972. 216 с.
38. Герсеванов Н.М. Основы динамики грунтовой массы. М., J1.: Гос-стройиздат, 1933. 232 с.
39. Герсеванов Н.М. Собрание сочинений т. 11. М.: Строй волнмориз-дат, 1948.-482 с.
40. Глаговский Б.А., Пивен Н.Д. Электротензометры сопротивления. Библиотека по автоматике. М., JL: Энергия, 1964, Вып. 115. -45 с.
41. Глебко Д.К. Исследование влияния формы челюстей грейфера на его зачерпывающую способность: Автореф. дис. . канд. техн. наук. Ворошиловград, 1974.- 168 с.
42. Голушкевич С.С. Статика предельных состояний грунтовых масс. -М.: 1957.-283 с.
43. Голушкевич С.С., Христофоров B.C. Практические методы определения давления грунта. М.: ВМУЗ, 1949. - 115 с.
44. Гольдсмит, Вернер. Удар. М.: Госстрой из дат, 1965. - 320 с.
45. Горовиц В.Б. О выборе исходной гипотезы при определении усилий резания грунтов аналитическими методами: Дис. . канд. техн. наук. М., 1971.- 187 с.
46. Городецкий JI.H. Некоторые экспериментальные и теоретические исследования грейферных механизмов: Дис. . канд. техн. наук. Днепропетровск, 1969. - 147 с.
47. Горячкин В.Н. Собрание сочинений: В 4 т. М.: Колос, 1968. Т. 2.455 с.
48. Готлиб В.Я. Применение метода круглоцилиндрических поверхностей скольжения для определения сопротивлений зачерпыванию // Труды ЛИИВТа. Л.: Транспорт, 1965, № 85. - С. 40 - 43.
49. Гячев Л.В. Движение сыпучих материалов в трубах и бункерах. М.: Машиностроение, 1968.- 181 с.
50. Далин А.Д. и Павлов Н.В. Ротационные грунтообразующие и землеройные машины. М.: Машгиз, 1950. - 285 с.
51. Демин А.А. Взаимодействие ковша драчлайна с забоем и расчет сил копания // Строительные машины, № 3, 1988. С. 28 - 29.
52. Дергачев В.В. Об измерении давлений грунта. Информационные маШ териалы ВНИИ Вод ГЕО. М.: 1957, № 6. - С.
53. Дженике Э.В. Складирование и выпуск сыпучих материалов / Пер. с англ.-М.: Мир, 1968.- 159 с.
54. Дидух Б.И. Упруго-пластичное деформирование грунтов: Автореф. Дис. . докт. техн. наук.-М., 1985.-451 с.
55. Добжиновский Д.П. Исследование закономерностей изнашивания инструмента при резании мерзлых грунтов: Автореф. . канд. техн. наук Киев, 1980. - 19 с.
56. Домбровский Н.Г. , Гальперин М.И. Строительные машины. М.: Высшая школа, 1980. - 344 с.
57. Домбровский Н.Г., Устинкин Н.Д. Влияние скорости на сопротивле-& ние грунта резанию // Строительные и дорожные машины. 1968, № I. - С. 1419.
58. Дэлэг Доржбалын. Исследование влияния скорости на процесс копания грунта скрепером: Автореф. дисс. . канд. техн. наук. Харьков, 1975. - 16 с.
59. Дукельский А.И., Никитин Ю.А., Малееев Л.И. Обоснование выбора грейферов портовых перегрузочных машин для перегрузки навалочных сыпучих грузов // тр. ЦНИИЭВТ, 1979, Вып. 149. С. 3 - 64.
60. Зеленин А.Н. Разрушение мерзлых грунтов резанием, ударом и вибрацией. М.: НИКИНФОДКН, 1962. - 317 с.
61. Зеленин А.Н. Физические основы теории резания грунтов. М.: Изд. АН СССР, 1959.-371 с.
62. Зеленин А.Н., Баловнев В.И., Керов И.П. Машины для землеройных работ. М.: Машиностроение, 1975. - 422 с.
63. Зенков Р.Л. Методика расчета грейферов // Труды ВНИИПТМаша. 1966, Вып. 8(72).-С. 3-78.
64. Зенков Р.Л. Механика насыпных грузов. М.: Машгиз, 1964. - 341 с.
65. Зенков Р.Л. Основания расчета погрузочных и транспортных устройств для насыпных грузов: Дис. . докт. техн. наук. М, 1955. - 5 1 5 с.
66. Ерейский В.Д. Исследование рабочих процессов ковшовых погрузочных машин. Автореф. Дисс . канд. техн. наук. Новочеркасск, 1971. - 18с.
67. Желиговский В.А. Основы теории технологического процесса вспашки // Доклады ВАСХНИЛ. 1947. - В 2. - С. 83 - 91.
68. Ивлев Д.Д. Теория идеальной пластичности. М.: Наука, 1966.- 291с.
69. Ивлев Д.Д., Непершин Р.И. Внедрение гладкого сферического металла в жестко-пластическое полупространство // Механика твердого тела. — М: Изд. АН СССР, 1973, №4. С. 27 - 31.
70. Ивлев Д.Д. Об определении поверхности выпучившегося материала при вдавливании тонкого лезвия в пластическое полупространство / ПТМ, т. XXV, Вып. 2, 1961.-С. 27-31.
71. Ильгисонис В.К. Экспериментальное и теоретическое исследованиерабочего процесса двухчелюстных грейферов при погрузке торфа и выбор их конструкции и параметров: Автореф. дисс. . канд. техн. наук. М., 1955. - 16 с.
72. Ильюшин А.А. Пластичность. Основы общей математической теории. М.: Изд. АН СССР, 1963. - 292 с.
73. Кабашев М.Р. Повышение эффективности грейферных траншеекопателей путем улучшения процесса копания грунтов под гидростатическим давлением: Автореферат канд.техн.наук. Алматы, 1998. - 25 с.
74. Каракулин Г.Г. Теоретические основы определения оптимальных геометрических параметров челюсти грейфера // Вопросы эксплуатации флота и портов: Труды ГИИВТа. Горький, 1977, Вып. 154. - С. 133 - 147.
75. Каракулин Г.Г. Определение величины начального заглубления челюстей грейфера // Оптимальное планирование работы флота: Труды ГИИВТа. Горький, 1975, Вып. 146. - С. 130-136.
76. Каракулин Г.Г. Методика расчета оптимальных размеров канатных грейферов // Вопросы повышения надежности плавкранов и дноуглубительной техники, Тр. ГИИВТа.-Горький: 1980, Вып. 177, 4.1. С. 3 - 99.
77. Каракулин Г.Г. Теоретическое исследование кривой зачерпывания грейфера // Вопросы эксплуатации флота и портов: Труды ГИИВТа. Горький,1976, Вып. 149.-С. 196-206.
78. Каракулин Г.Г., Слюсарев А.С. О вместимости грейфера. // Речной транспорт. 1978, №11.-С. 37.-42.
79. Карский О.В. Исследование влияния собственного веса грейфера на его зачерпывающую способность: Автореф. дис. . канд. техн. наук. Харьков,1977,- 16 с.
80. Кафа Самир Нымр. Автоматизация проектирования и исследование систем грейферного подъема: Автореф. дис. . канд. техн. наук. СПб., 1993. -13 с.
81. Клейн Г.К. Строительная механика сыпучих тел. М.: Стройиздат,1977.-243 с.
82. Клиопа Г.И. Влияние скорости на усилие резания грунтов. М-: Ав-тотрансиздат, 1952. - 82 с.
83. Кобашев Р.А. Повышение эффективности землеройных машин на основе совершенствования системы эксплуатации и конструкции режущих элементов: Автореф. дис. . докт. техн. наук. М.: МИСИ, 1987, -48 с.
84. Коротких В.Б. Интенсификация рабочего процесса бульдозерного отвала с выступающими ножами: Дис. . канд. техн. наук. — Днепропетровск, 1995.-20 с.
85. Кошин А.П. Взаимодействие рабочего органа рыхлителя с мерзлым каменистым грунтом при статично-динамическом приложении нагрузок: Автореф. дис. . канд. техн. наук. Томск, 1995. - 169 с.
86. Кривцов И.П. Исследование смешанных органов универсальных погрузчиков и кранов с целью повышения эффективности использования погру-зоразгрузочных устройств на транспорте: Дис. . докт. техн. наук. Харьков,1971,-364 с.
87. Кривцов И.П. Исследование процесса заполнения сыпучего груза ковшовым захватом с верхним центром поворота: Автореф. . канд. гехн. наук. -Харьков, 1960.-331 с.
88. Крупко В.А. Об аналитическом определении сил сопротивления грунта резанию // Сб. Горные, строительные и дорожные машины. Киев, 1970, Вып. 10.-С. 31-35.
89. Крупко В.А. Определение напряженного состояния бесконечного упругого клина // Сб. Горные, строительные и дорожные машины. Киев,1972, Вып. 14. С. 47-52.
90. Крупко В.А. О разрушении грунта перед лобовой гранью плоского вертикального ножа // Сб. Горные, строительные и дорожные машины. Киев,1973, Вып. 15.-С. 58-62.
91. Крутиков И.П. Грейферы двухканатного типа ВНИИПТМАШ: В 2кн. М: Машгиз, 1949, Кн. 2. - 378 с.
92. Крутиков И.П. Теоретичское и экспериментальное исследование двухчелюстных грейферных механизмов: Автореф. дис. . докт. техн. наук. -М., 1957.-32 с.
93. Лебедев Г.Д., Соловых С.Ф. Об измерении давления сыпучих тел // Изв. вузов. Строительство и архитектура. 1965, №1. - С. 12-16.
94. Леонтьев Н.Л. Техника статистических вычислений. VI.: Лесная промышленность, 1969. - 203 с.
95. Лобов К.А. Автоматизация управлением мостовым грейферным краном.-М., 1965.-65 с.
96. Лозовой Д.А. Разрушение мерзлых грунтов. Саратов: Изд. Саратовского университета, 1979. - 194 с.
97. Лозовой Д.А. Теоретическое и экспериментальное исследование новых рабочих органов машин для разработки мерзлых грунтов: Автореф. . докт. техн. наук. М., 1971. - 32 с.
98. Лукомский С.И. Исследование режимов работ вибромолотов // Сб. Исследование механизмов и машин виброударного действия. М., 1959. - С. 53 - 57.
99. Мак С.Л. Некоторые вопросы проектирования и эксплуатации грейферов // Тр. ин-та / Одесский индустриальный ин-т. Одесса, 1940, Вып. 2, №7. -С. 34-41.
100. Малеев Л.И. К выводу расчетной зависимости для зачерпывающей способности грейфера // Конструирование и пр-во транспортных машин. Респ. межвед. науч.-техн. сб. Харьков, 1981, Вып. 13. - С. 55 - 59.
101. Малеев Л.И., Щербина Н.А. Расчетная зависимость для зачерпывающей способности двухчелюстного грейфера // Морские порты: науч. труды ОИИМФ. Одесса, 1976, Вып. 8. - С. 113 - 115.
102. Малеев Л.И. Некоторые вопросы, связанные с выбором типа и основных параметров грейфера // Изв. вузов. Черная металлургия. Одесса, 1959,6.-С. 58-64.
103. Малеев Л.И. Факторы зачерпывающей способности рудных грейферов: Автореф. дис. . канд. техн. наук. Одесса, 1955. - 17 с.
104. Малиновский В.Ю. Расчет и проектирование строительных и дорожных машин на ЭВМ. -М.: Машиностроение, 190. 216 с.
105. Малышев М.В. Приближенное решение задачи теории предельного равновесия сыпучей среды. Информационные материала ВНИИВОДГЕО. — М., 1957, №7.-С. 89-95.
106. Малышев М.В. Вопросы прочности грунтов и устойчивость оснований сооружений: Дис. . докт. техн. наук. М., 1969. - 421 с.
107. Математическая обработка наблюдений. М.: Наука, 1969. -203с.
108. Медков М.В. О прочности песчаных грунтов в условиях плоской деформации // Материалы Ш Всесоюзного совещания Киев, 1971. - С. 39 -46.
109. Михайлов Ю.И. Основные закономерности перемещения насыпного груза из завала // Изв. вузов. Горный журнал. 1965, №11. - С. 70 - 74.
110. Михайлов Ю.И. Особенности расчета забойных рудных конвейеров, предназначенных для работы из-под завала горной массы // Изв. вузов. Горный журнал 1966, №12. - С. 63 - 68.
111. Михайлов Ю.И. Результаты исследования закономерностей, развиваемых при взаимодействии скребковых рабочих органов скребкового конвейера с насыпным грузом.// Изв. вузов. Горный журнал. 1965, №12. - С. 34 - 38.
112. Михирев П.А. Исследование процесса наполнения ковшей погрузочных машин: Дис. . док. техн. наук. Новосибирск, 1994.-371 с.
113. Михирев П.А. Исследование процесса наполнения ковшей погрузочных машин: Дис. . канд. техн. наук. Новосибирск, 1958. - 342 с.
114. Недорезов И.А. Повышение производительного потенциала землеройных машин на основе создания новых рабочих органов Дис. . канд. техн. наук. М.: МАДИ, 1974, - 336 с.
115. Недорезов И.А. Прогрессивные методы разработки мерзлых грунтов. М.: Транспорт, 1969. - 450 с.
116. Недорезов И.А., Бондарович Б.А., Федоров Д.И. Вероятностный анализ усилий в рабочем оборудовании землеройных машин // Строительные и дорожные машины. 1971, №8. - С. 67 - 71.
117. Николаевский В.Н., Сырников И.Н. О плоском предельном течении сыпучей дилатирующей среды / Механика тв. тела. М.: АН СССР, 1970. - С. 159- 166.
118. Осьмак В., Круз В., Пожина П. Современное состояние теории пластичности. М.: Мир, 1964. - 265 с.
119. Петере Е.Р. Грузовые устройства и экскаваторы. М.: Машгиз, 1952.-254 с.
120. Потемкин С.В., Чернов А.А. Применение грейферов для проходки шурфов // Труды ВНИИ. Магадан, 1960, Вып. 36. - С. 11 - 14.
121. Петухов П.З., Новенко А.В. Графоаналитический метод расчета рудного грейфера // Тр. Уральск, политехи, ин-та. Свердловск, сб. 188, 1971. -С. 38-42.
122. Пигулевский И.Х. Сопротивление сдвигу почв и грунтов // Почвоведение.-М., 1936, №6.-С. 6- 12.
123. Пигулевский И.Х. Основы и методы изучения физико-механических свойств почвы. М.: Сельхозиздат, 1936. - 152 с.
124. Платонов П.Н., Глушков В.Е., Карнаушенко Л.И., Науменко Н.В. К вопросу исследования физико-механических свойств сыпучих материалов // Инженерно-физический журнал. 1970, т. 18, №14. - С. 72 - 77.
125. Подэрни Р.Ю. Горные машины и комплексы для открытых работ. -М.: Недра, 1971.- 181 с.
126. Пронин С.В. Повышение эксплуатационных качеств грейферов портовых кранов: Дис. . канд. техн. наук. М., 1989. - 317 с.
127. Пугачев B.C. Теория случайных функций. М.: Физматгиз, 1963.310с.
128. Ратновский J1.3. Подъемные краны. СПБ, 1910, т. 1, Вып. I. - 327с.
129. Ребров А.С. Возможности повышения производительности строительных экскаваторов // Механизация трудоемких и тяжелых работ. 1951, №3. - С. 41-45.
130. Рейнер М. Реология. М.: Наука, 1965.- 180с.
131. Родионов Г.В., Костылев А.Д., Гурков К.С. Влияние вибрирования на эффективность черпания скальных пород ковшами погрузочных машин // Горный журнал. 1956, №3. - С. 52 - 55.
132. Родионов Г.В. Экспериментальное и теоретическое исследование породоразгрузочных машин периодического действия: Дис. док. . техн. наук. -М„ 1957.-540 с.
133. Руденко Н.Ф., Фрейдлин М.И. Современные течения в грейферо-строении // Внутризаводской транспорт и стальные конструкции. 1936, №5-С. 41-43.
134. Руднев В.К. Копание грунтов землеройно-транспорт ирующими машинами активного действия. Харьков: ВШ, 1974. - 143 с.
135. Румянцев Б.П. Исследование работы моторного грейфера: Автореф. . канд. техн. наук. М., 1956. - 16 с.
136. Румянцев Б.П., Глебко Д.К. Влияние кратности полиспаста на работоспособность грейферов железнодорожных кранов // Локомотивостроение. Респ. межвед. науч.-техн. сб. Харьков, 1968, №1. - С. 161 - 168.
137. Румянцев Б.П., Шевченко Н.А., Макеев В.П. Некоторые вопросы теоретического исследования грейферных механизмов // Локомотивостроение. Респ. межвед. Харьков, 1974, Вып. 6. - С. 87 - 93.
138. Русанов И.Г., Харкевич А.А. Вынужденные колебания системы, ударяющей об ограничитель. ХТФ, т. 12., Вып. 11 - 12, 1942. - С.
139. Седов Л.И. Механика сплошной среды. Т. 2 М.: Изд-во физ.-мат.литературы, 1984. 357 с.
140. Семенов В.Ф. Механико-технологические основы истечения зерновых сельскохозяйственных материалов из емкостей. Дис. . докт. техн. наук. -Барнаул, 1979.-400 с.
141. Сердечный А.С. Управление амплитудой и длительностью ударного импульса: Автореф. дис. . докт. техн. наук. Новосибирск, 1977. - 43с.
142. Славин Б.М. Влияние скорости грейфирования и переменной массы материала на зачерпывающую способность двухканатного грейфера: Дис. . канд. техн. наук. Астрахань, 1990. - 158 с.
143. Слюсарев А.С. Разработка основ расчета и конструирования рабочих органов подъемно-транспортных машин, подвергающих сыпучий материал объемному сжатию: Дис. . докт. техн. наук. Нижний Новгород, 1991. — 392 с.
144. Соколинский В.Б. Научно-методические основы расчета ударных систем горных машин: Дис. . докт. техн. наук.-М., 1971.-353 с.
145. Соколовский В.В. Статика сыпучей среды. М.: Изд. физмат, литературы, 1960. - 243 с.
146. Соколовский В.В. Теория пластичности. М.: Гостехиздат, 1950. -С.-281 с.
147. Солнцев М.П., Емельянов B.C. К вопросу о теории грейфера двухканатного типа для сыпучих и мелкокусковых материалов // Изв. вузов. Горный журнал. 1960, №9. - С. 37 - 40.
148. Соловьев В.Г. Алгоритм расчета грейфера на ЭВМ // Гр. ин-та / ЛПИ, 1978, Вып. 362. С. 93 - 103.
149. Соловьев В.Г. Вопросы теории, расчета и пути повышения производительности перегрузочных грейферных установок: Дис. . канд. техн. наук. -Л., 1975.- 192 с.
150. Соловьев В.Г. Теоретические основы автоматизированного проектирования механизмов грузоподъемных кранов: Дис. . докт. техн. наук. — Л.,1991.-452 с.
151. Станевкий В.П. совершенствование рабочего процесса землеройных машин. Киев: ВШ, 1984. - 127 с.Р
152. Стрелюхин М.И. Повышение эффективности винтового рабочего органа за счет оптимизации его геометрических параметров: Автореф. дис. . канд. техн. наук. СПб., 1995. - 19 с.
153. Стогов Т.В. Влияние переменной массы зачерпываемого грунта на процесс копания // Горные, строительные и дорожные машины. Киев: Техника, 1972, Вып. 13.-С. 22-29.
154. Стогова В.Н. Одноковшовые погрузочные машины. Харьков: Ме-таллургиздат, 1959. - 157 с.
155. Тарасов В.Н. Основы оптимизации рабочих органов землеройно-транспортных машин. Дис. . докт. техн. наук. Омск, 1980. - 390 с.
156. Тархов А.И. Кузьмин Э.Н., Корелин В.Ф., Федоров А.И. Исследование процесса резания грунта на основе теории масштабного эффекта / Сб. Строительные и дорожные машины. Ярославль, 1981, Вып. 5. - С. 16-22.
157. Таубер Б.А. Структурное исследование грейферных механизмов // Тр. ин-та / Московский лесотехн. ин-т. 1957, Вып. 7. - С. 24 — 3 1.
158. Таубер Б.А. Грейферы заводов ГУПТО // Подъемно-транспортное дело. 1940, №6.-С. 14-19.
159. Таубер Б.А. Основы теории грейферных механизмов // Вестник машиностроения. 1957, №10. - С. 29 - 35.
160. Таубер Б.А. Влияние конструктивных параметров канатного грейфера на зачерпывающую способность // Вестник машиностроения. 1959, №8. -С.21 -29.
161. Таубер Б.А. Грейферные механизмы. -М.: Машиностроение, 1985.269 с.
162. Телушкин В.Д., Винокуров В.А. и др. Строительные и дорожные машины для районов с холодным климатом. М.: Машиностроение, 1978.197 с.
163. Сурыкин А.И. Определение натяжения в замыкающем канате двух-канатного грейфера // Тр. ин-та / Харьковский механико-машиностроит. ин-т. -Харьков, 1937, Т.П. Кн. 2. С. 43 - 52.
164. Сэвидж С. Гравитационное течение несвязанных гранулированных сред // Теория быстрых движений. Сб. статей, пер. с англ. Под ред. Ширко И.В. М.: Мир, 1985, Вып. 30. - С. 87 - 145.
165. Угрюмов А.А. Исследование влияния затупления ножей на сопротивление грунта копанию скреперами: Автореф. . канд. техн. наук, Омск, 1979.-22 с.
166. Устинкин Н.Д. Исследование влияния скорости на взаимодействие режущего органа с грунтом. Автореф. . канд. техн. наук. -М., 1967. 26 с.
167. Устинкин Н.Д. Исследование сопротивлений от сил инерции при резании грунта // Изв. вузов. Строительство и архитектура. 1966, №3. - С. 7 -11.1172. Федоров Д.И. Рабочие органы землеройных машин. М.: Машиностроение, 1977. 286 с.
168. Федоров Д.И., Бондарович Б.А., Перепонов В.И., Недорезов И.А. Методы ускоренных инструментальных испытаний дорожных машин и их узлов. М.: ЦНИИТЭСтроймаш, 1967. - 34 с.
169. Феллер В. Введение в теорию вероятностей и ее приложения. М.: Мир, 1967, т. 2.-296 с.
170. Филяков А.Б. Экспериментальное исследование сопротивлений грейфированию // XX научная конференция АТИРПиХ: Сб. докл. Астрахань, 1970.-С. 130- 135.
171. Филяков А.Б. Исследование напряженного состояния сыпучей среды * при черпании грейфером // ЦНИИТЭСТРОЙМАШ. 1971, №2. - С. 15-21.
172. Филяков А.Б. Медведик С.И. Исследование процесса заполнения грейфера // Труды XX юбилейной конференции АТИРПиХ: Сб. докл. Астрахань, 1970.-С. 123 129.
173. Филяков А.Б. К вопросу об определении зачерпывающей способности грейфера//Изв. вузов. Машиностроение. 1972, №9. - С. 141 - 145.
174. Филяков А.Б. Исследование процесса зачерпывания двухканатным грейфером насыпных грузов: Дис. . канд. техн. наук. Астрахань, 1972. - 182 с.
175. Филяков А.Б. О характеристике динамического напряженного состояния сыпучей среды // СИФ ЦНИИТСтроймаш, ДР №390-сд-82. 10 с.
176. Филяков А.Б. О динамическом напряженном состоянии сыпучей среды // Изв. вузов. Пищевая технология. 1972, №2. - С. 146 - 150.
177. Филяков А.Б. Исследование напряженного состояния сыпучей среды при интенсивном внедрении в нее деформатора // Изв. вузов. Строительство и архитектура. 1974, №9. - С. 140 - 144.
178. Филяков А.Б. Исследование процесса внедрения деформатора в сыпучую среду при установившемся движении // Изв. вузов. Строительство и архитектура. 1981, №11.-С. 135 - 138.
179. Филяков А.Б. Исследование процесса внедрения деформатора в сыпучую среду с переменной скоростью // Изв. вузов. Строительство и архитектура. 1981, №5. - С. 133 - 138.
180. Филяков А.Б., Славин Б.М. Исследование динамического напряженного состояния связной среды / Вестник Астраханского техн. университета. -Астрахань, 1994, №1. С. 230 - 232.
181. Филяков А.Б., Коган В.В., Выходцев В.Н. Распределение давлений на поверхности деформатора при его внедрении в сыпучую среду // Горные,строительные, дорожные и мелиоративные машины. Киев: Изд. Техника, 1994, №44.-С. 19-24.
182. Филяков А.Б. Характеристика напряженного состояния деформируемой связной среды // Современные проблемы механики грунтов и охраны геологической среды. Труды VII школы семинара. Ростов-на-Дону: РГУ, 1998.-С. 53 - 54.
183. Филяков А.Б., Славин Б.М. Петрушенко Н.А. Расчет органов сопротивления движению рабочих органов землеройных и дорожных машин // Астр, межотраслевой территориальный центр науч.-техн. информ. Астрахань, 1984, Вып. 145.-84 с.
184. Филяков А.Б., Славин Б.М. Разработка инженерного метода расчета канатных грейферов с применением ЭВМ // Проблемы качества и надежности машин. Тезисы докладов республиканской науч.-техн. конф. Часть 1. Могилев, 1994.-С. 62.
185. Филяков А.Б., Славин Б.М. Упрощенная методика расчета грейфера // Судовые и береговые подъемно-транспортные машины и устройства. Тезисы докладов Всероссийской науч.-техн. конф. -СПб., 1993.-С. 103.
186. Филяков А.Б., Турпищева М.С., Декин К.Д., Дербенев Н.А. Механизация ПРТС работ в рыбной промышленности. Владивосток: Изд. Мин-рыбхоз. Дальрыбвтуз, 1987. - 137 с.
187. Филяков А.Б., Славин Б.М. Определение начального заглублениягрейфера в насыпной груз // Сб. Горные, строительные, дорожные и мелиоративные машины. Киев, 1986, Вып. 39. - С. 110-113.
188. Филяков А.Б., Славин Б.М. Исследование напряженного состояния связной среды при зачерпывании грейфером // Сб. Вестник. Астр. гехн. ин-та рыбной пром. и хоз-ва. Астрахань, 1993, Вып. 1. - С. 226 - 229.
189. Филяков А.Б., Кудинов А.А. Исследование шнекового и дискового рушителей при выгрузке насыпных материалов // Механизация и автоматизация производства. М., 1974, №8. - С. 27 - 29.
190. Филяков А.Б., Кудинов А.А. К расчету шнекового и дискового рушителей // Сб. трудов 3 научн. конфер. Брянского технологического ин-та. Брянское областное правление НТО МАШПРОМ. Брянск, 1974. - С. 59 - 67.
191. Филяков А.Б., Сабанцев В.А. Определение усилия резания слежавшихся кусковых грузов от глубины резания и угла наклона // Сб. трудов Совершенствование технологии производства полуфабрикатов, бумаги и картона.- Л.: ВНИИБ, 1979. С. 61 - 63.
192. Филяков А.Б., Стогов В.Н., Байбеков И.И. Элеваторно-бункерная вагоно-разгрузочная машина // Промышленный транспорт. Изд. Транспорт. М.- 1981, №3,-С. 9- 10.
193. Филяков А.Б., Зайкин О.А. Экспериментальное исследование процесса виброударного внедрения деформаторов различной формы в смерзшийся глинозем // Сб. Краткие результаты научной деятельности АТИРПИХ, Астрахань, 1990.-С. 197- 199.
194. Филяков А.Б. Исследование процесса виброударного внедрения деформатора в смерзшийся груз // Изв. вузов. Строительство и архитектура. -1982, №12. С. 120- 123.
195. Филяков А.Б., Сорокин В.И. Виброударная вагоно-разгрузочная ма шина // Механизация и автоматизация производства. М., 1984. - С. 60-63.
196. Филяков А.Б. К определению напряженного и деформированного состояния сыпучей среды при внедрении в нее деформатора // Горные, строительные, дорожные и мелиоративные машины: Ред. межвед. науч.-техн. сб. -1989, Вып. 42.-С. 45-50.
197. Филяков А.Б., Андреева Е.А. Характеристика напряженного состояния сыпучей среды // Вестник Астр. гос. техн. университета. Астрахань, 1996.-С. 185 - 190.
198. Филяков А.Б. О напряженном состоянии деформируемой среды // «Изв. вузов Сев.-Кавк.регион. Техн. науки» приложение к №3. Новочеркасск, 2004.-С. 9- 13.
199. Филяков А.Б. К определению напряженного и деформированного состояния связной среды при внедрении в нее деформатора // «Изв. вузов Сев.-Кавк.регион. Техн. науки» приложение к №3. Новочеркасск, 2004. - С. 2 - 6.
200. Филяков А.Б. Исследование объемного напряженного состояния связной среды на внедряющийся деформатор при неустановившемся движении // Международная науч.-техн. конф., посвященная 70-летию основания КГТУ. Часть III. Калининград, 2000. - С. 146 - 147.
201. Филяков А.Б., Локтев В.И. Определение влияния присоединяемой массы среды на процесс зачерпывания ковшовым органом // Международная науч.-техн. конф., посвященная 70-летию основания КГТУ. Часть III. — Калининград, 2000.-С. 156- 157.
202. Филяков А.Б., Михайлов И.В. Обзор методов расчета на прочность двухчелюстных грейферов // Материалы международной науч.-техн конф., посвященной 70-летию АГТУ. Т.3. Астрахань, 2001.-С. 156- 157.
203. Филяков А.Б. К анализу характеристик напряженного состояния сыпучих и связных сред // Материалы международной науч.-техн. конф., посвященной 70-летию АГТУ. Т.З. Астрахань, 2001.-С. 149- 151.
204. Филяков А.Б., Славин Б.М. О характеристике напряженного состояния интенсивно деформируемой связной среды // Материалы международной науч.-техн. конф., посвященной 70-летию АГТУ. Т. 3. Астрахань, 2001. -С. 154- 156.
205. Филяков А.Б. Исследование влияния зубьев и их параметров на сопротивление внедрению рабочего органа в кусковой груз // «Изв. вузов Сев.-Кавк.регион. Техн. науки» приложение к №3. Новочеркасск, 2004. - С. 14 — 19.
206. Филяков А.Б. Взаимодействие рабочих органов перегрузочных машин с насыпными грузами. Астрахань: Изд. АГТУ, 2004. - 1 76 с.
207. Флорин В.А. Основы механики грунтов. М.: Госстройиздат, т.1,1959, т. 2, 1961.-315 с.
208. Французов О.Б. О выборе конструкции четырехканатных грейферов // Внутризаводской транспорт. 1934, №3. - С. 46 - 52.
209. Фролков Ю.В. Моделирование работы грейфера в эксплуатационных условиях // Проблемы технологии, механизации и автоматизации перегрузочных работ на морском транспорте. М.: в/о Мортехинформреклама, 1984. -С. 3 - 11.
210. Хазанович Г.Ш. Исследование ходового привода с асинхронными двигателями ковшовых погрузочных машин. Автореф. дисс. . канд. техн. наук. Новочеркасск, 1965. - 23 с.
211. Хмара JI.A. Интенсификация рабочих процессов машин для землеройных работ. ~ Днепропетровск, ДИСИ, 1989. 329 с.
212. Холодов И.А. Исследование передачи энергии удара в машинах для разработки мерзлых грунтов: Дис. канд. техн. наук. — Свердловск, 1969. 188 с.
213. Холодов A.M. Основы динамики землеройно-транспортных машин. -М.: Машиностроение, 1968. 156 с.
214. Цаплин С.А. Виброударные механизмы для дорожно-мостового строительства. -М.: Автоиздат, 1953. 163 с.
215. Цытович И.А. Механика грунтов. М.: Высшая школа, 1983. - 288с.
216. Шары Г.Я. Исследование процесса зачерпывания скальных пород ковшовыми породо-погрузочными машинами: Автореф. . канд. техн. наук. -М., 1955.-23 с.
217. Шевченко Н.А. Исследование зачерпывающей способности грейферных механизмов: Дис. . канд. техн. наук. Ворошиловград, 1976. - 178с.
218. Ширенко П.С. Вопросы теории и методов расчета грейферов // Тр. ин-та / Уральский политехи, ин-т им. С.М. Кирова. 1944, Вып. 19. - С. 102 — 108.
219. Шкуренко Н.С. и др. Виброметод разработки мерзлых грунтов. -М., Стройиздат, 1965. 196 с.
220. Шлойдо Г.А., Бакулин А.В. Исследование эффективности многозу-бых рабочих органов рыхлителей на физических моделях. Труды ВНИИСтрой-дормаша, Вып. 106. -М, 1981.- 108 с.
221. Шнейнер J1.A. Физические основы механики горных пород. М.: Изд. Гостоптехнадзора, 1950. - 262 с.
222. Шор Я.Б., Кузьмин Ф.И. Таблицы для анализа и контроля надежности. М.: Советское радио, 1968. - 83 с.
223. Шукле J1. Реологические проблемы механики грунтов / Пер. с англ. М.: Стройиздат, 1976. - 485 с.
224. Шушкевич В.А. Основы электротензометрии. Минск: Высшая школа, 1975. - 262 с.
225. Ясиновский A.M. К методике прочностного расчета элементов челюстей канатных грейферов // Сб. Детали машин и подъемно-транспортные машины. Киев: Техника, 1966, Вып. 6. - С. 82 - 88.
226. Ясиновский A.M. Эксперимернтальное определение эксплуатационных нагрузок в элементах натурных канатных грейферов // Сб. Детали машин и подъемно-транспортные машины. Киев: Техника, 1968, Выи. 7. - С. 52 -64.
227. Яркин А.А. Экспериментальное исследование выбора параметров профиля поворотного отвала бульдозера. М., 1964. - 180 с.
228. Bethman. Die Hebezeuge, Berechmung und Kostruktion der Elemente, Flanschenztige, Winden und Krane. Braunschweig, Vieweg, 1920.
229. Dinglinger E. Voer den Crabeviderstand.Diss. Tehn / Hochscbule, Hannover, 1937, auch Fordertahn, Bd 22(1920).
230. Kammerer. Versuche mit Seibstgreifern ZVDI, 1912. Band 56, №16.
231. Hellkotter W. Motorgreifer fur Mull «Fordern und Heben». 1972, №8.
232. Meierr K. Untersuchugen iiber der Fiil lungsvorgang von Greifem bei Versuchen in Sand «Deutsche Hele und F о rdertachnik» - 1962, №9.
233. Ninelt. Uber Kraft und Arbeitsver-bellung an Greifern, besonders in Motorgreifern.-«Fordertechik». 1927.
234. Nieman. Neue Erkenntnisse im Greifferoan. VDI, 1935.
235. Pfahl. Krafteverteilung und Greifen bei Selbetgreifern. VDI, 1912.
236. Dub. Der Kraanbau Wittenberg, 1922.
237. Rathje. Uber den Schnittergang in Sande Dissertotion VDI, H350,1931.
238. Salomon. Neuere Bagger und Erdgrabemaschinen,- ZVDI, 18861887.
239. Scheffler M. Nene Erkenntnisse iiber die Auslegung von Zweischalen -Schuttgutgreifern. Dtsch. Hebe und Fordertechn. 1973.
-
Похожие работы
- Определение эффективности применения вибрационного грейфера с аккумулятором энергии для перегрузки сыпучих материалов при отрицательных температурах
- Разработка методики расчета перегрузочного комплекса ленточных конвейеров
- Математические модели и алгоритмы оптимизации процессов управления перегрузочным комплексом в информационной технологии АСУ
- Экспериментально-теоретические основы выбора параметров устройств транспортирования твердых грузов с воздействием на них магнитных полей
- Автоматизация проектирования и исследований систем грейферного подъема