автореферат диссертации по строительству, 05.23.17, диссертация на тему:Пространственное напряженно-деформированное состояние дорожных конструкций при динамическом нагружении

кандидата технических наук
Медведева, Татьяна Александровна
город
Ростов-на-Дону
год
2003
специальность ВАК РФ
05.23.17
Диссертация по строительству на тему «Пространственное напряженно-деформированное состояние дорожных конструкций при динамическом нагружении»

Автореферат диссертации по теме "Пространственное напряженно-деформированное состояние дорожных конструкций при динамическом нагружении"

На правах рукописи

А

Медведева Татьяна Александровна

ПРОСТРАНСТВЕННОЕ НАПРЯЖЕННО - ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ ДОРОЖНЫХ КОНСТРУКЦИЙ ПРИ ДИНАМИЧЕСКОМ

НАГРУЖЕНИИ

Специальность 05.23.17. - Строительная механика.

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

I

I

I

Ростов-на-Дону 2003

Работа выполнена в Ростовском государственном строительном университете

Научный руководитель: Научный консультант:

Официальные оппоненты:

Ведущая организация:

доктор физико - математических наук, профессор Селезнев М.Г. доктор технических наук, профессор Илиополов С.К.

доктор технических наук, профессор Тимофеев С.И.

кандидат физико - математических наук, доцент Суворова Т.В.

НИИ механики и прикладной математики РГУ

Защита состоится «2» декабря 2003 г. в 1015 на заседании специализированного диссертационного совета Д.212.207.02 Ростовского государственного строительного университета по адресу:

344022, г. Ростов-на-Дону, ул. Социалистическая, 162, ауд. 328.

С диссертацией можно ознакомиться в библиотеке Ростовского государственного строительного университета.

Автореферат разослан «17» октября 2003 г.

Ученый секретарь диссертационного совета, кандидат технических наук,

доцент Касторных Л.И.

\

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

з

Актуальность работы. Традиционно главной проблемой российских автодорог является низкий уровень их эксплуатационного состояния. В современных условиях в общем объеме грузопотоков резко увеличилась доля автомобильных перевозок, значительно возросли скорости движения транспорта и

накопления остаточных деформаций и различных нарушений в конструктивных слоях дорожных одежд, что приводит к преждевременному деформированию и разрушению покрытий автомобильных дорог. Существует целый ряд причин, в том числе и технологического характера, но одна из важнейших -несовершенство расчетных схем, принятых при расчете и проектировании дорожных конструкций, поэтому дальнейшее развитие методов исследования системы дорожная конструкция - грунт остается актуальным.

Используемые в настоящее время методики расчета не отражают пространственного характера строения и динамического нагружения дорожной конструкции при реальном воздействии движущегося транспорта и не позволяют на их основе исследовать весь комплекс проблем, определяющих кх долговечность. Кроме того, не рассматриваются вопросы генерации движущимся по магистрали транспортом техногенных вибрационных полей в дорожных конструкциях и геологической среде и их воздействия на строительные объекты.

Исследование основных характеристик напряженно-деформированного состояния (НДС) экспериментальными средствами и методами требует дорогостоящей прецизионной аппаратуры, весьма сложно и трудоемко. Решение задачи строительной механики, адекватно отражающей основные особенности ' строения и нагружения дорожной конструкции, позволяет получить достаточно полную информацию о характеристиках динамического НДС. негативно ; влияющих на ее состояние.

Дорожная конструкция представляет собой пакет полос конечной ширины и толщины, жестко сцепленных между собой и со слоистым полупространством, моделирующим грунт. Основа расчета НДС конструкции - решение .задачи

его грузоподъемность. Это является причиной ускоренного развития процессов

воздействия движущейся осциллирующей нагрузки на слой конечной ширины, жестко сцепленный с полупространством в трехмерной постановке (основной элемент строения системы). При построении данного решения возникают значительные трудности как теоретического, так и технического характера.

Цель диссертации - разработка и реализация методики решения пространственной динамической задачи строительной механики, описывающей основные закономерности строения и нагружения элементов системы дорожная конструкция - грунт.

Для достижения поставленной цели необходимо:

- разработать метод решения динамической задачи для полосы (дорожной конструкци), контактирующей с упругим полупространством (грунтом) в трехмерной постановке;

- разработать алгоритм численного решения динамической задачи о пространственном напряженно-деформированном состоянии дорожного покрытия;

- провести численный эксперимент для выявления основных закономерностей динамического НДС элементов системы.

Научная новизна работы:

- решена новая динамическая задача строительной механики в пространственной постановке;

разработан новый аналитико-численный метод решения динамической задачи строительной механики для полосы конечной ширины (дорожной конструкции), жестко сцепленной с полупространством (грунтом), в пространственной постановке;

разработан алгоритм расчета напряжений и деформаций системы дорожная конструкция - грунт на ПЭВМ;

- проведено достаточно подробное численное исследование основных качественных и количественных характеристик динамического напряженно-деформированного состояния элементов системы при воздействии движущейся осциллирующей нагрузки.

Практическая ценность работы:

выявлены новые закономерности распределения динамических характеристик пространственного НДС элементов системы дорожная конструкция - грунт, снижающих ее долговечность;

- проведены расчеты и изучены основные особенности формирования полей динамических напряжений и деформаций в элементах системы, в том числе и волновых полей, генерируемых движущимся по дорожной конструкции транспортом в грунте и оказывающих заметное воздействие на здания и сооружения вблизи автомагистралей;

- разработанные программы могут быть использованы при оценке эффективности технических и конструктивных мероприятий, проводимых с целью повышения долговечности дорожных конструкций;

- полученные результаты дают теоретическую основу для разработки уточненных инженерных методик расчета и проектирования автодорог с учетом основных особенностей динамического воздействия транспортного потока.

Результаты, полученные автором, использованы в ДорТранс НИИ РГСУ при выполнении хоздоговорных и госбюджетных НИР и при выработке практических рекомендаций по увеличению долговечности дорожных конструкций.

На защиту выносятся:

- методика решения пространственной динамической задачи строительной механики, моделирующей систему дорожная конструкция - грунт реального строения и нагружения;

- алгоритм решения задачи на ПЭВМ;

результаты численного анализа, иллюстрирующие основные закономерности распределения динамических напряжений и деформаций в элементах системы.

Достоверность полученных в работе результатов обеспечена:

- обоснованным и корректным применением математических методов исследования модельных задач при получении аналитических и численных решений;

- сопоставлением результатов расчета для частных и предельных случаев с полученными другими методами;

- сопоставлением ряда расчетных характеристик с данными натурного эксперимента.

Апробация работы. Материалы диссертации докладывались и обсуждались на 2-й Международной конференции «Современные проблемы механики сплошной среды» (РГУ, Ростов-на-Дону, 1996), на 2-й Международной школе-семинаре по проблемам механики сплошной среды (СГУ, Саратов, 1996), на Международных научно-практических конференциях РГСУ «Строительство-97», «Строительство-98», «Строите льство-99», «Строительство-2002», (Ростов-на-Дону), печатались в Межвузовском сборнике научных трудов «Технологические процессы в транспортном машиностроении» (РГУПС, Ростов-на-Дону, 1997), в журнале «Известия РГСУ», (Ростов-на-Дону, 1998), в докладах Академии Наук, (Москва, 1999).

Публикации. Основные результаты диссертации отражены в 10 опубликованных работах.

Структура и объем работы. Диссертация состоит из введения, трех глав, заключения, списка литературы из 180 наименований и приложений. Общий объем работы - 170 страниц, при наличии 48 иллюстраций.

Автор выражает сердечную благодарность д-ру ф.-м.н., проф. Ляпину A.A., полезные советы которого были использованы при написании диссертации.

СОДЕРЖАНИЕ РАБОТЫ

Введение содержит краткий обзор работ, связанных с проблематикой диссертации, обоснование выбора тематики исследования, оценку ее актуальности, научной новизны и практической значимости, достоверности полученных результатов. Здесь же приведено и краткое содержание работы.

При этом отмечено, что постановка и решение проблемы разработки более точных механико-математических моделей стали возможными, благодаря

значительно возросшему уровню современной вычислительной техники и последним достижениям фундаментальных исследований Ростовской-на-Дону и Краснодарской школы механиков под руководством академиков РАН И.И.Воровича и В.А.Бабешко в области динамики сложных составных полуограниченных тел.

Отмечено, что при моделировании динамического поведения сложных систем, включающих жестко сцепленные между собой конечные и полуограниченные элементы, возникают весьма сложные задачи строительной механики, требующие существенного развития известных и разработки новых методов их решения.

Первая глава посвящена постановке пространственной динамической задачи о действии движущейся нагрузки на полосу конечной толщины Ь и ширины 2а, жестко сцепленную с полупространством (рис.1). Вязкоупругая среда в пределах полосы и полупространства изотропна. Упругие свойства определяются плотностью р и коэффициентами Ламе. Учет вязкости среды осуществляется заданием тангенса угла потерь для каждой фиксированной частоты колебаний.

Рис. 1

Движение элементов системы описывается динамическими уравнениями теории упругости в перемещениях - уравнениями Ламе в пространственном случае:

39, д2и:

ае: аЧ,

где и!(х,у,7,,1)= { uJ,vJ,wJ} - компоненты вектора смещения точки 0=0 -

полупространство, 3=1 - полоса).

Граничные условия: на поверхность полосы х = -Ь в некоторой области О действует система усилий, равномерно прямолинейно движущихся со скоростью У0 вдоль оси Ог и совершающих гармонические колебания с частотой со:

у,геП: ах= Р1(у,г)е-м1 , тху=Р2(у,2)е-ш' , т^РДу^е-"'.

Все остальные плоские участки границы области свободны от усилий:

стх = тху =0.

На границах раздела слоя и полупространства заданы условия жесткого сцепления, определяющие равенство компонент векторов перемещения и напряжения двух элементов системы.

При отсутствии вязкости на бесконечности задаются условия излучения энергии упругих волн, для выполнения которых использован принцип предельного поглощения.

Связь компонент вектора напряжений с компонентами вектора перемещений определяется законом Гука.

Второй пункт первой главы посвящен постановке частных задач. Основная сложность реализации приведенной в первом пункте модели связана с построением решения пространственной динамической задачи строительной механики о возбуждении колебаний в бесконечной полосе высоты Ь и ширины 2а, представленной на рис.2 в виде области

Б:хе[- Ь,0]и у б [- а,а]иг е (- со,+оо).

В2 -к

О, 0

-а 1 а

Рис.2

Для решения этой задачи использован принцип суперпозиции. Дня его реализации необходимо разбить данную задачу на две вспомогательные и область О представить как пересечение двух подобластей (бесконечных слоев), ограниченных только по одной из координат: Б = Б, пВ2, где О,: х е [- Ь,0]и у е (-оо,+оо)и ъ е (-°о,+оо);

Б2: х е (- оэ,+со)и у е [- а, а] и г е (- оо,+оо). Граничные условия для полосы (области Э): х=-Ь: ах=Р,(у,2)е-ю\ Тух = Р2(у,2)е^', т2Х =Р3(у,2)е-м';

у = _а: ау=хух=ху7= 0. (2)

Решение сформулированной задачи для области О в соответствии с принципом суперпозиции ищем в виде суммы решений вспомогательных задач для подобластей: 0 = 0,+ 0,. (3)

Здесь векторы смещений 0, = {и^х.у^^уДх.у.г^^х.у^)^"1™' и

0 2 = (и2(х,у,г), У2(х,у,г),\У2(х,у,г)}е~'т' определяются решениями вспомогательных задач соответственно для подобластей Б, (горизонтальный слой) и О 2 (вертикально ориентированный слой).

Граничные условия для слоя Б,:

х = 0: ах =Х1(у,г)е-,-\ туж =Х2(у,2)е-'\ т„ = Х3(у,2)е--'; х = -Ь: ах = Х4(у,г)е~"°', тух = Х5(У,2)е-°", тгх = Х6Ь,г)ет\ для слоя Б2:

у = а: оу = У,(х,г)е'"'(°1, тух = У2{х,г)^\ у = -а: сту = У4(х,г)е-\ тух =Г5(х,г)е-\ т^ = У6(х,2)е—. При построении решения вспомогательных задач применяем метод интегральных преобразований с использованием принципа предельного поглощения. В результате сложных и громоздких выкладок решение первой вспомогательной задачи (для подобласти Б]) в преобразованиях Фурье получаем в виде:

0,(а,р,х,©) = ц-,^Хк[стп(с3|(ев"х -с4ке-°"х)+(-1рс1к + а2|с5к)ес",< -к=!

-0Рс2к+а2|с6к)е-я»х];

^1(а1р>х)со) = ц-^ХкНР(с3ке0"х +с4ке-°"х)-(фс5к + о21с1к)ев«х -к=1

— 0ЭС6к _ст21с2к)е °2'Х] '

(а, р, X, со) = ц"' ^ -\ [(а2 + ц) - Цр2 ХСЗк е<,"Х + с4к е а"Х ) +

+ (сй(Х + ц)-Р2(). + 2й)Кс5ке^ + сбке-^ )];

о^а'+р'-е?, 6?=-^-, 02= — . (4)

л, + 2\х ц

Здесь Хк (к = 1,2..6) - неизвестные функции напряжений на границах:

+ОЖ»

Хк (а, Р)= { |хк (г, у)ехр[1(а2 + ру)]сЫу.

-00-«)

Вектор перемещений получаем в результате применения обратного преобразования Фурье по параметрам а, Р к выражениям (4):

О, (х, у, г, со) = —2 ЦО^а, р, х, ю)ехр(- ¡Р у)ехр(- ¡а г)с1а ёр.

4л р р

В случае идеально упругой среды интегрирование осуществляется по контуру Г в комплексной плоскости (рис.3) в соответствии с принципом предельного поглощения [Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. - М.: Наука, 1979.]. При наличии вязкости контур интегрирования совпадает с вещественной осью.

1т и

<г -С-в,! -е,

Яе и

е, ег с, ^

Рис. 3

Аналогично получены решения вспомогательной задачи для подобласти в виде:

П2(а)У,у,со)= +а4ке-^)-0ус15к -а22с!11с)е<^ +

к=1

-0ус16к + а22с12к)е-^];

Шу,у,ш) = ц-'£ук[а12(азке^ +а22ё5к)е^ +

к=1

(а, у, у, со) = ц-1 £ т-?^ ч + ц) _ ЦТ2 )(^зк е°"У + ^4к е~°1гУ )+ + (<£(*. + ц)- у2(Х + 2ц))(<1ле^ + с!6ке^};

+00+00

¥к (а, у) = | |Ук(г, х)ехр[1(аг + у х)]сЫх, а-2 = а2 + у2 - 9?,

—со—со

и2 (х, у, X, ю) = ~//02 (а, у, у, ю)ехр(- ¡у х)ехр(- ¡а г)ёа йу. (5)

г г

Решение динамической задачи для полупространства в трехмерной постановке строится аналогично для следующих граничных условий:

х = 0: ах=г,(у,2)е-1-, тху = ^(у,^', тх2 = .

Представление для амплитудной функции перемещений

О0(х, у, г,со) = {и0, (х, у, г,со)}, 0=1,2,3) получаем в виде:

и01 (х, у, г, со) = -4— ЦЕ ки (а> Р> х> ®Ж(а> Р)ехР[~ Ка г + р у)]ёа ар, 471 ц0 г

___-нхз+оо

где гДа,р)= | |гДу, z)exp [1 (а г + р у)]ёу <±г, функции Ку имеют следующую

-оо -оо

структуру:

К11(а,р,х,ш) = ^[-(и2+а202)е-^+2и2е-^],

где Д0(и,ш) = (и2 +о20)2-4и2ст10а20, и2 = а2 + р2, а^0=и2 - 920.

Вторая глава посвящена сведению исходной задачи (рис. 1) к системе интегрофункциональных уравнений, разработке метода ее решения и алгоритма, реализующего его на ПЭВМ. Для вектора перемещения 0, используя соотношение (3), решения вспомогательных задач (4,5) и закон Гука, удовлетворяем граничным условиям исходной краевой задачи (2) на всех гранях полосы - области О. В результате сложных преобразований получаем систему 12 интегрофункциональных уравнений для изолированной полосы относительно 15 неизвестных функций напряжения Х^= 1,2..б),г,(1 = 1,2,3) в преобразованиях

Фурье по координате г:

_ 1 6 = —

х = 0: стх = Х,(а,у)+— |£Ь1к(а,у,у,со)Ук(а,у)с1у = г,(а,у),

2я г

х = -Ь:

у = а:

у = -а:

1

тху = Х2 (а, у)+ —Ь2к (а, у, у, со)Ук (а, у)с!у = Ъг (а, у),

Г к=1 6

= (а, у) + ^ ьзк (а, У, У, ®)Ук (а, у)с!у = Ъъ (а, у);

г к=1

ах = Х4(а,у)+:1 ¿Ь1к(а,у,у,ш)Ук(а,у)е^ёу = Р,(а,у),

/71 г

тху = Х5 (а, у)+-I ь2к (а> ъ У; ш)7к (а> у)ег'Му = Р2 (а, у),

Г к=1 6

тХ2 = Х6 (а, у)+±- Ьзк (а, у, у, ш)Ук (а, у)е"Му = Р3(а>У),

Г к=1 6

<ту =У,(а,р)+-1 {¿м1к (а, р, х, со)Хк (а, рУ'^р = 0, 1% г к=1

V = (а, Р)+^|£м;к (а, (3, х, а>)Хк (а, р>"рас!р = О,

/71гк=1

= У3(а,р)+^- Мзк (а, р, х,со)Хк (а, р^Мр = О;

Г к=1 6

ау = У4 (а, р)+~ М1к (а, р, х, со)Хк (а, р)е'Раёр - О,

■¿71 г к=1

Тух = У5 (а, р)+/X М2к (а, Р, X,, со)Хк (а, р>'рМр = О,

¿71 р к=1

туг=У6(а,р) + -^/2;Мзк(а)р)х)Хк(а,р>"!МЗ = 0,

1% гк=1

__+"» +СО

где Ът(а,у) = |2т(у,г)еюМ2> Рт(а,у) = /Рт(у,2>'пгс12; т = 1,2,3;

-00 -да

и функции Ьтк, Мгак имеют вид:

Ь1к (а, у, у, ш) = -{1(у) + * е?] (йзке°» " + ^е"0» у)+

+ (-21уа22 с!1к - 1(у)с15к)е<1^ + (21уа22 с12к - 1(у)с16к)е-

(ао > Р> х) = 1(р)+—0? )(с3кеа"х + с4ке_<г"х)+ ч Ну

+ (Яра21 с1к - 1(р) с5к) е0"" + (- 21ра21 с2к - 1(р) с6к) е"""».

Через функции напряжения Х^, У^ = 1,2..б),2;0 = 1,2,3) определяется напряженно-деформированное состояние в полосе и полупространстве.

Следует отметить, что одно из условий жесткого сцепления - равенство компонент напряжений вдоль границы раздела полосы и полупространства -удовлетворяется автоматически. Это происходит благодаря тому, что граничные условия на поверхности полупространства и нижней грани полосы заданы одним и тем же вектором напряжения = 1,2,3).

Для замыкания системы (6) используется условие равенства компонент векторов смещений полосы и полупространства, определяющее три недостающие уравнения:

- /Е <31к (а, Р,0, ш)Хк (а, р)с"Шус1р + ±¿11* (а, у, у, ш)Ук (а, у >1у =

М- г к=1 Iх Г к-1

= — /¿К!т(а,рД ш)2га(а)р)е-'рМр> 1 = 1,2,3, Но г®=1

где (21к (а, РД со) = ст,, (с3к - с4к) - 1р (с1к + с2к) + сг21 (с5к - с6к),

К1к(а,у,у,ю) = Чу(с1зке™ + «1Л|се—)-(1ус151с -ои<11к>-у_ -(¡ус16к+а22с12к>-^.

Полученная система имеет сложную структуру и свойства. В пункте третьем второй главы проведено подробное исследование свойств интегральных операторов, определяющих уравнения системы. Исследован порядок особенности в окрестности угловых линий и линий смены типа граничных условий на поверхности полупространства. Результаты проведенного анализа позволяют использовать для решения системы аппроксимационный подход. При этом аппроксимация искомых функций для фиксированных значений параметра

преобразования Фурье по координате г - а осуществляется с точным учетом порядка особенности (при ее наличии) в угловых точках:

Хк(а0,у) = -^|к4 + 1х;к(а0)у") ¥к(а 0,х) = ¿У;к(а 0)х", к = 1.2,..6, а - у

2|(а0;у) = #4+!г;1(а0)у", ¡ = 1,2,3. у)а2-у2 »=1

Для определения входящих в аппроксимирующие функции неизвестных постоянных х*к(а0),у*к(а0),2*|(а 0) использован метод коллокаций. Число точек коллокации равно числу неизвестных постоянных. Критерием для выбора оптимального порядка аппроксимирующих* полиномов является проверка степени удовлетворения граничным условиям. Численный эксперемент показал, что при относительно низких частотах колебаний (до 50 Гц) или нестационарном воздействии с низкочастотным спектром, в аппроксимирующей функции достаточно удержать три слагаемых. При этом количество неизвестных постоянных становится равным 45. Подставляем аппроксимирующие функции в систему 15 интегрофункциональных уравнений, каждое из которых в узлах коллокации дает три линейных уравнения. Таким образом, получаем систему 45 линейных уравнений с 45 неизвестными. Часть коэффициентов системы определяются интегралами Фурье. С ростом частоты колебаний число слагаемых в аппроксимирующих функциях требуется увеличить.

В пятом пункте второй главы изложен алгоритм решения задачи в случае контакта пакета полос с многослойным полупространством.

Шестой пункт посвящен описанию практической реализации на ПЭВМ предложенного алгоритма для задачи возбуждения колебаний в полосе жестко сцепленной с однородным полупространством. Полученная система линейных алгебраических уравнений в матричном виде имеет вид:

Р-Х = Р,

где X - вектор-столбец неизвестных; Р - вектор-столбец свободных членов содержат по 45 элементов:

X — Со1(х01,х1|,х2|,х02,х,2,х22,..,х06,х16,х26,у0|,уп,у21,.., • ***** ***. УО6>У16'У26'201>211>22|'")203)213'223^'

Р = Со1(0,0,0,0,0,0,0,0,0, Р, (а0, у, > Р, (а0, у2), Р, (а0, у 3), Р2 (а0, у,), Р2 (ао> Уг VР2 («о. Уз )> Рз (а0, У.), Р3 (а0. Уг). Рз (ао> Уз )>0,0,..,0);

Р - квадратная матрица коэффициентов. Матрица Р имеет сложную блочную структуру:

Р,2 Р ^ Г]3

р = Р22

Л, Р32 О

Она состоит из девяти квадратных и прямоугольных подматриц, элементами которых являются интегралы Фурье по Р или по у. Вид одной из них:

=(!,,),!, к = 1,2..6,

где 1|к =

/^о (у)Ь,к (ос0, у, У:, ю)(1у }^(у)Ь1к(о0,у,у1,ю)с1у ^2(у)Ь1к(ос0,у,у1,(в)ду

г г г

|^)(у)Ь,к(а0'У;У2.и)Ф' ^1(7)^(00,у,у2,со)ф' £2(у)Ь^а0,у,у2,а))с1у

г г г

ЫтМадУз'Фу |^(у)цк(а<))у,уз,ю)(1у ^2(у)Цк(а0,у,у1,а))ду

чг г г

В заключительной части второй главы приведена блок-схема алгоритма расчета амплитудно-частотной характеристики (АЧХ) точки конструкции и дано ее подробное описание.

Разработанный алгоритм реализован на ПЭВМ набором прикладных программ, позволяющих провести анализ основных характеристик НДС исследуемой системы.

Расчет для частных случаев (плоская задача, а—>0) сопоставлен с результатами расчета по методу конечного элемента (МКЭ) с использованием пакета «АЫБУБ». Выявлено хорошее количественное и качественное совпадение результатов тестирования, что подтверждает достоверность полученных результатов.

В третьей главе дан подробный анализ результатов численного эксперимента, нацеленного на изучение основных количественных и качественных характеристик НДС системы дорожная конструкция - грунт.

В первом пункте исследованы основные особенности НДС конструкции при пространственном динамическом нагружении. Приведены диаграммы распределения напряжений и деформаций в продольном и поперечном сечении системы. Описаны явления, возникающие при значительном увеличении скорости движения, такие как генерация движущимся транспортом достаточно энергетичных высокочастотных колебаний, существенное изменение диаграмм направленности поверхностных и внутренних волн и др.

Проведено исследование амплитудно-частотных характеристик (АЧХ) отклика элементов дорожной конструкции на движущуюся нагрузку и рассмотрены резонансные явления в различных частях спектра частот колебаний. Первый, низкочастотный, резонанс является наиболее энергетичным и имеет место для геологической среды «нормального» строения (жесткость слоев нарастает с глубиной). Его добротность определяется строением и свойствами элементов системы. На рис. 4 приведен пример АЧХ точки поверхности дорожной конструкции. Очевидно, что экспериментально полученная для того же типа конструкции АЧХ имеет значительно более выраженный осциллирующий характер, чем теоретическая. Основными причинами этого являются: постоянное присутствие в реальной конструкции колебаний на уровне микросейсмического фона, наличие неровности покрытия и более сложный характер воздействия конкретного транспортного средства.

При этом заметно достаточно хорошее качественное совпадение огибающей экспериментальной АЧХ с расчетной, что дополнительно свидетельствует о достоверности полученных результатов.

На рис. 5 приведен пример частотных характеристик точки поверхности системы дорожная конструкция - грунт при изменении геометрических и механических характеристик ее элементов. Из графиков видно, что минимальная добротность резонансов имеет место при увеличении жесткости дорожной

Рис.4

конструкции за счет использования связных материалов в слоях основания.

При определенных соотношениях механических и геометрических свойств слоев системы (в средне- высокочастотном диапазоне) отмечено появление краевого резонанса слоев асфальтобетона, локализованного вблизи боковых граней и существенно влияющего на разрушение кромки дорожного покрытия. Кроме того, в более мягких слоях системы, расположенных между более жесткими, возможно появление волноводного эффекта различной выраженности.

Дополнительно в первом пункте третьей главы отмечено, что значительная часть энергии воздействия транспорта на дорожную конструкцию трансформируется в медленно затухающие поверхностные волны (типа волн Рэлея), распространяющиеся в фунте на достаточно большие расстояния от трассы, в особенности при больших скоростях движения и «слабом» грунте. Подобные колебания, особенно в низкочастотной области, оказывают заметное воздействие на сооружения и объекты, в том числе ответственного назначения.

О 10 20 3 0 40

Рис. 5. АЧХ четырехслойиой дорожной конструкции с толщиной конструктивных слоев ^ и модулем упругости Е} (Ь, = 0,05м, Е, = 3200МПа,

Ь2= 0,08м, Е2 = 2000МПа, Ь3= 0,07м, Е3 =2000МПа, Ь4=0,3м, Е4 =350 МПа).

Второй пункт третьей главы связан с обсуждением результатов расчетов на основе некоторых упрощенных моделей, являющихся частными случаями общей: плоской, модели многослойного полупространства и др.

В третьем пункте этой главы исследованы волновые поля, генерируемые в грунте (многослойном полупространстве) движущимися нагрузками (авто- и железнодорожным транспортом, а также ударной волной сверхзвуковых самолетов) в плоском и пространственном случае. Подобные задачи возникают при расчете напряженно-деформированного состояния автодорог, взлетных полос аэродромов, железнодорожных путей, а также в геофизических приложениях.

При расчете воздействия заданной движущейся нагрузки на полупространство приходим к исследованию несобственных контурных интегралов [9]:

^ (х, у, г, (О,у0) = 0, со)ехр(- с^х- ¡аг - ¡Ру^асф.

При больших удалениях от источника колебаний подынтегральная функция обладает сильной осцилляцией, что делает малоэффективным использование прямых численных методов анализа, и в то же время определяет эффективность использования асимптотических методов, позволяющих в достаточно компактном аналитическом виде получить приближенное значение интегрального представления.

Для построения асимптотического представления контурных интегралов в сферической системе координат, движущейся вместе с нагрузкой, использован двумерный метод стационарной фазы.

В результате сложных преобразований получены главные члены асимптотического разложения амплитудных функций смещения точки полупространства при Я»1. Для перемещений вдоль оси Ох они имеют вид:

и^ Ф, ¥>«;<>> Р»> ®> уо) ■= ехр^Ь^(а^, (3, <р, у, со, у0 )- \ ^ | х

^(»jo.PJO»«0»^) ^|detSj(a0j,p0j,<p,\|/,oo,v0)|

где

fu fa В юг)- -^o(2ufo-9^)zi(a,0,p,0) , (2u20 - в* Г + 4ш^0(т20Л/е; - u2g

°j0 = ~ Uj0 » ujo = ajo+ Pjo ■

Проведен анализ характера диаграмм направленности внутренних волн в зависимости от скорости движения нагрузки V0 и упругих свойств среды. В качестве примера на рис.6 приведены графики диаграмм направленности излучения по типу внутренних волн в сечении, параллельном плоскости xOz, при различных скоростях движения. По оси ординат отложен модуль амплитуды вектора смещения соответствующего типа волн (aUS - поперечных, aUP -

продольных волн), по оси абсцисс - угловая координата у(- ^ < у < .

-15 -075

У0 = 50м/с

У0 =150 м/с

Л 0013773879,

У0 = 250 м/с

У0 = 450м/с

Рис. 6. Расстояние К = 100 м от области приложения нагрузки интенсивности 10 = 4кПа, приложенной в квадратной области 2 х 2м. Упругое полупространство с параметрами р = 1,8т/м3, У5 = 200 м/с, Ур =400м/с.

Во всех случаях имеют место следующие закономерности:

1) при относительно малых скоростях движения нагрузки V,, наблюдается увеличение асимметрии диаграмм направленности;

2) при переходе скорости движения нагрузки У0 через скорость распространения поперечной волны У5 в диаграмме направленности наблюдается принципиальное качественное и количественное изменение, выраженное в том, что излучение поперечной волны приобретает узко направленный характер при существенном увеличении амплитуды;

3) аналогичный эффект для продольной волны имеет место при переходе скорости движения нагрузки через скорость распространения продольной волны в среде Ур.

Описанные эффекты качественно аналогичны хорошо известным эффектам генерации ударной волны в акустической среде источником, движущимся со сверхзвуковой скоростью.

В четвертом пункте третьей главы проведено сопоставление теории с экспериментом, приведены графики АЧХ и амплитудно-временных характеристик (АВХ), которые иллюстрируют хорошее совпадение основных качественных характеристик АЧХ с данными эксперимента.

В заключении кратко сформулированы основные новые результаты, полученные лично автором. В приложение вынесены тексты программ, реализующих разработанные методы и алгоритмы.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Поставлена и решена новая динамическая задача строительной механики в трехмерной постановке, которая описывает НДС элементов системы дорожная конструкция - грунт при воздействии движущегося автотранспорта.

2. Разработан аналитический метод решения этой задачи путем сведения к системе интегрофункциональных уравнений относительно функций напряжения, через которые расчитывается НДС среды. Исследованы свойства операторов системы.

3. Предложен аналитико-численный метод решения полученной системы интегрофункциональных уравнений. Разработан алгоритм, реализующий данный метод на ПЭВМ.

4. Проведен подробный численный эксперимент для изучения основных динамических характеристик НДС элементов системы под воздействием движущейся осцилирующей нагрузки.

5. Резонансный характер АЧХ позволил оценить эффективность конструктивных мероприятий по увеличению долговечности дорожных покрытий. Максимальное снижение добротности резонанса имеет место при увеличении общей изгибной жесткости конструкции за счет использования в слоях оснований связных материалов вместо несвязных (щебень, песок). Кроме того, некоторое снижение выраженности негативных эффектов достигается благодаря увеличению толщины асфальтобетона.

6. На основе асимптотического решения построены диаграммы направленности продольных и поперечных волн от движущейся нагрузки в полупространстве (грунте) и изучена их зависимость от скорости движения транспорта.

7. Результаты численного эксперимента были использованы при планировании широкомасштабных натурных экспериментальных исследований в ДорТрансНИИ РГСУ, а также при проведении госбюджетных и хоздоговорных НИР ДорТрансНИИ РГСУ.

8. Данные натурных исследований иллюстрируют хорошее совпадение с материалами численного эксперимента и подтверждают все основные качественные и количественные выводы, полученные в результате теоретических исследований, проведенных в работе.

9. Полученные результаты дают теоретическую основу для разработки уточненных инженерных методик расчета и проектирования автодорог с учетом основных особенностей динамического воздействия транспортного потока

Список работ, опубликованных по теме диссертации

1. Илиополов С. Б., Селезнев М.Г., Медведева Т.А. Об одном подходе к исследованию пространственной динамической задачи о контакте ограниченного по ширине слоя со слоистым полупространством'/ Тезисы 2-й Междунар. школы-семинара по проблемам механики сплошной среды. Саратов: СГУ, 1996.

2. Селезнев М.Г., Илиополов С.Б., Медведева Т.А. Об одном подходе к исследованию пространственной динамической задачи теории упругости о

* 16 76 3

контакте полосы со слоистым полупространством// Тезисы 2-й Междунар. конф. «Современные проблемы механики сплошной среды». Ростов н/Д: РГУ, 1996.

3. Илиополов С.Б., Селезнев М.Г., Медведева Т.А. Об одном подходе к исследованию пространственной динамической задачи теории упругости о контакте полосы со слоистым полупространством// Сборник трудов 2-й Междунар. конф. «Современные проблемы механики сплошной среды». Т.З. Ростов н/Д: РГУ, 1996. С. 69-74.

4. Медведева Т.А., Селезнев М.Г., Об особенностях решения одной системы интегральных уравнений// Тезисы Междунар. научно-практической конференции РГСУ. Ростов н/Д: РГСУ, 1997.

5. Медведева Т.А., Селезнев М.Г. Об анализе волновых полей от движущейся нагрузки// Межвузовский сборник научных трудов «Технологические процессы в транспортном машиностроении». Ростов н/Д: РГУПС, 1997. С. 94-97.

6. Медведева Т.А., Селезнев М.Г. Об исследовании волновых полей от движущихся нагрузок в многослойном полупространстве// Тезисы Междунар. науч.-практич. конф. «Строительство-98». Ростов н/Д: РГСУ, 1998, С. 165-166.

7. Медведева Т.А. Особенности расчета кратных слабосходящихся несобственных интегралов, возникающих в пространственных динамических задачах теории упругости для полуограниченных областей// Известия РГСУ.

1998. №3. С. 194.

8. Медведева Т.А. Динамическая задача контакта упругой полосы с полупространством// Тезисы Междунар. юбилейной науч.-практ. конф. «Строительство-99». Ростов н/Д: РГСУ, 1999. С. 50.

9. Медведева Т.А., Селезнев М.Г., Собисевич А.Л. Об анализе волновых полей от движущейся нагрузки в слоистом полупространстве// М.: Докл. РАН.

1999. Т.367. №1. С. 52-55.

10. Медведева Т.А. Некоторые особенности распределения полей смещения от движущейся нагрузки// Материалы Междунар. науч.-практ. конф. «Строительство-2002». Ростов н/Д: РГСУ, 2002. С. 67-68.

ЛР 020818 от 13.01.99. Подписано в печать 9.10.03. Формат 60x84/16. Бумага белая. Ризограф. Уч.- изд. л. 1,0. Тираж 100 экз. Заказ 177.

Редакционно-издательский центр Ростовского государственного строительного университета 344022, Ростов-на-Дону, ул. Социалистическая, 162

Оглавление автор диссертации — кандидата технических наук Медведева, Татьяна Александровна

ВВЕДЕНИЕ.

Глава 1. НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ ДОРОЖНОЙ КОНСТРУКЦИИ.

1.1. Пространственное напряженное состояние при ф динамическом нагружении (постановка задачи).

1.2. Частные случаи.

1.2.1. Плоское напряженное состояние.

1.2.2. Напряженное состояние многослойного полупространства (грунта).

1.3. Принцип суперпозиции при решении задачи о пространственном напряженном состоянии дорожного покрытия.

1.4. Решение вспомогательных задач для подобластей.

1.5. Решение вспомогательной задачи для полупространства грунта).

Глава 2. РАСЧЕТ ПРОСТРАНСТВЕННОГО НДС СИСТЕМЫ "ДОРОЖНАЯ КОНСТРУКЦИЯ - ГРУНТ" ПРИ ДИНАМИЧЕСКОМ НАГРУЖЕНИИ.

2.1. Алгоритм сведения задачи к системе интегро-функциональных уравнений для изолированной полосы.

• 2.2. Пространственное напряженное состояние дорожного покрытия, жестко сцепленного с однородным полупространством (фунтом).

2.3. Свойства операторов системы интегро-функциональных уравнений.

2.4. Решение системы интегро-функциональных уравнений (случай одной полосы).

2.5. Алгоритм решения пространственной краевой задачи в общем случае.

2.6. Особенности практической реализации методики на

ПЭВМ.

Глава 3. АНАЛИЗ РЕЗУЛЬТАТОВ ЧИСЛЕННОГО ЭКСПЕРИМЕНТА.

3.1. Основные особенности пространственного НДС дорожной щ конструкции при динамическом нагружении.

3.2. Упрощенные модели и их возможности.

3.3. Особенности генерации волновых полей в грунте движущимися поверхностными нагрузками.

3.3.1. Плоское напряженно-деформированное состояние.

3.3.2. Пространственное напряженно-деформированное состояние.

3.3.3. Некоторые особенности распределения полей смещения от движущейся нагрузки.

3.4. Сопоставление теории с экспериментом.

3.5. Выводы.

Введение 2003 год, диссертация по строительству, Медведева, Татьяна Александровна

Традиционно главной проблемой российских автодорог является низкий уровень их транспортно-эксплуатационного состояния и недолговечность. В современных условиях в общем объеме грузопотоков резко увеличилась доля автомобильных перевозок, значительно возросли скорости движения транспорта и его грузоподъемность. Это является причиной ускоренного развития процессов накопления остаточных деформаций и различных нарушений в дорожных конструкциях, что приводит к преждевременному деформированию и разрушению покрытий автомобильных дорог, существенно более низкому, по сравнению с расчетным, сроку их эксплуатации.

Существует целый ряд причин, в том числе и технологического характера, но одна из важнейших - несовершенство расчетных схем, принятых при расчете и проектировании дорожных конструкций, связанных с введением тех или иных упрощающих предположений. В силу этого проблема дальнейшего развития методов исследования системы "дорожная конструкция - грунт" остается актуальной. Так, например, наиболее распространенная в данное время расчетная схема определения необходимой толщины слоев дорожной одежды основана на модели слоистого упругого полупространства при статическом нагружении. Различные усовершенствования этой расчетной схемы основаны на абсолютизации свойств отдельных элементов и отбрасывании особенностей строения системы, которые на первый взгляд мало влияют на ее напряженно - деформированное состояние (НДС). Довольно часто при этом используются плоские модели (неизменность НДС в любом поперечном разрезе системы) и осесимметричные (осевая симметрия конструкции и прилагаемой к ней нагрузки).

Используемые в настоящее время методики расчета не отражают пространственного характера строения и динамического нагружения дорожной конструкции при реальном воздействии движущегося транспорта и не позволяют на их основе исследовать весь комплекс проблем, определяющих их долговечность. Кроме того, не рассматриваются вопросы генерации движущимся по магистрали транспортом техногенных вибрационных полей в дорожных конструкциях и геологической среде и их воздействия на строительные объекты.

Исследование основных характеристик НДС экспериментальными средствами и методами требует дорогостоящей прецизионной аппаратуры, весьма сложно и трудоемко. Расчетные модели, адекватно отражающие основные особенности строения и нагружения дорожной конструкции, позволяют без дополнительных затрат получить достаточно полную информацию о характеристиках динамического НДС, негативно влияющих на ее состояние. При построении подобной модели возникают трудности как теоретического характера из-за недостаточности математических методов исследования подобных задач, так и технического.

Публикации исследований динамической задачи о контакте однородного упругого полупространства с упругой бесконечной полосой, деформации в которой описывались бы трехмерными соотношениями теории упругости или вязкоупругости, не известны. Кроме того, современные прямые численные схемы и комплексы программ для исследования подобных задач в трехмерной постановке обладают низкой эффективностью и достоверностью (например, методы конечного элемента и граничных интегральных уравнений).

Это связано с тем, что реальная область, охваченная возмущениями, достаточно велика.

Перечисленное и определяет актуальность и практическую значимость диссертационной работы, посвященной разработке и реализации методики решения пространственной динамической задачи строительной механики, описывающей основные закономерности строения и нагружения элементов системы «дорожная конструкция — грунт».

Необходимо отметить, что постановка и решение проблемы разработки количественно и качественно более точных расчетных моделей, учитывающих не только реальное строение дорожной конструкции и подстилающего грунта, но и пространственный динамический характер ее НДС стал возможным, благодаря значительно возросшему уровню современной вычислительной техники и последним достижениям в области разработки новых методов исследования сложных контактных задач механики деформируемого твердого тела, в первую очередь Ростовской-на-Дону и Краснодарской школой механиков под руководством Академиков

РАН [Воровича И.И.| и Бабешко В.А.

Большой вклад в развитие теории контактных взаимодействий внесли Александров В.М., Арутюнян Н.Х., Бабешко В.А., Белоконь

A.В., Бородачев Н.М., Ватульян А.О., Ворович И.И., Галин J1.A., Глушков Е.В., Горшков А.Г.,Гринченко В.Т., Гузь А.Н., Калинчук

B.В., Коваленко Е.В., Купрадзе В.Д., Лурье А.И., Малый . В.И., Мартыненко М.Д., Моссаковский В.И., Мхитарян С.М., Нуллер Б.М., Партон В.З., Перлин П.И., Попов Г.Я., Проценко B.C., Пряхина О.Д., Рвачев В.Л., Саркисян B.C., Сеймов В.М., Селезнев М.Г., Соболь Б.В., Тарлаковский Д.В., Угодчиков А.Г., Улитко А.Ф., Устинов Ю.А., Шерман Д.И.

Первоначально основное внимание исследователей привлекли задачи динамического взаимодействия жестких штампов со слоем, полупространством и слоистым полупространством.

Учет деформативных свойств штампа в основном связан с решением контактных задач для пластины, слоя или полупространства, подкрепленного стрингером (балкой), изложенных в работах Агабекяна П.В., Агаяна K.J1., Александрова В.М., Арутюняна Н.Х., Бабешко В.А., Воровича И.И., Григоряна Э.Х., Мхитаряна С.М., Пряхиной О.Д., Эрдогана Ф., Гупта Г. и мн. др. [2, 3, 9, 13, 47, 48, 61, 62, 121, 128, 166, 172]

Методы, используемые при решении задач механики контактных взаимодействий, условно можно разделить на аналитические (асимптотические, факторизации функций и матриц-функций, фиктивного поглощения) [4, 6, 7, 8, 14, 15, 17, 21, 46, 49, 51, 97, 107, 129, 130, 132], аналитико-численные (метод граничных интегральных уравнений (МГИУ), методы разложения решения по системам ортогональных функций и др.) [39, 59, 119, 120, 136, 143, 144, 145] и прямые численные (метод конечного элемента (МКЭ), метод конечных разностей (МКР) и др.) [26, 29, 30, 35, 57, 65, 115].

Использование прямых численных методов в настоящее время в основном связано с применением программных комплексов широкого или специального назначения, к которым можно отнести "ANSYS", "COSMOS", "POLUS", "ЛИРА", "СПРИНТ", "МИРАЖ", "Micro Fe" и Др.

Вопросы, связанные с развитием теории решения краевых задач динамической теории упругости о возбуждении и распространении колебаний в полуограниченных областях, вопросы применения принципов излучения (принципы предельного поглащения и предельной амплитуды) изложены в основополагающих работах

Бабешко В.А., Белоконя А.В., Бреховских Л.М., Воровича И.И., Гетмана И.П., Глушкова Е.В., Гринченко В.Т., Космодамианского А.С., Ляпина А.А., Мелешко В.В., Молоткова Л.А., Петрашеня Г.И., Попова Г.Я Поручикова В.Б., Пряхиной О.Д., Сеймова В.М., Селезнева М.Г., Слепяна Л.И., Трофимчука А.Н., Улитко А.Ф., Устинова Ю.А. и др. [16, 18, 20, 22, 23, 24, 27, 32, 36, 37, 41, 42, 43, 44 45, 50, 52, 53, 55, 63, 64, 67, 69, 73, 74, 75, 76, 77, 86, 89, 98, 109, 117, 118, 122, 123, 139, 146, 147, 148, 149, 150, 154, 156, 162].

При моделировании динамического поведения сложных систем, включающих контактирующие между собой конечные и полуограниченные элементы, возникают весьма сложные задачи строительной механики, требующие существенного развития известных и разработки новых методов их решения.

Настоящая работа посвящена разработке и реализации решения задачи строительной механики, описывающей динамические процессы, возникающие в системе "дорожная конструкция - грунт" в ходе её эксплуатации.

Остановимся теперь на основном содержании работы.

В первой главе приводится постановка пространственной динамической краевой задачи, моделирующей систему "дорожная конструкция-грунт". Дорожная конструкция описывается пакетом полос конечной толщины и ширины с плоскопараллельными границами, жестко сцепленных между собой и со слоистым полупространством, моделирующим грунт. На поверхности полосы в некоторой области Q действует система осциллирующих усилий прямолинейно и равномерно движущихся со скоростью V0.

Во втором пункте первой главы поставлены расчетные задачи более низкого уровня. Указаны достоинства и недостатки такого рода упрощенных моделей.

В третьем пункте первой главы подробно описан принцип суперпозиции, применяемый при решении пространственной задачи для бесконечной полосы. При этом решение ищется в виде суммы решений двух вспомогательных краевых задач для бесконечных слоев различной ориентации.

В пункте 1.4 для построения решения этих подобластей используется метод интегральных преобразований с применением принципа предельного поглощения, который обеспечивает корректное удовлетворение условий излучения энергии колебаний на бесконечности. Решение вспомогательной задачи для изолированного полупространства построено аналогичным методом в последнем пункте первой главы.

Во второй главе изложены вопросы построения решения краевой задачи в пространственной постановке. Для этой цели используются принцип суперпозиции, метод интегральных преобразований и соотношения, полученные в первой главе. В результате решение задачи о контакте полосы с полупространством сводится к системе 15 интегро-функциональных уравнений с 15 неизвестными функциями напряжения Xj, Yj(j = 1,2.6), Zj(i = 1,2,3) три неизвестные функции Zj(i = 1,2,3) определяют напряжения вдоль границы контакта полосы и полупространства). Через указанные функции определяется НДС элементов исследуемой системы.

Полученная система 15 интегро-функциональных уравнений имеет довольно сложную структуру. Ее описанию и исследованию свойств интегральных операторов, входящих в уравнения системы, посвящен третий пункт второй главы. На основе проведенного исследования в следующем пункте предложен аппроксимационный метод решения этой системы при любом фиксированном значении параметра преобразования Фурье по координате z-a. При этом аппроксимация искомых функций осуществляется с учетом порядка присущих им особенностей. Для определения входящих в эти функции постоянных используется метод коллокации.

В пятом пункте второй главы изложен алгоритм решения задачи в случае контакта пакета полос с многослойным полупространством.

Шестой пункт посвящен описанию практической реализации на ПЭВМ предложенного алгоритма. Приведена блок-схема алгоритма расчета амплитудно-частотной характеристики (АЧХ) точки конструкции и дано ее подробное описание.

В третьей главе проведен подробный анализ результатов численного эксперимента. В первом пункте рассмотрены основные особенности НДС конструкции при пространственном динамическом нагружении. Приведены диаграммы распределения напряжений и деформаций в продольном и поперечном сечении системы. Описаны явления, возникающие при значительном увеличении скорости движения, такие как генерация движущимся транспортом достаточно энергетичных высокочастотных колебаний, существенное изменение диаграмм направленности поверхностных и внутренних волн и др. Приведены АЧХ системы и рассмотрены резонансные явления в различных частях спектра частот колебаний, в том числе и краевые.

Второй пункт третьей главы посвящен анализу результатов расчета на основе упрощенных моделей: плоской, модели многослойного полупространства.

В третьем пункте этой главы исследованы волновые поля, генерируемые в грунте (многослойном полупространстве) движущимися нагрузками (авто и железнодорожным транспортом, а так же ударной волной сверхзвуковых самолетов). Подобные задачи возникают при расчете напряженно-деформированного состояния автодорог, взлетных полос аэродромов, железнодорожных путей, а так же в геофизических приложениях.

Решение задачи о воздействии заданной движущейся нагрузки на полупространство приводит к исследованию несобственных контурных интегралов. При больших удалениях от источника колебаний эффективно использование асимптотических методов анализа. Для случаев плоской и пространственной постановки задачи подробно описано построение асимптотических представлений контурных интегралов с применением методов стационарной фазы.

Полученные выражения использованы далее для расчета амплитудных характеристик внутренних волн в среде, удаленной от источника колебаний. В качестве примера построены и исследованы характерные графики диаграмм направленности излучения по типу внутренних волн в продольном сечении при различных скоростях движения нагрузки.

В четвертом пункте третьей главы сопоставляются расчеты с экспериментом. Приведены примеры АЧХ и амплитудно-временных характеристик (АВХ) и показано, что основные качественные характеристики расчетный АЧХ во всех случаях хорошо коррелируют с данными эксперимента.

В заключении кратко сформулированы основные новые результаты, полученные лично автором. В приложение вынесены тексты программ, реализующих разработанные методы и алгоритмы.

Научная новизна исследования заключается в следующем: - в работе поставлена и решена новая динамическая задача строительной механики в пространственной постановке, моделирующая систему "дорожная конструкция-грунт"; разработан аналитико-численный метод решения динамической задачи строительной механики для полосы конечной ширины (дорожной конструкции), жестко сцепленной с полупространством (грунтом), в пространственной постановке;

- разработан алгоритм расчета напряжений и деформаций системы на ПЭВМ;

- проведено достаточно подробное численное исследование основных качественных и количественных характеристик динамического напряженно-деформированного состояния элементов системы при воздействии движущейся осциллирующей нагрузки; изучены амплитудные характеристики и диаграммы направленности волновых полей, генерируемых движущимся по автомагистрали транспортом в грунте.

Достоверность полученных в работе результатов обеспечена:

1. Обоснованным и корректным применением математических методов исследования модельных задач при получении аналитических и численных решений.

2. Сопоставлением результатов расчета для частных и предельных случаев с полученными другими методами.

3. Сопоставлением ряда расчетных характеристик с данными натурного эксперимента.

Заключение диссертация на тему "Пространственное напряженно-деформированное состояние дорожных конструкций при динамическом нагружении"

Основные результаты, полученные в настоящей диссертационной работе, сводятся к следующему:

1. Поставлена и решена новая динамическая задача строительной механики в трехмерной постановке, которая описывает НДС элементов системы "дорожная конструкция - грунт" при воздействии движущегося автотранспорта.

2. Разработан аналитический метод решения этой задачи путем сведения к системе интегро-функциональных уравнений относительно функций напряжения, через которые расчитывается НДС среды. Исследованы свойства операторов системы.

3. Предложен аналитико-численный метод решения полученной системы интегро-функциональных уравнений. Разработан алгоритм, реализующий данный метод на ПЭВМ.

4. Проведен подробный численный эксперимент для изучения основных динамических характеристик НДС элементов системы под воздействием движущейся осцилирующей нагрузки.

5. Резонансный характер АЧХ позволил оценить эффективность конструктивных мероприятий по увеличению долговечности дорожных покрытий. Максимальное снижение добротности резонанса имеет место при увеличении общей изгибной жесткости конструкции за счет использования в слоях оснований связных материалов вместо несвязных (щебень, песок). Кроме того, некоторое снижение выраженности негативных эффектов достигается благодаря увеличению толщины асфальтобетона.

6. На основе асимптотического решения построены диаграммы направленности продольных и поперечных волн от движущейся нагрузки в полупространстве (грунте) и изучена их зависимость от скорости движения транспорта.

7. Результаты численного эксперимента были использованы при планировании широкомасштабных натурных экспериментальных исследований в ДорТрансНИИ РГСУ, а также при проведении госбюджетных и хоздоговорных НИР ДорТрансНИИ РГСУ.

8. Данные натурных исследований иллюстрируют хорошее совпадение с материалами численного эксперимента и подтверждают все основные качественные и количественные выводы, полученные в результате теоретических исследований, проведенных в работе.

9. Полученные результаты дают теоретическую основу для разработки уточненных инженерных методик расчета и проектирования автодорог с учетом основных особенностей динамического воздействия транспортного потока.

ЗАКЛЮЧЕНИЕ

Библиография Медведева, Татьяна Александровна, диссертация по теме Строительная механика

1. Абрамович М., Стиган И. Справочник по специальным функциям. М.: Наука, 1979. - 830 с.

2. Агабекян П.В. Контактная задача для упругой полуплоскости, усиленной на своей границе конечной и полубесконечной накладками. Сб. Механика деформируемого твердого тела. Ереван: изд. АН Арм.ССР, 1989, С. 17-23.

3. Агаян К.Л. Периодическая контактная задача для бесконечной пластины с упругими накладками. Изв. АН Арм.ССР, Механика 1975, т.28, N 3, С. 3-11.

4. Айзикович С.М., Александров В.М. Асимптотические решения контактных задач теории упругости для полупространства и полуплоскости, неоднородных по глубине.//Изв. АН Арм. ССР. Механика. 1986. Т.39. N 3. С.13-28.

5. Аки К., Ричарде П. Количественная сейсмология. М.: Мир, Т.1, 1983.-519 с.

6. Александров В.М. Асимптотические методы в смешанных задачах теории упругости // Развитие теории контактных задач в СССР. М.: Наука, 1976. С.96-100.

7. Александров В.М., Мхитарян С.М. Контактные задачи для тел с тонкими покрытиями и прослойками.// М.: Наука, 1983, 488с.

8. Александров В.М., Пожарский Д.А. Неклассические пространственные задачи механики контактных взаимодействий упругих тел. М.: Факториал, 1998. 288 с.

9. Александров В.М., Солодовник М.Д. Эффективный метод решения задачи о взаимодействии накладки (стрингера) с упругой полуплоскостью и некоторые новые качественные результаты. -Труды

10. X Всесоюзной конференции по теории оболочек и пластин., Т.1, Кутаиси, 1975, С. 10-17.

11. Ю.Алексеев А.С., Бабич В.М., Гельчинский Б.Я. Лучевой метод вычисления интенсивности волновых фронтов.//Вопросы динамической теории распространения сейсмических волн. в.5, 1961. С.5-24.

12. Ананьев И.В. К теории колебания сред с непрерывно меняющимися характеристиками.//Изв. СКНЦ ВШ,/Естеств. науки/, №4, 1976.

13. Арутюнян Н.Х., Мхитарян С.М. Периодическая контактная задача для полуплоскости с упругими накладками. ПММ, 1969, т.ЗЗ, N5, С.813-843.

14. Бабешко В.А. Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости. М.: Наука, 1984.-256 с.

15. Бабешко В.А. О вибрации систем штампов.//Изв. АН СССР, МТТ. №6, 1990. С. 72-78.

16. Бабешко В.А., Белянкова Т.Н., Калинчук В.В. О решении одного класса смешанных задач для слоистого полупространства.// Докл. РАН, 2001, 380, N5, С. 619-622.

17. Бабешко В.А., Ворович И.И., Селезнев М.Г. Вибрация штампа на двухслойном основании.//ПММ, т.41, в. 1, 1977. С. 166-173.

18. Бабешко В.А., Ворович И.И., Селезнев М.Г. Распространение в упругом слое волн, возникающих при колебании штампа.//Алма

19. Ата: Наука Каз.ССР, Сб. Распространение упругих и упруго-пластических волн. 1973. С. 339-342.

20. Бабешко В.А., Глушков Е.В., Глушкова Н.В. Об особенностях в угловых точках пространственных штампов в контактных задачах.// ДАН СССР. 1981. Т 257. N2. С.289-294.

21. Бабешко В.А., Глушков Е.В., Зинченко Ж.Ф. Динамика неоднородных линейно-упругих сред. М.: Наука, 1989. - 344 с.

22. Бабешко В.А., Румянцев А.Н. Колебания штампа, частью поверхности сцепленного с упругим слоем.// ПММ, т.41, в.4, 1977.

23. Бабешко В.А., Селезнев М.Г. и др. Об одном методе исследования установившихся колебаний упругого полупространства, содержащего сферическую или горизонтальную цилиндрическую полость. //ПММ. В.1, т. 47, 1983. С. 115-121.

24. Бабешко В.А., Селезнев М.Г., Шагинян А.С. Об одном методе уточненного учета реакции упругой среды при гармоническом воздействии.-М.: Недра, Прикладная геофизика, в.89, 1981.С.79-88.

25. Бабешко В.А., Селезнев М.Г., Шагинян А.С. Способ определения параметров смещения упругой среды при гармоническом воздействии.- М.: Недра, Прикладная геофизика, в. 106, 1983. С. 32-39.

26. Бабич В.М., Кирпичникова Н.Я. Метод пограничного слоя в задачах дифракции коротких волн. Ленинград: ЛГУ, 1974. - 125 с.

27. Бахвалов Н.С. Численные методы. Т.1. М.: Наука, 1975. -632 с.

28. Белоконь А.В. К теории динамических задач с подвижными возмущениями для неоднородной упругой полосы.//- Докл. АН СССР, т.261, №5, 1981. С. 1079-1082.

29. Белубекян М.В., Казарян К.Б. К вопросу существования поверхностных сдвиговых волн в неоднородном упругом полупространстве. -Изв. Нац. АН Армении, Мех. 2000.-53, N1, С. 6-12.

30. Бенерджи П., Баттерфилд Р. Методы граничных элементов в прикладных науках. -М: Мир, 1984. 494 с.

31. Березин И.С. и Жидков Н.П. Методы вычислений, т.т. 1,2. М.: Наука, 1966.

32. Боев С.И., Полякова И.Б. Об ограниченных В-резонансах в системе массивный штамп слоистое основание.//Изв. АН СССР, МТТ. №6, 1990. С. 67-71.

33. Боев С.И., Румянцев А.Н., Селезнев М.Г. Решение задачи о возбуждении волн в упругом двухслойном полупространстве.//Сб. "Методы расширения частотного диапазона вибросейсмических колебаний", Новосибирск, ИГ и Г СО АН СССР, 1987.

34. Болгова А.Н., Калинин И.И. Распространение волн в неоднородном слое.// Изв. вузов Сев.- Кавк. регион, Техн. н., 2000, N2, С. 1518,121.

35. Болотовский Б.М., Столяров С.Н. О принципах излучения в среде с дисперсией.//Проблемы теоретической физики (Сб. памяти В.Е. Тамма). М., 1972. С. 267-280.

36. Бреббия К., Теллес Ж., Вроубел JI. Методы граничных элементов. М.: Мир, 1987.-524 с.

37. Бреховских J1.M. Волны в слоистых средах. М., 1957. 502 с.

38. Вайнберг Б.Г. Принципы излучения, предельного поглощения и предельной амплитуды в общей теории уравнений с частными производными.// Успехи математических наук. Т.21, №3, 1966. С. 115-194.

39. Ватсон Г.Р. Теория Бесселевых функций. М.: Иноиздат, 1949. -798 с.

40. Ватульян А.О., Шамшин В.М. Новый вариант граничных интегральных уравнений и их применение к динамическим пространственным задачам теории упругости / ПММ. -1998. -62, №3. -С.462-469.

41. Вольмир А.С. Гибкие пластинки и оболочки. М.: Гостехиздат, 1956.

42. Вопросы возбуждения волн вибрационными источниками.- Новосибирск, ИГ и Г СО АН СССР, 1976.

43. Ворович И.И., Александров В.М., Бабешко В.А. Неклассические смешанные задачи теории упругости. М.: Наука, 1974.

44. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. М.: Наука, 1979.

45. Ворович И.И., Бабешко В.А., Пряхина О.Д. Динамика массивных тел и резонансные явления в деформируемых средах. Научный мир, 1999,246 с.

46. Ворович И.И., Белянкова Т.И., Калинчук В.В. К проблеме низкочастотных резонансов при взаимодействии упругого тела с полуограниченной средой.// Докл. РАН. 1998, Т.358, N5,C.624-626.

47. Ворович Е.И., Пряхина О.Д. Аналитический метод определения В-резонансов//Изв. АН СССР. МТТ. № 3, 1987. С. 101-106.

48. Ворович Е.И., Пряхина О.Д. Динамическая контактная задача для упругой системы балка-слой. // Изв. АН СССР, МТТ, 1989, N1, С. 144-148.

49. Ворович Е.И., Пряхина О.Д. Об одном эффективном методе решения задачи о колебании упругой балки на упругом слое. // Изв. АН СССР, МТТ, 1989, N4, С. 96-101.

50. Ворович Е.И., Пряхина О.Д., Селезнев М.Г., Тукодова О.М. Исследование взаимного влияния двух штампов при гармоническом нагружении. //Сб. Исследование по расчету пластин и оболочек. -Ростов-на Дону, РИСИ, 1987. С. 83-88.

51. Ворович Е.И., Пряхина О.Д., Тукодова О.М. Динамические свойства упругой полуограниченной среды, контактирующей с упругим инерционным элементом. //Изв. АН СССР, МТТ. № 2, 1996. С. 128-133.

52. Галин JI.A. Контактные задачи теории упругости и вязкоупруго-сти.// М.: Наука, 1980, 304 с.

53. Гараджаев А., Образцов М.Б. Об условиях затухания решений и принципе излучения для одного дифференциального уравнения с операторными коэффициентами на полуоси.//Дифференциальные уравнения. Т. 19., в.6, 1983. С. 944-954.

54. Гетман И.П., Устинов Ю.А. Математическая теория нерегулярных твердых волноводов. Ростов-на-Дону, Изд-во РГУ, 1993. 143 с.

55. Глушков Г.И. Расчет сооружений, заглубленных в грунт- М.: Стройиздат, 1977.-265с.

56. Глушков Е.В., Кириллова Е.В. Динамическая смешанная задача для пакета упругих слоев.// Приклладная маттематика и механика (Москва),-1998,-62, N3,C.455-461.

57. Глушкова Н.В., Глушков Е.В., Хофф Р. Сингулярность напряжений в многогранных угловых точках упругих разномодульных соединений. // Докл. РАН. 1999. Т. 370. N2.

58. Гоаголу О., Маршан Ж., Муратидис А. Метод конечных элементов применительно к процессу трещинообразования в дорожных покрытиях и расчету времени раскрытия трещин. //Бюллетень ЦЛДМ, №125, 1983.

59. Гомилко A.M., Гринченко В.Т. Метод однородных решений в случае негладких нагрузок. //Теоретическая и прикладная механика. Харьков, вып. 19, 1988. С.111-116.

60. Горшков А.Г., Тарлаковский Д.В. Динамические контактные задачи для абсолютно жестких тел и упругого полупространства.// Препринт, МАИ, 1989,49 с.

61. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1971. - 1108 с.

62. Григорян Э.Х. О двух динамических контактных задачах для полуплоскости с упругими накладками. Изв. АН СССР, МТТ, 1972, N5, С. 101-116.

63. Григорян Э.Х. О динамической контактной задаче для полуплоскости, усиленной упругой накладкой конечной длины. ПММ, 1974, Т.38, N2, С. 321-330.

64. Гринченко В.Т. Равновесие и установившиеся колебания упругих тел конечных размеров. Киев: Наукова Думка, 1978. — 264 с.

65. Гринченко В.Т., Мелешко В.В. Гармонические колебания и волны в упругих телах. Киев: Наукова думка, 1981.- 283 с.

66. Демидович Б.П., Марон И.А., Шувалов Э.З. Численные методы анализа.- М.: Наука, 1967.

67. Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. М.: Физматгиз, 1961.-367 с.

68. Дьелесан Э, Руайе Д. Упругие волны в твердых телах. М.: Наука, 1982.-424 с.

69. Евграфов М.А. Асимптотические оценки и целые функции. М.: Физматгиз, 1962.

70. Жарий О.Ю., Улитко А.Ф. Введение в механику нестационарных колебаний и волн. Киев: Вища шк. Головное изд-во, 1989. - 184 с.

71. Зеленцов В.Б. Об асимптотическом решении плоских и осесим-метричных нестационарных динамических задач.// Современные проблемы мех. сплош. ср. Труды 6 Междунар. конф., Ростов-на-Дону, 12-14 июня, 2000, Т.2, Изд-во СКНЦВШ, 2001, С. 74-77.

72. Иванов В.В. Теория приближенных методов. Киев: Наукова думка, 1968.

73. Излучение и регистрация вибросейсмических сигналов.- Новосибирск, ИГ и Г СО АН СССР, 1986.

74. Илиополов С.К., Ляпин А.А. Особенности расчета напряженно-деформированного состояния конструкции дорожной одежды при динамическом нагружении. //Изв. высших учебных заведений. Северо Кавказский регион. Технические науки, № 4, 1997. С. 63-66.

75. Илиополов С.К., Селезнев М.Г. О разработке новых современных методов расчета и конструирования дорожных одежд. //М.: Дороги. Наука и техника в дорожной отрасли. №1, 2000. С.7-11.

76. Илиополов С.К., Селезнев М.Г., Ляпин А.А., Углова Е.В. Распределение энергии воздействия движущегося транспорта в элементах системы "дорожная конструкция грунт". //М.: Дороги. Наука и техника в дорожной отрасли. №4, 2001. С.8-10.

77. Илиополов С.К., Селезнев М.Г., Углова Е.В. Динамика дорожных конструкций. Ростов н/Д: РГСУ, 2002. - 258 с.

78. Илиополов С.К., Селезнев М.Г., Углова Е.В. Необходимо разработать новые критерии расчета и конструирования дорожных одежд. //М.: Дороги. Наука и техника в дорожной отрасли. №3, 2000. С. 1315.

79. Исследование Земли невзрывными источниками. М.: Наука, 1981.

80. Казарновский В.Д. Направления научных исследований в связи с концепцией развития дорожной отрасли. Приложения к журналу " Автомобильные дороги", № 1, 1997. С. 2-4.

81. Казарновский В.Д. Задачи совершенствования теории и практики расчета и конструирования дорожных одежд. //Автомобильные дороги, №1, 1992. С. 8-10.

82. Калинчук В.В.,Белянкова Т.И. К проблеме исследования особенностей динамического контактного взаимодействия штампа с полупространством, ослабленным наличием трещины.// Сев.-Кав. регион. Естеств.н. 2001,Спец.вып., С. 83-85, 171.

83. Калинчук В.В., Селезнев М.Г. Некоторые особенности возбуждения и распространения упругих волн в неоднородных средах. //Сб. "Разработка и исследование источников сейсмических сигналов" -М.: ВНИИОЭНГ, 1986. С. 61-66.

84. Корн Г., Корн Т. Справочник по высшей математике для научных работников и инженеров. М.: Наука 1970.

85. Косачевский Л.Я. О распространении упругих волн в двухкомпо-нентных средах.// ПММ, 23, № 6, 1959. С. 1115-1123.

86. Космодамианский А.С., Сторожев В.И. Динамические задачи теории упругости для анизотропных сред. Киев: Наукова думка, 1985.- 176 с.

87. Краснушкин П.Е. О возбуждении нормальных и присоединенных волн в бесконечной слоистой упругой полосе.// ПММ. 1979. т.43, №5, с. 877-886.

88. Кубенко В.Д. Нестационарное взаимодействие элементов конструкций со средой. Киев: Наукова думка, 1979. - 184 с.

89. Купрадзе В.Д., Гегелиа Т.Г., Башейлешвили М.О., Бурчуладзе Т.В. Трехмерные задачи математической теории упругости и термоупругости. М.: Наука, 1976. - 603 с.

90. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1965.

91. Лебедев Н.Н. Специальные функции и их приложения. М.: Физ-матгиз. 1963.-358 с.

92. Лурье А.И. Пространственные задачи теории упругости. М.: Гос-техиздат, 1955,-491 с.

93. Лурье А.И. Теория упругости. М.: Наука, 1970.

94. Ляпин А.А., Румянцев А.Н., Селезнев М.Г. Особенности нестационарного воздействия массивного штампа на двухслойное полупространство с заглубленной полостью.// Изв. АН СССР, МТТ , № 6, 1990.

95. Ляпин А.А., Селезнев М.Г., Собисевич Л.Е., Собисевич А.Л. Механико-математические модели в задачах активнойсейсмологии. М.ТНИЦ ПГК Минобразования России, 1999, 291 с.

96. Медведева Т.А. Особенности расчета кратных слабосходящихся несобственных интегралов, возникающих в пространственных динамических задачах теории упругости для полуограниченных областей.// Сборник "Известия РГСУ", №3, г.Ростов-на-Дону, 1998, С. 194.

97. Медведева Т.А. Динамическая задача контакта упругой полосы с полупространством.// Тезисы Международной юбилейной научно-практической конференции "Строительство-99", РГСУ, г.Ростов-на-Дону, 1999, С. 50.

98. Медведева Т.А. Некоторые особенности распределения полей смещения от движущейся нагрузки.// Материалы Международной научно-практической конференции "Строительство-2002", РГСУ, г.Ростов-на-Дону, 2002, С. 67-68.

99. Медведева Т.А., Селезнев М.Г. Об исследовании волновых полей от движущихся нагрузок в многослойном полупространстве.// Тезисы Международной научно-практической конференции "Строительство-98", РГСУ, г.Ростов-на-Дону, 1998, С. 165-166.

100. Медведева Т.А., Селезнев М.Г. Об анализе волновых полей от движущейся нагрузки.// Межвузовский сборник научных трудов "Технологические процессы в транспортном машиностроении", РГУПС, г.Ростов-на-Дону, 1997, С. 94-97.

101. Медведева Т.А., Селезнев М.Г. Об особенностях решения одной системы интегральных уравнений.// Тезисы Международной научно-практической конференции РГСУ, г.Ростов-на-Дону, 1997.

102. Медведева Т.А., Селезнев М.Г., Собисевич A.JI. Об анализе волновых полей от движущейся нагрузки в слоистом полупространстве.// М.: Доклады Академии Наук, т.367, №1,1999, С. 52-55.

103. Методы расширения частотного диапазона вибросейсмических колебаний. Новосибирск, ИГ и Г СО АН СССР, 1987.

104. Механика контактных взаимодействий. (Под редакцией Егоровича И.И., Александрова В.М.) -М.: Физматлит, 2001,-672с.

105. Михлин С.Г., Смолицкий X.JI. Приближенные методы решения дифференциальных и интегральных уравнений.- М.: Наука, 1965.

106. Молотков JI.A. Матричный метод в теории распространения волн в слоистых упругих и жидких средах. М.: Наука. 1984.-202с.

107. Никишин B.C. Задачи теории упругости для неоднородных сред. Сообщения по прикладной математике. М.; ВЦАН СССР, вып.4, 1976.

108. Николаевский В.Н. и др. Механика насыщенных пористых сред. М.: Наука, 1970.-336 с.

109. Новацкий В. Теория упругости. М.: Мир, 1975. - 872 с.

110. ИЗ. Новацкий В. Динамика сооружений. М.: Госстройиздат, 1968.-376 с.

111. Огибалов П.М. Изгиб, устойчивость и колебания пластинок. Изд-во МГУ, 1958.

112. Оден Дж. Конечные элементы в нелинейной механике сплошных сред.- М.: Мир, 1976. 464 с.

113. Орловский B.C. Особенности расчета многослойных дорожных одежд на изгиб//Автомобильные дороги, № 1, 1991. 11-12с.

114. Петрашень Г.И. Распространение волн в анизатропных упругих средах.-JI.: Наука, 1980, 175 с.

115. Петрашень Г.И., Молотков JI.A., Крауклис П.В. Волны в слоисто-однородных изотропных упругих средах. Ленинград: Наука, 1982.-289 с.

116. Попов Г.Я. О методе ортогональных многочленов в контактныхзадачах теории упругости .//ПММ, т.ЗЗ, в.З, 1969. С. 518-531.

117. Попов Г.Я. Контактные задачи для линейно-деформируемого основания.-Киев-Одесса: Вища школа, 1982,-168 с.

118. Попов Г.Я. Концентрация упругих напряжений возле штампов, разрезов, тонких включений и подкреплений.-М.: Наука, 1982,-344с.

119. Попов Г.Я. К решению задач механики и математической физи-Ф ки для слоистых сред. // Изв. АН СССР. Механика. -1978. -Т.31.2.

120. Поручиков В.Б. Методы динамической теории упругости. -М.: Наука, 1986.-328 с.

121. Привалов И.И. Введение в теорию функций комплексного переменного. М.: Наука, 1967.

122. Приварников А.К. Пространственная деформация многослойно-Ф го основания.//В сб. Устойчивость и прочность элементов конструкции, Днепропетровск, 1973.

123. Проектирование нежестких дорожных одежд. ОДН 218.046 -01//Информавтодор, 2001.- 144с.

124. Проценко B.C., Николаев А.Г. Решение пространственных задач теории упругости с помощью формул переразложения // ПМ. -1986.-22. -№7.

125. Пряхина О.Д. Нестационарные колебания упругой балки на вяз-# коупругом основании.// Изв. АН СССР, МТТ, № 1, 1992. С. 164169.

126. Пряхина О.Д., Фрейгейт М.Р. О динамических свойствах системы: массивное тело-полуограниченная среда. // Докл. РАН. 1998, Т. 358, N 1, С.48-50.

127. Пряхина О.Д., Фрейгейт М.Р. О связи решений нестационарныхконтактных задач с резонансными свойствами исследуемых систем. // Докл. РАН. 1998, Т. 360, N 3, С.346-348.

128. Радовский Б.С. Поведение дорожной конструкции как слоистой вязкоупругой среды под действием подвижной нагрузки.//Известия вузов. Строительство и архитектура, 1975. С. 78-83.

129. Развитие контактных задач в СССР./ Под ред. Галина JI.A./ М.: Наука, 1976.-493 с.

130. Развитие вибрационных исследований Земной коры в Сибири.// Новосибирск, ИГ и Г СО АН СССР, 1989.

131. Раппопорт P.M. Задача Буссинеска для слоистого упругого по-лупространства.//Труды Ленинградского политехнического института. Ленинград, 1948. С. 3-18.

132. Рахматулин Х.А., Демьянов Ю.А. Прочность при интенсивных кратковременных нагрузках. М.: Физматгиз, 1961. -400 с.

133. Рвачев В.Л., Проценко B.C. Контактные задачи теории упругости для неклассических областей. Киев: Наукова Думка. 1977. -235 с.

134. Рекач В.Г. Руководство к решению задач теории упругости. -М.: Высшая школа. 1977. — 215 с.

135. Релей Дж. Теория звука. М.: Гостехиздат, т.2, 1955. - 476 с.

136. Румянцева Т.Г., Селезнев М.Г., Селезнева Т.Н. Пространственная задача об установившихся колебаниях упругого полупространства со сферической полостью.//ПММ, т.50, в.4, 1986. С. 651-656.

137. Рязанцева М.Ю. О дисперсии волн в бесконечной упругой трехслойной пластине.//Изв. РАН Мех. тверд, тела-1998, N1, С. 166-172.

138. Салль А.О. Простейшие методы учета многослойности дорожных одежд при оценке их напряженно деформируемого состоя-ния.//Труды Союздорнии. Исследования по механике дорожныходежд.-М.; 1985. С. 4-13.

139. Сеге П. Ортогональные многочлены. М.: Физматгиз, 1962. -500 с.

140. Сеймов В.М. Динамические контактные задачи. Киев: Наукова думка, 1970,-283 с.

141. Сеймов В.М., Ермоленко Н.П., Зайцева Е.А. Неосесимметрич-ные периодические и нестационарные колебания круглого штампа на упругом полупространстве.// Прикладная механика. (Киев),-1997-33, N5, С. 41-48.

142. Сеймов В.М., Трофимчук А.Н., Савицкий О.А. Динамические контактные задачи для слоистых сред.// Изв. вузов Сев.-Кав. регион. Естеств. н.- 2001,Спец. вып., С. 138-140.

143. Сеймов В.М., Трофимчук А.Н., Савицкий О.А. Колебания и волны в слоистых средах. Киев: Наукова думка, 1990. — 224 с.

144. Селезнев М.Г. Возбуждение волн в двухслойной среде колеблющимся штампом.//ПММ, т.39, в.2, 1975. С. 381-384.

145. Слепян Л.И. Нестационарные упругие волны. Л.: Судостроение, 1972.-371 с.

146. Слепян Л.И., Яковлев Ю.С. Интегральные преобразования в нестационарных задачах механики. -Л.Судостроение, 1980.-343 с.

147. Смирнов А.В., Динамика дорожных одежд автомобильных дорог. Омск, Запсибиздат, 1975.

148. Смирнов А.В., Малофеев А.Г. Э5кспериментальное исследование волн колебаний дорожных покрытий при движении автомобилей.// Прикладная механика. T.IX, в.1, 1973.

149. Снедцон И. Преобразование Фурье. М.: Иностранная литература, 1955.

150. Собисевич J1.E., Шумейко В.И., Селезнев М.Г., Ляпин А.А., Со-бисевич А.Л, Корабельников Г.Я. Локальные резонансы в слоистых средах.// М.: ОИФЗ РАН, Московский филиал ГНИЦ ПГК при КубГУ Министерства образования РФ, 2000. 178 с.

151. Тарлаковский Д.В., Федоров С.Н. Нестационарные колебания упругой анизатропной полуплоскости.// Материалы 4-го Между-нар. симп. " Динам, и технол. пробл. мех. конструкций и сплош. сред.", Ярополец, 16-20 фев. 1998.- М.-С 24.

152. Тимошенко С.П. Пластинки и оболочки. М.: Гостехиздат, 1948.

153. Титчмарш Е.С. Введение в теорию интегралов Фурье. М.: Гостехиздат, 1948. - 479 с.

154. Титчмарш Е. Разложения по собственным функциям, связанные с дифференциальными уравнениями второго порядка. М.: Иноиз-дат, 1960.

155. Тихонов А.Н., Самарский А.А. Уравнения математической физики,- М.: Наука, 1972.

156. Трантер К. Дж. Интегральные преобразования в математической физике. М.: Гостехиздат, 1956. - 204 с.

157. Улитко А.Ф. Метод собственных векторных функций в пространственных задачах теории упругости .//Киев: Наукова думка, 1979.-261 с.

158. Уфлянд Я.С. Интегральные преобразования в задачах теории упругости.-Ленинград: Наука, 1967.

159. Федорюк М.В. Метод перевала. М.: Наука, 1977.

160. Филиппов А.П. Колебания деформируемых систем. М.: Машиностроение, 1970. — 736 с.

161. Хачатрян А.Р. Контактная задача для упругой кусочно-однородной полуплоскости с конечным стрингером. Межвузовский сб. научных трудов, Механика, Ереван: изд. ЕГУ, 1990, N8, С.97-106.

162. Хорошун Л.П., Довгалюк А.В. Колебания полуограниченых и ограниченных слоистых тел стохастической структуры.// Прикладная механика (Киев)-1997-33, N5, С.13-19.

163. Цейтлин А.И. Прикладные методы решения краевых задач строительной механики. М.: Стройиздат, 1984. - 334 с.

164. Чичинин И.С. Вибрационное излучение сейсмических волн.-М.: Недра, 1984.-220 с.

165. Шапиро Г.С., Никишин B.C. Пространственные задачи теории упругости для многослойных сред. М.: ВЦАН СССР, 1970.

166. Эрдоган Ф., Гупта Г. Задача о полуплоскости с упругой накладкой. ПМ. Труды Амер. общ. инж.-мех., сер.Е, 1971, Т.38, N4,1. С.323-327.

167. Янке Э., Эмде Ф., Леш Ф. Специальные функции (формулы, графики, таблицы) М.: Наука, 1964.

168. Abdelkarim А.М.А.М., Vrouwenvelder A.C.W.M., Verweij M.D. Analysis of the dynamic response of layered, elastic media by means of the fast Fourier transform.// Heron.-1999-44, N2, p.l09-125.

169. Alblas J.B., Kuypers W.I.I. On the Diffusion of Load from a Stiff-ener into an Infinite Wedge Shaped Plate.// Applied Scienntific Research, Series A, Vol.15, N6, 1965-1966, p.429.

170. Ivanov Ts., Savova R. A note on Rayleigh waves.// J.Teor. and Appl. Mech.-1996-26, N3, p.57-61.

171. Jones D.V., Le Houedec D., Peplow A.T., Petyt M. Around vibration in the vicinity of a moving harmonic rectangular load on a half-space.// Eur. J. Mech.A.-1998-17, N1, p. 153-166.

172. Muravskii G. On time-harmonic problem for non-homogeneous elastic half-space with shear modulus limited at infinite depth.// Eur. J. Mech. A.-1997-16, N2, p.277-294.

173. Nath Sisir, Sengupta P.R. Steady-state response to moving loads in an elastic solid media.// Indian J. Pure and Appl. Math.-1999-30, N3, p.317-327.

174. Zhang Bixing, Yu M., Lan C.Q., Xiong Wei. Elastic wave and excitation mechanism of surface waves in multilayered media.// J. Acoust. Soc. Amer.-1996-100, N6, p.3527-3538.

175. Описание программы расчета влияния скорости движения нагрузки на распространение внутренних волн. Плоский случай.

176. Программа PLZ предназначена для построения диаграмм направленности поля внутренних волн в однородной полуограниченной среде под воздействием движущейся нагрузки в случае плоской постановки задачи.

177. R —расстояние от источника колебаний до рассматриваемой точки в среде;

178. Выходными данными программы PLZ являются диаграммы направленности, посчитанные для различных значений скорости движения нагрузки и представленные в п.3.3.3 (рис.3.41).vO := 50 со := 20 a := 2 tO := 8000 R:=100400 i uO т

179. J := 1 2 v(j) :=- p := 1800 pO := v(2) -p и := —— u = 4.5x103j 2-t0m := 0.58 ф(ш) := + m— k(j) :=60 60 v(j) v(j)

180. A(j,m) := (k(j)2 l)-(k(j)2-sinU(m))2 - l) B(j,m) := 6(j)-k(j) (l - k(j)2-sin(4.(m))2)

181. Up(m) := -Jul(m)2 + wl(m)2w2(m) := exp^-R-S(2,m) i-^fw2(m)kr V|S1 l(2,m)|1. Us(m) := >/u2(m)2 + w2(m)aUp(m) := >/lm(Up(m))2 + Re(Up(m))2aUs(m) := >/lm(Us(m))2 + Re(Us(m))26.104.5-10aUs(m) 3-101.5-102.101.5-10aUp(m) 1-Ю5.10

182. Описание программы расчета влияния скорости движения нагрузки на распространение внутренних волн в однородном полупространстве. Пространственный случай.

183. Программа PRZ предназначена для построения диаграммнаправленности поля внутренних волн в однородномполупространстве в дальней от области нагружения зоне подвоздействием движущейся нагрузки в пространственном случае.

184. R — расстояние от источника колебаний до рассматриваемой точки в среде;

185. S(j) := — A(j,m) := £k(j))2 -T. Ck(j))2.p(m) -Цv(j)

186. REAL*8 у,x,aa,h,c,dd,11,ml,pi,10,m0,p0,lm,w,wO,hw,wn, tetl,tet2,yi,xO,yO, * zO,P,GLUB,SHAG,ABSERR,RELERR,EPS,AMAXDL,DLINA, ABSERR1, RELERR1, EPS1, AMAXDL1 COMPLEX*1 б B,BX,BB,DKONTUR1,ci,XXl

187. SHAG=1.2 ABSERR=1.E-4 ABSERR1=1.E-3 RELERR=1.E-4 RELERR1=1.E-3 EPS=1.E-3 EPS1=1.E-2 AMAXDL=1.E+3 AMAXDL1=1.E+2 DLINA=1.l*tet2+0.5

188. XX1=DK0NTUR1(FXX1,GLUB,DLINA,SHAG,ABSERR1,RELERR1,EPS1,AMAXDL1) write (*,*) w,XXI1 continuecall gettim(il,i2,i3,i4) write (*,*) il,i2,i3,i4 write (1,*) il,i2,i3,i4 stop end

189. Заполнение матрицы в квадрате(1-18,1-18)--------------do 2 k=0,15,3do 3 i=l,3 do 4 j=l,3 .4 В(k+i,k+j)=c (i,j) 3 continue 2 continue

190. Заполнение матрицы в квадрате (19-36,19-36)----------------do 8 k=18,33,3do 9 i=l,3 do 10 j = l, 3

191. B(i, 19+(k-1)*3)=DKONTUR(FLl,GLUB,DLINA,SHAG,ABSERR,RELERR,EPS,AMAXDL) В(i , 20+(k-1)*3)=DKONTUR(FL2,GLUB,DLINA,SHAG,ABSERR,RELERR,EPS,AMAXDL) В(i,21+(k-1)*3)=DKONTUR(FL3,GLUB, DLINA,SHAG, ABSERR, RELERR, EPS, AMAXDL) 18 continuedo 20 i=10,12 yi=y(i-9)

192. В(i, 19+(k-1)*3)=DKONTUR(FLl, GLUB, DLINA,SHAG,ABSERR,RELERR,EPS,AMAXDL) В(i, 20+(k-1)*3)=DKONTUR(FL2,GLUB,DLINA,SHAG,ABSERR, RELERR,EPS,AMAXDL) В(i, 21+(k-1)*3)=DKONTUR(FL3,GLUB, DLINA,SHAG,ABSERR,RELERR, EPS, AMAXDL)21 continuedo 22 i=13,15 yi=y(i-12)

193. B(i,19+(k-1)*3)=DKONTUR(FL4,GLUB, DLINA,SHAG,ABSERR,RELERR, EPS, AMAXDL)

194. В(i,20+(к-1)*3)=DKONTUR(FL5,GLUB,DLINA,SHAG,ABSERR, RELERR,EPS,AMAXDL) В(i, 21+(k-1)*3)=DKONTUR(FL6,GLUB,DLINA,SHAG,ABSERR, RELERR,EPS,AMAXDL)22 continue flag=3do 23 ±=1,9 yi=y{i-6)

195. B(i,19+(k-1)*3)=DKONTUR(FLl,GLUB,DLINA,SHAG,ABSERR, RELERR,EPS,AMAXDL) B(i,20+(k-1)*3)=DKONTUR(FL2,GLUB,DLINA,SHAG, ABSERR, RELERR, EPS, AMAXDL) B(i, 21+(k-1)*3)=DKONTUR(FL3,GLUB,DLINA,SHAG,ABSERR, RELERR,EPS,AMAXDL)23 continuedo 24 i=16,18 yi=y(i-15)

196. BX(i)=BX(i)+Bl(i,j)*BB(j) 51 continuewrite (1,*) BX(i) 50 continue

197. FXX1=(BX(1)/sqrt(aa**2-yO**2)+BX(2)*yO+BX(3)*y0**2) *exp(alf*z0)returnendfunction FLl(xl) complex PARA,PARB complex*16 FL1,SXT,gam, ci real*8 xl,h,aa common /SI/ h,aa,ci common /S12/ PARA,PARB external SXTgam=PARA*x1+PARB

198. FLl=ci/gam*(1-exp(ci*gam*h))*SXT(gam)returnendfunction FL2(x2) complex PARA,PARB complex*16 FL2,SXT,gam,ci real*8 x2,h,aa common /SI/ h,aa,ci common /S12/ PARA,PARB external SXTgam=PARA*x2+PARB

199. FL2=(exp(ci*gam*h)-ci*h*gam-l)/gam**2*SXT(gam)returnendfunction FL3(x3) complex PARA,PARB complex*16 FL3,SXT,gam,ci real*8 x3,h,aa common /SI/ h,aa,ci common /S12/ PARA,PARB external SXTgam=PARA*x3+PARB

200. FL3=2*ci/gam**3*(exp(ci*gam*h)+h*h*gam**2/2+h*gam/ci-1)* *SXT(gam) return endfunction FL4(x4) complex PARA,PARB complex*16 FL4,SXT,gam,ci real*8 x4,h,aa common /SI/ h,aa,ci common /S12/ PARA,PARB external SXTgam=PARA*x4+PARB

201. FL4=ci/gam*(exp(-ci*gam*h)-1)*SXT(gam)returnendfunction FL5(x5) complex PARA,PARB complex*16 FL5,SXT,gam,ci real*8 x5,h,aa common /SI/ h,aa,ci common /S12/ PARA,PARB external SXTgam=PARA*x5+PARB

202. FL5=(1-(ci*h*gam+l)/exp(ci*gam*h))/gam**2*SXT(gam)returnendfunction FL6(x6) complex PARA,PARB complex*16 FL6,SXT,gam,ci real*8 x6,h,aa common /SI/ h,aa,ci common /S12/ PARA,PARB external SXTgam=PARA*x6+PARB

203. FMl=pi*CJN(uf,0)*exp(ci*bet*aa)*SYT(bet, 1)returnendfunction FM2(y2) complex PARA,PARB complex*16 FM2,SYT,bet, ci real*8 y2,h,aa common /SI/ h,aa,ci common /S12/ PARA,PARB external SYTbet=PARA*y2+PARB

204. FM2=(exp(2*ci*bet*aa)*(l/bet-aa*ci)-aa*ci-l/bet)/bet* *SYT (bet,1) return endfunction FM3(у3> complex PARA,PARB complex*16 FM3,SYT,bet,ci real*8 y3,h,aa common /SI/ h,aa,ci common /S12/ PARA,PARB external SYTbet=PARA*y3+PARB

205. FM4=pi*CJN(uf,0)/exp(ci*bet*aa)*SYT(bet,1)returnendfunction FM5(y5) complex PARA,PARB complex*16 FM5,SYT,bet,ci real*8 y5,h,aa common /SI/ h,aa,ci common /S12/ PARA,PARB external SYTbet=PARA*y5+PARB

206. FM5=(l/bet-aa*ci-(aa*ci+l/bet)/exp(2*ci*bet*aa))/bet* *SYT(bet,1) return endfunction FM6(y6) complex PARA,PARB complex*16 FM6,SYT,bet, cireal*8 y6,h,aa common /SI/ h,aa,ci common /S12/ PARA,PARB external SYTbe t = PARA* у 6 + PARB

207. FXl=pi*CJN(uf,0)*SYT(bet,0)returnendfunction FX2(y2)complex PARA,PARBcomplex*16 FX2,SYT,bet,ci,EAreal*8 y2,h,aacommon /SI/ h,aa,cicommon /S12/ PARA,PARBexternal SYTbet=PARA*y2+PARB1. EA=exp(ci*bet*aa)

208. С DESCRIPTION OF PARAMETERS

209. С A INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY1. С RESULTANT INVERSE.1. С N ORDER OF MATRIX A1. С D RESULTANT DETERMINANT

210. С L WORK VECTOR OF LENGTH N

211. С M WORK VECTOR OF LENGTH NС1. С REMARKS

212. С MATRIX A MUST BE A GENERAL MATRIXС

213. С SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED1. С NONEС1. С METHOD

214. С THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT

215. С IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT1. С THE MATRIX IS SINGULAR.1. С .

216. SUBROUTINE MINV(A,D,L,M, N) DIMENSION A(l),L(1),M(1) complex*16 A,D,BIGA,HOLD1. С .

217. С IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE

218. С С IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION

219. С STATEMENT WHICH FOLLOWS.С

220. С DOUBLE PRECISION A,D,BIGA,HOLD, DABSС

221. С THE С MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS

222. С APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS1. С ROUTINE.С

223. С THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO

224. С CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT

225. С 10 MUST BE CHANGED TO DABS.1. С .

226. С SEARCH FOR LARGEST ELEMENTС1. D=1.0 NK=-N

227. DO 80 K=1,N NK=NK+N L(K)=K M(K)=K KK=NK+K BIGA=A(KK) DO 20 J=K,N IZ=N*(J-l) DO 20 I=K,N IJ=IZ+I

228. IF( cABS(BIGA)- cABS(A(IJ))) 15,20,20 15 BIGA=A(IJ) L(K)=1 M(K)=J 20 CONTINUE

229. С---------- INTERCHANGE ROWS----------1. J=L(K)1.(J-K) 35,35,25 25 KI=K-N

230. DO 30 1=1,N KI=KI+N HOLD=-A(KI) JI=KI-K+J A(KI)=A(JI) 30 A( JI) =HOLD

231. С--------- INTERCHANGE COLUMNS---------35 I=M(K)1.(I-K) 45,45,38 38 JP=N*(1-1) DO 4 0 J=1,N JK=NK+J JI=JP+J HOLD=-A(JK) A {JK)=A(JI) 40 A{JI) =HOLD

232. С----- DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS CONTAINED IN BIGA)45 ABIGA=cabs(BIGA)1.(ABIGA) 48,46,48 4 6 D=0.01. RETURN 48 DO 55 1=1,N1.(I-K) 50,55,50 50 IK=NK+I

233. A(IK)=A(IK)/(-BIGA) 55 CONTINUE

234. C---------- REDUCE MATRIX-------------

235. DO 65 1=1,N IK=NK+I HOLD=A(IK) IJ=I-N DO 65 J=1,N IJ=IJ+N1.(I-K) 60,65, 60 60 IF(J-K) 62,65,62 62 KJ=IJ-I+K

236. A(IJ)=HOLD*A(KJ)+A(IJ) 65 CONTINUE

237. C----------DIVIDE ROW BY PIVOT-----------

238. KJ=K-N DO 75 J=1,N KJ=KJ+N1.(J-K) 70,75,70 70 A(KJ)=A(KJ)/BIGA 75 CONTINUE

239. С---------- PRODUCT OF PIVOTS--------------------1. D=D*BIGA

240. С--------- REPLACE PIVOT BY RECIPROCAL-----------

241. A(KK)=1.0/BIGA 8 0 CONTINUE

242. С---------- FINAL ROW AND COLUMN INTERCHANGE------1. K=N 100 K=(K-1)1.(K) 150,150,105 105 I=L(K)1.(I-K) 120,120,108 108 JQ=N*(K-l) JR=N*(1-1) DO 110 J=1,N JK=JQ+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI) =HOLD 120 J=M(K)1.(J-K) 100,100,125 125 KI=K-N

243. DO 130 1=1,N KI=KI+N HOLD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI) =HOLD1. GO TO 100 150 RETURN ENDс------------------------------------------------------------------

244. FUNCTION DKONTUR(F,GLUB,DLINA,SHAG,ABSERR,RELERR,EPS,AMAXDL)

245. С ПРОГРАММА ИНТЕГРИРОВАНИЯ ПО КОРЫТУ

246. С F- функция типа COMPLEX*16 от аргумента типа REAL*8

247. С * в ней необходим COMMON блок /S12/PARA,PARB1. С GLUB- глубина корыта1. С DLINA- его длина

248. С SHAG- шаг разбиения контура вне корыта

249. С ABSERR,RELERR- абс. и отн. погрешности вычисления интегралов разб.

250. С EPS- отн. погрешность оценки хвоста

251. С AMAXDL- максимальная длина контура по оси

252. COMPLEX*16 DKONTUR,F,RESULT COMPLEX CI,PARA,PARB

253. REAL*8 A,B,ABSERR,RELERR,ERREST, FLAG,AK,AR,EPS,AMAXDL,GLUB,DLINA,SHAG

254. COMMON /S12/PARA,PARB EXTERNAL F1. CI=(0.,1.)

255. PARA=(0.,-1.) PARB=(0.,0.) A=0.DO B=GLUB

256. CALL CDQUAN8(F,A,B,ABSERR, RELERR, RESULT, ERREST, NOFUN, FLAG)1. DKONTUR=-CI*RESULT1. PARA=(1.,0.)1. PARB=-CMPLX(0.,GLUB)1. A=0.DO1. B=DLINA

257. CALL CDQUAN8(F,A,B,ABSERR,RELERR, RESULT,ERREST,NOFUN,FLAG)

258. DKONTUR=DKONTUR+RESULT PARA=(0.,1.) PARB=CMPLX(DLINA,0.) A=-GLUB B=0.DO

259. CALL CDQUAN8(F,A,B,ABSERR,RELERR,RESULT,ERREST,NOFUN,FLAG)1. DKONTUR=DKONTUR+RESULT*CI1. PARA=(1.,0.)1. PARB=(0.,0.)1. A=DLINA1 B=A+SHAG

260. CALL CDQUAN8{F,A,B,ABSERR,RELERR,RESULT,ERREST,NOFUN,FLAG)1. DKONTUR=DKONTUR+RESULT1. AK=CDABS(DKONTUR)1. AR=CDABS(RESULT)1.(AR/AK.LE.DBLE(EPS)) RETURN1.(B.GE.AMAXDL) GO TO 21. A=B1. GO TO 12 PRINT 50,AMAXDL

261. FORMAT(' Выход no MAX длине=', E15.5) RETURN END

262. FUNCTION DKONTUR1(F,GLUB,DLINA,SHAG,ABSERR,RELERR,EPS,AMAXDL)

263. С ПРОГРАММА ИНТЕГРИРОВАНИЯ ПО КОРЫТУ

264. С F- функция типа COMPLEX*16 от аргумента типа REAL*8

265. С * в ней необходим COMMON блок /S12/PARA1,PARB11. С GLUB- глубина корыта1. С DLINA- его длина

266. С SHAG- шаг разбиения контура вне корыта

267. С ABSERR,RELERR- абс. и отн. погрешности вычисления интегралов разб.

268. С EPS- отн. погрешность оценки хвоста

269. С AMAXDL- максимальная длина контура по оси

270. COMPLEX*16 DKONTUR1,F,RESULT1 COMPLEX CI1,PARA1,PARB1

271. REAL*8 Al,Bl,ABSERR,RELERR,ERREST,FLAG,AK,AR,EPS,AMAXDL,GLUB,SHAG

272. COMMON /S12/PARA1,PARB1 EXTERNAL F

273. CI1=(0.,1.) PARA1=(0.,-1.) PARB1=(0.,0.) A1=0.DO B1=GLUB

274. CALL CDQUAN81(F,Al,Bl,ABSERR,RELERR,RESULT1,ERREST,NOFUN, FLAG)1. DKONTURl=-CI1 *RESULT11. PARA1=(1.,0.)1. PARB1=-CMPLX(0.,GLUB)1. A1=0.DO1. B1=DLINA

275. CALL CDQUAN81(F,Al,Bl,ABSERR,RELERR,RESULTl,ERREST,NOFUN,FLAG)1. DKONTURl=DKONTURl+RESULT11. PARAl=(0. , 1. )1. PARB1=CMPLX(DLINA, 0.)1. Al=-GLUB1. B1=0.DO

276. CALL CDQUAN81(F,Al,Bl,ABSERR,RELERR,RESULTl,ERREST,NOFUN, FLAG) DKONTURl=DKONTURl+RESULTl*CI1 PARA1=(1.,0.) PARB1=(0.,0.) A1=DLINA 1 B1=A1+SHAG

277. FUNCTION CJN(U,N) С *** Функция Бесселя JN(U) одинарной точности INTEGER N,К,M,NN4 COMPLEX*8 CJN, U, Y, Т, P,Q

278. REAL*4 R,PI4/0.7853982/,SQ4/2.256758/,AY,

279. GAN(0:2)/5.72,5.8,5.9/,Е/0.1192093Е-0б/ С *** Блок 1. Формула Ганкеля?1.(ABS(U).GT.GAN(N)) GO TO 30 С *** Блок 2. Сумма ряда Q=1.01.(N.EQ.O) GO TO 22 Y=0.5*U DO 21 K=l,N21 Q=Q*Y/K

280. Y=-0.25*U*U T=Q*Y/(N+l) CJN=Q+T1. K=1

281. K=K+1 M=K*(N+K) T=T*Y/M CJN=CJN+T1.(ABS(T).GT.E) GO TO 23 С *** Выход из CJN RETURN

282. С *** Блок 3. Формула Ганкеля

283. M=N+N NN4=M*M Y=0.125/U AY=ABS(Y) P=1.01. Q=Y*(NN4-1)1. T=Q1. M=11. K=11. С * * * Сумма для "P"

284. M=M+1 K=K+2 R=K*K-NN4 R=R/M1.(AY*R.GT.1.0) GO TO 321. T=T*Y*R1. P=P+T1.(ABS(T).LE.E) GO TO 32 С *** Сумма для "Q" M=M+1 K=K+2 R=NN4-K*K R=R/M1.(AY*R.LT.-1.0) GO TO 321. T=T*Y*R1. Q=Q+T1.(ABS(T).GT.E) GO TO 31 32 T=U-(N+N+l)*PI4

285. CJN=SQ4 *SQRT(Y)*(P*COS(T)-Q*SIN(T)) С *** Выход из CJN RETURN END

286. FUNCTION RIN(X,N) С *** Функция IN(X) одинарной точности INTEGER N,К,M

287. REAL*4 RIN,X,Y,T,E/0.1192093Е-06/ С *** Сумма ряда Y=0.25*X*X T=Y/(N+l) RIN=1.0+T K=1

288. K=K+1 M=K*(N+K) T=T*Y/M RIN=RIN+T1.(T.GT.E) GO TO 11 IF(N.EQ.O) GO TO 13 Y=0.5*X DO 12 K=1,N

289. RIN=RIN*Y/K C *** Выход из RIN13 RETURN END

290. SUBROUTINE CDQUAN8(FUN,A,B,ABSERR,RELERR,RESULT,ERREST,NOFUN,FLAG)

291. COMPLEX*16 FUN,RESULT,F0,F(16) ,CORll

292. COMPLEX*1 6 QPREV,QNOW,QDIFF,QLEFT,QRIGHT(31) , FSAVE(8,30)

293. REAL*8 A,B,ABSERR,RELERR,ERREST,FLAG,ESTERR,TOLERR,

294. REAL*8 WO,Wl,W2,W3,W4,AREA,XO,STONE, STEP, TEMP, X(16) ,XSAVE(8, 30)

295. TEGER LEVMIN,LEVMAX,LEVOUT,NOMAX,NOFIN,LEV,NIM,I,J,NIMA,NOFUN

296. VMIN=1 LEVMAX=30 LEVOUT=6 NOMAX=5000

297. NOFIN=NOMAX-8 *(LEVMAX-LEVOUT+2**(LEVOUT+1))1. W0=3956.0/14175.01. Wl=23552.0/14175.01. W2=-3712.0/14175.01. W3=41984.0/14175.01. W4=-18160.0/14175.01. FLAG=0.0

298. RESULT=(0.0,0.0) COR11=0.0 ERREST=0.0 AREA=0.0 NOFUN=01.(A.EQ.B) RETURN1.V=01. NIM=11. X0=A1. X(16)=B1. QPREV=0.01. F0=FUN(X0)1. TONE=(B-A)/16.01. X(8)=(X0+X(16))/2.01. X(4)=(X0+X(8))/2.01. X(12)=(X(8)+X(16))/2.01. X(2)=(X0+X(4))/2.0

299. X(6) = (X(4)+X(8) ) /2 . 025