автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Нейросетевое моделирование динамически адаптируемого прогноза объемов сбыта многоассортиментной продукции
Оглавление автор диссертации — кандидата технических наук Солодовников, Виталий Витальевич
ВВЕДЕНИЕ.
1 ОСОБЕННОСТИ СБЫТА МНОГОАССОРТИМЕНТНОЙ ПРОДУКЦИИ НА ПРИМЕРЕ КОРПОРАЦИИ «ГЛОРИЯ ДЖИНС».
1.1 Анализ особенностей сбыта многоассортиментрой продукции.
1.2 Исследование предприятий рассматриваемого класса с позиции теории сложных систем.
1.3 Анализ сбыта многоассортиментной продукции корпорации «Глория Джине».'.
2 ИССЛЕДОВАНИЕ СБЫТА МНОГОАССОРТИМЕНТНОЙ ПРОДУКЦИИ НА ОСНОВЕ МОДЕЛИ ВРЕМЕННЫХ РЯДОВ.
2.1 Обзор литературы по численным методам исследования сбыта продукции.
2.2 Анализ методологии прогнозирования временных рядов
Бокса-Дженкинса.
2.3 Разработка концептуального метода динамически адаптируемого прогноза объемов сбыта многоассортиментной продукции на основе модели временных рядов.
2.4 Исследование динамически адаптируемых моделей прогнозирования сбыта многоассортиментной продукции.
3 РАЗРАБОТКА НЕЙРОИМИТАТОРА ДЛЯ ДИНАМИЧЕСКОЙ АДАПТАЦИИ ПРОГНОЗА.
3.1 Анализ методов исследования временных рядов с применением нейронных сетей.
3.2 Разработка алгоритма нейросетевого моделирования динамически адаптируемого прогноза объемов сбыта многоассортиментной продукции
4 НЕЙРОСЕТЕВОЕ МОДЕЛИРОВАНИЕ ВРЕМЕННЫХ РЯДОВ ОБЪЕМОВ СБЫТА МНОГОАССОРТИМЕНТНОЙ ПРОДУКЦИИ.
4.1 Подготовка данных для нейроимитационного моделирования временных рядов.
4.2 Нейроимитационное моделирование прогноза сбыта многоассортиментной продукции на примере данных корпорации «Глория Джине».
5 СОЗДАНИЕ ПРОГРАММНОГО КОМПЛЕКСА «SOLARIS» ДЛЯ.
НЕЙРОИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ
ЭКОНОМИЧЕСКИХ ВРЕМЕННЫХ РЯДОВ».
5.1 Анализ структуры хранилища данных корпорации «Глория Джине».
5.2 Разработка структуры программного нейроимитатора.
5.3 Внедрение пользовательского интерфейса программного нейроимитатора.
Введение 2005 год, диссертация по информатике, вычислительной технике и управлению, Солодовников, Виталий Витальевич
Актуальность. Планирование объема сбыта многоассортиментной продукции, включающее маркетинговое исследование рынка, прогнозирование спроса покупателей на основе данных за предыдущие периоды и определяющее на будущее вероятностные характеристики процесса управления предприятием, позволяет получить такие показатели эффективности функционирования компании как величину доходов, прибыль и уровень рентабельности.
Критерии оптимизации процесса управления предприятием, включающие планируемые объемы сбыта многоассортиментной продукции и формализующиеся в виде целевой функции, позволяют определить стратегию развития компании с учетом ограничений экономического характера.
Задачам прогнозирования на основе моделей временных рядов посвящено большое количество исследований. Имеются успешные решения по построению прогноза с использованием вероятностных методов, нейросете-вого моделирования, субъективных знаний экспертов. В частности исследованиям в данной области посвящены работы Бокса Дж., Дженкинса Г., Боровикова В.П., Ивченко Г.И., Лукашина Ю.П., Оссовского С., Комарцовой Л.Г., Максимова A.B. и др. Однако в случае применения рассматриваемых методов к особенностям предприятия, реализующего многоассортиментную продукцию, возникает необходимость в прогнозе по целевым группам, который позволит эффективно адаптироваться к меняющимся рыночным условиям и изменениям данных за предыдущие периоды.
В связи с этим все более актуальной является разработка новых методов и алгоритмов и программно-математических инструментариев на их основе, делающих возможным получение эффективных решений в вопросах снижения погрешности прогнозирования объемов сбыта многоассортиментной продукции, сокращения времени обработки данных.
Цель диссертационной работы состоит в повышении эффективности программно-моделирующих комплексов прогнозирования экономических временных рядов объемов сбыта многоассортиментной продукции.
Для достижения поставленной цели необходимо решить следующие научные задачи:
1. Провести анализ особенностей предприятий, реализующих многоассортиментную продукцию, и состояния вопросов прогнозирования объемов их сбыта в условиях меняющейся рыночной конъюнктуры для определения требований к методике прогнозирования объемов сбыта и программно-математическому инструментарию.
2. Разработать метод предварительной обработки исходной информации по категориям переменных многоассортиментной продукции с целью повышения точности прогноза.
3. Разработать концептуальный метод динамически адаптируемого прогноза объемов сбыта на основе модели временных рядов и создать специализированный программно - математический инструментарий.
4. Разработать модель и алгоритм нейросетевого моделирования динамически адаптируемого прогноза объемов сбыта многоассортиментной продукции.
5. Создать нейроимитатор прогноза объемов сбыта многоассортиментной продукции на основе анализа статистических данных большой размерности с большим числом исходных данных и нелинейными зависимостями.
Методы исследования. В диссертации научные исследования основаны на методах системного анализа, математического моделирования, нейросетевого моделирования, математической статистики, искусственного интеллекта и экспертных оценок, при широком использовании программно-математического инструментария.
Научная новизна:
1. Предложен метод предварительной обработки исходной информации на основе динамической кластеризации многоассортиментной продукции позиционированием по целевым группам потребителей с учетом экспертных оценок, позволяющий повысить точность прогноза.
2. Построена математическая модель на основе методики Бокса-Дженкинса для получения прогноза объемов сбыта многоассортиментной продукции, отличающаяся введением дополнительной совокупности коэффициентов временного ряда, что позволяет осуществлять динамическую адаптацию к изменениям текущих рыночных условий и данных за предыдущие периоды.
3. Создана нейросетевая модель для построения прогноза объемов сбыта многоассортиментной продукции, отличающиеся введением дополнительной динамически адаптируемой совокупности связанных коэффициентов сезонности и временного ряда, позволяющая повысить точность прогноза.
4. Разработан концептуальный метод моделирования прогноза объемов сбыта многоассортиментной продукции на основе модели временных рядов, отличающийся использованием механизма динамической адаптации к текущим рыночным условиям и изменениям данных за предыдущие периоды.
5. Разработан алгоритм нейросетевого моделирования прогноза объемов сбыта многоассортиментной продукции на основе метода обучения обратного распространения ошибки, позволяющий сократить время обработки данных и повысить точность прогноза.
Обоснованность и достоверность научных положений и выводов подтверждается применением системного подхода, корректным использованием современного математического аппарата, проверкой на основе имитационных исследований.
Практическая ценность работы. Разработана методика моделирования прогноза объемов сбыта многоассортиментной продукции на основе модели временных рядов, отличающаяся использование механизма динамической адаптации к изменениям данных за предыдущие периоды и текущим рыночным условиям.
Создан программно - математический инструментарий, включающий модель на основе методики Бокса-Дженкинса для построения прогноза объемов сбыта многоассортиментной продукции с учетом дополнительной совокупности коэффициентов временного ряда и позволивший автоматизировать процесс прогнозирования, сократить время обработки данных, повысить точность прогноза.
Разработан нейроимитатор на основе нейросетевой модели для построения прогноза объемов сбыта многоассортиментной продукции с учетом дополнительной динамически адаптируемой совокупности связанных коэффициентов сезонности и временного ряда, обладающий существенными преимуществами при анализе статистических данных большой размерности с большим числом исходных данных, а также при построении нелинейных зависимостей и позволивший автоматизировать процесс прогнозирования, сократить время обработки данных и повысить точность прогноза.
С использованием предложенных программно-математических инст-рументариев построены прогнозы объемов сбыта многоассортиментной продукции на ЗАО «Корпорация «Глория Джине». Результаты исследования нашли свое применение при определении стратегии развития компании и построении комплексного мастер плана сбыта многоассортиментной продукции, оформлены в виде технической документации и переданы вместе с программно-моделирующими комплексами для использования в соответствующие подразделения компании. Материалы диссертации использованы в учебном процессе на факультете высоких технологий Ростовского государственного университета для подготовки магистров по направлению «Системный анализ и управление» и специальности «Менеджмент высоких технологий».
Апробация работы. Основные положения работы докладывались и обсуждались на 6-ти конференциях, в том числе, на 51-й научно-технической конференции студентов и аспирантов (ЮРГТУ (НПИ)), май 2002 г.; на XVI Международной конференции «Математические методы в технике и технологиях» (Ростов н/Д), май 2003 г.; на III- й Международной научно-технической конференции «Автоматизация технологических объектов и процессов. Поиск молодых» (Донецк), май 2003 г.; на региональных конференциях «Управление в технических, технологических, социально-экономических и медико-биологических системах», (ЮРГТУ (НПИ)), апрель 2003, 2004 г.г.; на XXX военно - научной конференции (Новочеркасск, НВИС), март 2003 г.; на международной научно-технической конференции «Новые технологии управления движением технических объектов» (Новочеркасск, 2003 г.).
Индивидуально или в соавторстве опубликованы в журналах и сборниках научных трудов 15 печатных работ. Из них 7 научных статей, 4 тезиса докладов и 4 свидетельства об официальной регистрации программы для ЭВМ. В работах, написанных в соавторстве, основные научные положения получены диссертантом лично.
Заключение диссертация на тему "Нейросетевое моделирование динамически адаптируемого прогноза объемов сбыта многоассортиментной продукции"
Результаты исследования нашли свое применение при определении стратегии развития компании ЗАО «Корпорация «Глория Джине» и построении комплексного мастер плана сбыта многоассортиментной продукции, оформлены в виде технической документации и переданы вместе с программно-моделирующими комплексами для использования в соответствующие подразделения компании. Материалы диссертации использованы в учебном процессе на факультете высоких технологий Ростовского государственного университета для подготовки магистров по направлению «Системный анализ и управление» и специальности «Менеджмент высоких технологий».
ЗАКЛЮЧЕНИЕ
В ходе проведенных исследований в диссертационной работе были решены следующие задачи:
• разработан метод предварительной обработки исходной информации на основе динамической кластеризации многоассортиментной продукции позиционированием по целевым группам потребителей с учетом экспертных оценок, позволяющий повысить точность прогноза;
• разработана математическая модель на основе методики Бокса-Дженкинса для построения прогноза объемов сбыта многоассортиментной продукции, отличающаяся введением дополнительной совокупности коэффициентов временного ряда, что позволяет осуществлять динамическую адаптацию к изменениям текущих рыночных условий и данных за предыдущие периоды;
• разработана нейросетевая модель для построения прогноза объемов сбыта многоассортиментной продукции, отличающаяся введением дополнительной динамически адаптируемой совокупности связанных коэффициентов сезонности и временного ряда, позволяющая повысить точность прогноза;
• разработан концептуальный метод моделирования прогноза объемов сбыта многоассортиментной продукции на основе модели временных рядов, отличающийся использованием механизма динамической адаптации к изменениям данных за предыдущие периоды и текущим рыночным условиям;
• разработан алгоритм нейросетевого моделирования прогноза объемов сбыта многоассортиментной продукции на основе метода обучения обратного распространения ошибки, позволяющий автоматизировать процесс прогнозирования, сократить время обработки данных, повысить точность прогноза;
• разработан программно — математический инструментарий, включающий модель на основе методики Бокса-Дженкинса для построения прогноза объемов сбыта многоассортиментной продукции с учетом дополнительной совокупности коэффициентов временного ряда и позволивший автоматизировать процесс прогнозирования, сократить время обработки данных, повысить точность прогноза;
• разработан программно — математический инструментарий, включающий нейросетевую модель для построения прогноза объемов сбыта многоассортиментной продукции с учетом дополнительной динамически адаптирумой совокупности связанных коэффициентов сезонности и временного ряда, обладающий существенными преимуществами при анализе статистических данных большой размерности с большим числом исходных данных, а также при построении нелинейных зависимостей и позволивший автоматизировать процесс прогнозирования, сократить время обработки данных, повысить точность прогноза.
Библиография Солодовников, Виталий Витальевич, диссертация по теме Математическое моделирование, численные методы и комплексы программ
1. Котлер Ф. Маркетинг менеджмент. 11-е издание. СПб.: Питер, 2003. -800 с.
2. Мескон М.Х., Альберт М., Хедоури Ф. Основы менеджмента. М.: Де-ло, 1993.
3. Хоскинг А. Курс предпринимательства: Практическое пособие. Пер с англ. М.: Международные отношения, 1993.
4. Голубков Е.П. Маркетинговые исследования: теория, методология и практика. М.: Финпресс, 1998.
5. Алексеева М.М. Планирование деятельности фирмы: Учебно-методическое пособие. М.: Финансы и статистика, 1997.
6. Анискин Ю.П. Внутрифирменное планирование: Учебное пособие. М. МГИЭТ (ТУ), 1994.
7. Андрейченков А.В., Андрейченкова О.Н. Анализ, синтез, планирование решений в экономике. М.: Финансы и статистика, 2000. - 368 с.
8. Свечкарев В.П. Системы автоматизации и управления технологическими производствами. Учеб. пособие. Новочеркасск: ЮРГТУ, 2002. - 159 с.
9. Автоматизация управления предприятием./ Баронов В.В. др. М.: ИНФРА - М,2000. 239 с. - (Серия "Секреты менеджмента").
10. Волкова В.Н., Денисов А. А. Основы теории систем и системного анализа: Учебник для вузов. СПб.: Издательство СПбГТУ, 1999. - 512 с.
11. Официальный сайт ЗАО «Корпорация «Глория Джине» www.gloria-ieans.ru
12. A Guide to the Project Management Body of Knowledge . Project Management Institute Standards Committee, 1996.
13. Эдвард Ферн. Управление проектами Time-to-Profít. М.: Технологии управления Спайдер, 1999.
14. Пинто Дж. К. Управление проектами. 1-е издание. СПб.: Питер, 2004. -464 с.
15. Богданов В.В. Управление проектами в Microsoft Project 2003. Учебный курс. — СПб.: Издательство Питер, 2004. 608 с.
16. Факторный, дискриминантный и кластерный анализ. М., Финансы и статистика, 1989,215 с.
17. Дюран Б., Оделл П. Кластерный анализ.- М.:Статистика, 1977.- 128с.
18. Айвазян С. А., Бухштабер В. М., Юнюков И. С., Мешалкин JI. Д. Прикладная статистика: Классификация и снижение размерности. М.: Финансы и статистика, 1989.
19. А.И. Харламов, О.Э. Башина, ВТ. Бабурин и др. Общая теория статистики: Статистическая методология в изучении коммерческой деятельности: Учебник / Под ред. А.А. Спирина, О.Э. Башиной. М.: Финансы и статистика, 1994.
20. Дж.Гласс, Дж.Стенли. Статистические методы в прогнозировании. М.: Прогресс, 1976.
21. Елисеева И.И., Юзбашев М.М. Общая теория статистики / Под ред. И.И. Елисеевой. М.: Финансы и статистика, 1995.
22. Мазманова Б.Г. Основы теории и практики прогнозирования: учебное пособие. Екатеринбург: изд. ИПК УГТУ, 1998.
23. Беляевский И.К., Кулагина Г Д., Коротков А.В. и др. Статистика рынка товаров и услуг: Учебник под ред. И.К. Беляевского. М.: Финансы и статистика, 1995.
24. Кречетов Н. Продукты для интеллектуального анализа данных. Рынок программных средств, N14-1597, с. 32-39.
25. Киселев М.В. «Алгоритмы Data Mining». Курс лекций. Компания «Мегапьютер».2001.
26. Арсеньев С.Б. «Извлечение знаний из медицинских баз данных». Компания «Мегапьютер».
27. Киселев М., Соломатин Е. Средства добычи знаний в бизнесе и финансах. — Открытые системы, № 4, 1997.
28. Дюк В.А. Обработка данных на ПК в примерах. — СПб: Питер, 1997.
29. Буров К. Обнаружение знаний в хранилищах данных. Открытые системы, №5-6, 1999.
30. Адомавичус Г., Тужилин А. Использование методов добычи данных для создания профилей потребителей // Открытые Системы, 2001. № 05-06.
31. Попов Э.В., Кисель Е.Б. Статические и динамические системы. М.: Финансы и статистика. -1996.
32. Боровиков В.П. Искусство анализа данных на компьютере (для профессионалов) -3-е издание, СПб.: Питер, 2003
33. В. Дюк, А. Самойленко. Data Mining: учебный курс. СПб: Питер, 2001
34. Компьютерные технологии обработки информации: Учеб. пособие/С.В. Назаров,
35. B.И. Першиков, В.А. Тафинцев и др.; Под ред. C.B. Назарова. М.: Финансы и статистика, 1995. - 248 с.
36. Seidman С. Data Mining with Microsoft SQL Server 2000. Technical Reference. — Microsoft Press, 2001.
37. Ville B.de. Microsoft Data Mining. — Digital Press, 2001.
38. Глуходедова В.Н., Солодовников В.В. Прогнозирование дохода с продаж на основе модели авторегрессии и проинтегрированного скользящего среднего// Материалы 30 военно науч. конф. Новочеркасск: НВИС, 2003. - С. 88-91.
39. Глуходедова В.Н., Солодовников В.В. Моделирование временных рядов// Новые технологии управления движением техническим объектов: Материалы VII междунар. науч.-техн. конф. Новочеркасск: 2003. — С. 130.
40. Солодовников В.В. Моделирование спроса и жизненного цикла изделия для системы управления производством на примере корпорации «Глории Джине»// Науч. мысль Кавк. Сев.-Кавк. науч. центр высш. школы Ростов н/Д, 2003.- Спецвып. 21. C.134- 136.
41. Солодовников В.В. Кластеризация многоассортиментной продукции позиционированием по группам потребителей // Математические методы в технике и технологиях: Сб. тр. XVIII Междунар. науч. конф.: В 10 т. Т.7, Секция 7 Казань, 2005. -С. 28-30.
42. Солодовников В.В. Моделирование объемов сбыта с использованием совокупности коэффициентов временного рядаII Математические методы в технике и технологиях: Сб. тр. XVIII Междунар. науч. конф.: В 10 т. Т.7, Секция 7 Казань, 2005. - С. 33-34.
43. Солодовников B.B. Построение прогноза на основе модели Бокса-Дженкинса. M.: ВНТИЦ, 2004. - №50200401414.
44. Солодовников В.В. Подбор оптимального состава сырья пеко-коксовой композиции. М.: ВНТИЦ, 2004. -№50200401415.
45. Солодовников В.В. Ранжирование многоассортиментной продукции с использованием правила Парето. М.: ВНТИЦ, 2004. - №50200401416.
46. Бендат Дж., Пирсол А. Прикладной анализ случайных данных: Пер. с англ. М.: Мир, 1989.-540с.
47. Лукашин Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов. М.: Финансы и статистика, 2003. - 416 с.
48. Hamilton J.D., Time Series Analysis, Princeton University Press, 1994.
49. Дж. Бокс, Г. Дженкинс Анализ временных рядов прогноз и управление: Учебное пособие Издательство «МИР», 1974.-402 с.
50. Боровиков В.П., Ивченко Г.И. Прогнозирование в системе STATISTIC А в среде Windows. Основы теории и интенсивная практика на компьютере: Учебное пособие Финансы и статистика, 2000. - 384 с.
51. Ashby W. R. Design for a Brain. — New York: Wiley, 1952. — 306 p.
52. Минский M., Пейперт С. Персептроны. — M.: Мир, 1971. —261 с.
53. Левин Р., Дранг Д., Эделсон Б. Практическое введение в технологию искусственного интеллекта и экспертных систем с иллюстрациями на Бейсике.- М.: Финансы и статистика, 1990.- 239 с.
54. Поспелов Г.С. Искусственный интеллект основа новой информационной технологии.- М.:Наука, 1988.- (Сер. "Академические чтения").- 280 с.
55. Экспертные системы для персонального компьютера: методы, средства, реализации: справочное пособие.- Мн.:Выс. шк., 1990.- 197 с.
56. Красовский A.A., Наумов А.И. Аналитическая теория самоорганизующихся систем управления с высоким уровнем искусственного интеллекта// Изв. РАН. Теория и системы управления 2001. № 1. С. 69-75.
57. Тейз А., Грибомон П., Луи Ж. и др. Логический подход к искусственному интеллекту: от классической логики к логическому программированию.- М.:Мир, 1990.432 с.
58. Нильсон Н. Принципы искусственного интеллекта.- М: Радио и связь, 1985. 376 с.
59. Уинстон Н. Искусственный интеллект.- М: Мир, 1980. 519 с.
60. Л.Г. Комарцова, A.B. Максимов Нейрокомпьютеры: Учебное пособие для вузов. -М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 320 е., ил. (Сер. Информатика в техническом вузе)
61. Оссовский С. Нейронные сети для обработки информации / Пер. с польского И.Д. Рудинского. М.: Финансы и статистика, 2002. - 344 е.: ил.
62. Нейронные сети. STATISTICA Neural Networks: Пер. с англ. М.: Горячая линия — Телеком. 2001.-182 е., ил.
63. Aleksander I., Morton H. An Introduction to Neural Computing. — London: Chapman & Hall, 1990. —218 p.
64. Werbos P. J. Backpropagation and neurocontrol: A review and prospectus // Proc. of International Joint Conf. On Neural Networks. — Vol. 1. — Washington, DC. — 1989. — P. 209—216.
65. Солодовников В.В. Программный нейроимитатор для прогнозирования экономических временных рядов// Изв. вузов. Сев.-Кавк. регион. Техн. науки.-2004.-№2
66. С.124 125. Материалы V Межрегион, конф. «Управление в технических, социально-экономических и медико-биологических системах».
67. Солодовников В.В. Нейроимитатор экономических временных рядов. М.: ВНТИЦ, 2004. - №50200401413.
68. Гайдамакин H.A. Автоматизированные информационные системы, базы и банки данных. Вводный курс: Учеб. пособие. М.: Гелиос АРВ, 2002. - 368 с.
69. Федоров А., Елманова Н. Введение в OLAP-технологии Microsoft. 2002.
70. Спирли Э. Корпоративные хранилища данных. Планирование, разработка, реализация. М.: Вильяме, 2001. - 400 с.
71. Архипенков С. и др. Хранилища данных. От концепции до внедрения. М.: Диалог -МИФИ,2002.-528 с.
72. Т. А. Гаврилова, В. Ф. Хорошевский. Базы знаний интеллектуальных систем. -СПб.: Питер, 2000. 384 с.
73. В. В. Корнеев, А. Ф. Гареев, С. В. Васютин, В. В. Райх. Базы данных. Интеллектуальная обработка информации. М.: Нолидж, 2000. - 352 с.
74. Полякова Л.Н. Основы SQL. Курс лекций. Учеб. пособие. М.: ИНТУИТ.РУ 2004.- 368 с.
75. Toy Д. Настройка SQL. Для профессионалов. СПб.: Питер. 2004. - 336 с.
76. Грофф Дж., Вайнберг П. Энциклопедия SQL. СПб.: Питер. 2003. - 896 с.
77. Штайнер Г. VBA 6.3. М.: Лаборатория Базовых знаний, 2002. - 784 е.: ил. -(Справочник)
78. Биллиг В.А. Мир объектов Excel 2000. — M.: Издательско-торговый дом "Русская Редакция", 2001. — 240 с.
79. Биллиг В.А. Средства разработки VBA-программиста. Офисное программирование. Том 1. — М.: Издательско-торговый дом "Русская Редакция", 2001. — 480 с.
80. А.Васильев, А.Андреев. VBA в Office 2000. Учебный курс — С-Пб.: "Питер", 2001.432 с.
81. В.ИКороль. Visual Basic 6.0, Visual Basic for Applications 6.0. Язык программирования. Справочник с примерами. — М.: Издательство КУДИЦ, 2000. 448 с.
82. А. Гарнаев. Использование MS Excel и VBA в экономике и финансах. Серия "ИЗУЧАЕМ ВМЕСТЕ С BHV" /С-Пб.: "BHV — Санкт-Петербург", 1999. — 336 с.
-
Похожие работы
- Оптимальная организация многоассортиментных химических производств
- Система управления многоассортиментным производством гранулированных пористых материалов из тонкодисперсных частиц
- Автоматизированная аналитическая система прогнозирования сбыта продукции предприятия на основе гибридных экспертных систем
- Разработка и исследование нейросетевых инструментов моделирования и управления сложными технологическими процессами
- Разработка технологии проектирования гибких многоассортиментных швейных потоков
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность