автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Многомерные динамические сетевые модели управления инвестиционным портфелем
Автореферат диссертации по теме "Многомерные динамические сетевые модели управления инвестиционным портфелем"
На правах рукописи
Герасимов Евгений Сергеевич
Многомерные динамические сетевые модели управления инвестиционным портфелем
05 13 18 - Математическое моделирование, численные методы и комплексы программ
Автореферат диссертации на соискание ученой стопени кандидата физико-математических наук
Томск - 2005
Работа выполнена в Г шгком 10( удар< твенном униврр( итртр
Научный руководитель:
доктор технических наук,
профессор Домбровский Владимир Валентинович
Официальные оппоненты: доктор физико-математических
наук, профессор Кошкин Геннадий Михайлович
кандидат физико-математичеcких наук,
доцент Буркатовская Юлия Борисовна
Ведущая организация:
Кемеровский государственный университет (г. Кемерово)
Защита состоится:
26 мая 2005 г в 10 30 на заседании диссертационного совета Д Л 2 267 08 при Томском государегвенном университете по адресу 634050, i Томск, пр Ленина, 36
С диссертацией можно ознакомиться:
В научной библиотеке Томского государственного университета Автореферат разослан. 19 апреля 2005 г
Ученый секретарь диссертационного совета, д т н , доцент
А В Скворцов
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность проблемы. Проблема оптимального управления инвестиционным портфелем (ИП) является одной из наиболее важных в финансовой инженерии. В виду актуальности данной проблемы как с точки зрения теории, так и практики, ей занимались многие исследователи, среди которых следует отметить работы Мельникова А. В., Первозванского А. А., Ширяева А. Н, Bielecki Т. R., Black F., Browne S., Cvitanic J., Dupakova J., Elton E. J., Hakansson N. H., Hanson F. В., Karatzas I., Korn R., Li D., Linsmeier T. J., Markowitz H., Merton R.C., Mossin J., Oksendal В., Pham H., Pliska S. R., Portait R., Runggaldier W.J., Ross S. A., Stettner L, Tobin J., Scholes M., Sharp W. F., Young M.R., Zhou X. Y., Zenios S. А. и другие.
Существуют различные подходы к решению данной проблемы. В статической постановке (однопериодные модели) задача выбора оптимальной структуры портфеля (определения оптимальных долей вложения в различные виды финансовых активов) сводится к решению задач нелинейного, стохастического или линейного программирования, в зависимости от выбора функции риска и способов учета неопределенности. В результате решения задачи в статической постановке получают, так называемую, «близорукую» стратегию управления ИП, которая зависит только от текущих значений параметров, характеризующих активы портфеля, независимо от того будут изменяться эти значения в будущем или нет, и также не зависит от текущего значения капитала ИП и цен рисковых активов.
В динамической постановке определяют стратегию управления инвестиционным портфелем, максимизирующую некоторую интегральную функцию полезности, при этом динамика ИП описывается в агрегированном виде (уравнением капитала портфеля в целом), а в качестве управляющих воздействий также берут доли вложений общего капитала в тот или иной актив. За исключением весьма ограниченного набора функций полезности, для которых решение можно получить аналитически, такой подход приводит к трудной проблеме численного решения уравнений динамического программирования Беллмана
Проведенный анализ литературы и потребности практики подтверждают актуальность настоящей диссертационной работы.
Целью данной работы является построение и исследование динамических моделей ИП, в рамках которых можно аналитически синтезировать оптимальные стратегии управления, обеспечивающие максимально гладкую заданную инвестором кривую роста капитала ИП на всем горизонте инвестирования с учетом ограничений (на объемы вложений в активы ИП и торговых операций с ними), для различных моделей цен рисковых финансовых активов (модель Блэка-Шоулса с переменными параметрами, модель со стохастической волатильностью, GARCH-модель волатильности, модель финансового рынка с переключающимися режимами).
Методика исследования. При выполнении диссертационной работы использовались понятия и методы теории оптимального формирования портфеля инвестиций, финансовой математики, теории моделей финансового рынка, теории стохастических дифференциальных уравнений, матричной алгебры, теории вероятности, теории случайных процессов и математической статистики, численные методы и методы имитационного моделирования.
Научная новизна и положения, выносимые на защиту, состоят в следующем.
1) Сетевые многомерные динамические модели управления ИП в дискретном и непрерывном времени при нестохастической волатильности финансовых активов. Предложено формулировать задачу управления ИП как динамическую задачу слежения за эталонным портфелем, доходность которого задается инвестором.
2) Уравнения для определения оптимальных стратегий управления ИП с обратной связью в непрерывном и дискретном времени. Уравнения для вычисления математического ожидания и дисперсии капитала ИП.
3) Модели управления ИП в пространстве состояний для случайной вола-тильности финансовых активов, скачкообразно меняющейся в соответствии с эволюцией марковской цепи. Уравнения для определения оптимальных стратегий управления ИП с обратной связью в непрерывном и дискретном времени как в условиях наблюдаемости, так и ненаблюдаемости состояния марковской цепи. Уравнения для вычисления математического ожидания и дисперсии капитала ИП.
4) Адаптивный алгоритм управления ИП на скачкообразном финансовом рынке с переключающимися режимами.
5) Модель управления ИП, волатильность рисковых активов которого описывается ОЛКСИ-процессом. Уравнения синтеза оптимальной стратегии управления ИП с обратной связью.
6) Модели активного управления ИП, целью которого является превышение в среднем капитала индексного портфеля. Уравнения синтеза оптимальных стратегий активного управления ИП с обратной связью для модели цен рисковых активов со случайной скачкообразно меняющейся волатильностью. Уравнения для вычисления математического ожидания капитала ИП.
Теоретическая ценность данной работы состоит в том, что впервые предложены и исследованы сетевые многомерные динамические модели управления ИП в непрерывном и дискретном времени для следующих моделей финансового рынка:
• модель Блэка-Шоулса, в которой параметры уравнений зависят от времени;
• модель типа геометрического броуновского движения с переменными параметрами и со случайной скачкообразно меняющейся волатильностью;
• ОЛЯСИ-модель волатильности;
• модель финансового рынка с переключающимися режимами.
Синтезированы динамические стратегии управления ИП с обратной связью для всех моделей ИП. Разработан адаптивный алгоритм управления ИП на скачкообразном финансовом рынке с переключающимися режимами. Получены уравнения для вычисления математического ожидания и дисперсии капитала ИП.
Практическая ценность данной работы состоит в возможности использования полученных результатов для разработки и построения систем управления ИП на реальных финансовых рынках.
Достоверность полученных результатов подтверждается строгими аналитическими выкладками и результатами численных расчетов.
Апробация работы. Основные результаты работы докладывались и обсуждались па следующих конференциях: 5-ом Корейско-Российском международном симпозиуме по науке и технологии (Томск, 2001), Всероссийской научно-практической конференции «Новые технологии и комплексные решения: наука, образование, производство» (Анжеро-Судженск, 2001), 4-ом Всероссийском экономическом форуме студентов и молодых ученых «Экономические и социальные преобразования в России: опыт и проблемы» (Санкт-Петербург, 2001), Международной научно-технической конференции «Математические методы и информационные технологии в экономике, социологии и образовании» (Пенза, 2001), Второй Международной научно-практической конференции «Методы и алгоритмы прикладной математики в технике, медицине и экономике» (Новочеркасск, 2002), Российской конференции «Дискретный анализ и исследование операций» (Новосибирск, 2002).
Публикации. По теме диссертации опубликовано 11 научных работ, в том числе 5 в рецензируемых журналах.
Личным вкладом диссертанта в совместные работы является вывод теоретических результатов и численное иследование предлагаемых моделей. Постановка изложенных в диссертации задач и формулировка общего подхода к их решению была сделана научным руководителем соискателя, д.т.н., проф. В.В. Домбровским.
Структура и объем диссертации. Настоящая диссертационная работа состоит из введения, основного текста, заключения, списка литературы и 3 приложений. Основной текст разбит на 3 главы и содержит 6 таблиц и 97 рисунков. Список литературы включает 129 наименований. Общий объем работы - 207 страниц.
СОДЕРЖАНИЕ РАБОТЫ
Во введении проведен обзор существующих подходов к проблеме оптимального управления инвестиционным портфелем и моделей финансового рынка, обоснована актуальность темы диссертации, сформулирована цель работы, изложены основные научные результаты, выносимые на защиту.
В первой главе предложены сетевые многомерные динамические модели управления ИП в непрерывном и дискретном времени при пестохастиче-ской волатильности финансовых активов. Рассматривается инвестиционный портфель, состоящий из п видов рисковых активов (под рисковыми будем понимать инвестиции, доходность которых - случайная величина) и банковского счета с неслучайной, но возможно, переменной доходностью. Структура ИП описывается в виде динамической стохастической сети, узлы которой представляют собой капитал, помещенный в рисковый либо безрисковый финансовый актив, а дуги - направления и объем перераспределяемого капитала (рис. 1).
Пекутся Продажа -> -----»
Рис. 1. Структура портфеля инвестиций
Эволюция цен рисковых активов описывается стохастическими дифференциальными уравнениями типа геометрического (экономического) броуновского движения:
¿${1) = + £ а,3{1) dw.it))
где - цена рискового актива г - го вида в момент времени Ь, параметр характеризует норму возврата (мгновенная доходность), =
£ Е"хп - матрица волатильности, = |1,2,...,п| - множество натуральных чисел мощности п, - длина периода управления (горизонт инвестирования), - стандартные винеровские процессы.
Пусть x(t) = fli(i),l2(i)>-• 4^n+lWlT 6 R"+I - вектор состояния ИП, компоненты которого равны объему инвестиций в i - й вид актива, i € N„; компонента In+i(i) описывает состояние банковского счета. Тогда динамика рисковых активов описывается стохастическими дифференциальными уравнениями:
dx,{t) = (p,{t)dt + Y^ff,](t)dw](t)jxt{t) + Ut(t)dt. (1)
Состояние банковского счета подчиняется уравнению:
где r(i) - мгновенная ставка доходности банковского с ч е tb,(î) рн о в е н -ный капитал (капитал в единицу времени), если Uj(l) > 0, то это означает перевод капитала в сумме u/t) в единицу времени с банковского счета в г -й вид рисковых вложений, если U,{t) < 0, то это означает перераспределение капитала с i - го вида рискового вложения на банковский счет. Заметим, что допускаются отрицательные значения переменных состояния l,(t),i € N„+[: если какая либо переменная x,(t) < 0, i £ Nn, то это означает участие в операции «shott sale» (продажа без покрытия), е x„+ji(î)hî о это означает заем капитала в сумме
Стратегия управления ИП определяется путем перераспределения капитала между различными видами активов так, чтобы капитал управляемого портфеля с наименьшими отклонениями (с минимально возможным риском) следовал капиталу некоторого определяемого инвестором эталонного портфеля, траектория роста капитала которого описывается дифференциальным уравнением следующего вида:
где V (t)- капитал эталонного порт е м а я доходность
портфеля, задаваемая инвестором.
В качестве меры риска предложено использовать квадратичный функционал вида
= £ j J(ir(t) (V(t) - V°(i)) 2 + xT(t)C(t)x(t) + uT(t)[i(t)u(t)^ dt+
+ *{tt)(v{t,) - V°(tfj)\xT(t!)C(tf)x(t{}j, (4)
где V(i) — " общий капитал управляемого портфеля, 7r(t) - веса, зада-
ваемые инвестором, C(t) е R("+i)"(«+i), R(t) е Rnxn - симметричные матрицы, C(t) Z 0, R(t) > 0, t € [0,i/], u(t) = [ii1(i),u2(i),...,ti„(t)]''r e R" - вектор управления ИП. Предполагается, что в начальный момент У(0) = V®(0) заданы и распределение капитала ИП между активами известно.
Посредством выбора матриц C(t) и R(t) во втором и третьем слагаемых функционала (4) можно регулировать объемы вложений капитала в активы ИП и торговых операций с ними, а конечная цель слежения определяется видом четвертого и пятого слагаемых.
Закон управления определяется в классе линейных с обратной связью:
где К\(¿) 6 K2(t) € Rn - матрицы коэффициентов обратной связи.
В результате, задача синтеза оптимальной стратегии управления состоит в определении матриц Ki(t), Ki[t), t 6 [О,£/], минимизирующих критерий (4) на траекториях системы (1), (2), (3). Доказана теорема, определяющая решение данной задачи и выражение для функционала (4) на оптимальных траекториях замкнутой системы (1), (2), (3). Расчет оптимальной стратегии сводится, по существу, к решению системы обыкновенных дифференциальных матричных уравнений типа Риккатти, которые достаточно просто решаются численно на ЭВМ.
В дискретном времени динамика цен рисковых активов подчиняется стохастическим разностным уравнениям:
где St(t) - цена i - го вида рискового актива на конец интервала [< — 1, i], параметр Hi{t) характеризует норму возврата (коэффициент роста или средняя ожидаемая доходность на интервале [t,i + l]), £(t) = [ffij'M]^ "
матрица волатильности
случайные процессы с нулевым средним и единичной дисперсией.
Эволюция рисковых активов ИП описывается стохастическими разностными уравнениями:
Эволюция банковского счета следует уравнению:
где r(t) - доходность банковского счета.
Задача управления ИП формулируется как динамическая задача слежения по квадратичному критерию вида:
Закон управления имеет вид (5). Доказана теорема, определяющая систему разностных матричных уравнений для вычисления последовательности матриц Ki(t), Ki{t), t = 0,1,... ,tf ~ 1 и оптимальное значение критерия (9) на траекториях замкнутой системы (7), (8), (10).
Для моделей управления ИП получены уравнения для вычисления математического ожидания и дисперсии капитала ИП в дискретном и непрерывном времени (теоремы 1.2, 1.4 диссертации). Рассматривается обобщение на случай одновременного управления двумя ИП.
Проведено численное исследование предложенных моделей ИП с использованием как модельных, так и реальных данных о ценах финансовых активов, результаты которого вынесены в приложение 1 диссертации. Рассматривается ИП, содержащий один безрисковый актив и 10 видов наиболее ликвидных акций, торгуемых на Нью-Йоркской фондовой бирже, приводятся примеры управления этим ИП как на растущем рынке, так и на падающем, также рассмотрен пример одновременного управления двумя ИП, каждый из которых содержит по 5 видов акций и одному безрисковому активу. Некоторые результаты моделирования приведены в приложении к автореферату (см. стр. 18).
Во второй главе рассматриваются модели управления ИП в дискретном и непрерывном времени при стохастической волатилыгости финансовых активов. Для описания динамики цен рисковых активов портфеля используются два типа моделей: НММ (Hidden Markov Model) и GARCH (Generalized Autoregressive Conditional Heteroskedasticity). Подобные модели учитывают случайные изменения волатильности, характерные для финансовых рынков и относятся к классу моделей неполного рынка, которые более адекватно описывают изменения цен, наблюдаемые на реальных финансовых рынках.
В непрерывном времени предполагается, что эволюция цен рисковых активов описывается стохастическими дифференциальными уравнениями со случайными скачкообразно меняющимися параметрами:
я
(И)
5,(0) = 5? > 0, 6(0) = в0,ге К, Ь е [о,г,],
где 0(<) - однородная марковская цепь с конечным фазовым пространством наблюдаемых состояний = ..., и известной матрицей вероятностей перехода Р = (Д;],^ ■ Случайные процессы т}{-) и в(-) независимы. Динамика активов портфеля описывается следующими уравнениями:
п
<^.(0 = + вЩсЬ^х,®+и,{гук, (12)
3=1
п
dxn+l(t) = (r(i)l„+l(t) - J>(t))di.
i=l
Функция риска имет вид:
(13)
где динамика капитала эталонного портфеля определяется уравнением вида (3).
Стратегия управления в классе линейных с обратной связью имеет вид:
где Щибф) еКпх("+1), Кг{ъв(1}) еМ" - матрицы коэффициентов обратной связи.
Получено решение задачи Минимизации критерия (14) но матричным параметрам на траекториях системы (3), (12), (13) в виде системы взаимосвязанных дифференциальных матричных уравнений и оптимальное значение функции риска (14) (теорема 2.1 диссертации).
Динамика цен рисковых активов ИП в дискретном времени описывается стохастическими разностными уравнениями со случайными скачкообразно меняющимися параметрами:
где 0(£) - однородная марковская цепь с конечным фазовым пространством наблюдаемых состояний К = |бь..., 0„| и известной матрицей вероятностей
х,(« + 1) = + + (17)
3=1
Уравн „
®п+1(« + 1)= (1+г(0)(хп+1(0-Е «.(<))• (18)
1=1
7 = £|Е «(«)) (^(0 - У°(())2 + в{1))х(ь)+
+ чт№{1,ОД)и(о) + тг((/,Щ,)) (У(1}) - У%))\
+ хгМС(*/,%))х(«/)1, (19)
где эволюция капитала эталонного портфеля подчиняется уравнению вида (10).
Определение оптимальной линейной стратегии управления с обратной связью вида (15) и оптимального значения функционала (19) па траекториях замкнутой системы (11), (17), (18) сводится к решению взаимосвязанных разностных матричных уравнений, вид которых даст теорема 2.4 диссертации.
Условием вычисления и реализации полученной стратегии управления ИП является знание либо точных значений параметров моделей цен (11), (16), либо их оценок, а также возможность наблюдения состояний марковского процесса в(-). В реальных условиях наблюдаются только цены рисковых активов, а состояния процесса #(•) не доступны прямому наблюдению. Для оценки состояния марковской цепи и параметров моделей цен (11), (16) используются адаптивные алгоритмы фильтрации, предложенные в работах Elliott R. J. Предложено состояние марковской цепи определять из условия максимума оценки апостериорной вероятности состояния.
Другим решением в данной ситуации является использование «грубых» законов управления, не требующих информации о состоянии марковской цепи. В этом случае предполагается, что матрица переходных вероятностей неизвестна, а закон управления не зависит от состояния марковской цени и имеет вид (5). Получены уравнения для определения оптимальных стратегий управления ИП с обратной связью в непрерывном и дискретном времени (теоремы 2.2, 2.5 диссертации) в условиях ненаблюдаемости состояния марковской цепи.
Разработан адаптивный алгоритм управления ИП на скачкообразном финансовом рынке с переключающимися режимами с использованием фильтрации параметров уравнений, описывающих структуру ИП.
Для моделей ИП в дискретном и непрерывном времени доказаны теоремы, определяющие уравнения для вычисления математического ожидания и дисперсии капитала ИП.
Предложена модель управления ИП, волатильность рисковых активов которого описывается GARCH-процессом. В этом случае динамика цен рисковых активов описывается уравнениями:
где <rt(£) - волатилыюсть г - го рискового актива на интервале ft, t +1], описываемая процессом GARCH(1,1) с параметрами а'о,а\,Р\
Синтезированы уравнения (теорема 2 7 диссертации) для определения оптимальной стратегии управления ИП с функцией риска вида (7)
Проведено численное исследование предложенных моделей ИП, результаты которого вынесены в приложение 2 диссертации На модельных данных проводится сравнение стратегий управления ИИ, синтезированных как в условиях наблюдаемости, так и ненаблюдаемости состояния марковской цепи На реальных данных рассматривается управление ИП с использованием адаптивного алгоритма для оценки параметров модели цен (16) и состояния марковской цепи, также приводится пример управления ИП, состоящего из безрискового актива и 7 видов акций, торгуемых на Нью-Йоркской фондовой бирже, при этом предполагается, что волатильность рисковых активов описывается GARCH процессом, для оценки параметров которого использовался пакет статистического анализа Stata 6
В третьей главе диссертации разработаны многомерные динамические сетевые модели управления ИП, целью которого является превышение в среднем капитала индексного портфеля Такой стиль управления называется активным В качестве индексного портфеля обычно используется широко диверсифицированный портфель, в точности повторяющий структуру известного рыночного индекса (например, индекс S&P5O0), либо некоторого портфеля, стабильно дающего хорошие результаты в терминах риск-доходность, так называемого, benchmark portfolio Им может быть, например, портфель фонда доверительного управления или паевого фонда
Эволюция капитала индексного портфеля описывается стохасти чески м дифференциальным уравнением следущего вида
dV°(t) = + |>°(г- «(*))*»,{«)) V®(t), (20)
где V"(t) - капитал индексного портфеля, /i°(t) - мгновенная доходность индексного портфеля, параметры, характеризующие зависимость доходности индексного портфеля от случайных изменений доходно-
стей рисковых активов, входящих в ИП, - волатилыюсть индекс-
ного портфеля.
Стратегия активного управления ИП определяется так, чтобы капитал управляемого портфеля превышал в среднем капитал индексного портфеля. В качестве меры риска предложен функционал вида:
/ = (у(^ОД) +хт(<)С(<,0(<))х{«) + иг(()Я(М(0)и({))&+
л
+ Щ,%)) + xT(tf)C(tf, 0(tf))x(tf)}, (21)
v(t, 0(t)) = *(t, од) - (1+p(t, ОД)) V(t))\
где параметр /3(t, f(i)) ^ 0 задастся инвестором и показывает на какую долю капитала пндексного о портфеля управляемый ИП должен превзойти (в среднем) индексный. Посредством данного параметра инвестор может задавать уровень превышения капитала управляемого ИП над капиталом индексного портфеля не только в зависимости от момента времени, но и от состояния финансового рынка.
Доказаны теоремы, определяющие оптимальные линейные стратегии управления, минимизирующие критерий (21) на траекториях системы (12), (13), (20) как в условиях наблюдаемости состояния марковской цепи, так и ненаблюдаемости.
В дискретном времени динамика капитала индексного портфеля описывается уравнением:
Функция риска имеет вид: ,tf-1
= +xT(t)C{t,e(t))x(t) + uT(t)R{t,6(t))u(t))+
+ V(tf,9(t/)) +xT(t/)C(i/,%))z(f/}}. (23)
Доказаны теоремы, дающие оптимальные стратегии управления ИП с обратной связью, которые минимизируют функцию риска (23) на траекториях системы (17), (18), (22) как в условиях наблюдаемости состояния марковской цепи, так и нснаблюдасмости.
Получены уравнения математического ожидания капитала ИП для моделей в непрерывном и дискретном времени (теоремы 3.3, 3.6 диссертации).
В приложение 3 диссертации вынесены результаты численного моделирования. На модельных данных рассматривается пример активного управления ИП, состоящего из 3 видов рисковых активов и одного безрискового актива и приводится сравнение стратегий управления, синтезированных как в условиях наблюдаемости марковского процесса, так и ненаблюдаемости. С использованием реальных данных приводятся примеры активного управления ИП, содержащего один безрисковый актив и 10 видов акций, торгуемых на Нью-Йоркской фондовой бирже. Рассматриваются индексные портфели, структура которых повторяет индексы Dow Jones и NYSE Composite как в периоды роста, так и падения этих индексов.
Отметим основные преимущества предлагаемых моделей но сравнению с известными:
• Формулировка задачи управления ИП как динамической задачи слежения за эталонным портфелех позволяет получить максимально гладкую заданную инвестором кривую роста капитала инвестиционного портфеля на всем горизонте инвестирования. На основе анализа состояния финансового рынка инвестор может выбирать желаемую доходность эталонного портфеля, а подбирая соответствующим образом коэффициенты весовой матрицы в функции риска, учитывать особенности управления различными видами цепных бумаг и ограничения как па объемы вложений в активы ИП, так и торговых операций с ними.
• Модели легко обобщаются на случай сочетания различных инвестиционных стилей, когда инвестор владеет несколькими совместно управляемыми ИП, содержащими различные классы финансовых активов, имеющих различную желаемую доходность (в смысле отслеживания соответствующих эталонных портфелей).
• Для определения оптимальной стратегии управления можно использовать весь богатый арсенал средств, разработанных в теории управления
стохастическими системами в пространстве состояний (робастные методы, адаптивные алгоритмы, управление гибридными системами и т.д.).
• Уравнения для расчета оптимальных стратегий управления достаточно просто решаются численно.
В заключении приводятся основные результаты диссертационной работы, которые состоят в следующем:
1) Разработаны сетевые многомерные динамические модели управления ИП в дискретном и непрерывном времени при нестохастической волатиль-ности финансовых активов. Предложено формулировать задачу управления ИП как динамическую задачу слежения за эталонным портфелем, доходность которого задается инвестором.
2) Синтезированы динамические стратегии управления ИП с обратной связью для моделей ИП в непрерывном и дискретном времени. Получены уравнения для вычисления математического ожидания и дисперсии капитала ИП.
3) Разработаны модели управления ИП в пространстве состояний для случайной скачкообразно меняющейся волатильности финансовых активов. Параметры уравнений, описывающих модель цен рисковых активов ИП, изменяются в соответствии с эволюцией марковской цени. Синтезированы динамические стратегии управления ИП с обратной связью для моделей ИП в непрерывном и дискретном времени как в условиях наблюдаемости, так и ненаблюдаемости состояния марковской цепи. Получены уравнения для вычисления математического ожидания и дисперсии капитала ИП.
4) Разработан адаптивный алгоритм управления ИП на скачкообразном финансовом рынке с переключающимися режимами.
5) Предложена модель управления ИП, волатильность рисковых активов которого описывается ОЛЯСИ-процессом. Синтезированы уравнения для определения оптимальной стратегии управления ИП с обратной связью.
6) Разработаны модели активного управления ИП, целью которого является превышение в среднем капитала индексного портфеля. Получены уравнения синтеза оптимальных стратегий активного управления ИП с
обратной связью для модели цен рисковых активов со случайной скачкообразно меняющейся волатильностыо. Получены уравнения для вычисления математического ожидания капитала ИП.
7) Проведено численное исследование моделей управления ИП с использованием модельных и реальных данных.
Приложение
Пример. Рассматривается ИП, состоящий из 10 видов акций, торгуемых на Нью-Йоркской фондовой бирже и одного безрискового актива (банковский счет) с доходностью = 0.000261. Предполагается, что поведение цен акций описывается моделью (6). Интервал [{,¿ + 1] равен одному дню. В качестве цен рисковых активов используются ежедневные цены закрытия, то есть цена последней сделки на биржевой сессии. Период управления - интервал времени с 14.03.2003 по 29.12.2003 - ¿6 П, 200] (200 торговых дней). Оценки средних доходностей рисковых активов, полученные по наблюдениям дневных цен закрытия на периоде управления, приводятся ниже:
Номер актива (t) Название компании-эмитента ft(0
1 Calpine Corp 0.003046
2 Citigroup Inc 0.001839
3 Ford Motor Co 0.004284
4 General Electric Co 0.000879
5 International Business Machines Corp 0.000672
6 Lucent Technologies Inc 0.003533
7 Motorola Inc 0.002762
8 EMC Corp 0.002827
9 Ncwmont Mining Corp 0.003557
10 Nortel Networks Corp 0.003735
Желаемая доходность = 0.005. Весовые коэффициенты в функции риска:
Щ) = (Над^ОШ, 0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01
Начальный капитал На рис 1.2 приводится динамика
капитала управляемого ИП и эталонного портфеля, а также состояние банковского счета. Доходность ИП за весь период управления составила 163%.
Рис 1 2 Динамика капитала эталонного портфеля, управляемого ИП и состояния банковского счета
ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ
1) Герасимов Е. С, Домбровский В. В. Динамическая сетеиая модель управления инвестиционным портфелем при квадратичной функции риска // Автоматика и телемеханика - 2002 - № 2 - С 119-128
2) Герасимов Е. С, Домбровский В. В. Динамическая сетевая модель управления инвестиционным порфелем при случайном скачкообразном изменении волатильностей финансовых активов // Автоматика и телемеханика - 2003 - № 7 - С 77-87
3) Домбровский В. В., Герасимов Е. С. Динамическая сетевая модель управления порфелем ценных бумаг в непрерывном времени при квадратичной функции риска // Вестник Томского государственного университета - 2000 - № 269 - С 70-73
4) Герасимов Е. С, Домбровский В. В. Адаптивное управление инвестиционным портфелем // Вестник Томского государственного университета - 2003 - № 280 - С 118-123
5) Герасимов Е. С, Домбровский В. В., Федосов Е. Н. Модель управления инвестиционным портфелем в пространстве состояний на диффузионно-скачкообразном финансовом рынке со стохастической во-латильностью // Обозрение прикладной и промышленной математики - 2003 - Т 8, - № 2 - С 719-720
6) Dombrovsky V. V., Gerasimov E. S. Dynamic Network Model of Control Investment Portfolio in Continuous Time // Proceedings of the 5th Korea-Russia International Symposium on Science and Technology. - Tomsk, -Russia, - 2001, - V. 2. - pp. 304-308.
7) Герасимов Б. С, Домбровский В. В. Сетевая динамическая модель оптимизации портфеля ценных бумаг в условиях стохастической вола-тильности // Новые технологии и комплексные решения: наука, образование, производство: Материалы Всероссийской научно-практической конференции. - Анжеро-Судженск: КемГУ, 2001. - Часть II (Математика). - С. 8-10.
8) Герасимов Е. С, Домбровский В. В. Динамические модели управления инвестиционным портфелем // Экономические и социальные преобразования в России: опыт и проблемы: Материалы 4-го Всероссийского форума студентов и молодых ученых. - Санкт-Петербург: СПбГУЭФ, 2001. - Часть 2. - С. 92-93.
9) Герасимов Е. С, Домбровский В. В. Динамическая модель оптимизации портфеля ценных бумаг при случайном скачкообразном изменении волатильности // Математические методы и информационные технологии в экономике, социологии и образовании: Сборник материалов международной научно-технической конференции. - Пенза: ПТИ, 2001. - Ч. 1. - С. 158-160.
10) Герасимов Е. С, Домбровский В. В. Активное управление инвестиционным портфелем при случайном скачкообразном изменении вола-тильностей финансовых активов. // Труды Второй Международной научно-практической конференции: Методы и алгоритмы прикладной математики в технике, медицине и экономике. - Новочеркасск, 2002. - Ч. 3. -
С. 45-50.
11) Герасимов Е. С, Домбровский В. В. Динамическая сетевая модель активного управления инвестиционным портфелем при случайном скачкообразном изменении волатильностей цен финансовых активов // Дискретный анализ и исследование операций: Материалы Российской конференции. - Новосибирск: Издательство института математики, 2002. -С. 188.
Тираж 100. Заказ 338. Томский государственный университет систем управления и радиоэлектроники. 634050, г. Томск, пр. Ленина, 40
Оглавление автор диссертации — кандидата физико-математических наук Герасимов, Евгений Сергеевич
Введение
1 Сетевые многомерные динамические модели управления инвестиционным портфелем при нестохастической волатильности финансовых активов
1.1 Модель управления инвестиционным портфелем в непрерывном времени
1.1.1 Постановка задачи и описание модели.
1.1.2 Определение оптимальной стратегии управления
1.1.3 Вывод уравнений для математического ожидания и дисперсии капитала ИП.
1.2 Модель управления инвестиционным портфелем в дискретном времени.
1.2.1 Постановка задачи и описание модели.
1.2.2 Определение оптимальной стратегии управления
1.2.3 Вывод уравнений для математического ожидания и дисперсии капитала ИП.
1.3 Одновременное управление двумя инвестиционными портфелями (дискретное время).
1.3.1 Постановка задачи и описание модели.
1.3.2 Определение оптимальной стратегии управления
1.4 Учет ограничений, возникающих при управлении инвестиционным портфелем в реальных условиях.
1.4.1 Транзакционные издержки и потребление.
1.4.2 Объем торговых операций.
1.5 Выводы.
2 Сетевые многомерные динамические модели управления инвестиционным портфелем при стохастической волатильности финансовых активов
2.1 Модель управления инвестиционным портфелем в непрерывном времени при случайных скачкообразных изменениях волатильности финансовых активов.
2.1.1 Постановка задачи и описание модели.
2.1.2 Определение оптимальной стратегии управления
2.1.3 Модель управления инвестиционным портфелем в условиях ненаблюдаемости состояния марковского процесса #(•) (непрерывное время).
2.1.4 Вывод уравнений для математического ожидания и дисперсии капитала ИП.
2.2 Модель управления инвестиционным портфелем в дискретном времени.
2.2.1 Постановка задачи и описание модели.
2.2.2 Определение оптимальной стратегии управления
2.2.3 Модель управления инвестиционным портфелем в условиях ненаблюдаемости состояния марковского процесса в(-) (дискретное время).
2.2.4 Вывод уравнений для математического ожидания и дисперсии капитала ИП.
2.3 Робастный адаптивный алгоритм оценки волатильности и фильтрации параметров марковской цепи.
2.4 Адаптивное управление ИП на скачкообразном финансовом рынке с переключающимися режимами.
2.4.1 Постановка задачи и описание модели.
2.4.2 Определение оптимальной стратегии управления
2.4.3 Адаптивный алгоритм фильтрации марковской цепи по наблюдениям за ценами активов.
2.4.4 Алгоритм адаптивного управления инвестиционным портфелем.
2.5 Модель управления инвестиционным портфелем, волатиль-ность рисковых активов которого описывается GARCH-процессом (дискретное время)
2.5.1 Постановка задачи и описание модели.
2.5.2 Определение оптимальной стратегии управления . . 101 2.6 Выводы.
3 Сетевые многомерные динамические модели активного управления инвестиционным портфелем в условиях скачкообразного финансового рынка
3.1 Модель активного управления инвестиционным портфелем в непрерывном времени.
3.1.1 Постановка задачи и описание модели.
3.1.2 Определение оптимальной стратегии управления
3.1.3 Модель активного управления инвестиционным портфелем в условиях ненаблюдаемости состояния марковского процесса в(•) (непрерывное время).
3.1.4 Вывод уравнений для математического ожидания
• капитала ИП.
3.2 Дискретная модель активного управления инвестиционным портфелем.
3.2.1 Постановка задачи и описание модели.
3.2.2 Определение оптимальной стратегии управления
3.2.3 Модель активного управления инвестиционным портфелем в условиях ненаблюдаемости состояния марковского процесса #(•) (дискретное время).
3.2.4 Вывод уравнений для математического ожидания капитала ИП.
3.3 Выводы.
Введение 2005 год, диссертация по информатике, вычислительной технике и управлению, Герасимов, Евгений Сергеевич
Проблема оптимального управления инвестиционным портфелем (optimal portfolio selection problem) является одной из наиболее важных в финансовой инженерии [12, 20, 25, 26, 98, 101]. В качестве инвестиционного портфеля (ИП) принято рассматривать определяемый инвестором набор рисковых и безрисковых финансовых активов. Под рисковыми активами понимают финансовые активы со случайной доходностью [12, 22, 25, 26], а под безрисковыми - финансовые активы с детерминированной и возможно нестационарной доходностью. Управление ИП осуществляется путем перераспределения капитала между его активами в виде операций купли/продажи на фондовом рынке. Цель оптимального управления ИП заключается в таком, возможно неоднократном, перераспределении капитала ИП между его активами, которое позволило бы получить прибыль в будущем.
Фондовый рынок в развитых странах служит мощнейшим механизмом привлечения как внешних, так и внутренних инвестиций. Причем в качестве инвесторов могут выступать и крупные финансовые институты, и обычные граждане (например, в США до 50% ежедневного оборота, измеряемого в миллиардах долларов, на фондовых биржах составляют денежные средства граждан). Крупнейшие инвестиционные фонды, брокерские компании и другие финансовые институты вкладывают сотни миллиардов долларов на развитие и разработку систем по управлению ИП, одновременно привлекая ведущих ученых, специалистов по финансовой математике и из смежных областей к решению проблемы оптимального управления инвестиционным портфелем (см. например [76]).
Существуют различные подходы к решению данной проблемы. В 1952 г. Нобелевским лауреатом по экономике 1990 г. Марковицем была опубликована фундаментальная работа [98], которая послужила основой современной теории формирования портфеля инвестиций. Подход Марковича, позднее получивший название MV-подхода (MV - Mean-Variance), основывался на предположении о том, что при формировании своего портфеля инвестор, с одной стороны, хотел бы минимизировать риск портфеля (обычно дисперсию портфеля или связанные с ней меры риска), с другой стороны - получать желаемую доходность (либо в двойственной постановке - максимизировать доходность при ограниченном риске). При этом задача оптимизации структуры портфеля (определения оптимальных долей вложений в различные виды активов) решается в статической постановке (однопериодные модели) и в зависимости от выбора функции риска и способов учета неопределенности сводится к решению задач квадратичного, линейного или стохастического программирования [61, 74, 87, 126].
В дальнейшем, появились различные модификации и обобщения модели Марковица: в [66, 77, 103,121] предложено развитие MV-подхода на случай многопериодного управления ИП; в [67, 82, 94, 110, 125, 128, 129] предложены подходы к синтезу динамических стратегий управления как в непрерывном так и в дискретном времени; в [85, 87, 119] рассматривается проблема учета транзакционных издержек в рамках модели Марковица; в [67] предложена модификация MV-подхода, в которой риск измеряется не дисперсией капитала ИП, a VAR-критерием; в [82] рассматривается bgMV-подход в дискретном времени при этом проблема оптимального управления портфелем формулируется как задача максимизации логарифма доходности капитала ИП при ограничениях на логарифм дисперсии капитала ИП.
Необходимо отметить следующие недостатки MV-подхода:
• стратегия управления ИП, полученная с помощью данного подхода, является «близорукой» (myopic strategy), то есть зависит только от текущих значений параметров, характеризующих активы ИП, независимо от того будут изменятся эти значения в будущем или нет, и также не зависит от текущего значения капитала ИП и цен рисковых активов;
• как в статической так и в динамической постановке минимизируется среднее отклонение капитала ИП от заданной величины в конечный момент времени без учета ограничений на объемы торговых операций и вложений в активы ИП, поэтому минимум риска достигается лишь в конечный момент времени, а в течение всего периода управления он остается неопределенным;
• введение дополнительных ограничений (например, учет транзакци-онных издержек) приводит к трудной проблеме численного решения задачи целочисленного программирования с помощью алгоритмов перебора [85, 87, 119];
• стратегия управления ИП, полученная с помощью данного подхода, является очень чувствительной к малым изменениям входных параметров, которые неизбежно возникают, например, при оценке большого количества элементов матрицы ковариаций рисковых активов [44];
• невозможность использования данного подхода в тех случаях, когда ИП может содержать различные классы рисковых активов, то есть динамика их цен описывается различными моделями, или когда необходимо управлять несколькими различными портфелями одновременно.
Другой подход к проблеме оптимального управления ИП в непрерывном времени был предложен Нобелевским лауреатом по экономике 1997 г. Мертоном в [101], где оптимальная стратегия управления ИП выбирается из условия максимума некоторой интегральной функции полезности [40, 92, 101], при этом динамика ИП описывается в агрегированном виде (уравнением капитала портфеля в целом), а в качестве управляющих воздействий также берут доли вложений общего капитала в тот или иной актив. В рамках данного подхода аналитическое решение можно получить лишь для весьма ограниченного набора функций полезности [101]. В остальных случаях, а также при учете различных ограничений, такой подход приводит к трудной проблеме численного решения интегро-дифференциальных НJB-уравнений (НJB - Hamilton-Jacobi
Bellman) динамического программирования [36, 40, 70, 88, 92, 105, 107] или задачи стохастического программирования [127].
Дальнейшее развитие данный подход получил, например, в работах [39, 40, 41, 42, 117, 116], где предлагается использовать чувствительный к риску (risk-sensitive) критерий, который позволяет «штрафовать» инвестиционную систему за большие значения асимптотической дисперсии капитала ИП, тем самым минимизируя отклонения реальной доходности ИП от ожидаемой. В [41, 53, 70, 75, 88,105] рассматривается проблема учета транзакционных издержек в рамках подхода Мертона. В [36, 102] предложены подходы к учету ограничений, накладываемых на состояние капитала ИП. В [86] обсуждается адаптивная версия подхода Мертона. Проблема оптимального управления ИП в условиях неполной наблюдаемости (наблюдаются только цены рисковых активов) рассматривается в [106, 117, 124], на случай возможного краха экономики в [91].
Подход Мертона получил широкое теоретическое развитие, благодаря, в частности, применению мощного математического аппарата теории управления стохастическими процессами и мартингальных методов. С другой стороны использование мартингальных методов требует точного знания вида распределения (например, броуновское движение по определению есть гауссовский процесс, хотя давно известным фактом является то, что распределение доходностей рисковых активов не является нормальным [28]), что существенно ограничивает практическое применение данного подхода. Кроме того невозможно использовать подход Мертона в тех случаях, когда ИП содержит различные классы рисковых активов, или когда необходимо управлять несколькими портфелями одновременно.
Сравнительно недавно, в [97] был предложен, так называемый, VaR-подход (Value at Risk), в рамках которого предлагается ИП формировать таким образом, чтобы максимизировать вероятность достижения или превышения капиталом ИП заданной величины в конце периода управления. Другими словами, необходимо формировать ИП таким образом, чтобы оценка этой вероятности была близка к единице. Данный подход, в отличие от предыдущих, позволяет для описания динамики цен рисковых активов, формирующих ИП, использовать достаточно сложные математические модели, например ARCH модели со случайными скачкообразно меняющимися параметрами [38]. При выборе оптимальной структуры ИП с помощью VaR-подхода доли вложений в каждый из активов портфеля не должны изменяться до конца периода управления, что является существенным ограничением. В [72] предлагается обобщение в виде DVaR-подхода (Dynamic Value at Risk), в рамках которого допускаются изменения в структуре ИП. Основной проблемой при практическом использовании VaR-подхода является необходимость в точном знании вида распределения доходностей рисковых активов и высокая чувствительность к выбору величины временного окна (по сути объема выборки) при формировании исторических данных [11].
В настоящее время помимо классических постановок задачи оптимального управления ИП [98, 101] существует отдельное направление, рассматривающее проблему управления ИП в зависимости от выбранного инвестиционного стиля. Выделяют два стиля управления - пассивный и активный. При пассивном управлении (passive management) [26, 89,108] инвестор формирует ИП, распределяя капитал в соответствии со структурой индексного портфеля, выбранного им. В качестве индексного портфеля обычно используется широко диверсифицированный портфель, в точности повторяющий структуру известного рыночного индекса (например, индекс S&P500 [46, 47]), либо некоторого портфеля, стабильно дающего хорошие результаты в терминах риск-доходность, так называемого, benchmark portfolio. Им может быть, например, портфель фонда доверительного управления (mutual fund) или паевого фонда. Активное управление (active management) [26, 29, 46, 47, 111] заключается в том, чтобы превзойти доходность индексного портфеля путем, возможно, неоднократного и систематического перераспределения инвестиций между активами ИП. Оба стиля управления связаны с понятием «эффективного» рынка. Сторонники пассивного управления считают, что рынок является «эффективным», то есть сложно получить доходность ИП выше среднерыночной. Приверженцы активного управления имеют обратное мнение и утверждают, что на рынке возникают ситуации, когда можно получить доходность ИП выше среднерыночной путем коррекции (регулирования) структуры портфеля или покупки недооцененных рисковых активов.
Следует отметить, что в рамках проблемы оптимального управления ИП возникает сложный и имеющий более чем вековую историю вопрос о выборе адекватной модели финансового рынка или модели динамики цен рисковых активов. Поэтому, прежде чем перейти к классификации существующих моделей управления ИП, сделаем небольшой обзор по истории развития моделей финансового рынка, а также обсудим достоинства и недостатки наиболее популярных из них в настоящее время.
В 1900 г. Башелье [32] впервые предложил описывать динамику цен случайным процессом или процессом броуновского движения, позднее названным винеровским в честь Винера, построившего в 1923 г. строгую математическую модель этого движения. Следующий значительный шаг в развитии моделей, основанных на броуновском движении, был сделан Самюэлсоном в 1965 г. (подробнее см. [24]), который, отмечая, что в модели Башелье цены могут принимать отрицательные значения, предложил для описания цен использовать логарифмическое броуновское движение, называемое также геометрическим или экономическим броуновским движением. Данная модель приобрела за последние десятилетия широкую известность, в частности, благодаря формуле справедливой стоимости опционов европейского типа, полученной Бл-эком и Шоулсом в [43]. Дискретный вариант такой модели введен и изучен Коксом, Россом и Рубинштейном [51]. В [53, 75, 85, 87, 88, 91, 94, 98, 101, 102, 105, 119, 128] предложены различные подходы к проблеме оптимального управления ИП, в рамках которых для описания динамики цен рисковых активов используется модель Блэка-Шоулса. В [36, 37, 39, 40, 41, 42, 55, 81, 116, 117] рассматриваются различные модификации модели Блэка-Шоулса, описывающие эволюцию цен рисковых активов ИП.
В настоящее время существует огромное множество моделей, призванных адекватно описывать динамику цен (см. например [19, 27, 28, 113]). Среди них наибольшее развитие получили модели, основанные на броуновском движении, которые можно классифицировать следующим образом:
• модели, управляемые данными или наблюдениями;
• модели, управляемые параметрами.
Впервые модель, параметры которой функционально зависят от предшествующих наблюдений, была предложена в 1982 г. Нобелевским лауреатом по экономике 2003 г. Энглом в работе [68] по авторегрессионной условной гетероскедастичности (ARCH - Autoregressive Conditional Heteroskedasticity). В ней предполагалось, что дисперсия доходности рискового актива является линейной функцией квадратов прошлых значений (наблюдений) самой доходности. Модель ARCH была в последствии обобщена Боллерслевом в [45] путем включения слагаемых, соответствующих скользящим средним (GARCH - Generalized Autoregressive Conditional Heteroskedasticity). Модели данного класса хорошо себя зарекомендовали по нескольким причинам. Во-первых, простота получения статистических процедур оценки параметров и проверки гипотез, благодаря, в частности, широкому развитию методов, разработанных для моделей авторегрессии и скользящего среднего. Во-вторых, ограничение финансовой теории, связанное с прогнозом «на один шаг вперед». Моделям типа ARCH уделено большое внимание в финансовой литературе, где описаны всевозможные модификации и обобщения (более подробно см. [27]). В [38] рассматривается VAR-подход при этом в качестве модели цен активов ИП используется модификация GARCH модели - так называемая SWARCH (Switching ARCH) модель, в которой параметры ARCH процесса изменяются в соответствии с эволюцией марковской цепи, состояние которой не наблюдается. Модели типа GARCH не нашли своего применения в рамках и MV-подхода, и подхода Мертона, поскольку использование GARCH моделей для описания динамики цен рисковых активов ИП не позволяет записать уравнение динамики капитала в явном виде, а также в случае непрерывного времени данные модели не имеют аналогов.
В моделях, управляемых параметрами, предполагается, что среднее и/или стандартное отклонение (волатильность) доходности рискового актива имеют функциональную зависимость от некоторого латентного (ненаблюдаемого) случайного процесса. К моделям данного класса относятся SV-модели (SV - Stochastic Volatility) и скрытые марковские модели (НММ - Hidden Markov Model). Тэйлором в [120] была предложена модель логнормальной стохастической дисперсии, которая в настоящее время получила наибольшее развитие среди SV-моделей. В данном случае латентный процесс интерпретируется как случайный и неустойчивый поток новой информации, поступающей на фондовые рынки. В [106, 107] обсуждается проблема оптимального управления ИП в рамках подхода Мертона в том случае, когда эволюция цен рисковых активов подчиняется SV-модели.
Другим подходом является описание доходности рисковых активов в виде скрытого марковского процесса (НМР - Hidden Markov Process, см. обзор [69]), который, в более общем случае, принято называть НММ. НМР нашли широкое применение в различных приложениях теории информации и управления. В области экономики НМР, впервые, использовались для описания макроэкономических процессов и моделирования бизнес-циклов [78], где получили название моделей с переключающимся режимом (switching regime model). Независимо от [78] в [54] было предложено использовать НМР для описания волатильности доходности ценных бумаг. Латентный процесс в НММ интерпретируется как смена режима (состояния) экономики, которая может вызывать резкие скачкообразные изменения цен рисковых активов на фондовых рынках и смену тенденций роста или падения цен. Например, если среднее доходности рискового актива является функцией от латентного процесса, то для состояния роста экономики оно принимает некоторое положительное значение, что означает тенденцию роста цен рисковых активов или, так называемую, «бычью» тенденцию. В противном случае - для состояния экономического спада или кризиса становится отрицательным, то есть цены рисковых активов имеют понижательную или «медвежью» тенденцию. Различные подходы к проблеме оптимального управления ИП, в которых для описания динамики цен финансовых активов используются НММ, рассмотрены в [33, 48, 82, 125, 129].
Оценка параметров SV-моделей и НММ представляется более трудным делом, чем в случае моделей типа ARCH, поскольку сложно высказывать и трактовать, статистически, свойства и предположения о поведении латентного процесса. Тем не менее SV-модели и НММ гораздо легче поддаются обобщению на многомерный случай и имеют более простые аналоговые представления в случае непрерывного времени. Поэтому сложно отдать явное преимущество моделям того или иного класса, что, в частности, приводит к попыткам симбиоза моделей типа ARCH и НММ (см., например, [38, 60]).
Помимо моделей, управляемых наблюдениями и параметрами, существуют модели, в которых присутствует дополнительный источник неопределенности, определяемый путем включения слагаемого, независимого, как правило, от броуновского движения. Это так называемые рыночные и факторные модели [26, 49], а также модели с добавлением пуассо-новских импульсных возмущений [63, 79, 100].
Рыночные модели являются основой теории оценки финансовых активов (САРМ - Capital Asset Pricing Model), предложенной в 1964 г. Нобелевским лауреатом по экономике 1990 г. Шарпом в работе [114]. В данных моделях в качестве дополнительного источника неопределенности выступает слагаемое, функционально зависящее от доходности некоторого рыночного индекса. Альтернативой, в некотором смысле, рыночной модели является факторная модель, которая, в свою очередь, служит основой теории арбитражного ценообразования (APT - Arbitrage Price Theory), описанной Россом в [112]. Факторные модели учитывают зависимость доходности рисковых активов от различных неопределенных факторов (ВВП, производительность труда, цена на нефть и пр.). Ярким примером, который можно здесь привести, выступает многофакторная модель BARRA для оценки ценных бумаг США (более подробно см. [26]).
Модели с добавлением пуассоновских импульсных возмущений (JDM - Jump Diffusion Model), впервые были предложены Нобелевским лауреатом 1997 г. по экономике Мертоном в [100]. В [35, 70, 79] рассматривается проблема оптимального управления ИП в рамках подхода Мертона при этом эволюция цен рисковых активов описывается JDM.
Подход Мертона и MV-подход используются в большинстве существующих работ, посвященных разработке и изучению моделей оптимального управления ИП, которые можно классифицировать по следующим признакам:
1. Критерий оптимальности:
• MV-критерий [61, 82, 85, 87, 94, 98, 119, 128, 129];
• максимизация функции полезности [33, 35, 36, 37, 48, 53, 55, 70, 75, 79, 81, 82, 88, 90, 91, 101, 102, 105, 106, 107];
• чувствительный к риску критерий (risk-sensitive) с использованием функции полезности [39, 40, 41, 42, 117, 116].
2. Модель финансового рынка (динамики цен рисковых активов):
• Блэка-Шоулса [53, 75, 85, 87, 88, 91, 94, 98,101,102,105, 119,128] и различные модификации [36, 37, 39, 40, 41, 42, 55, 81, 116, 117];
• SWARCH-модель [38];
• SV-модель [106, 107];
• НММ [33, 48, 82, 125, 129];
• JDM [35, 70, 79].
3. Ограничения:
• учет транзакционных издержек [53, 70, 75, 87, 88, 105, 116];
• на состояние капитала ИП [36, 102];
• на риск [55];
• на доли вложения [107];
• учет возможности экономического кризиса или краха [91];
• учет того, что торговые операции можно проводить только с целым количеством активов ИП [85, 87];
• на ликвидность [90].
4. Инвестиционный стиль:
• активный [26, 29, 46, 47, 111];
• пассивный [26, 89, 108].
5. Однопериодные модели [85, 87, 98, 119].
6. Многопериодные модели и модели в дискретном времени [61, 66, 77, 82, 90, 94, 103, 110, 116, 121, 125].
7. Модели в непрерывном времени [33, 35, 36, 37, 39, 40, 41, 42, 48, 53, 55, 70, 75, 79, 81, 82, 88, 91, 101, 102, 105, 106, 107, 128, 129].
В настоящее время в области методологии, аппарата и развития теории оптимального управления ИП можно указать следующие основные тенденции:
• преимущественное развитие, модификация и обобщение моделей и систем управления ИП на базе теории управления стохастическими процессами, мартингальных методов и методов динамического, стохастического, нелинейного и квадратичного программирования в рамках MV-подхода и подхода Мертона [42, 48, 55, 81, 82, 91, 107, 108, 125, 129];
• распространение адаптивного подхода [65, 86, 106];
• распространение робастного подхода [50, 73];
• исследование игровых постановок задач управления ИП [21];
• исследование моделей управления ИП в условиях неполной наблюдаемости [33, 106, 124] (наблюдаются только цены рисковых активов);
• конструирование моделей управления ИП с использованием различных методов формирования ИП [38, 65, 67, 72];
• конструирование моделей управления ИП с использованием нейронных сетей [84, 115].
Среди российских ученых значительный вклад в области теории оптимального управления ИП и моделей финансового рынка был сделан Ширяевым А. Н., Первозванским А. А., Мельниковым А. В.
В [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 56, 57, 58, 59] предложен новый подход, в рамках которого проблема оптимального управления ИП формулируется как динамическая задача слежения за эталонным (гипотетическим) портфелем, доходность которого задается инвестором. Динамика цен рисковых активов может описываться большинством моделей финансового рынка типа Блэка-Шоулса - начиная с обобщения на случай нестационарности параметров [1, 6, 13, 14, 56] и заканчивая более сложными моделями со случайными параметрами: НММ - [2, 3, 4, 5, 7, 8, 10], SV - [57, 58], JDM - [15, 59], а также их комбинациями HMM-JDM [9]. В качестве меры риска выступает квадратичный функционал, в котором, помимо соотношения доходности-риска в виде суммарного (за весь период управления) взвешенного квадратичного отклонения капитала управляемого ИП от заданной инвестором траектории роста, учитывается «стоимость управления». С помощью данного подхода можно решать не только задачу слежения за капиталом эталонного портфеля, но и задачу активного управления портфелем [5, 7, 57, 59], а также синтезировать адаптивные стратегии управления ИП [10].
Проведенный анализ литературы и потребности практики подтверждают актуальность построения и исследования моделей управления ИП, в рамках которых можно аналитически синтезировать оптимальные динамические стратегии управления ИП, обеспечивающие максимально гладкую заданную инвестором кривую роста капитала ИП на всем горизонте инвестирования, одновременно, использующие при этом минимальный объем управляющих воздействий, с учетом ограничений как на объемы вложений в активы ИП, так и торговых операций с ними. Это, в свою очередь, обуславливает актуальность настоящей диссертационной работы, целью которой является:
1. построение и исследование сетевых многомерных динамических моделей управления ИП в непрерывном и дискретном времени при нестохастической волатильности финансовых активов;
2. построение и исследование сетевых многомерных динамических моделей управления ИП в непрерывном и дискретном времени при стохастической волатильности финансовых активов;
3. построение и исследование сетевых многомерных динамических моделей активного управления ИП в непрерывном и дискретном времени при стохастической волатильности финансовых активов;
4. разработка адаптивных алгоритмов управления ИП, в том числе и активного, на скачкообразном финансовом рынке с переключающимися режимами.
Методы исследования
При выполнении диссертационной работы использовались понятия и методы теории оптимального формирования портфеля инвестиций, финансовой математики, теории моделей финансового рынка, теории стохастических дифференциальных уравнений, матричной алгебры, теории вероятности, теории случайных процессов и математической статистики, численные методы и методы имитационного моделирования.
Основные результаты, полученные в данной работе, следующие.
1. Разработаны сетевые многомерные динамические модели управления ИП в дискретном и непрерывном времени при нестохастической волатильности финансовых активов. Предложено формулировать задачу управления ИП как динамическую задачу слежения за эталонным портфелем, доходность которого задается инвестором.
2. Синтезированы динамические стратегии управления ИП с обратной связью для моделей ИП в непрерывном и дискретном времени. Получены уравнения для вычисления математического ожидания и дисперсии капитала ИП.
3. Разработаны модели управления ИП в пространстве состояний для случайной скачкообразно меняющейся волатильности финансовых активов. Параметры уравнений, описывающих модель цен рисковых активов ИП, изменяются в соответствии с эволюцией марковской цепи. Синтезированы динамические стратегии управления ИП с обратной связью для моделей ИП в непрерывном и дискретном времени как в условиях наблюдаемости, так и ненаблюдаемости состояния марковской цепи. Получены уравнения для вычисления математического ожидания и дисперсии капитала ИП.
4. Разработан адаптивный алгоритм управления ИП на скачкообразном финансовом рынке с переключающимися режимами.
5. Предложена модель управления ИП, волатильность рисковых активов которого описывается GARCH-процессом. Синтезированы уравнения для определения оптимальной стратегии управления ИП с обратной связью.
6. Разработаны модели активного управления ИП, целью которого является превышение в среднем капитала индексного портфеля. Получены уравнения синтеза оптимальных стратегий активного управления ИП с обратной связью для модели цен рисковых активов со случайной скачкообразно меняющейся волтильностью. Получены уравнения для вычисления математического ожидания капитала ИП.
7. Проведено численное исследование моделей управления ИП с использованием модельных и реальных данных.
Достоверность полученных результатов подтверждается строгими аналитическими выкладками и результатами численных расчетов с использованием модельных и реальных данных.
Теоретическая и практическая ценность
В данной работе разработаны и исследованы сетевые многомерные динамические модели управления ИП в непрерывном и дискретном времени для следующих моделей финансового рынка:
• обобщение классической модели геометрического броуновского движения Блэка-Шоулса, в котором параметры уравнений зависят от времени;
• модель типа геометрического броуновского движения со случайной скачкообразно меняющейся волатильностью;
• GARCH-модель;
• модель типа геометрического броуновского движения, со случайными скачкообразно меняющимися параметрами, характеризующими среднюю доходность и волатильность.
Синтезированы динамические стратегии управления ИП с обратной связью для всех моделей управления ИП. Разработан адаптивный алгоритм управления ИП на скачкообразном финансовом рынке с переключающимися режимами. Получены уравнения для вычисления математического ожидания и дисперсии капитала ИП.
Практическая ценность данной работы состоит в возможности использования полученных результатов для разработки и построения систем управления ИП на реальных финансовых рынках.
Результаты диссертационной работы используются в учебном процессе на факультете прикладной математики и кибернетики Томского государственного университета (акты о внедрении прилагаются).
Структура и объем работы
Настоящая диссертационная работа состоит из введения, основного текста, заключения и списка литературы. Основной текст разбит на 3 главы и содержит 6 таблиц и 97 рисунков. Список литературы включает 129 наименований. Общий объем работы - 207 страниц.
Заключение диссертация на тему "Многомерные динамические сетевые модели управления инвестиционным портфелем"
3.3 Выводы
В данной главе рассматривались сетевые многомерные динамические модели активного управления инвестиционным портфелем в условиях скачкообразного финансового рынка. Получены следующие результаты:
1. Разработаны сетевые многомерные динамические модели активного управления ИП в дискретном и непрерывном времени. Целью управления инвестиционным портфелем является превышение в среднем капитала индексного портфеля.
2. Синтезированы динамические стратегии активного управления ИП с обратной связью для моделей ИП в непрерывном (теоремы 3.1, 3.2) и дискретном времени (теоремы 3.4, 3.5). Получены уравнения для вычисления математического ожидания капитала ИП в непрерывном (теорема 3.3) и дискретном времени (теорема З.б).
3. Приведены результаты численных расчетов с использованием модельных и реальных данных (таблица 3.1, рисунки 3.1-3.17 см. приложение №3).
ЗАКЛЮЧЕНИЕ
132
5. Предложена модель управления ИП, волатильность рисковых активов которого описывается GARCH-процессом. Получены уравнения синтеза оптимальной стратегии управления ИП с обратной связью.
6. Разработаны модели активного управления ИП, целью которого является превышение в среднем капитала индексного портфеля. Получены уравнения синтеза оптимальных стратегий активного управления ИП с обратной связью для модели цен рисковых активов со случайной скачкообразно меняющейся волатильностью. Получены уравнения для вычисления математического ожидания капитала ИП.
Библиография Герасимов, Евгений Сергеевич, диссертация по теме Математическое моделирование, численные методы и комплексы программ
1. Гальперин В. А., Домбровский В. В. Динамическое управление самофинансируемым инвестиционным портфелем при квадра-тической функции риска в дискретном времени // Вестник Томского государственного университета. Приложение. № 1(1). - 2002. - С. 141-146.
2. Герасимов Е. С., Домбровский В. В. Активное управление инвести-ционным портфелем при случайном скачкообразном изменении волатильностей финансовых активов. // Труды Второй
3. Международной научно-практической конференции: Методы и алгоритмы прикладной математики в технике, медицине и экономике. Новочеркасск, 2002. - Ч. 3. - С. 45-50.
4. Герасимов Е. С., Домбровский В. В. Динамическая сетевая модель управления инвестиционным портфелем при квадратичной функции риска // Автоматика и телемеханика. 2002. - № 2. - С. 119-128.
5. Герасимов Е. С., Домбровский В. В. Динамическая сетевая модель управления инвестиционным порфелем при случайном скачкообразном изменении волатильностей финансовых активов // Автоматика и телемеханика. 2003. - № 7. - С. 77-87.
6. Герасимов Е. С., Домбровский В. В. Адаптивное управление инвестиционным портфелем // Вестник Томского государственного университета. 2003. - № 280. - С. 118-123.
7. Гианнопулос К. Долгосрочное прогнозирование критерия VaR // Автоматика и телемеханика. 2003. - № 7. - С. 87-94.
8. Домбровский В.В. Методы количественного анализа финансовых операций. Томск: Изд-во научно-техн. лит-ры, 1998.
9. Домбровский В. В., Гальперин В. А. Динамическая модель управления инвестиционным портфелем при квадратической функции риска // Вестник Томского государственного университета. 2000. - № 269. - С. 73-75.
10. Домбровский В. В., Герасимов Е. С. Динамическая сетевая модель управления порфелем ценных бумаг в непрерывном времени при квадратичной функции риска // Вестник Томского государственного университета. 2000. - № 269. - С. 70-73.
11. Домбровский В. В., Федосов Е. Н. Модель управления инвестиционным портфелем в пространстве состояний на нестационарном диффузионно-скачкообразном финансовом рынке // Автоматика и вычислительная техника. 2002. - № 6. - С. 13-24.
12. Кибзун А. И., Кузнецов Е. А. Сравнение критериев VaR и CVaR // Автоматика и телемеханика. 2003. - № 7. - С. 153-165.
13. Королюк М. Как сравнивать торговые системы // Современный трейдинг. 2001. - J\T« 1.
14. Липцер Р. Ш., Ширяев А. Н. Статистика случайных процессов. Нелинейная фильтрация и смежные вопросы. М. :Наука, 1974.
15. Медведев Г. А. Математические модели финансовых рисков: Учеб. пособие: В 2 ч. Ч. 1: риски из-за неопределенности процентных ставок. Мн.: БГУ, 1999.
16. Мельников А. В., Волков С. Н., Нечаев М. Л. Математика финансовых обязательств. М.: ГУ ВШЭ. 2001.
17. Панков А. Р., Платонов Е. Н., Семенихин К. В. Минимаксная оптимизация инвестиционного портфеля по квантильному критерию // Автоматика и телемеханика. 2003. - N2 7. - С. 117-134.
18. Первозванский А.А., Первозванская Т.Н. Финансовый рынок: расчет и риск. М.: ИНФРА-М, 1994.
19. Первозванский А.А. Оптимальный портфель ценных бумаг на нестационарном неравновесном рынке // Экономика и математические методы. 1999. - Т. 35. - № 3. - С. 63-68.
20. Стохастические аспекты финансовой математики. Тематический выпуск // Теория вероятности и ее применение. 1994. - Т. 39.1.
21. Уотшем Т. Дж., Паррамоу К. Количественные методы в финансах. М.: Финансы. Изд-е объединение «ЮНИТИ», 1999.
22. Шарп У., Александер Г., Бейли Дж. Инвестиции. М.: ИНФРА-М, 1997.
23. Шепард Н. Статистические аспекты моделей типа ARCH и стохастическая волатильность // Обозрение прикладной и промышленной математики. 1996. - Т. 3. - № 6. - С. 765-826.
24. Ширяев А. Н. Вероятностно-статистические модели эволюции финансовых индексов // Обозрение прикладной и промышленной математики. 1995. - Т. 2. - № 4. - С. 527-555.
25. Albeverio S., Lao L., Zhao X. On-line portfolio selection strategy with prediction in the presence of transaction costs // Mathematical Methods of Operations Research. 2001. - № 54. - pp. 133-161.
26. Athans M. The Matrix Minimum Principle // Information and Control. 1968. - V. 11. - pp. 592-606.
27. Audrino F., Buhlmann P. Volatility Estimation with Functional Gradient Descent for Very High-Dimensional Financial Time Series // Journal of Computational Finance. 2003. - V. 6. - № 3. - pp. 65-89.
28. Bachelier L. Theorie de la speculation // Ann. Sci. Ecole Norm. Sup. 1900. - № 17. - pp. 21-86.
29. Bauerle N., Rieder U. Portfolio Optimization With Markov-Modulated Stock Prices and Interest Rates // IEEE Transactions on Automatic Control. 2004. - V. 49, № 3. - pp. 442-447.
30. Baviera R., Pasquini S., Raboanary J., Serva M. Moving averages and price dynamics // International Journal of Theoretical and Applied Finance. 2002. - V. 5. - № 6. - pp. 575-583.
31. Bellamy N. Wealth optimization in an incomplete market driven by a jump-diffusion process // Journal of Mathematical Economics. 2001.- № 35. pp. 259-287.
32. Benth F. E., Karlsen К. H., Reikvam K. Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach // Finance and Stochastics. 2001. - V. 5. - № 3. - pp. 275-303.
33. Benth F. E., Karlsen К. H., Reikvam K. A note on portfolio management under non-Gaussian logreturns // International Journal of Theoretical and Applied Finance. 2001. - V. 4. - № 5. - pp. 711-731.
34. Billio M., Pellizon L. Value-at-Risk: a multivariate switching regime approach // Journal of Empirical Finance. 2000. - № 7. - pp. 531-554.
35. Bielecki T. R., Hernandez-Hernandez D., Pliska S. R. Risk-sensitive control of finite state Markov chains in discrete time, with applications to portfolio management // Mathematical Methods of Operations Research. 1999. - № 50. - pp. 167-188.
36. Bielecki T. R., Pliska S. R. Risk-Sensitive Dynamic Asset Management // Applied Mathematics & Optimization. 1999. - № 39.- pp. 337-360.
37. Bielecki T. R., Pliska S. R. Risk-sensitive asset management with transaction costs // Finance and Stochastics. 2000. - № 4. - pp. 1-33.
38. Bielecki T. R., Pliska S. R. Risk-Sensitive ICAPM With Application to Fixed-Income Management // IEEE Transactions on Automatic Control. 2004. - V. 49, № 3. - pp. 420-432.
39. Black F., Scholes M. The pricing of options and corporate liabilities // Journal of Political Economics. 1973. - № 81. - pp. 637-659.
40. Black F., Litterman R. Asset allocation: Combining investor views with market equilibrium // Journal of Fixed Income. 1991. - № 1. -pp. 7-18.
41. Bollerslev T. Generalized autoregressive conditional heteroskedasticity // Journal of Econometrics. 1986. - V. 31.- pp. 307-327.
42. Browne S. Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark // Finance and Stochastics. -1999. № 3. - pp. 275-294.
43. Browne S. Risk constrainted dynamic active portfolio management // Management Science. 2000. - V. 46. - № 9. - pp. 1188-1199.
44. Cajueiro D. O., Yoneyama T. Optimum portfolio choice for a class jump stochastic models // Proceedings of the 15th Triennial World Congress. Barselona. Spain. IFAC 2002.
45. Chan L., Cha S. Selection of independent factor model in finance // Proceedings of 3rd International Conference on Independent Component Analysis and blind Signal Separation. 2001. - San Diego. California. USA.
46. Cox J. C., Ross S. A., Rubinstein M. Option pricing: a simplified approach // Journal of Financial Economics. 1979. - № 7. - pp. 229263.
47. Cvitanic J., Liptser R., Rozovskii B. Tracking volatility // Proceedings 39-th IEEE Conference on Decision and Control. 2000. -pp. 1189-1193.
48. Cvitanic J., Wang H. On optimal terminal wealth under transaction costs // Journal of Mathematical Economics. 2001. - № 35. - pp. 223231.
49. Di Masi G.B., Kabanov Y. M., Runggaldier W.J. Mean-variance hedging of options on stocks with Markov volatilities // Theory of Probability and Its Applications. 1994. - № 39. - pp. 211-222.
50. Dokuchaev N., Zhou X. Y. Optimal investment strategies with bounded risks, general utilities, and goal achieving // Journal of Mathematical Economics. 2001. - № 35. - pp. 289-309.
51. Dombrovsky V. V., Gerasimov E. S. Dynamic Network Model of Control Investment Portfolio in Continuous Time // Proceedings of the 5th Korea-Russia International Symposium on Science and Technology. 2001. - Tomsk. - Russia. - V. 2. - pp. 304-308.
52. Dombrovsky V. V., Lashenko E. A. Dynamic Model of Active Portfolio Management with Stochastic Volatility in Incomplete Market // Proceedings of SICE Annual Conference. Fukui. Japan. 2003. -pp. 636-641.
53. Dueker M. J. Markov Switching in GARCH Processes and Mean Reverting Stock Market Volatility // Journal of Business and Economic Statistics. 1997. - № 15. - pp. 26-34.
54. Dupakova J. Portfolio optimization via stochastic programming: Methods of output analysis // Mathematical Methods of Operations Research. 1999. - № 50. - pp. 245-270.
55. Elliott R. J. Exact Adaptive Filters for Markov Chains Observed in Gaussian Noise // Automatica. 1994. - V. 30. - № 9. - pp. 1399-1408.
56. Elliott R. J., Jeanblanc M. Incomplete markets with jumps and informed agents // Mathematical Methods of Operations Research. -1999. № 50. - pp. 475-492.
57. Elliott R. J., Hinz J. Portfolio optimization, hidden Markov models, and technical analysis of P&F-charts // International Journal of Theoretical and Applied Finance. 2002. - V. 5. - № 4. - pp. 385399.
58. Elliott R. J., Malcolm W. P., Tsoi A. H. Robust parameter estimation for asset price models with Markov modulated volatilities // Journal of Economic Dynamics and Control. 2003. - V. 27. - № 8.- pp. 1391-1409.
59. Elton E. J., Gruber M. J. On the Optimality of Some Multiperiod Portfolio Selection Criteria // The Journal of Business. 1974. - V. 47. - № 2. - pp. 231-243.
60. Emmer S., Kluppelberg C., Korn R. Optimal portfolios with bounded Capital-at-Risk // Mathematical Finance. 2001. - V. 11.- № 4. pp. 365-385.
61. Engle R. F. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation // Econometrica. 1982.- V. 50. pp. 987-1008.
62. Ephraim Y., Merhav N. Hidden Markov Processes // IEEE Transactions on Information Theory. 2002. - V. 48. - № 6. - pp. 1518-1569.
63. Framstad N. C., Oksendal В., Sulem A. Optimal consumption and portfolio in a jump diffusion market with proportional transactioncosts // Journal of Mathematical Economics. 2001. - № 35. - pp. 233-257.
64. Frey R., Runggaldier W. J. A Nonlinear Filtering Approach to Volatility Estimation with a View Towards High Frequency Data // International Journal of Theoretical and Applied Finance. 2001. - V. 4. - № 2. - pp. 199-210.
65. Fusai G., Luciano E. Dynamic value at risk under optimal and suboptimal portfolio policies // European Journal of Operational Research. 2001. - № 135. - pp. 249-269.
66. Goldfarb D., Iyengar G. Robust portfolio selection problems // Mathematics of Operations Research. 2003. - V. 28. - № 1. - pp. 1-38.
67. Golub В., Holmer M., McKendall R., Pohlman 1., Zenios S. A.
68. A Stochastic programming model for money managment // European Journal of Operational Research. 1995. - V. 85. - pp. 282-296.
69. Guasoni P. Risk Minimization under Transaction Costs // Finance and Stochastics. 2002. - № 6. - pp. 91-113.
70. Guest Editorial Special in Stochastic Control Methods in Financial Engineering // IEEE Transactions on Automatic Control. 2004. - V. 49, № 3. - pp. 321-323.
71. Hakansson N. H. Multi-Period Mean-Variance Analysis: Toward a General Theory of Portfolio Choice // The Journal of Finance. 1971.- V. 26. № 4. - pp. 857-884.
72. Hamilton J. D. A new approach to the economic analyses of nonstationary time series and the business cycle // Econometrica. -1989. V. 57. - № 2. - pp. 357-384.
73. Hanson F. В., Westman J. J. Otimal Portfolio and Concumption Policies Subject to Rishel's Important Jump Events Model: Computational Methods // IEEE Transactions on Automatic Control.- 2004. V. 49, № 3. - pp. 326-337.
74. Herzel S. A Simple model for option pricing with jumping stochastic volatility // International J ournal of Theoretical and Applied Finance.- 1998. V. 1. - № 4. - pp. 487-505.
75. Hu Y., Oksendal В., Sulem A. Optimal portfolio in a fractional Black & Scholes market // Infinite Dimensional Analysis, Quantum Probability and Related Topics. 2003. - V. 6. - № 4. - pp. 519-536.
76. Ishijima H., Uchida M. The Regime Switching Portfolios // Proceedings of the Quantitative Methods in Finance. 2002. - Cairns.- Australia.
77. James M. R., Krishnamurthy V., LeGland F. Time Discretization of Continuous-Time Filters and Smoothers for HMM Parameter Estimation // IEEE Transactions on Information Theory. -1996. V. 42. - № 2. - pp. 593-605.
78. Jones С. K. A network model for foreign exchange arbitrage, hedging and speculation // International Journal of Theoretical and Applied Finance. 2001. - V. 4. - № 6. - pp. 837-852.
79. Jobst N. J., Horniman M. D., Lucas C. A., Mitra G.
80. Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints // Quantitative Finance. -2001. V. 1. - pp. 1-13.
81. Karatzas I., Zhao X. Bayesian adaptive portfolio optimization. Hand-book of Mathematical Finance. Cambridge University Press, 2001.
82. Kellerer H., Mansini R., Speranza M. G. Selecting Portfolios with Fixed Costs and Minimum Transaction Lots // Annals of Operations Research. 2000. - № 99. - pp. 287-304.
83. Keppo J., Peura S. Optimal Portfolio Hedging with Nonlinear Derivatives and Transaction Costs // Computational Economics. -1999. № 13. - pp. 117-145.
84. Konno H., Wijayanyayake A. Minimal cost index tracking under nonlinear transaction costs and minimal transaction umit constraints // International Journal of Theoretical and Applied Finance. 2001. -V. 4. - № 6. - pp. 939-957.
85. Koo H. K. Consumption and portfolio selection with labor income: A discrete-time approach // Mathematical Methods of Operations Research. 1999. - № 50. - pp. 219-243.
86. Korn R., Wilmott P. Optimal portfolios under threat of a crash // International Journal of Theoretical and Applied Finance. 2002. - V. 5. - № 2. - pp. 171-187.
87. Kushner H. J. Consistency Issues for Numerical Methods for Variance Control with Applications to Optimization in Finance // IEEE Transactions on Automatic Control. 1999. - V. 44. - № 12. - pp. 2283-2296.
88. LeGland F., Mevel L. Recursive Estimation in Hidden Markov Models // Proceedings of the 36th IEEE Conference on Decision and Control. 1997. - San Diego. - USA. - pp. 3468-3473.
89. Li D., Ng W. Optimal dynamic portfolio selection: multi-period mean-variance formulation // Mathematical Finance. 2000. - V. 10. - № 3. - pp. 387-406.
90. Li D., Fu P., Qian F. Optimal Nominal Dual Control for Discrete-Time LQG Problem with Unknown Parameters // Proceedings of SICE Annual Conference. Fukui. Japan. 2003. - pp. 2147-2150.
91. Li X., Zhou X. Y. Indefininte stochastic LQ controls with Markovian jumps in a finite time horizon // Communications in Information and Systems. 2002. - V. 2. - № 3. - pp. 265-282.
92. Linsmeier T. J., Pearson N. D. Risk Measurement: An introduction to Value at Risk //
93. Markowitz H. Portfolio Selection // Journal of Finance. 1952. - V. 7. -№1. -pp. 77-91.
94. McLane P.J. Optimal Stochastic Control of Linear Systems with State and Control - Dependent Disturbances // IEEE Transactions on Automatic Control. - 1971. - V. AC-16. - № 6. - pp.793-798.
95. Merton R.C. Option pricing when the underlying stock returns are discontinuous // Journal of Financial Economics. 1976. - № 5. - pp. 125-144.
96. Merton R.C. Continuous-time Finance. Cambridge: Blackwell, 1990.
97. Mnif M., Pham H. Stochastic Optimization under Constraints // Stochastic Processes and their Applications. 2001. - № 11. - pp. 210238.
98. Mossin J. Optimal Multiperiod Portfolio Policies // The Journal of Business. 1968. - V. 41. - № 2. - pp. 215-229.
99. Nillson В., Graflund A. Dynamic Portfolio Selection: The Relevance of Switching Regimes and Investment Horizon //
100. Oksendal В., Sulem A. Optimal consumption and portfolio with both fixed and proportional transaction costs // SIAM Journal on Control and Optimization. 2002. - V. 40. - № 6. - pp. 1765-1790.
101. Pham H., Quenez M. Optimal portfolio in partially observed stochastic volatility models // Annals of Applied Probability. 2001. -V. 11.1.-pp. 210-238.
102. Pham H. Smooth Solutions to Optimal Investment Models with Stochastic Volatilities and Portfolio Constraints // Applied Mathematics & Optimization. 2002. - № 46. - pp. 55-78.
103. Pliska S. R., Suzuki K. Optimal tracking for asset allocation with fixed and proportional transaction costs // Quantitative Finance. -2004. V. 4. - № 2. - pp. 233-243.
104. Pollock D. S. G. Methodology for trend estimation // Economic Modelling. 2001. - № 18. - pp. 75-96.
105. Portait R., Bajeux-Besnainou I. Dynamic Asset Allocation in a Mean-Variance Framework // Management Science. 1998. - V. 44. -№ 11. - Part2. - pp. S79-S95.
106. Pra D. P., Runggaldier W. J., Tolotti M. Pathwise optimality for benchmark tracking // IEEE Transactions on Automatic Control.- 2004. V. 49, № 3. - pp. 386-395.
107. Ross S. A. The Arbitrage Theory of Capital Asset Pricing // Journal of Economic Theory. 1976. - V. 13. - № 3. pp. 341-360.
108. Runggaldier W.J. On stochastic control in finance // Mathematical Systems Theory in Biology, Communication, Computation and Finance. IMA Volumes in Mathematics and its Applications. 2003. -V. 134. - pp. 317-344.
109. Sharpe W. F. Capital Asset Prices: A theory of Market Equilibrium Under Conditions of Risk // Journal of Finance. 1964. - V. 19. - № 3.- pp. 425-442.
110. Steiner M., Wittkemper H. Portfolio optimization with a neural network implementation of the coherent market hypothesis // European Journal of Operational Research. 1997. - № 100. - pp. 27-40.
111. Stettner L. Risk sensitive portfolio optimization // Mathematical Methods of Operations Research. 1999. - № 50. - pp. 463-474.
112. Stettner L. Risk-Sensitive Portfolio Optimization With Completely and Partially Observed Factors // IEEE Transactions on Automatic Control. 2004. - V. 49, № 3. - pp. 457-464.
113. Sworder D.D., Boyd J.E. Control of jump linear systems in noise // Automatica. 1999. - V. 35. - pp. 293-300.
114. Syam S. S. A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals // European Journal of Operational Research. 1998. - № 108. - pp. 196-207.
115. Taylor S. J. Modelling Financial Time Series. Chichester: Wiley, 1986.
116. Tobin J. The Theory of Portfolio Selection. New York: Macmillan, 1965.
117. Tsay Ruey S. Analysis of financial time series. John Wiley & Sons, 2002.
118. Wohnam W. M. Random differential equations in control theory // Probabilistic Methods in Applied Mathematics. 1970. - V. 2. - pp. 131-212.
119. Yang Z., Ma C. Optimal trading strategy with partial information and the value of information: the simplified and generalized models // International Journal of Theoretical and Applied Finance. 2001. - V. 4. - № 5. - pp. 759-772.
120. Yin G., Zhou X. Y. Markowitz's Mean-Variance Potfolio Selection With Regime Switching: From Discrete-time Models to Their Continuous-Time Limits // IEEE Transactions on Automatic Control.- 2004. V. 49, № 3. - pp. 349-360.
121. Young M.R. A Minimax Portfolio Selection Rule with Linear Programming Solution // Management Science. 1998. - V. 44. - № 5.- pp. 673-683.
122. Zenios S. A., Holmer M. R., McKendall R., Vassiadou-Zeniou
123. C. Dynamic models for fixed-income portfolio management under uncertainty // Journal of Economic Dynamics and Control. 1998.- № 22. pp. 1517-1541.
124. Zhou X. Y., Li D. Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework // Applied Mathematics Optimization. 2000. - № 42. - pp. 19-33.
125. Zhou X. Y., Yin G. Markowitz's mean-variance potfolio selection with regime-switching: a continuous-time model // SIAM Journal on Control and Optimization. 2003. - V. 42. - № 4. - pp. 1466-1482.
-
Похожие работы
- Оптимизация управления инвестиционным портфелем на основе прогнозов доходностей активов и прогнозов матриц ковариаций случайных составляющих
- Динамические модели управления инвестиционным портфелем на нестационарном финансовом рынке с учетом транзакционных издержек и ограничений
- Методы исследования математической модели управления инвестиционным порфелем
- Методы и модели формирорвания пор...я заказов строительной организации в условиях перехода к рыночной экономике
- Математическое моделирование оптимальной структуры портфеля ценных бумаг при различных критериях их формирования
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность