автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.06, диссертация на тему:Минимизация параметрических колебаний при резании на основе управления скоростью движения подачи
Автореферат диссертации по теме "Минимизация параметрических колебаний при резании на основе управления скоростью движения подачи"
На правах рукописи
Митина Татьяна Владимировна
МИНИМИЗАЦИЯ ПАРАМЕТРИЧЕСКИХ КОЛЕБАНИЙ ПРИ РЕЗАНИИ НА ОСНОВЕ УПРАВЛЕНИЯ СКОРОСТЬЮ ДВИЖЕНИЯ ПОДАЧИ.
Специальность 05.13.06: «Автоматизация и управление технологическими процессами и производствами»
АВТОРЕФЕРАТ
диссертации на соискание ученой степени
кандидата технических наук
Москва, 2005
Работа выполнена в Московской Государственной Академии Приборостроения и Информатики
Научный руководитель: Заслуженный деятель науки РФ,
доктор технических наук, профессор Аршанский М.М.
Ведущая организация:
Институт конструкторско-технологической информатики РАН.
Защита состоится «20» декабря 2005 года в 12 час.00 мин.
на заседании диссертационного совета Д212.119.02 Московской Государственной Академии Приборостроения и Информатики по адресу: 107996, г. Москва, ул. Стромынка, д. 20
С диссертацией можно ознакомиться в библиотеке академии.
Официальные оппоненты:
доктор технических наук, профессор Васьковский А.М.
кандидат технических наук, профессор Мацнев А.П.
Автореферат разослан
Ученый секретарь
диссертационного Совета Д212.119.02
кандидат технических наук, доцент
Ж)е-У 2250063'
^ ' Общая характеристика работы.
Актуальность работы.
Повышение точности обработки на металлорежущих станках за счет совершенствования конструкции, создания новых инструментальных материалов, а также технологических методов практически исчерпало свои возможности. Основной вклад в решение этой проблемы в настоящее время вносит управление. В этой связи предлагаемая диссертационная работа является актуальной, поскольку предлагает программный продукт, который на стадии подготовки управляющих программ для станков с ЧПУ задает закон управления движением механизма подачи осуществляя минимизацию параметрических колебаний. Такой продукт, помимо решения основной задачи - повышения точности, автоматизирует подготовку управляющих программ и облегчает работу технолога-программиста.
Целью данной работы является повышение точности обработки резанием за счет минимизации параметрических колебаний механизма подачи металлорежущего станка.
Научная новизна работы заключается в построении модели параметрических колебаний механизма подачи станка при резании, ее анализе и разработке программного продукта для реализации программы минимизации этих колебаний.
Практическая ценность.
Практическая ценность работы заключается в создании программного продукта, который может быть использован для автоматизации подготовки производства на стадии подготовки управляющих программ для станков с ЧПУ с целью минимизации параметрических колебаний механизма подачи станка.
Апробация работы: Основные положения диссертации доложены на I -ой Всероссийской компьютерной конференции, прошедшей в Уфе в 2004 году, I -ой Всероссийской научной конференции студентов и аспирантов с международным участием «Робототехника, мехатроника и интеллектуальные системы», прошедшей в 2005 году в Таганроге, а также в полном объеме на семинаре кафедры ИС-4 МГАПИ.
Объем и структура работы.
Диссертация состоит из введения, 4 разделов, общих выводов, списка литературы из 134 наименований и приложений. Основной материал изложен на 129 страницах, содержит 30 рисунков и 4 таблицы.
I РОС. НАЦИОНАЛЬНАЯ I I БИБЛИОТЕКА 1 !
Основное содержание работы
Во введении обоснована актуальность выбранной темы исследования, ее практическая значимость, сформулированы основные направления и цели исследования.
В первом разделе проведен анализ методов управления точностью обработки на металлорежущих станках с ЧПУ посредством программной коррекции их погрешностей.
Рассмотрены методы повышения точности обработки на таких станках, которые включают в себя конструкторские, технологические и организационные методы. Однако эти методы не решают всего комплекса проблем повышения точности металлорежущих станков, в частности, не обеспечивают инвариантность процесса обработки материалов резанием к возмущающим воздействиям. Решить эту проблему, можно используя системы автоматического управления (САУ) точностью. Также САУ обеспечивают и коррекцию погрешностей станка в процессе его эксплуатации.
Рассмотрены особенности металлорежущих станков с ЧПУ как объектов управления. Выявлено, что металлорежущий станок следует считать объектом управления многомерным, многосвязным, нелинейным с непрерывно изменяющимися случайными контролируемыми воздействиями, а также с тем или иным уровнем шумов, обусловленных погрешностями измерения, начальными погрешностями станка и наличием неконтролируемых возмущающих воздействий.
Для разработки систем автоматического управления с наилучшими показателями качества, проанализирован выбор обобщенного показателя качества управления точностью обработки на станках с ЧПУ. Проведенный анализ показал, что при программированной коррекции не учитывается изменение параметров технологической системы в процессе обработки.
Подробно описаны возможности современных систем числового программного управления металлорежущими станками, наиболее полно отвечающих потребностям пользователей и, за счет этого, достаточно широко используемых на производстве. Дан структурно-информационный анализ основных УЧПУ таких классов, как: NC (Numerical Control), SNC (Stored Numerical Control), DNC (Direct Numerical control), HNC (Handled Numerical Control), CNC (Computer Numerical), VNC (Voise Numerical Control), PCNC (Personal Computer Numerical Control). Также приведены положительные тенденции и недостатки использования данных систем.
Для создания программного продукта были сформулированы следующие задачи диссертационной работы:
-составить линейную модель механизма подачи металлорежущих станков и исследовать полученную модель на устойчивость;
-составить модель механизма подачи с переменными параметрами жесткости и исследовать устойчивость полученной модели;
-разработать на основе полученных моделей способ управления уровнем параметрических колебаний при резании;
-провести анализ компонент необходимых для управления параметрическими колебаниями и разработать необходимое программное обеспечение; -составить на базе разработанного способа управления уровнем параметрических колебаний при резаййи специализированное программное обеспечение для станков открытой СЧПУ;
-оценить'тсхцико-'экономическую эффективность разработанного способа и
созданного на его базе программного обеспечения.
Рассмотрена причина возникновения параметрических колебаний при резании и дана постановка задачи исследования.
Во втором разделе представлена динамическая модель механизма подачи металлорежущего станка в линейном представлении. Сформулированы основные допущения и базовые принципы построения, используемые при составлении модели. Предложенные допущения и упрощения сделаны на основании существующего опыта построения таких моделей.
В качестве объекта исследований рассматривается механизм подачи металлорежущего станка, который состоит из электродвигателя, винтовой передачи качения и стола или суппорта, которые перемещаются по направляющим (рис.1). Электродвигатель обеспечивает вращение, а винтовая передача преобразует это вращательное движение в поступательное движение исполнительного механизма. Сложность данной модели в большей степени определяется ее положением в прямоугольной системе координат, которое определяется тремя линейными координатами и тремя углами поворота относительно координатных осей. Однако такую систему можно идеализировать и считать имеющей только две поступательные степени свободы по осям х и у, причем упругими элементами, удерживающими ползун от смещения по этим осям,
являются соответственно С1 - осевая жесткость винта и С2 - жесткость привода.
Рис. 1. Механизм подачи металлорежущего станка.
Шариковый винт, используемый в рассматриваемой системе, удобно интерпретировать на плоскости как клиновой механизм, перемещающийся по направляющим качения (рис.2), причем масса винта и приведенная к нему масса ротора приводного двигателя являются сосредоточенными и связаны с невесомым
Тогда, если учесть, что механизму подачи сообщается движение силой Р, через линейную жесткость, являющуюся функцией процессов в двигателе, динамическая модель может быть представлена двухмассовой системой, показанной на рисунке 3. Силой, препятствующей движению, является сила трения К
Сделанные допущения существенно упрощают последующее составление уравнений динамики сложных механических систем и наиболее адекватно описывают динамические процессы в механизмах подачи металлорежущих станков.
I
I
Рис.3. Динамическая модель.
Для составления дифференциальных уравнений, описывающих движения полученной динамической модели, пользуемся известным из теоретической механики способом, основанным на применении уравнений Лагранжа, которые для рассматриваемого случая свободных колебаний имеют вид / ~ ^
т-,
X, +
+ С,
+ Л,х,
щх2 +
т-,
хх +
+ С](х1 -Х^Ср^^Ср + С^ =Р
Полученная система уравнений исследуется на устойчивость. Для того чтобы движение рассматриваемой системы было устойчивым, т.е. происходило с постоянной затратой механической энергии, идущей на преодоление сопротивления ее движения, необходимо, чтобы вещественная часть корней характеристического уравнения
С ... п Л
т1 ■ т2
т2 • Я2 + т{ • уI, +
т,
Ъг9
а3 +
+
т2 -с2 +т1 ■с1 -т2 - с, •tg ф + -
Ч2<Р
■аг +
+ {Я\ -с2 +Я2 - с, ■с, • tg2(p)• а + сх-с2= О была отрицательна, т.е. решение было затухающим. Необходимые и достаточные условия для этого случая определяются критерием Раусса-Гурвица, согласно
которому характеристическое уравнение будет иметь отрицательные вещественные части, если выполняется условие
(/-2т2Л1А2сг -от^с, -т^^ -т^Л^с, -2т,т2Л1с2(Л1 -Я1))с^1(р +
т,
+ {lml^clc1 + тг^с\ + ^Х7с2 - m2J^c, + т^с] + Im^^cl + AfA^c, - тгЯ^с1с2)
+ (2Л,с2 4 ' +mlXi^cltg,q> + m11Xil1cl + т2^Х2с2 + 2т1т2Л1Л2с1с2 +
tg Ч>
+ т1т2Я^с2 + mlA\X2c2 +m?djc,c2 -3т\^схсг -2m\AiX1cl - 2mtm2^c^ - т2^Я2с1 + + mi^A11ci + т?Л,Л2с? -т^Л^с* -2т,т2/^с,с2 -2т2Л,Л2с,с2 > О При проектировании системы и выборе винтовой передачи надо выполнить это условие.
Условие устойчивости получено, для того чтобы можно было найти массы перемещаемых частей, жесткость и демпфирование. Выбор этих параметров может быть выполнен с помощью программы направленного перебора, которая приведена в приложении 1.
Также во втором разделе находится жесткость механизма подачи, которая для шариковой винтовой пары складывается из трех составляющих:
жесткости опор винта Сп, осевой жесткости винта на растяжение (или сжатие) Св и жесткости от контактной деформации в соединении винт - гайки Ск :
С, С„ св ск
Для расчета жесткости подшипниковых опор и жесткости, вследствие контактной деформации тел качения, шариковой винтовой пары, используются методы разработанные в ЭНИМСе. Согласно, этих методов:
с =z-cx • S^2 • k
п 8 п Е
где: Z - число шариков в подшипнике;
Сs - коэффициент, учитывающий механические свойства
материала деталей подшипника и соотношение кривизны дорожек
качения и кривизны шарика;
Sт - упругое сближение колец подшипников; к£ - коэффициент погрешности изготовления.
Рнат , с —-z
конт j ^ расч
где й?) - диаметр шарика; Рнат - предварительный натяг, который можно принять равным половине максимально допустимой силы натяга, которая приближенно определяется выражением Рдоп — ; z'pac - расчетное число шариков в гайке, которое при наличии предварительного натяга, соответствующего нормальной силе на один шарик равно Q,lzpa6,
л Л раб
шариков в одном витке гайки, определяемое в зависимости от параметров передачи.
Осевая жесткость винта определяется выражением:
па!
с
4 (1-х)
где (Iкв - рабочий диаметр винта; Е - модуль упругости материала винта; / -
длина винта от середины гайки до начала движения; I — X = Ь - наибольшая длина винта от середины опоры до середины гайки, которая изменяется в процессе перемещения гайки по винту.
В третьем разделе диссертационной работы подробно рассмотрены вопросы, сформулированы основные допущения, получены расчетные зависимости и алгоритмы для управления уровнем параметрических колебаний при резании. Выявлено, что параметрические колебания зависят от составляющей
силы резания Рх, которая, в свою очередь, является функцией скорости подачи
Vчто создает предпосылки, для минимизации амплитуды параметрических
колебаний управляя скоростью подачи.
Рассмотрена модель механизма подачи с переменным параметром жесткости. Жесткость \ динамической системы изменяется вследствие изменения
• Р,
координаты движения, так как ] =-, где сила резания является функцией
X
режимов резания: Рх=Ср-Т4 • V? • {НВ)С = С ■ V?
где: Ср, В, ,Ц/, С, - коэффициенты, определяемые конкретными
условиями обработки; Т - глубина резания;
Ух - скорость подачи;
(НВ)- твердость обрабатываемого материала.
Если считать, что Т и НВ в процессе обработки не меняются, то можно записать:
т
Тогда у =-, что создает предпосылки изменения силы резания, за счет
X
режимов, пропорционально изменению координаты движения для стабилизации значения жесткости, а значит и минимизации параметрических колебаний.
Механизм подачи металлорежущего станка представляет собой систему с сосредоточенными параметрами, которая состоит из электродвигателя, винтовой передачи качения, стола или суппорта, перемещающегося по направляющим (рис.4) и рассматривается как одномассовая. Поэтому уравнение движения, согласно теории механики (уравнения движения Лагранжа), такого механизма имеет вид:
ш1 л
где Ш - масса перемещаемых частей; Я - коэффициент демпфирования; /(/) -осевая жесткость винтовой передачи, определяемая выражением:
г г
———-, где £ - модуль упругости материала винта; г - площадь
поперечного сечения винта; X - длина рабочего хода винта.
м-
Рис 4. Механизм подачи металлорежущего станка с винтовой передачей.
Данное уравнение решается только численно, по причине того, что один из параметров уравнения (жесткость) также как и переменная зависит от времени. Для решения этого уравнения рассмотрен численный метод на основе схемы Рунге-Кутта.
Так как данный метод является одношаговым (т.е. текущее значение функции вычисляется на основе только значения, полученного на предыдущем шаге) и позволяет решать только уравнения представленные в форме Коши, то необходимо последнее уравнение представить в данной форме. Для этого преобразуем это уравнения 2-го порядка к системе уравнений 1-го порядка:
с!х
ш т т ть-УЛ
Фактически исходное уравнение и, соответственно, полученная система имеет два параметра, вторым является скорость подачи, но так как она не зависит от времени явно, то она не рассматривается в данном случае как параметр, вследствие чего отпадает необходимость в третьем уравнении для данной системы.
Для полученной системы схема Рунге-Кутта будет иметь вид:
*,+1 = х,+ + 2 к1 + 2 к2 +к3\ о
+-(/0+2/1+2/2+/3> о
/ = 0,1,...,
K=f
кг=/
k0 =At„x„z,\
h k0 10л t,+-,x,+—,z-1-— 2 ' 2 ' 2r
' h /,
V 2 ' 2 ' 2,
=/(', +Л,*, +k2,z, +l2),
где: y(t,x,z)= — Px(v,)-
l0 =44t,,x,,zl\ h k0 /0Л ' 2 ' 2 ' 2 у
, / h Ь h
1Ъ =y4ft +h,xt +k2,z,
m
*(f)~ 1
m L-VJ
x{t\ f(t,x,z)=2_
Коррекция скорости подачи, а, следовательно, и минимизация параметрических колебаний происходит следующим образом: если текущее значение функции
Х2 .рассчитанное методом Рунге - Кутта, становится больше значения функции на
предыдущем шаге Х[, то вычисляется разность между этими значениями и происходит понижение скорости подачи на столько пунктов; в случае, если значение Х2 много меньше X;, происходит обратный процесс и скорость подачи увеличивается.
Погрешность на каждом шаге интегрирования по этому методу имеет четвертый порядок точности.
Поскольку движение, описанной выше модели механизма подачи с переменным параметром жесткости, представляет собой параметрические колебания, то дальнейшая цель работы заключается в определении условий устойчивости этой модели.
Для определения этого условия рассматривается критерий абсолютной устойчивости В.М. Попова. Суть критерия состоит в следующем: для абсолютной устойчивости системы с нелинейностью в угле \т", и устойчивой линейной
частью с АФЧХ W1' достаточно, чтобы существовало такое число Cf , при котором для всех О) > 0 выполнялось бы условие:
U {o))-q-6)-V (й>)+—>0
к - г
Условие устойчивости линейной части системы было получено в разделе 2, поэтому остается определить АФЧХ линейной части и число а ,
удовлетворяющее данному условию критерия. Так как передаточная функция является характеристикой системы, представляющая собой отношение выходной координаты к входной (или внешнему воздействию), записанной в операторной форме, то для линейной части системы она имеет вид:
\ г-со2 асо W(i а>) = --с^-:-— - --^-:-гг • i ■
(г - со2 )2 + (асо)2 (г - со2 J + {асо)2
ЕР
Здесь Г ---постоянный множитель линейной характеристики II = Г8,
тЬ
которая вместе с линейной характеристикой С/ = кв (где к '
ЕР
Мь-Ул)
образуют угол, внутри которого целиком расположена характеристика нелинейной
ЕР
части и = (р(е) =-£ (е = Х0 - X и х0 (/) = 0) (рис-5);
т(Ь -
я /
а = — . При Г < К получаем условие, которому должна удовлетворять
т
нелинейная характеристика:
ЕР^<р(е)^ ЕР г --< 4 <-= к
тЬ е т(Ь - У/0)
/
I
1Ш
рис 5. Нелинейная система с нелинейностью в угле [г;к]. Для практических расчетов вопрос об абсолютной устойчивости нелинейной системы в угле [г;к] удобно свести к ее абсолютной устойчивости в угле [0;к-г]
(рис. 6). В этом случае нелинейный элемент с характеристикой II — (р^Е) в угле [г;к] можно представить как последовательное соединение нелинейного элемента с характеристикой II х = (рх (б-) = —Г£ в угле [0;к-г] и линейного усилительного звена £/ = Г Б с передаточной функцией IV (/<У) = Г .
V
ш
Рис. 6. Представление системы с нелинейностью в угле [0;к-г]
Также для практических расчетов удобно дать геометрическое толкование частотного критерия абсолютной устойчивости Попова. Для этого
вводится видоизмененная АФЧХ линейной части системы ¡V (т), которая
связана с действительной АФЧХ линейной части системы Щш)
зависимостями: II (й>) = II{(О), V (®) = 0)У(й)), и, для нашего случая, будет иметь вид:
IV '(¿ а) =
г - со'
асо
(г - о)2У + (асо)2 (г - со2У + (асо)2 Тогда критерий Попова перепишется так:
к-г
и в координатах ([/ (су); V (©)) представляет собой уравнение прямой линии с угловым коэффициентом —, пересекающей ось 17 (й>)
ч
/ 1
в точке
1
к-г
;/0
, а знак соответствует случаю, когда кривая IV (/<у) лежит
V
в той части плоскости, которая включает начало координат.
Таким образом, для абсолютной устойчивости равновесия рассматриваемой системы достаточно, чтобы на плоскости видоизмененной
частотной характеристики Ж (}(о) линейной части системы можно было
1
провести через точку
к —г
;/О
прямую такую, чтобы характеристика
Ж (¡0)) целиком располагалась справа от нее. На рисунке 7 показано требуемое
расположение нелинейной характеристики Ж (/¿у) для абсолютной устойчивости системы.
/ 7 / 1 Г (®)
./ТУч у \ у к'гV \ \ \ \
Рис. 7 Расположение видоизмененной АФЧХ линейной части системы, устойчивой в угле [0, к-г] и прямая Попова.
Для определения углового коэффициента — находятся точки
ч
2 = X + /у , в которых существует производная функции Ж (х + /у) и, соответственно, существует касательная. Затем находится угловой коэффициент касательной, проходящей через полученную точку (х0' у0) (данная точка выбирается из найденных, как минимальная отрицательная по у и
соответствующий ей отрицательный х) и точку
1 Уо
' 1
к-г
;/0
q -+ *0
к-г
Подставив полученные данные в критерий Попова и, учитывая, что к — V > 0 и
еоИ
У1 =-, получаем систему, состоящую из неравенств:
2 ТС
у0т2Ь Ыйсоь -2лу0т2Ь2а>'{ + Ш0{еРЯх0 + ЬЛ2у0 -тЬЛ-+ 2 лЬ (2у0тЕР + тЬ2 Л- Ь2 Л2 у0}о2 -2лу0Е2Р2 > 0;
п 1x1 ■
0 < о <
ht 0
Для решения первого неравенства используются численный метод нахождения корней полинома с помощью Mathcada и метод интервалов, рассмотренный подробно в данной работе.
В результате получаем условие устойчивости параметрической системы, с помощью которого можно определить области устойчивости этой системы и, следовательно, определить такие параметры системы как: частота вращения главного движения и движения подачи.
В четвертом разделе работы рассмотрен программный продукт, предназначенный для повышения точности позиционирования механизма подачи и, в конечном счете, точности обработки заготовки на металлорежущих станках. Дано общее описание и структурная схема программного комплекса, состоящего из трех программ. Программа исследования устойчивости линейной модели и программа минимизации параметрических колебаний написаны с использованием интегрированной среды быстрой разработки Delphi, в которой в качестве языка программирования используется Object Pascal. Программа определения частотной облас1и устойчивости параметрических колебаний написана на языке C++Builder и строится по блочно-модульному принципу. Дано подробное описание всех программ. Приведены тезаурусы расчетов. В соответствии с полученными математическими зависимостями разработаны алгоритмы работы программ в виде диаграмм, логических схем и формульных выражений Для удобства пользователя, по рациональному использованию данных программ, представлены интерфейсы ввода исходных данных и вывода полученных результатов.
Предложенный программный комплекс позволяет определять основные
параметры динамических процессов в механизмах подачи металлорежущих станков; минимизировать параметрические колебания, корректируя скорость подачи; используя разработанную модель механизма подачи металлорежущих станков с переменным параметром жесткости, определяется условие устойчивости данной системы.
Результаты данной работы позволяют: 1) При проектировании механизмов подач использовать значения массы перемещаемых частей, жесткости системы и демпфирования, полученные из условия устойчивости линейной модели, для получения рациональной, в отношении динамических характеристик, конструкции;
щи.......
2) Достаточно быстро провести расчет динамических процессов (определение частот собственных колебаний системы);
Вмисти'итп!» I Рачли«1меш.<»в1 Г|*>»« пиянию* | '
О < ¿у <104,67
3) Выявить качественную картину динамических процессов в механизмах подачи, оценить влияние конструктивных различных элементов на динамические характеристики;
4) Корректируя значения скорости подачи, исключить резонансные режимы, которые негативно влияют на работу динамической системы;
5)Проектировать механизмы с такими характеристиками, которые обеспечивают безотказную работу в течение требуемого периода времени.
Используя программный комплекс, конструктор получает возможность
проектировать механизмы подачи металлорежущих станков надежно и точно работающие в условиях динамических нагрузок.
Общие выводы.
Общие результаты исследований, проведенных в данной работе, следующие:
1. Разработана линейная модель механизма подачи металлорежущего станка, позволяющая оценить его устойчивость и выбрать параметры, обеспечивающие это условие.
2. Показано, что параметрические колебания, возникающие при работе механизма подачи, являются функцией скорости подачи.
3. Найдено, что возмущающая сила, действующая на механизм подачи, также является функцией скорости движения механизма подачи, что создает предпосылки минимизации параметрических колебаний для этого механизма.
4. Построена модель возникновения параметрических колебаний, появляющихся при работе механизма подачи, являющаяся основой для определения величины скорости подачи, определяющей минимум амплитуды параметрических колебаний.
5. Построена модель устойчивости параметрической системы механизма подачи, позволяющая определить границы частотной области, внутри которой параметрические колебания минимальны.
6. На основании теоретических зависимостей и алгоритмов разработано программное и информационное обеспечение, совместимое с любой платформой СЧПУ, позволяющее:
6.1 Выбрать жесткостные параметры и параметры демпфирования привода подачи, обеспечивающие устойчивость его работы.
6.2 .Выбрать скорость подачи, обеспечивающую минимум амплитуды параметрических колебаний.
6.3 .Определить частотную область минимума амплитуды параметрических колебаний механизма подачи.
7. Проведено моделирование работы механизма подачи, показавшее, что расчетные скорости подачи и диапазоны скоростей находятся в области эксплуатационных значений для станков с ЧПУ.
Основные результаты диссертации опубликованы в следующих
* работах:
1. Митина Т.В. Модель механизма подачи металлорежущих станков как линейной системы и ее устойчивость. Межвузовский сборник научных трудов, выпуск 4, М.,2001. С. 139-143
2. Аршанский М.М., Митина Т.В. Аналитическое решение для
линейной модели механизма подачи металлорежущих станков. Межвузовский сборник научных трудов, выпуск 5, М.,2001. С.129-134
3. Аршанский М.М., Митина Т.В., Тарасов А.Б. Модель управления параметрическими колебаниями при резании. Сборник трудов молодых ученых и специалистов МГАПИ, №5, часть 1,М., 2003. С. 96-100
4. Аршанский М.М., Митина Т.В., Зеленцов А.Е. Устойчивость механизма подачи металлорежущих станков как параметрической системы и определение частотной области скорости подачи. Сборник трудов молодых ученых и специалистов МГАПИ, №6, часть 1, М., 2004. С. 82-86
5. Митина Т.В., Зеленцов А.Е. Моделирование параметрических колебаний с возможностью коррекции скорости подачи. Сборник трудов молодых ученых и специалистов МГАПИ, №6, часть 1, М., 2004. С. 79-82
6. Тезисы доклада на тему «Моделирование параметрических колебаний привода подачи станка», представленные на 1-ой Всероссийской научной конференции студентов и аспирантов с международным участием «Робототехника, мехатроника и интеллектуальные системы», прошедшей в 2005 году в Таганроге.
17
<*
19
»25916
РЫБ Русский фонд
2006-4 28501
Оглавление автор диссертации — кандидата технических наук Митина, Татьяна Владимировна
Введение.
1. Анализ методов управления точностью обработки на металлорежущих станках с ЧПУ посредством программной коррекции их погрешностей.
1.1. Особенности металлорежущих станков с ЧПУ как объектов управления.
1.2. Выбор обобщенного показателя качества управления точностью обработки на станках с ЧПУ.
1.3. Анализ методов управления металлорежущих станков.
1.3.1. Современные тенденции развития систем ЧПУ.
1.3.2. Системы ЧПУ Sinumerik фирмы Siemens AG.
1.3.3. Системы ЧПУ Andronik фирмы Andron.
1.3.4. Архитектура систем ЧПУ типа PCNC.
1.4. Постановка задачи исследования.
2. Исследование устойчивости механизма подачи металлорежущих станков.
2.1.1. Линейная модель механизма подачи.
2.1.2. Осевая жесткость механизма подачи.
2.2. Исследование устойчивости линейной модели.
2.3. Выводы.
3. Теоретические основы управления уровнем параметрических колебаний при резании.
3.1. Модель механизма подачи с переменным параметром жесткости.
3.2. Условие минимизации параметрических колебаний.
3.3. Модель устойчивости параметрической системы.
3.4. Аналитическое решение условия устойчивости.
3.5.Вывод ы.
4. Описание программного продукта.
4.1. Общая структурная схема программного продукта.
4.2. Программа исследования устойчивости линейной модели.
4.2.1. Структура программного обеспечения задачи исследования устойчивости линейной модели.
4.2.2. Тезаурус задачи исследования устойчивости линейной модели.
4.2.3. Алгоритм исследования устойчивости линейной модели.
4.2.4. Интерфейс входа и выхода программного обеспечения задачи исследования устойчивости линейной модели.
4.3. Программа минимизации параметрических колебаний.
4.3.1. Структура программного обеспечения задачи минимизации параметрических колебаний.
4.3.2. Тезаурус задачи минимизации параметрических колебаний.
4.3.3. Алгоритм минимизации параметрических колебаний.
4.3.4. Интерфейс входа и выхода программного обеспечения задачи минимизации параметрических колебаний.
4.4. Программа определения частотной области устойчивости параметрических колебаний.
4.4.1. Структура программного обеспечения задачи определения частотной области устойчивости параметрических колебаний.
4.4.2. Тезаурус задачи определения частотной области устойчивости параметрических колебаний.
4.4.3. Алгоритм определения частотной области устойчивости параметрических колебаний.
4.4.4. Результаты исследования задачи определения частотной области параметрических колебаний.
4.5.Вывод ы.
Введение 2005 год, диссертация по информатике, вычислительной технике и управлению, Митина, Татьяна Владимировна
Мехатроника определяется как область науки и техники, занимающаяся проектированием, созданием и эксплуатацией технологических машин с компьютерным управлением их движением.
Мехатроника посвящена анализу и выбору законов исполнительных движений машинных агрегатов с компьютерным управлением. При этом исполнительные движения таких мехатронных объектов, как промышленные роботы, быстроходные подводные подвижные объекты, летательные аппараты, дистанционно управляемый микрохирургический инструмент и т.д., являются, как правило, нелинейными, а достижение необходимой точности исполнительных движений осуществляется путем использования высокоэффективных микропроцессорных систем управления.
Таким образом, можно говорить, что система управления движением многостепенного механического объекта становится его неотъемлемой частью, обеспечивающей достижение целей совершенствования технологий или создания техники новых поколений, а проблемы построения таких систем можно рассматривать в терминах задач управления мехатронными системами.
Универсализация решения таких задач требует развития проблематики, связанной с разработкой и совершенствованием методов и средств автоматического управления нелинейными динамическими объектами с априорно неопределенным и (или) сложным описанием, неполными измерениями, быстро и в широких пределах изменяющимися параметрами, свойствами и внешними условиями функционирования.
Металлорежущий станок, станочная система как механообрабатывающее производство являются классическим, ярким представителем технологических машин и систем, которые в своем развитии становятся мехатронными. Управляемая механика (движение исполнительных органов машин, процесс механообработки) сочетается с электронными устройствами управления, оптимальное управление технологическим процессом формируется компьютерными системами.
Станочная система по своим свойствам относится к сложным системам: большой объем обрабатываемой информации, интенсивность ее потоков, неформализованное^ этапов проектирования из-за отсутствия моделей функционирования, стахостичность, не стационарность технологических процессов как объектов управления, необходимость самоорганизации системы управления в условиях большой априорной неопределенности и т.д.
Компьютерное управление технологическим движением сегодня (в условиях гибкого автоматизированного производства, безлюдной технологии) означает, прежде всего, автоматическое управление технологическим процессом, в том числе формообразующим движением органов станка, формированием температурно-силового режима обработки резанием, управлением технологической системой резания.
Современные станки с ЧПУ имеют широкие технологические возможности и высокую степень автоматизации. Однако их эффективное использование затрудняется рядом специфических особенностей. К ним относятся: сложность самих станков, при работе которых взаимодействуют механические, гидравлические, электрические и электронные системы и элементы; большое разнообразие режимов работы, поскольку обрабатываются детали обширной номенклатуры; влияние системы управления на параметры станка и др.
Отечественный и зарубежный опыт производства и эксплуатации станков с ЧПУ показывает, что одной из главных проблем в этих станках является получение заданной точности обработки и высокой надежности. При этом особенно важно не только получение высоких начальных характеристик станков, но и сохранение их в процессе длительной эксплуатации. В этой связи важным вопросом является обеспечение технологической надежности станков с
ЧПУ, под которой понимается их свойство выполнять обусловленные назначением технологические процессы, сохраняя показатели ' качества обработки в заданных пределах в течение требуемого промежутка времени при заданной производительности.
Обеспечение требуемого уровня технологической надежности станка, особенно оснащенного системой ЧПУ, является чрезвычайно сложной задачей. Сложность заключается в том, что еще на ранних стадиях эксплуатации или при наличии опытного образца, необходимо ответить на вопрос о том, как будут изменяться характеристики станка в процессе его длительной эксплуатации, каков запас надежности у нового станка по его основным выходным параметрам. Еще труднее ответить на эти вопросы при проектировании станка, когда все его основные характеристики должны быть заранее рассчитаны или установлены, а их изменение в процессе эксплуатации - спрогнозировано.
Решить, поставленную задачу, можно лишь опираясь на модель, описывающую процессы изменения параметров станка во времени и учитывающую как функциональные связи, так и вероятностную картину явлений.
Современное автоматизированное производство, ориентированное на достижение высокой производительности обработки материалов и выпуск качественной продукции за счет снижения затрат на ее изготовление и совершенствования алгоритмов управления производственным процессом, нуждается в разработке и внедрении новых методов, позволяющих на уже существующем оборудовании получать при меньших затратах большее количество продукции, сохраняя при этом ее качество.
Анализ отечественного парка металлорежущих станков с числовым программным управлением (ЧПУ) показывает, что в настоящее время в эксплуатации находится еще большое количество устройств ЧПУ (УЧПУ) второго поколения. И повышение эффективности обработки на металлорежущих станках, оборудованных данными устройствами ЧПУ, за счет написания для них модернизированного программного обеспечения на данном этапе развития систем программного управления станками является весьма актуальным.
Для написания программного продукта необходимо разработать математическую модель системы. Именно математическая модель является тем инструментом, с помощью которого можно получить необходимую информацию для принятия технологического решения. Решение многих научных и технических задач значительно упрощается при использовании различных моделей. Многообразие объектов, целей и задач моделирования породило множество различных типов моделей. Математическое моделирование является одним из наиболее распространенных методов, которые используются при создании современных сложных САПР [40]. Основой математического моделирования является процесс установления соответствия между реальным объектом и математической моделью. Выбор математического аппарата для построения модели зависит как от природы и свойств моделируемого объекта, так и от характера решаемой задачи.
По мере роста требований, предъявляемых к точности и производительности станков, а, следовательно, к жесткости элементов, скорости рабочих перемещений, уровню колебаний, величинам динамических сил в переходных режимах, развиваются, совершенствуются и усложняются расчетные методики, используемые при проектировании и, следовательно, усложняется и применяемый для их построения математический аппарат.
Математические модели достаточно адекватно отражают реальные процессы работы механизмов, а также их подсистем и узлов в различных условиях эксплуатации. Эти модели используются для изучения тех или иных эксплуатационных параметров существующих или вновь создаваемых технических систем, что дает разработчикам ряд существенных преимуществ по сравнению с другими методами исследований [29]:
• используемый формально-логический аппарат дает широкие возможности количественного и качественного анализа моделей с помощью современных математических методов;
• универсальность математического языка позволяет использовать одни и те же модели для исследований физически различных систем;
• возможность получать результаты, относящиеся сразу к целому множеству возможных состояний исследуемой системы;
• сокращение времени и стоимости исследований за счет использования алгоритмов численного анализа и вычислительной техники в процессе моделирования.
По отношению к другим методам научных исследований, математическое моделирование делается более приоритетным за счет использования мощного математического аппарата и современных возможностей вычислительной техники. Малые сроки и сравнительно небольшие капиталовложения, необходимые для проведения таких исследований, интересуют руководителей и проектировщиков современных машиностроительных предприятий, что и приводит к успешным разработкам в области программно-аппаратных систем математического моделирования для расчетов и испытаний механических систем. Внедрение подобных систем позволяет неуклонно совершенствовать качество и потребительские свойства выпускаемой продукции, повышать рентабельность и неизбежно снижать ее себестоимость, проводить успешную маркетинговую политику, гибко и своевременно реагировать на изменение спроса и предложения со стороны клиентов в условиях острой конкурентной борьбы на рынках сбыта.
В этой связи, научная новизна работы заключается в разработке модели параметрических колебаний механизма подачи металлорежущих станков и разработки методов их минимизации на основе коррекции закона движения подачи в управляющей программе.
Практическая ценность работы заключается в повышении точности позиционирования механизма подачи и, в конечном итоге, точности обработки заготовки на металлорежущих станках с ЧПУ.
Библиография Митина, Татьяна Владимировна, диссертация по теме Автоматизация и управление технологическими процессами и производствами (по отраслям)
1. Аблязов В.И., Ивашкина Е.П. Автоматизация этапов проектированиясистемного матобеспечения в устройстве ЧПУ типа CNC. В кн. «Станки спрограммным управлением в машиностроении и приборостроении».Саратов, 1982, с. 69-71.
2. Аверьянов О.И. Развитие модульного принципа построения многооперационных станков с ЧПУ для обработки корпусных деталей.-М.: НИИМАШб 1981, 55с.
3. Автоматизация технологической подготовки производства для обработки корпусных деталей на многоцелевых станках с ЧПУ на участках типаАСК на их основе. Метод. Рекомендации. М.: НИИМАШ. 1984. 95 с.
4. Адаптивное управление станками / Б.М. Базров, B.C. Балакшин, И.М. Баранчукова и др.; Под ред. Б.С. Балакшина. М.: Машиностроение, 1973,688с.
5. Адаптивное управление станками. М.: НИИМАШ Серия 1 «Станкостроение», 1973, 227 с.
6. Армирего И.Д., Браун Р.Х. Обработка металлов резанием. М.: Машиностроение, 1977, 325 с.
7. Архангельский А.Я. C++Builder 6. Справочное пособие. М., ЗАО «Издательство БИИОМ», 2002.
8. Аршанский М.М., Щербаков В.П. Вибродиагностика и управление точностью обработки на металлорежуш;их станках. М.: Машиностроение,1987, 136 с.
9. Аршанский М.М., Козлов В.И., Остаев Е.А. Управление точностью токарных и шлифовальных станков с ЧПУ «Диагностика станочныхсистем гибких автоматизированных производств». Нижний Новгород,1992, с. 7
10. Аршанский М.М., Козлов В.И., Остаев Е.А. Повышение технологической надежности станков с ЧПУ «Надежность технологическогооборудования, качество поверхности, трение и износ». Хабаровск, 1991,54 с.
11. Аршанский М.М., Козлов В.И., Остаев Е.А. Устройство для повышения технологической надежности токарных и шлифовальных станков с ЧПУ«проблемы создания и эксплуатации технологического оборудования вгибких производственных системах». Хабаровск, 1992, с. 9
12. Аршанский М.М., Козлов В.И., Остаев Е.А. Повышение надежности станков с ЧПУ и станочных систем. «Методы и средства оценкиповышения надежности приборов устройств и систем». Пенза, 1992, с.127.
13. Аршанский М.М., Щербаков В.П. «Вибродиагностика и управление точностью обработки на металлорежущих станках». М.: машиностроение,1987, 136 с.
14. Базров Б.М. Технологические основы проектирования самоподнастраивающихся станков. М.: машиностроение, 1978, 215 с.
15. Базров Б.М. Выбор способа адаптивного управления механической обработки деталей. «Станки и инструменты», 1974, № 8, с. 8-12.
16. Базров Б.М., Горюшкин В.И. Управление автоколебаниями при токарной обработке с помош;ью самоприспасабливаюп.;ихся систем управления.«Станки и инструменты», 1977, №1.
17. Байков В.Д., Вашкевич Н. Решение задач интерполяции в системах ЧПУ. СТИН, 1981, № 6, с. 16-17.2О.Балакшин Б.С. Новые принципы наладки подладки технологическихпроцессов. «Вестник машиностроения», 1957, № 1, с. 18.
18. Балашов Е.П., Пузанков Д.В. Микропроцессоры и микропроцессорные системы. М.: Радио и Связь, 1981, 328 с.
19. Баранов СИ. Синтез микропрограммных автоматов. Л.: Энергия, 1979, 232 с.
20. Бармин Б.Л. Вибрации и режимы резания. М.: Машиностроение, 1972.
21. Баталин А.А. и др. Основные принципы построения системы диагностирования станков с ЧПУ/ А.А. Баталин, А.И. Камышев, Б.И.Черпаков// «Станки и инструменты», 1980, JNb5, 5.
22. Бейзельман Р.Д., Цьшкин Б.В., Перель Л.Я. Подшипники качения. М.: Машиностроение, 1967.
23. Бентли Дж. Жемчужины программирования. 2-ое издание. - СПб.: Питер, 2002.- 272 стр.,илл.
24. Беспалов Б.Л. Технология машиностроения. М.: Машиностроение, 1992, 528 с, ил.
25. Блехман И.И. Вибрации в технике. Т. 2. «Колебания нелинейных механических систем». М.: Машиностроение, 1979.
26. БЛОХИН В.В. Математическое моделирование процессов систем и комплексов механической обработки:-Учебное пособие/МГАПИ - М.,1995.
27. Бойко СП., Радионов Ю.Н. Организация программируемой электроавтоматики станков с ЧПУ класса CNC. В кн. « Оборудование сЧПУ», 1982, № 1 , с. 1-5.
28. Борисов Д.С «Динамика установившихся режимов шаговых систем программного управления». Диссертация, Москва, ИмаШ, 1962.
29. Вайзбург Б.В., Медведев А.А., Бакумский A.M. и др. Автоматизация процессов подготовки авиационного производства на базе ЭВМ Иоборудования с ЧПУ. М.: Машиностроение, 1985, 216 с.109
30. Вальков В.Н. Микроэлектронные унравляющие вычислительные комплексы. Л.: Машиностроение, 200 с.
31. Вейц В.Л. Динамика машинных агрегатов. М.: Машиностроение, 1968.
32. Власов А.Ф. Техника безопасности при обработке металлов резанием. М.: Машиностроение, 1980, 80 с, ил.Зб.Волчкевич Л.Ч. Надежность автоматических линий. М.: Машиностроение,1969, 308 с.
33. Воронов А.А., Титов В.К., Новогранов Б.Н. Основы теории автоматического регулирования и управления. Учебное пособие длявузов. М., «Высшая школа», 1977.
34. Врагов Ю.Д. Анализ компоновок металлорежущих станков. М.: Машиностроение, 1978, 207 с.
35. Гжиров Р.И., Серебреницкий П.П. Программирование обработки на станках с ЧПУ. Л.: Машиностроение, 1990.
36. Гонихин О.Д., Мишутин В.В. Интегрированная среда автоматизированного проектирования. Межвуз. сб. науч. трудов«Математическое моделирование нестационарных процессов иавтоматизированные системы». -М., Моск. Инст. Приборостр., 1992.
37. Грановский Г.И., Грановский в.Г. Резание металлов. М.: Высш. шк., 1985, 304 с.
38. Грицай А.С., Коровин В.Г. Тенденции развития систем числового программного управления класса CNC. Известия ЛЭИ, 1980, № 268, с. 9-12.
39. Детали и механизмы металлорежуш,их станков/Под ред. Д.Н. Решетова. М.: Машиностроение, 1972, Т.2, 520 с.
40. Дьяконов В. Mathcad 2000: учебный курс- СПб.: Питер, 2001.592 стр.,илл.
41. Иванов Ю.В. Гибкая автоматизация производства РЭА с применением микропроцессоров и роботов. М.: Радио и Связь, 1987, 464 с, ил. М.:Машиностроение, 1970.
42. Каминская В.В. и др. Многокритериальная оптимизация компоновок станков/ В.В. Каминская, Л.А. Глазомицкий, А.Ю. Судникович// СТИН,1994, №10, 13-16.
43. Карпов Б. БЕЬРШ: специальный справочник.- СПб.: Питер, 2001. 688 стр.,илл.5О.Квантрани Т. Визуальное моделирование с помош;ью Rational Rose 2002 иUML.: пер. с англ. М.: Изд-ий дом "Вильяме", 2003, 192 стр., ил.
44. Кибиткин В.В. Особенности операционных систем микро- ЭВМ. Управляющие системы и машипы, № 1, с. 31-35.110
45. Клюев А.С. Автоматическое регулирование. М., Изд-во «Энергия», 1973, 392 с, ил.
46. Красилов А.А., Горельков А.Л., Одинцов А.В. Структура операционных систем комплекса ЭВМ управления станками. Управляющие системы имашины, 1981, JVo 4,с. 134-139.
47. Красниченко Л.В., Никулин Н.С. и др. Металлорежущие станки. М.: Мащиностроение, 1980, 500 с, ил.
48. Кудинов В.А. Динамика станков. М.: Машиностроение, 1967.
49. Левин А.И. Математическое моделирование в исследованиях и проектировании станков. М.: Машиностроение, 1978, 184 с.
50. Левит Г.А., Борисенко Г.А. Расчет и конструирование передач винт- гайка качения. Руководящие материалы ЭНИМС, Москва, 1964.
51. Михеев Ю.Е., Сосонкин В.Л. Системы автоматического унравления станками. М.: Машиностроение, 1978, 264 с.
52. Никитин А.И. Общее программное обеспечение систем реального времени. К.: Наукова думка, 1980, 121 с.
53. Норенков И.П. Системы автоматизированного проектирования. М.: Высшая школа, 1986, тт. 1-4.
54. Нортон Н. Справочное руководство по MS- DOS. М.: Радио и Связь. 1992, 336 с, ил.
55. Обработка материалов резанием. Справочник технолога. М.: Машиностроение, 1986, 365 с,ил.
56. Оптимальное унравление точностью обработки деталей в условиях АСУ/ В.И. Кантор, О.Н. Анисифиров, Г.Н. Алексеева и др. М.:Машиностроение, 1981, 256 с.
57. Пановко ЯТ. «Основы прикладной теории упругих колебаний». М.: Машиностроение, 1967.
58. Нодураев В.Н. Обработка резанием с вибрациями. М.: Машиностроение, 1970.
59. Нодураев В.Н. Автоматически регулируемые и комбинированные процессы резания. М.: Машиностроение, 1977.111
60. Прангишвили И.В. Микропроцессоры и микро- ЭВМ. М.: Энергия, 1979, 232 с.
61. Пратт Т. Языки программирования: разработка и реализация. М.: Мир, ф 1979,574 с.
62. Применение микропроцессорной техники. Труды международного научно- исследовательского института проблем управления. М., 1981,выпуск 1, с. 144.
63. Проников А.С. Металлорежущие станки и автоматы. М.: Машиностроение, 1981, 479 с , ил.
64. Проников А.С. Надежность машин. М.: Машиностроение, 1978, 592 с.
65. Проников А.С. Программный метод испытания металлорежуш:их станков. М.: Машиностроение, 1985, 288 с.
66. Пярнпуу А.А. Программирование на современных алгоритмических языках. М.: Наука, 1990, 384 с.
67. Райбман Н.С. Основы управления технологическими процессами. М.: Машиностроение, 1978, 119 с.
68. Рамбо Дж., Якобсон А., Буч Г. UML: специальный справочник.- СПб.: Питер, 2002.-656 стр.,илл.^ 81.Рамбо Дж., Якобсон А., Буч Г. Унифицированный процесс разработкипрограммного обеспечения.- СПб.: Питер, 2002.- 496 стр., илл.
69. Растригин Л.А. Современные принципы унравления сложными объектами. М.: Сов. Радио, 1980, 232 с.
70. Расчет и оценка ноказателей параметрической надежности технологического оборудования с ЧПУ: Методические рекомендации/А.С. Проников, B.C. Стародубов, Б.И. Рогов и др. М.: ВНИИМАШ, 1980,113 с.
71. Расчеты точности станков: Методические рекомендации / В.Т. Портман, В.Г. Шустер, Ю.К. Ребанс. М.: ЭНИМС, 1983, 82 с.
72. Решетов Д.Н., Портман В.Т. Точность металлорежупдих станков. М.: Машиностроение, 1986, 356 с.
73. Рубашкин Н.Б. Адаптивные системы взаимосвязанного управления электроприводами. Л.: Энергия, 1975, 160 с.
74. Рубашкин И.Б. Оптимизация металлообработки при прямом цифровом # управлении станками. Д.: Машиностроение, Ленинградское отделение,1980,144 с.
75. Сафраган Р.Э., Б. Евгеньев, А.Л. Дерябин и др. Автоматизированная подготовка программ для станков с ЧПУ. Справочник. Киев: Техника,1986, 191 с.
76. Слесарев М.Ю. «Мехатроника, основные понятия, современный и прогнозируемый уровень мехатронных систем». Энп;иклопедия«Машиностроение». Т. III -8.'^ 9О.Слесарев М.Ю. «Электронные и ионно- плазменные технологии. М.:Машиностроение, 2000, с. 714-730. 77. Сорокин Е.С. К теории внутреннего трения при колебаниях упругих ' ^ систем. М.: Госиздат., 1960, 131 с.112
78. Сосонкин В.Л. Микропроцессорные системы числового программного управления станками. М.: Машиностроение, 1985.
79. Сосонкин В.Л. Программное управление технологическим оборудованием. М.: Машиностроение, 1991.
80. Сосонкин В.Л. Персональный компьютер как архитектурный компонент «персональной системы управления» .СТИН. 1993. №5, с. 2- 7.
81. Сосонкин В.Л. Концепция систем ЧПУ на основе персонального компьютера. СТИП. 1990, № 11, с. 9- 14.
82. Сосонкин В.Л. Задачи числового программного управления и их архитектурная реализация в устройствах ЧПУ. СТИП. 1988, № 10, с. 39-41.
83. Справочник металлиста в 5- ти томах. М.: Машиностроение, 1977, тт. 1;3;4;5, 748 с, ил. ; т. 4, 720 с, ил.
84. Справочник технолога- машиностроителя. В 2-ух томах. М.: Машиностроение, 1985. Т. 1, 656 с, ил. Т.2, 496 с, ил.
85. Стародубов B.C., Рогов Б.И. Диагностика и компенсация погрешностей станков с ЧПУ как средство улучшения структуры их технологическогообслуживания и ремонта// Техническое обслуживание и ремонт станков сЧПУ: Материалы семинара. М.:МДПТП, 1981, 23-29.
86. Тимирязев В.Т. Управление точностью гибких технологических систем. М.: ППИМАШ, 1983, 64 с.
87. Трахтенгерц Э.А. Как работают операционные системы. М.: Наука, 1978, 192 с.
88. Трофимов А. CASE - технологии: практическая работа с Rational Rose - М.: ЗАО «Издательство БИПОМ», 2001. 272 стр., илл.
89. Турпаев А.И. Теория и расчет некоторых самотормозяп.;их механизмов с высоким коэффициентом полезного действия. АН СССР, Семинар поТММ, Т.XIX, вып. 73.
90. Турчак Л.И. Основы вычислительных методов. Учебное пособие. М.: Паука, 1987,320 стр.
91. Фигатнер A.M. Осевая жесткость шпиндельных узлов высокоточных металлорежуш;их станков. «Станки и инструменты», 1963, № 12.
92. Харизоменов И.В. Электрооборудование и электроавтоматика металлорежуш;их станков. М.: Машиностроение, 1975, 264 с.
93. Черных И.В. SIMULINK: среда создания инженерных приложений/ Под общ. ред. к.т.н. В.Г. Потемкина. - М: ДИАЛОГ - МИФИ, 2003. 496стр.ПО. Шоу А. Логическое проектирование операционных систем. М.: Мир,1981,360 с.113
94. Шурков В.Н. Основы автоматизации ироизводства и промышленные роботы. М.: Машиностроение, 1989, 240 с, ил.
95. Юсифов СИ. Особенности архитектуры и структуры микропроцессоров и микро- ЭВМ и их классификация. Управляющиесистемы и машины. 1981, № 6, с. 60-65.
96. Якобе Г.Ю.. Якоб Э., Кохан Д. Оптимизация резания /Пер. с нем. М.: Машиностроение, 1981. 279 с.
97. Яковлев В.А. Тенденции развития устройств управления следяш;ими приводами станков с ЧПУ. Станкостроение Литвы. 1982, т. ХШ, с. 129-137.
98. Doolan P."Computer Design of a Multipurpose Minimum Vibration Face Milling Cutter". Int. J. Mach. Tool Des. Res., 1976, p. 187.
99. Doolan P."Computer Design of a Minimum Vibration Face Milling Cutter". ASME Journal of Engineering for Industry, 1975, p. 925.
100. Hose T. "Study for Practical Application of Fluctuation Speed Cutting for Regenerative Chatter Control". Annals of CIRP, 1977, p. 175.
101. Inamura T. "Stability Analysis of Cutting under Varying Spindle Speed". Annals of CIRP, 1974, p. 119.
102. Kimura F. "A new method of NC inteфolation for machining the sculptured surface". Annals of CIRP, 1981, V. 30, № 1, pp. 369-372.
103. Matsushima K. "Development of intelligent machine tool". J. of the Faculty of Engineering, The University of Tokyo, Series B, 1980, v. 35, pp. 395-405.
104. Microsoft System Journal, Q&A. 1996. April. P.89-101.
105. Microsoft COM Specification, version 0,9, 10/24/95 (Avaiable from Microsoft FTP site).
106. OLE Automation Programming Reference, Microsoft Press,Redmond,WA, 1996.
107. Olbrich R. "Study of a Control System with Varying Spindle Speed in Face Milling". Proc. Of the 13* North American Manufacturing Res. Conf., 1985, p.567.
108. Optiz H. "Improvement of the Dynamic Stability of the Milling Process by Irregular Tooth Pinch". Proc. Adv. MTDR Conf. 1966, p. 213.
109. Sexton J. "A Stability Analysis of Single- point Machining with Varying Spindle Speed". Appl. Math. Modelling, 1997, p. 310.
110. Sexton J."The Stability of Machining with Continuously Varying Spindle Speed". Annals of CIRP, 1978, p. 321.
111. Sexton J."An Investigation of the Transient Effects During Variable Speed Cutting". J. Mech. Eng. Science, 1980, p. 107.
112. Slavicek J." The Effect of Irregular Tooth Pinch on Stability of Milling". Proc. Adv. MTDR Cont. № 6, 1965, p. 15.
113. Takemura T." Active Suppression of Chatter by Programmed Variation of Spindle Speed". Annals of CIRP, 1974, p. 121.
114. Tlusty J." Use of Special Milling Cutter against Chatter". ". Proc. Of the 11* North American Manufacturing Res. Conf., 1983, p. 408..114
115. Vanherck P." Increasing Milling Machine Productivity by use of Cutter with Non- Constant Cutting- Edge Pinch". Proc. Adv. MTDR Conf. 1967, p. 947.
116. Varterasian J." White Noise Tools to Reduce Chatter".SME Paper №. MR 74-144, 1974.
-
Похожие работы
- Разработка математических моделей и параметрическая идентификация для обеспеечния устойчивости процесса точения
- Повышение эффективности токарной обработки за счет управления параметрическими явлениями в динамической системе резания
- Повышение производительности обработки отверстий малого диаметра в термореактивных пластмассах при сверлении с низкочастотными осевыми колебаниями
- Управление регенеративными автоколебаниями при фрезеровании на основе модуляции скорости резания
- Повышение виброустойчивости и производительности концевого фрезерования способом модуляции скорости резания
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность