автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.09, диссертация на тему:Методы и программные средства оценки действия препаратов против инфекционных заболеваний
Оглавление автор диссертации — кандидата технических наук Лосев, Алексей Генрихович
Введение
Глава 1. Обзор методов, используемых для оценки действия препаратов при клинических испытаниях
1.1 Медико-биологические принципы клинических испытаний препаратов
1.2 Экспериментально-статистические методы проведения экспериментов
1.3 Методы математического моделирования
1.4 Постановка проблемы, обоснование цели и задач исследования
Выводы.
Глава 2. Подсистема экспериментально-статистической оценки действия препаратов при их клинических испытаниях
2.1 Структура подсистемы экспериментально-статистической оценки действия препарата
2.2 Разработка метода оценки эффективности воздействия препаратов при их клинических испытаниях на основе метода Харрингтона
2.3 Методы оценки качества действия препарата
2.4 Оптимизация схемы применения препарата и общая оценка его действия .~.
Выводы.
Глава 3. Подсистема теоретических исследований действия препаратов на основе методов математического моделирования
Введение 1999 год, диссертация по информатике, вычислительной технике и управлению, Лосев, Алексей Генрихович
АКТУАЛЬНОСТЬ ПРОБЛЕМЫ. Проведение клинических испытаний лекарственных средств является одним из главных этапов разработки новых препаратов против инфекционных заболеваний. При этом оценивается эффективность действия препарата и окончательно определяется схема его применения.
Результат применения препарата обусловлен тем, насколько адекватно механизм его действия вписывается в сложные взаимоотношения между возбудителем и иммунной системой организма. Адекватность действия препарата регулируется совокупностью входных параметров, определяющих схему. его применения. Таким образом, исследователи и клиницисты в процессе проведения клинических испытаний имеют дело со сложной, многопараметрической системой взаимоотношений между препаратом, иммунной системой и возбудителем.
Проведенный анализ состояния проблемы показал, что в целях совершенствования методов и средств оценки действия и оптимизации схемы применения новых препаратов целесообразно использовать методы математического моделирования. При этом весьма актуально комплексное развитие двух направлений исследований: экспериментально-статистического, основанного на моделировании результатов клинических наблюдений, и теоретического, базирующегося на математическом моделировании действия препарата.
Отсюда возникает задача подобрать методы, адекватные для исследования такой системы. К настоящему времени в этом направлении достигнут определенный прогресс, главным образом, за счет применения метода экспериментально-статистического моделирования на основе математического планирования эксперимента. Однако по прежнему остается открытым вопрос о количественной оценке качества действия препарата. Основная сложность в решении этой задачи состоит в том, что все испытуемые являются практически здоровыми людьми. Поэтому реакция организма по многим параметрам обычно остается в пределах нормы, что классифицируется врачами как отсутствие изменений. В то же время часто такие реакции статистически значимы. В связи с этим очевидна необходимость более тонкой оценки качества реакции организма на действие препарата с учетом изменений параметров в границах нормы.
Кроме того, специфика проведения клинических испытаний существенно ограничивает диапазоны воздействующих факторов в связи с возможной опасностью действия препарата или возбудителя (вакцины) на организм. Поэтому представляется важным использовать методы, позволяющие преодолеть эти ограничения, например, увеличить диапазоны изменения доз препарата и возбудителя. Одним из наиболее адекватных методов для решения этой задачи является математическое моделирование механизмов действия препарата в условиях инфекционного заражения. Тем не менее это направление развивается крайне слабо.
Итак, в целях совершенствования методических подходов к оценке эффективности и оптимизации схем применения новых препаратов актуально комплексное развитие двух направлений исследований: экспериментально-статистического, основанного на результатах клинических наблюдений, и теоретического, базирующегося на математическом моделировании механизмов действия препаратов.
ЦЕЛЬ РАБОТЫ. Целью настоящей работы является разработка комплекса методов и программных средств для оценки действия препаратов против инфекционных заболеваний, основанного на использовании экспериментально-статистических и математических моделей.
Для достижения поставленной цели необходимо было решить следующие задачи:
• разработать систему оценки действия препаратов против инфекционных заболеваний, основанную на методах экспериментально-статистического и теоретического исследования;
• разработать комплекс экспериментально-статистических методов, обеспечивающих количественную оценку качества действия препаратов и оптимизацию схем их применения;
• разработать комплекс математических моделей, обеспечивающих теоретическое исследование механизмов действия различных препаратов;
• разработать программное обеспечение;
• провести экспериментальные исследования.
Методы исследования. Для решения поставленных задач использовались следующие теоретические методы исследования: системный анализ, математическая теория эксперимента, теория нечетких множеств, математическая статистика, нелинейное программирование. Экспериментальные исследования проводились на базе специализированной клиники института гриппа РАМН при исследовании нового противовирусного препарата «Реаферон» (генно-инженерный альфа-2 интерферон). Были проведены машинные эксперименты с моделями лечения бактериального и вирусного заболеваний и моделированием действия широко распространенных групп антибактериальных и противовирусных средств, соответственно, антибиотика и индуктора интерферона.
Научная новизна:
• разработана система оценки действия препарата, объединяющая два направления исследований: экспериментально-статистическое, обеспечивающее количественную оценку качества действия препарата и оптимизацию схемы его применения, а также теоретическое направление, основанное на математическом моделировании механизмов действия препарата;
• предложен метод нормированной качественно-количественной оценки реакции здорового организма при клинических испытаниях препаратов, основанный на функции Харрингтона;
• разработан метод количественной оценки качества применения препарата и оптимизации схемы его применения, основанный на использовании элементов теории нечетких множеств и математическом планировании эксперимента;
• разработан комплекс математических моделей для исследования механизмов действия различных препаратов на фоне заражения вирусной или бактериальной инфекцией.
Практические результаты:
• разработанная система позволяет существенно повысить уровень клинических испытаний препаратов за счет сочетания, с одной стороны, экспериментально-статистических методов, обеспечивающих системное исследование качества действия препарата с учетом всего комплекса входных и выходных факторов, а с другой стороны, математического моделирования механизмов действия различных препаратов на фоне развития вирусного и бактериального заболеваний;
• разработанные методы математического моделирования могут быть использованы для теоретического изучения механизмов действия и оптимизации схем применения новых противовирусных и антибактериальных средств, в особенности при комбинированном использовании препаратов с различными механизмами действия; • показаны перспективы использования методов математического моделирования для оптимизации процесса лечения больных с инфекционными заболеваниями. АПРОБАЦИЯ РАБОТЫ. Основные положения и результаты диссертационной работы докладывались и обсуждались на пяти научно-технических конференциях: "ДИАГНОСТИКА, ИНФОРМАТИКА, МЕТРОЛОГИЯ, ЭКОЛОГИЯ, БЕЗОПАСНОСТЬ - 96", "Юбилейная конференция "60 лет МГАПУ"" (1996), "ДИАГНОСТИКА, ИНФОРМАТИКА, МЕТРОЛОГИЯ, ЭКОЛОГИЯ, БЕЗОПАСНОСТЬ - 97", профессорско-преподавательского состава (26 января - б февраля 1999 г.), всероссийской научной конференции с международным участием "Актуальные проблемы экспериментальной и клинической фармакологии" (1999 г.).
ПУБЛИКАЦИИ. Материалы диссертации опубликованы в 5 печатных работах, которые включены в общий список литературы. СТРУКТУРА И ОБЪЕМ ДИССЕРТАЦИИ. Диссертационная работа состоит из введения, 5 глав, заключения и списка литературы включающего 114 наименований.
Заключение диссертация на тему "Методы и программные средства оценки действия препаратов против инфекционных заболеваний"
Основные результаты диссертационной работы опубликованы в следующих работах:
1.Лосев А. Г. Разработка методов оценки реакции организма на фармакологическое воздействие с учетом индивидуального состояния человека // Тезисы докладов научно-технической конференции «ДИМЭБ-96», Санкт-Петербург, 25 — 27 июня 1996 г. СПб: 1996, с. 300-301. 2.Захарова Н. Г., Лосев А. Г. Методы оценки реакции организма на фармакологическое воздействие с учетом индивидуального состояния человека // Сборник. Юбилейная конференция «60 лет МГАПУ». Москва — Сергиев Посад: 1996, с. 39-41. З.Чурносов Е. В., Лосев А. Г. Оценка состояния человека посредством нечеткой логики с помощью метода Харрингтона // Тезисы доклада научно-технической конференции «ДИМЭБ-97», Санкт-Петербург, 1-3 июля 1997 г. СПб., 1997, с. 192-193. 4.Лосев А. Г. Оценка действия лекарственных препаратов в клинических испытаниях на основе теории нечетких множеств // Сборник. Известия ГЭТУ. Санкт-Петербург: Вопросы технического обеспечения медико-биологических исследований, - вып.518, 1998, с. 26-29.
5.Захарова Н.Г., Виноградов E.H., Яковлев A.A., Слепян Л.И., Чурносов Е.В., Лосев А.Г. Панаксел - теория исследования и практика использования // Тезисы докладов всероссийской научной конференции с международным участием «Актуальные проблемы экспериментальной и клинической фармакологии», Санкт-Петербург, 2-5 июня 1999 г.
ЗАКЛЮЧЕНИЕ.
В настоящей диссертационной работе получены следующие
Библиография Лосев, Алексей Генрихович, диссертация по теме Управление в биологических и медицинских системах (включая применения вычислительной техники)
1. Адамович П. Н., Борисов А. Н., Голендер В. Е. Адаптивный алгоритм распознавания образов. // Сборник. Кибернетика и диагностика. Рига: вып.4, 1970.
2. Адлер Ю. П., Маркова Е. В., Грановский Ю. В. Планирование эксперимента при поиске оптимальных условий. М. : Наука, 1976.
3. Адлер Ю. П. Введение в планирование эксперимента. М: Металлургия, 1969.
4. Андрукович П. Ф., Голикова Т. И., Костина С. Г. Планы второго порядка на гиперкубе, близкие по свойствам к D-оптймальным // Новые идеи в планировании эксперимента. М: Наука, 1969, с. 140-153.
5. Асаченков А. Л., Белых Л. Н., Романюха А. А. // Математические модели инфекционного заболевания. // Итоги науки и техники. Иммунология, т.10, Москва, 1982, с. 117134.
6. Асаченков А. Л., Марчук Г. И. Уточненная математическая модель инфекционного заболевания // Математическоемоделирование в иммунологии и медицине. Новосибирск: Наука, 1982, с. 44-59.
7. Асаченков А. Л. Простейшая модель влияния температурной реакции на динамику иммунного ответа // Математическое моделирование в иммунологии и медицине. Новосибирск: Наука, 1982, с. 40-43.
8. Ю.Астанин С. В. Комплексный подход к моделированию функционального состояния человека-оператора на основе теории нечетких множеств / / Космическая биология и авиакосмическая медицина, 1989, 23, N 4, с. 29-33.
9. Ахназарова С. Л., Кафаров В. В. Методы оптимизации эксперимента в химической технологии. М: Высшая школа,1985.
10. Бейли Н. Математика в биологии и медицине. М: Мир, 1970.
11. Беллман Р. Математические методы в медицине. Пер. с англ. / Под ред. А. Н. Белых. Москва: Мир, 1987.
12. Беллман Р., Заде Л. Принятие решений в расплывчатых условиях. // Вопросы анализа и процедуры принятия решений, с. 172-215.
13. Белых Л. Н. Анализ математических моделей в иммунологии. Москва: Наука, 1988.
14. Белых Л. Н., Марчук Г. И., Петров Р. В. О некоторых подходах к математическому моделированию в иммунологии // Математические модели в иммунологии и медицине. М. : Мир,1986, с. 5-22.
15. Беляков В. Д., Кравцов Ю. В. Состояние и перспективы математического моделирования в эпидемиологии. ЭИМЭИ, № 3, 1990.
16. Борисов А. Н., Алексеев А. В. и др. Обработка нечеткой информации в системах принятия решений. М: Радио и связь, 1989.
17. Борисов А. Н., Кокле Э. А. Распознавание размытых образов по признакам // Кибернетика и диагностика. Рига: N 4, 1970, с. 135-147.
18. О.Борисов А. Н., Крумберг О. А., Федоров И. П. Принятие решений на основе нечетких моделей. Примеры использования. Рига: Зинатне, 1990.
19. Борисов А. Н., Эрнштейн Р. X. Сопоставление некоторых четких и размытых алгоритмов распознавания // Сборник. Методы и средства технической кибернетики. Рига, 1979.
20. Борисов А. Н. Некоторые обучающиеся алгоритмы диагностики систем с размытыми классами состояний. Рига, Техническая кибернетика, 1979.
21. Борисов А. Н., Осис Я. Я. Методика оценки функций принадлежности элементов размытого множества // Кибернетика и диагностика. Рига: вып. 4, 1970.
22. Бугаец А. Н. Нечеткие множества в геологии (функции принадлежности, решающие правила и методы распознавания при прогнозе месторождений. М: АО Геоинформмарк, вып. 1, 1994.
23. Бугаец А. Н. Нечеткие множества в геологии (кластерный анализ, групповой выбор, линейная регрессия). М: АО Геоинформмарк, вып. 2, 1994.
24. Булычев А. А., Верхотуров В. Н. и др. Современные методы биофизических исследований. Практикум по биофизике. Учебное пособие. Под ред. А. Б. Рубина. Москва: Высшая школа, 1988.
25. Верхаген К., Дейн Р., Грун Ф., Йостен Й., Вербек П. Распознавание образов. Состояние и перспективы. М: Радио и связь, 1985.
26. Горышкина Е. Н., Чага О. Ю, Сравнительная гистология тканей внутренней среды с основами ишдунологии. Учебное пособие под редакцией доктора биологических наук А. А. Заварина. Ленинград: Й^д^вб ЛГУ, 19^0.
27. Граба Т., Клейн П., Долежал Я. Простейшая математическая модель иммунологической толерантности у цыплят // Математические модели в иммунологии и медицине. М. : Мир, 1986, с.104-109.
28. Дибров Б. В., Лифшиц М. А., Волькенштейн М. В. Математическая модель иммунной реакции // Биофизика, т.21, 1976.
29. Ефимова М. Р., Петрова Е. В., Румянцев В. Н. Общая теория статистики. М: Инфра-М, 1998.
30. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. М: Мир, 197 6.
31. Заде Л. Основы нового подхода к анализу сложных систем и процессов принятия решений // Математика сегодня. М: Знание, 1974, с. 5-49.
32. Захарова Н. Г. Разработка системы клинического отбора эффективных противогриппозных препаратов. Автореферат дис. на соискание ученой степени д.м.н., Санкт-Петербург, 1997.
33. Захарова Н. Г., Лосев А. Г. Методы оценки реакции организма на фармакологическое воздействие с учетом индивидуального состояния человека // Сборник. Юбилейная конференция «60 лет МГАПУ». Москва — Сергиев Посад, 1996, с. 39-41.
34. Искусственный интеллект. Справочник, кцига 2. Модели и методы. / Под ред. проф. Д. А. Поспедрва. М. : Радио и связь, 1990.
35. Каляев Д. В. Математическая модель некоторых процессов при экспериментальной гриппозной инфекции мышей. // Сборник. Стратегия возбудителя в организме хозяина. JI: АМН СССР, 1987, с. 26-40.
36. Киясбейли Ш. А., Мамедов В. М. О различии теории нечетких множеств и теории вероятностей // Автоматика, N 3, 1987, с. 76-78 .
37. Кофман А. Введение в теорию нечетких множеств. М: Радио и связь, 1982.
38. Кофман А., Хил Алуха, Хайме. Введение теории нечетких множеств в управление предприятиями. Минск: Вышейш. школа, 1992 .
39. Куприй В. Т. Моделирование в биологии и медицине. Ленинград: Изд-во ЛГУ, 1989.
40. Лапко А. В., Ченцов С. В. Многоуровневые непараметрические системы принятия решений. Новосибирск: Наука, Сибирское предприятие РАН, 1997.
41. Лебедев К. А., Понякина И. Д. Анализ крови: вчера, сегодня, завтра. М.: Знание, 1990.
42. Леей М, И., Басова Н. Н., Дурихин К. В. и др. // Журнал микробиологии, эпидемиологии и иммунобиологии, № 1, 421972) .
43. Леей М. И., Басова Н. Н., Дурихин К, В. // Журнал микробиологии, № 10, 19 (1972).4 7. Леей М. И., Лившиц М. М., Сакаян Н. Н. // Журнал микробиологии, № 3, 114 (1972).
44. Лисенков А. Н. Математические методы планирования многофакторного медико-биологического эксперимента. М: Медицина, 1979.
45. Лосев А. Г. Оценка действия лекарственных препаратов в клинических испытаниях на основе теории нечетких множеств // Сборник. Известия ТЭТУ. Санкт-Петербург: Вопросытехнического обеспечения медико-биологических исследований, вып.518, 1998, с. 26-29.
46. Маркова Е. В., Лисенков А. Н. Комбинаторные планы в задачах многофакторного эксперимента. М: Наука, 1979.
47. Марчук Г. И., Петров Р. В. Математическое моделирование в иммунологии // Журнал всесоюзного химического общества им. Д. М. Менделеева, т.27, № 4, 1982, с. 402-409.
48. Марчук Г. И., Поляк Р. Я. Математические модели в клинической практике. Новосибирск: Наука, 1978.
49. Марчук Г. И., Нисевич Н. И. Математические методы в клинической практике. Новосибирск: Наука, 1978.
50. Мелихов А. Н., Берштейн Л. С. Конечные четкие и расплывчатые множества. Часть 2. Таганрог: ТРТИ, 1981.
51. Мелихов А. Н., Берштейн Л. С., Коровин С. Я. Ситуационные советующие системы с нечеткой логикой. М: Наука, 1990.
52. Молчанов А. М., Биофизика, 16, вып. 3, 482 (1971).
53. Молчанов А. М., Назаренко В. Г., Щатурский И. Г. Биофизика 16, вып. 4, 565 (1971).
54. Монтгомери Д. К. Планирование эксперимента и анализ данных. Л: Судостроение, 1980.
55. Налимов В. В., Голикова Т. И. Логические основания планирования эксперимента. М: Металлургия, 1976.
56. Налимов В. В. Теория эксперимента. М: Наука, 1971.
57. Налимов В. В., Чернова Н. А. Статистические методы планирования экстремальных экспериментов. М: Наука, 1965.
58. Нечеткие множества в информатике. Сборник. / Под ред. В. Б. Кузьмина. М: ВНИИСИ, вып. 21, 1988.
59. Нечеткие множества в моделях управления и искусственного интеллекта. / Под ред. Д. А. Поспелова. М: Наука, 1986.
60. Нечеткие множества и теория возможностей. Последние достижения / Под ред. Р. М. Ягера. М. : Радио и связь, 1986.
61. Нечеткие системы: моделирование структуры и оптимизация // Сборник. Под ред. А. В. Язенина. Калинин: КГУ, 1987.
62. Нечеткие системы поддержки принятия решений // Сборник. Под ред. А. В. Язенина. Калинин: КГУ, 1989.
63. Нечеткие системы: модели и программные средства // Сборник. Под ред. А. В. Язенина. Тверь, ТГУ, 1991.
64. Орловский С. А. Проблемы принятия решений при нечеткой исходной информации. М: Наука, 1981.
65. Петров Р. В. Иммунология. Москва: Медицина, 1983.
66. Петров Р. В. Я или не я: Иммунологические мобили. М. : Молодая гвардия, 1983.
67. Пинегин Б. В., Хаитов Р. М. и др. Экологическая иммунология. М-во науки и техн. политики Рос. Федерации и др. М.: Изд-во ВНИРО, 1995.
68. Поспелов Д. А. Логико-лингвистические модели в системах управления. М: Энергоиздат, 1981.
69. Прикладные нечеткие системы. / Под ред. Т. Тэрано, К. Асаи, М. Сугэно. М.: Мир, 1993.
70. Родионова Т. А. Применение методов обработки нечеткой информации в автоматизированных системах медицинской диагностики // Компьютеризация в медицине. Воронеж, 1993, с. 19-27.
71. Романов С. В. Планирование и оценка результатов медико-биологических экспериментов. Учебное пособие. Л: ЛЭТИ, 1974 .
72. Романовский Ю. М., Степанова Н. В., Чернавский Д. С. Математическое моделирование в биофизике. М: Наука, 1975.
73. Скофенко А. В. Применение нечеткой логики при ранжировании объектов методом парных сравнений // Кибернетика, N 3, 1983, с. 116-118.
74. Смирнова О. А., Степанова Н. В. // Журнал микробиологии, эпидемиологии и иммунобиологии, № II, 50 (1974).
75. Смирнова О. А., Степанова Н. В. // Вестник Моск. университета (серия физики и астрономии), вып. 5, 520 (1971) .
76. Смирнова О. А., Степанова Н. В. // Сборник. Колебательные процессы в биологических и химических системах, т. 2, Пущино-на-Оке, 1971, с. 247.
77. Советов Б. Я., Яковлев С. А. Моделирование систем. Москва: Высшая школа, 1985.
78. Тотолян А. А., Поляк Р. Я. Стратегия возбудителя в организме хозяина. // Сборник научных трудов. Ленинград, 1987 .
79. Федоров В. В. Теория оптимального эксперимента. М: Наука, 1971.
80. Фомин Я. А., Тарловский Г. Р. Статистическая теория распознавания образов. М: Радио и связь, 1986.
81. Ханбали Н. М. Разработка методов и автоматизированной системы для клинических испытаний препаратов. Автореферат дис. на соискание ученой степени к.т.н., Санкт-Петербург, 1995.
82. Химмельблау Д. Прикладное нелинейное программирование. М.: Мир, 1975.
83. ЭО.Чебраков Ю. В. Методы системного анализа в экспериментальных исследованиях. СПбГТУ, 1977.
84. Чурносов Е. В., Илюшов Г. С. Методические указания к курсовому проектированию по дисциплине: «Планирование эксперимента и принятие решений». Л: ЛЭТИ, 1998.
85. Чурносов Е. В., Илюшов Г. С. Моделирование биологических процессов и систем. Учебное пособие. Санкт-Петербург, ГЭТУ, 1997.
86. Чурносов Е. В., Юркевич Ю. В., Цыпленко П. В. Изучение комбинированного действия антибиотика и иммунностимулятора методом математического моделирования. // Антибиотики и химиотерапия, № 10, т. XXXIII, 1988, с. 767-771.
87. Чурносов Е. В., Лосев А. Г. Оценка состояния человека посредством нечеткой логики с помощью метода Харрингтона // Тез. докл. науч.-техн. конф. «ДИМЭБ-97», Санкт-Петербург, 1-3 июля 1997 г. СПб., 1997, с. 192-193.
88. Bell G. J., J. Theor. Biol. 29, 191 (1970).
89. Bell G. J., J. Theor. Biol. 33, 339 (1971).
90. Bell G. J., J. Theor. Biol. 33, 379 (1971).
91. Bell G. J., Mathem. Biosciences 16, 291 (1973).
92. Delisi G. Some mathematical problems in the initiation and regulation of the immune response. Math. Biosci., v. 35, 1977, p. 1-26.
93. Dubois D., Pra^de H. What are fuzzy rules and how to use them // Fuzzy sets and systems, 84> 1996, p. 169-185.106
94. Harrington E. C. Monte Carlo Methods // Industr. Quality Control. 1965, Vol. 21, №10, p. 494-498.
95. Hege I. S., Cole L. I., J. Immunology 97, № 1, 34 (1966).
96. Hlek M., Ursinyova Z., Folia microbiologica 15, № 6, 432 (1970).
97. Jilek M., Ursinyova Z., Folia microbiologica 15, № 4, 2941970).
98. Jilek M., Sterzl J., "Developmental aspects of antibody formation and structure", v. 2, Academia, Praga, Academic Press, New-York, 1970, p. 963.
99. Jilek M., Folia microbiologica 16, № 1, 12 (1971).
100. Jilek M., Folia microbiologica 16, № 2, 83 (1971).
101. Jilek M., Ursinyova Z., Folia microbiologica 16, № 6, 5321971) .
102. Leui M. I., Durikhin K. V. at al., Folia microbiologica 18, 273 (1973) .
103. Simons M, Parker J. Fuzzy Logic, Sharp Results? J Nucl Med 1995; 36: 1415-1416.
-
Похожие работы
- Разработка методов и автоматизированной системы для клинических испытаний препаратов
- Биотехническая система автоматизированных исследований препаратов культур клеток, инфицированных хламидиями
- Математическое моделирование оптимальных процессов лечения инфекционных заболеваний
- Моделирование и алгоритмизации рационального ведения беременных с высоким риском гнойно-септических осложнений
- Компьютерные методы и средства управления в чрезвычайных ситуациях, обусловленных биологическими факторами
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность