автореферат диссертации по приборостроению, метрологии и информационно-измерительным приборам и системам, 05.11.17, диссертация на тему:Компьютерные методы автоматического анализа ЭКГ в системах кардиологического наблюдения
Автореферат диссертации по теме "Компьютерные методы автоматического анализа ЭКГ в системах кардиологического наблюдения"
На правах рукописи
Калиниченко Александр Николаевич
КОМПЬЮТЕРНЫЕ МЕТОДЫ АВТОМАТИЧЕСКОГО АНАЛИЗА ЭКГ В СИСТЕМАХ КАРДИОЛОГИЧЕСКОГО НАБЛЮДЕНИЯ
Специальность: 05.11.17 - Приборы, системы и изделия медицинского назначения
Автореферат диссертации на соискание ученой степени доктора технических наук
1 2 Д5М 2003
Санкт-Петербург - 2008
003457342
Работа выполнена в Санкт-Петербургском государственном элекфотехническом университете «ЛЭТИ» им. В.И.Ульянова (Ленина)
Научный консультант -
доктор технических наук, профессор Немирко А. П.
Официальные оппоненты: доктор технических наук, профессор Быков Р. Е. доктор технических наук, профессор Гельман В. Я. доктор технических наук Дюк В. А.
Ведущая организация - Московский государственный технический университет им. Н. Э. Баумана
заседании совета Д 212.238Д
электротехнического университета «ЛЭТИ» им. В.И. Ульянова (Ленина) по адресу: 197376, Санкт-Петербург, ул. Проф. Попова, 5.
С диссертацией можно ознакомиться в библиотеке университета.
Защита диссертации состоится
Автореферат разослан » _2008 г.
Ученый секретарь совета
Болсунов К.Н.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальпость работы. Приборы и системы для медицины постоянно совершенствуются и обновляются. Это связано, с одной стороны, с развитием технологической базы электроники и вычислительной техники, а с другой - с появлением новых медицинских технологий, совершенствованием существующих и с расширением сфер применения медицинской техники.
Одна из наиболее важных задач медицинской электронной аппаратуры - это автоматический анализ биомедицинской информации, целями которого являются: оценка физиологических параметров организма, информационная поддержка диагностических решений врача, а также автоматическая диагностика патологических изменений состояния человека. В связи с этим, практически в любом виде медицинской аппаратуры в том или ином виде присутствуют вычислительные компоненты (микропроцессоры, встраиваемые микро-ЭВМ, персональные компьютеры), программное обеспечение которых реализует функции автоматической обработки данных.
При оценке состояния сердца и сердечно-сосудистой системы ключевую роль играет анализ электрокардиограммы (ЭКГ), представляющей собой запись наблюдаемых на поверхности тела проекций объёмных электрических процессов, происходящих в сердце. ЭКГ нес&г информацию как о текущем состоянии сердечно-сосудистой системы, так и о патологических изменениях в самом сердце.
К настоящему времени проблема автоматической обработки и анализа электрокардиосигнала (ЭКС) сложилась в отдельное направление, разветвлённое на множество более частных задач, связанных с различными применениями и аспектами исследования сердечно-сосудистой системы. Одной из таких задач является длительный непрерывный контроль ЭКС, представляющий собой одну из важнейших функций аппаратуры для кардиологического наблюдения, к которой относятся приборы и системы для прикроватного и амбулаторного мониторного наблюдения ЭКГ, телеметрического наблюдения за состоянием организма, автономного контроля сердечной деятельности, функциональных исследований сердечно-сосудистой системы и решения ряда других задач.
Автоматический анализ ЭКС представляет собой достаточно сложную теоретическую проблему. Это в первую очередь связано с физиологическим происхождением сигнала, которое обусловливает его недетерминированность, разнообразие, изменчивость, непредсказуемость, нестационарность и подверженность многочисленным видам помех. Повышение эффективности методов автоматической обработки и анализа ЭКС сдерживается ограничениями, связанными с вычислительной мощность используемых процессоров. Это в наибольшей степени относится к аппаратуре непрерывного наблюдения, так как обработка сигналов в ней должна выполняться в реальном масштабе времени. С другой стороны, производительность вычислительных средств постоянно повышается. В связи с этим, становятся востребованными такие методы обработки и анализа сигналов, применение которых в системах реального времени представлялось ранее технически неосуществимым.
Основной задачей данной работы является разработка теоретической базы и практических методов для создания нового поколения алгоритмов длительного непрерывного автоматического анализа ЭКС, опирающихся на наиболее современные подходы к обработке сигналов и обладающие более высоким качеством работы, чем использовавшиеся ранее.
Внедрение разработанных методов и алгоритмов в приборы и системы медицинского назначения позволяет обеспечить повышение точности и надёжности формируемых диагностических заключений, что, в конечном счёте, способствует повышению эффективности диагностики и лечения патологий сердечно-сосудистой системы человека.
Цель диссертационной работы: Повышение точности и надёжности формирования диагностических заключений о состоянии сердечно-сосудистой системы человека в приборах и системах непрерывного кардиологического наблюдения за счёт развития новых компьютерных методов обработки элеюрокардиосигнала, а также создания алгоритмического и программного обеспечения, реализующего эти методы.
Для достижения поставленной цели должны быть решены следующие задачи исследования.
1. Обоснование и разработка общей логической структуры процесса обработки и анализа элеюрокардиосигнала в системах кардиологического наблюдения, ориентированной на достижение конечных целей автоматического анализа и обеспечивающей информационное согласование всех этапов обработки.
2. Теоретическое и экспериментальное обоснование выбора параметров процедур предварительной цифровой фильтрации элеюрокардиосигнала, реализующих эффективное подавление помех и позволяющих обеспечить оптимальные условия для последующих стадий обработки и анализа сигнала.
3. Разработка и экспериментальное исследование эффективного и помехоустойчивого алгоритма обнаружения желудочкового комплекса ЭКГ, обладающего способностью к адаптации как к сигналу конкретного пациента, так и к динамически возникающим изменениям элеюрокардиосигнала в ходе длительного непрерывного наблюдения.
4. Экспериментальное исследование статистических и частотных свойств элеюрокардиосигнала с целью обоснования выбора информативных признаков и разработки решающих правил для создания эффективного алгоритма автоматической классификации желудочковых комплексов ЭКГ по видам их морфологий.
5. Экспериментальное исследование частотных методов анализа вариабельности сердечного ритма (ВСР) и артериального давления человека с целью разработки новых процедур расчёта спектральных параметров, позволяющих получать математически корректные и статистически состоятельные оценки спектральных параметров указанных сигналов в условиях возможного появления помех и нарушений стационарности анализируемых процессов.
6. Создание новых программно-алгоритмических средств, предназначенных для использования в приборах и системах длительного кардиологического
наблюдения и обеспечивающих повышение точности и надёжности решения задач автоматического анализа ЭКС с целью получения значимой для диагностики информации о состоянии сердечно-сосудистой системы человека.
Методы исследования. Для решения поставленных теоретических задач в диссертационной работе использовались методы математической статистики, спектрального анализа, математического моделирования, распознавания образов, анализа случайных процессов.
Экспериментальные исследования выполнены с использованием наборов реальных записей сигналов, полученных как непосредственно в медицинских учреждениях, так и из доступных банков данных, в частности, из баз данных, размещённых на сайте Массачусетского технологического института (США) «http://wvw.physionet.org/». Программное обеспечение для проведения экспериментов разрабатывалось с использованием программных сред MS Visual С++ и MATLAB.
Научная новизна результатов заключается в разработке и исследовании:
• комплексного подхода к созданию методов и алгоритмов автоматического непрерывного анализа электрокардиосигнала, заключающегося в ориентации на конечные цели обработки сигнала и в согласовании последовательных стадий обработки как по составу и виду входных и выходных сигналов, так и по используемым математическим методам анализа сигналов;
• методики оценки влияния параметров процедур предварительной цифровой фильтрации электрокардиосигнала на эффективность решения задачи обнаружения желудочковых комплексов ЭКГ в условиях наличия помех, а также разнообразия форм и изменчивости сигнала;
• метода автоматического обнаружения желудочкового комплекса ЭКГ, учитывающего статистические характеристики и контекст электрокардиосигнала, обладающего высокой помехоустойчивостью, а также способностью адаптироваться к динамически возникающим изменениям сигнала;
• теоретической основы и методов для решения задачи классификации форм желудочковых комплексов ЭКГ по видам их морфологий с использованием информативных признаков, вычисляемых как во временной, так и в частотной областях;
• математической модели сигнала сердечного ритма, способной воспроизводить реалистичный сигнал с заданными значениями частотных параметров вариабельности сердечного ритма и предназначенной для тестирования и оценки качества методов математического анализа ВСР;
• методов и алгоритмов, обеспечивающих вычисление статистически состоятельных и надёжных оценок спектральных показателей вариабельности сердечного ритма и артериального давления, а также оценки фазовых взаимосвязей между этими сигналами в условиях существования нарушений непрерывности и стационарности сигналов.
Достоверность научных положений и выводов подтверждается результатами использования математических методов анализа, теории
исследования случайных процессов, результатами экспериментов с использованием как модельных, так и реальных сигналов, оценкой эффективности разработанных алгоритмов и методов, а также результатами практического использования созданных алгоритмических и программных средств.
Практическую ценность работы представляют следующие полученные в диссертационной работе результаты.
1. Методы и алгоритмы автоматического анализа электрокардиосигнала, предназначенные для использования в составе программно-алгоритмического обеспечения приборов и систем медицинского назначения:
• обобщённая логическая структура алгоритмического обеспечения систем кардиологического наблюдения, решающего задачу получения значимой для диагностики информации о текущем состоянии сердечно-сосудистой системы человека.
• алгоритмы предварительной цифровой фильтрации электрокардиосигнала и оценки уровня шумов, обеспечивающие эффективное подавление помех и создающие оптимальные условия для работы последующих стадий анализа сигнала;
• алгоритм обнаружения желудочкового комплекса ЭКГ, решающий задачу текущего контроля частоты сердечных сокращений и определения значений Ш1-интервалов, используемых далее для анализа ритма сердца и его нарушений;
• алгоритм классификации форм желудочковых комплексов ЭКГ, результаты работы которого используются для последующего анализа вариабельности сердечного ритма, распознавания аритмий и анализа ишемических изменений кардиоцикла ЭКГ;
• алгоритмы расчёта частотных параметров вариабельности сердечного ритма и совместных характеристик сигналов сердечного ритма и артериального давления, предназначенные для оценки вегетативной регуляции ритма сердца в системах для кардиологического наблюдения и функциональной диагностики.
2. Прикладные программные средства, реализующие предложенные алгоритмы анализа электрокардиосигнала и предназначенные как для использования в приборах и системах кардиологического наблюдения, так и для решения исследовательских задач.
Научные положения, выносимые ва защиту:
1. Наиболее эффективное решение задач автоматической обработки и анализа электрокардиосигнала достигается при условии информационного и логического согласования всех этапов обработки сигнала с ориентацией на конечные цели анализа.
2. Выбор оптимальных параметров процедур предварительной фильтрации электрокардиосигнала позволяет существенно повысить эффективность обнаружения желудочкового комплекса ЭКГ. При этом наилучшие результаты обеспечиваются при последовательном использовании адаптивной фильтрации сетевой наводки и полосовой фильтрации в диапазоне частот от 5 Гц до 30 Гц.
3. Повышение качества процедуры обнаружения желудочкового комплекса ЭКГ достигается за счёт использования алгоритма, учитывающего контекст
электрокардиосигаала и его статистические параметры, а также обладающего способностью к адаптивному отслеживанию динамически изменяющихся свойств сигнала.
4. Использование двух синхронно снимаемых отведений для решения задачи обнаружения желудочкового комплекса ЭКГ даёт существенный прирост качества работы алгоритма по сравнению со случаем использования одного отведения. В то же время, добавление третьего отведения ЭКГ сказывается на результатах работы алгоритма незначительно.
5. Задача классификации форм желудочковых комплексов ЭКГ наиболее эффективно решается за счёт одновременного использования морфологических признаков, рассчитанных альтернативными методами: во временной области, в частотной области, с использованием корреляции. При этом наилучшие результаты даёт совместное использование частотного и корреляционного методов.
6. Наибольшей точностью и статистической устойчивостью обладают спектральные оценки вариабельности сердечного ритма, рассчитанные периодограммным методом на основе быстрого преобразования Фурье при использовании прямоугольного окна.
7. Наиболее точные оценки показателей фазовых соотношений (задержек) между сигналами сердечного ритма и мгновенного артериального давления получаются с использованием метода непосредственного сопоставления фазовых спектров, рассчитанных отдельно для каждого из сигналов, при условии наличия существенной когерентности меду сигналами в соответствующих частотных диапазонах.
Реализация результатов работы. Полученные в диссертационной работе результаты теоретических и прикладных исследований использовались при выполнении НИР в СПбГЭТУ «ЛЭТИ» (более 20 проектов). В том числе по грантам РФФИ: 97-01-00260 «Исследование методов распознавания образов для анализа биомедицинских сигналов» (1997-1999); 00-01-00448 «Исследование методов обработки и распознавания биомедицинских сигналов» (2000-2002); 02-01-08073-инно «Разработка и создание опытного образца компьютерного комплекса для функциональных исследований в кардиологии» (2002-2004); 03-01-00216 «Исследование методов распознавания формы биомедицинских сигналов» (20032005); 06-01-00546 «Разработка методов и алгоритмов распознавания биомедицинских сигналов» (2006-2008); 08-01247-а «Компьютерный комплекс мониторного контроля ЭКГ» (2006 - 2008).
В рамках ФЦНТП «Исследования и разработки по приоритетным направлениям развития науки и техники гражданского назначения» автор участвовал в выполнении проектов: 0201.05.251 «Разработка информационных технологий и инструментальных средств для создания и развития прикладных инструментальных систем в технике, образовании, медицине и в системах специального назначения» (1999-2001); 01.37.03.01.05 «Методы распознавания образов, обработки сигналов и изображений для самоорганизующихся систем» (2002-2004).
Результаты научных исследований внедрены в виде пакетов прикладных программ в компьютерной системе мониторного контроля ЭКГ «РИТМОН» и
диагностическом комплексе «Кардиометр-МТ», разработанных соответственно предприятиями Санкт-Петербурга ООО «Биосигнал» и ЗАО «Микард-Лана» совместно с СПбГЭТУ «ЛЭТИ».
Полученные в ходе исследований результаты внедрены в учебный процесс СПбГЭТУ «ЛЭТИ» по направлениям подготовки специалистов в области медицинского приборостроения: «Биомедицинская техника» и «Биомедицинская инженерия». Они включены в разработанные автором учебно-методические комплексы по дисциплинам: «Методы обработки биомедицинских сигналов и данных», «Компьютерные технологии в медико-биологических исследованиях».
Апробация работы. Основные научные и практические результаты диссертационной работы докладывались и обсуждались в период 1980 - 2008 гг. более чем на тридцати конференциях и симпозиумах по проблемам теории и практики обработки и распознавания биосигналов, медицинского приборостроения и автоматизации электрокардиографических исследований, в том числе на следующих Международных и Всероссийских конференциях и симпозиумах:
Всесоюзной научно-технической конференции «Проблемы создания технических средств для диагностики и лечения заболеваний сердечно-сосудистой системы» (1990, Львов); 5й and 7й1 International Conference on Biomedical Engineering and Medical Informatics (SYMBIOSIS 1997, Brno; SYMBIOSIS 2003, St. Petersburg); • International Workshop «Biomedical Engineering & Medical Informatics» - ВЕМГ97, (1997, Gliwice, Poland); Международных конференциях «Распознавание образов и анализ изображений: новые информационные технологии» (РОАИ-5-2000, Самара; РОАИ-6-2002, Великий Новгород; РОАИ-7-2004, С.-Петербург; РОАИ-8-2007, Йошкар-Ола; РОАИ-9-2008, Нижний Новгород.); П и VII Международных симпозиумах «Электроника в медицине. Мониторинг, диагностика, терапия» (КАРДИОСТИМ-1998, С.-Петербург; КАРДИОСТИМ-2000, С.-Петербург); The 244 and 35ш Annual Conference Computers in Cardiology (1997, Lund, Sweden; 2008, Bologna, Italy); The 3rd European Medical and Biological Engineering Conference EMBEC'05 (2005, Prague, Czech Republic); а также на ежегодных научно-технических конференциях профессорско-преподавательского состава СПбГЭТУ «ЛЭТИ» (1980-2007 гг.)
Публикации. По теме диссертации опубликовано 92 научных работы, из них: 29 статей (опубликованных в ведущих рецензируемых журналах и изданиях, определенных ВАК Минобрнауки РФ, - 11 статей), 57 работ в материалах российских и международных научно-технических конференций, 1 монография, 5 официально зарегистрированных комплексов алгоритмов и программ.
Структура и объем диссертации. Диссертация состоит из введения, шести глав, заключения, списка литературы, включающего 156 наименований, списка условных обозначений и аббревиатур. Основная часть работы изложена на 253 страницах машинописного текста. Работа содержит 84 рисунка и 22 таблицы.
КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении к диссертационной работе обосновывается актуальность темы, формулируется цель работы, кратко излагаются основные решаемые задачи и полученные результаты, включая научную новизну и практическую ценность, рассмотрены используемые методы исследования, освещены итоги реализации результатов работы, приведены научные положения, выносимые на защиту, излагается 1фаткое содержание работы.
В первой главе представлен анализ проблем, связанных с автоматическим непрерывным анализом электрокардиосигнала в приборах и системах кардиологического наблюдения. Дан обзор современного уровня развития математических методов и алгоритмов автоматической обработки ЭКС. Отмечены существующие концептуальные трудности и сформулированы проблемы, требующие решения для достижения более высокой эффективности использования технических средств автоматического наблюдения за состоянием сердечнососудистой системы человека.
Отмечено, что отдельным направлением развития медицинской техники, предназначенной для решения диагностических и терапевтических задач, связанных с сердечной деятельностью человека, являются приборы и системы кардиологического наблюдения, к которым относятся:
• приборы и системы для прикроватного наблюдения;
• системы Холтеровского мониторного контроля;
• носимые анализаторы ЭКГ;
• телеметрические системы контроля состояния организма;
• системы для функциональных исследований.
Представлен анализ задач автоматического анализа ЭКГ в системах кардиологического наблюдения, основными из которых являются:
• текущий контроль частоты сердечных сокращений;
• распознавание нарушений сердечного ритма (аритмий);
• анализ ишемических изменений ЭКГ;
• анализ вариабельности сердечного ритма.
Рассмотрены особенности электрокардиосигнала с точки зрения решения задач его автоматического анализа в режиме непрерывного мониторного контроля. Отмечено, что элекгрокардиосигнал обладает большим многообразием форм и изменчивостью. Сформулирован вывод о необходимости создания методов автоматического анализа электрокардиосигнала, способных адаптироваться как к характеру ЭКС конкретного пациента, так и к динамическим изменениям сигнала.
Рассмотрен вопрос о выборе числа анализируемых отведений в системах кардиологического наблюдения. Отмечено, что при наличии технических и эксплуатационных возможностей в приборах и системах кардиологического наблюдения предпочтительнее оказывается использование двух и более отведений ЭКГ. В то же время, в разрабатываемых алгоритмах необходимо предусматривать способность к адаптации к фактически используемому числу каналов сигнала.
Рассмотрены наиболее характерные виды помех, неизбежно присутствующих в элекгрокардиосигнале при его длительном наблюдении:
• сетевая наводка с частотой 50 (или 60) Гц;
• контактный шум электродов;
• артефакты, связанные с механическим движением;
• помехи, вызванные мышечными сокращениями (электромиограмма);
• смещение базовой линии и модуляция амплитуды, вызываемые дыханием;
• аппаратный шум, генерируемый электронными устройствами;
• электрохирургический шум.
Рассмотрены предлагаемые в литературных источниках методы предварительной обработки ЭКС. Данные методы основаны преимущественно на математическом аппарате линейной цифровой фильтрации и выполняют две основные функции:
• подавление имеющихся в сигнале помех;
• выделение информативных признаков для дальнейшего анализа сигнала.
Предложена и обоснована следующая последовательность этапов предварительной обработки ЭКС:
• устранение сетевой наводки;
• анализ уровня помех;
• фильтрация нижних частот;
• фильтрация верхних частот.
Рассмотрены существующие подходы к решению задачи обнаружения С®8-комплекса ЭКГ, в основе которых лежат следующие группы методов:
• вычисление производных сигнала;
• линейная цифровая фильтрация;
• адаптивная цифровая фильтрация;
• согласованная фильтрация;
• вейвлет-преобразование;
• нейронные сети;
• синтаксические методы.
Отмечено, что учитывая специфику ЭКС при длительном кардиологическом наблюдении, предпочтение следует отдавать методам, опирающимся на наиболее общие свойства и характеристики сигнала. Этому требованию в наибольшей степени удовлетворяют методы, основанные на использовании цифровой фильтрации.
Рассмотрены наиболее широко используемые методы классификации (}118-комплексов ЭКГ по типам их морфологий:
• на основе признаков формы, вычисляемых во временной области;
• спектральные методы;
• методы на основе корреляционных функций;
• использование вейвлет-преобразования;
• использование разложения на главные компоненты;
• использование нейронных сетей.
Отмечены сильные и слабые стороны каждого из методов и предложено исследовать возможность решения задачи классификации форм ОКБ-комплексов путём комбинированного использования трёх наиболее распространённых и относительно простых в вычислительном отношении подходов: на основе признаков формы, корреляционного и спектрального методов.
Рассмотрены существующие методы анализа вариабельности сердечного ритма (ВСР), используемые для получения количественных оценок регулягорного воздействия различных отделов вегетативной нервной системы на ритм сердца. Отмечено существование ряда проблем, затрудняющих получение корректных оценок спектральных показателей ВСР: нестационарность анализируемого сигнала, а также наличие в сигнале нарушений непрерывности, вызываемых помехами, нарушениями ритма и ошибками предшествующих алгоритмов обнаружения ОКБ-комплекса ЭКГ.
Рассмотрены методы и средства оценки качества разрабатываемых алгоритмов и программ автоматического анализа ЭКС, в частности - базы верифицированных записей электрокардносигналов. Сформулированы требования, которые должны предъявляться к составу проверочных баз данных и к их программному обеспечению. Отмечено, что в наибольшей степени этим требованиям удовлетворяет база данных аритмий Массачусетского технологического института (МП7В1Н), которая в настоящее время де-факто стала всеобщим признанным стандартом для тестирования приборов, систем и программных средств, предназначенных для кардиологического наблюдения.
На основании проведённого анализа современного состояния методов автоматического непрерывного анализа электрокардиосигнала сформулирован вывод о необходимости комплексного подхода к разработке новых алгоритмов и методов. Комплексность, в частности, должна проявляться в согласованности всех этапов обработки сигнала, как по входным и выходным данным, так и по виду применяемых математических методов.
Предложена обобщённая структура комплекса алгоритмов автоматического анализа электрокардиосигнала в системах кардиологического наблюдения, включающая следующую последовательность процедур:
• предварительная фильтрация ЭКС и оценка зашумлённости сигнала;
• обнаружение ОКБ-комплекса ЭКГ и измерение КЯ-интервала;
• анализ морфологии ОКБ-комплексов и их разделение на классы комплексов фонового ритма и патологии;
• распознавание нарушений ритма сердца на основе информации о величинах КЯ-интервалов и классах морфологии ОКБ-комплексов;
• анализ вариабельности сердечного ритма с использованием в качестве входного сигнала последовательности интервалов времени между ОКБ-комплексами фонового ритма (ИМ-интервалов);
• анализ ишемических изменений кардиоцикла только для ОКБ-комплексов фонового ритма.
Сформулированы выводы по результатам рассмотрения состояния проблемы, а также актуальные задачи непрерывной автоматической обработки ЭКС, решение которых является предметом исследования в данной работе.
Вторая глава посвящена исследованию процедур предварительной фильтрация ЭКС, предшествующих алгоритмам, которые осуществляют анализ сигнала, и служащих для выполнения преобразований сигнала, направленных на улучшение условий работы и повышение эффективности этих алгоритмов. Предложено использовать следующую последовательность процедур предварительной обработки электрокардиосигнала:
• подавление сетевой наводки;
• оценка зашумлённости сигнала и отказ or дальнейшей обработки текущего фрагмента при недопустимо высоком уровне шумов;
• фильтрация нижних частот (подавление высокочастотных помех);
• фильтрация верхних частот (подавление низкочастотных помех и снижение относительной амплитуды Т-зубцов ЭКГ);
На основании анализа публикаций по оперативному анализу ЭКС предложено использовать частоту дискретизации равную 250 Гц, что отражает разумный компромисс между достижением удовлетворительной точности представления ЭКС и стремлением к снижению вычислительных затрат при обработке сигнала в реальном масштабе времени.
В работе предложена методика экспериментального исследования алгоритмов предварительной фильтрации ЭКС, в основе которой лежит задача обеспечения наилучших условий для выделения желудочковых комплексов ЭКГ на фоне других компонент кардиоцикла и помех.
Исследование алгоритмов выполнено с использованием специально сформированного набора записей реального электрокардиосигнала. Данный набор включает 50 трёхканальных записей ЭКГ, длительностью по 60 с каждая. Частота дискретизации ЭКС составляет 250 Гц, а разрядность цифро-аналогового преобразования - 12 бит. Фрагменты были отобраны таким образом, чтобы они не содержали существенных помех и в то же время включали как QRS-комплексы фонового ритма, так и патологические желудочковые комплексы. Общее число QRS-комплексов в наборе - 3384, в том числе 3113 комплексов фонового ритма и 271 комплекс патологической формы. Все фрагмента ЭКГ были приведены к нулевым средним значениям и верифицированы: отмечены границы каждого комплекса и условный класс формы. Сформированный набор записей был случайным образом разделён на 2 одинаковых по объёму поднабора: обучающий (используемый для оптимизации параметров алгоритмов) и контрольный (для оценки качества разработанных алгоритмов).
В качестве модели помехи предложено выбрать реализацию нормально распределённого белого шума, спектр которого ограничен полосой частот, соответствующей полосе пропускания аналогового тракта стандартного усилителя электрокардиосигнала (от 0,05 Гц до 100 Гц). Сгенерированная с использованием программного датчика случайных чисел реализация помехи после полосовой цифровой фильтрации была приведена к нулевому среднему значению и к единичному стандартному отклонению. Для получения сигнала с заданным отношением сигнал/шум соответствующая реализация ЭКГ суммировалась с помехой, делённой на требуемое значение отношения сигнал/шум.
Для исследования алгоритмов предварительной фильтрации предложено выбрать в качестве меры искажения электрокардиосигнала в результате обработки относительное изменение размаха анализируемого желудочкового комплекса, а изменение помехи оценивать по отношению значений её стандартного отклонения до и после фильтрации.
В работе показано, что наиболее подходящим классом фильтров для предобработки ЭКС являются нерекурсивные цифровые фильтры с симметричной импульсной характеристикой и нечёпшм числом коэффициентов, определяемые разностным уравнением вида:
(М-1 )П
Я«) = X с/*(п-0.
¡—(и-1)12
где х(п), у(п) — соответственно отсчёты входного и выходного сигналов, с, = с_, -коэффициенты фильтра, а М — нечётное целое число, характеризующее количество коэффициентов. Такие фильтры всегда устойчивы, имеют гарантированную линейную фазовую характеристику и вносят в сигнал постоянную задержку, равную целому числу интервалов дискретизации.
По результатам экспериментального исследования процедур фильтрации нижних и верхних частот были определены диапазоны оптимальных значений частоты среза /с и ширины переходной полосы /п для обоих видов фильтров, значения которых составили:
• дляФНЧ- /с= 25-35 Гц и /о=25-30Гц;
• дяяФВЧ-/с=4-5Гц и /„=3-4Гц.
Предложены практические варианты обоих фильтров, удовлетворяющие этим условиям и имеющие такие значения коэффициентов, которые позволяют выполнять цифровую фильтрацию только средствами целой арифметики компьютера, что существенно снижает затраты времени процессора. Данные ФНЧ и ФВЧ имеют соответственно следующие наборы коэффициентов:
^{-1,-1,0,2,5,7,8,7,5,2,0,-1,-1};
-{-1,-2,-3,...,-15,-16,-17,-17,-18-19,-19,-20,+492, 512
-20,-19,-19,-18,-17,-17,-16,-15,...,-3,-2,-1}
Для устранения из ЭКС сетевой наводки промышленной частоты 50 Гц предложено использовать адаптивную цифровую фильтрацию. Это обусловлено тем, что адаптивные фильтры при сравнительной простоте их реализации обеспечивают высокую эффективность подавления синусоидальной составляющей заданной частоты, а также то, что они способны подстраиваться под сетевую наводку и компенсировать ее, не влияя на близкие по частоте составляющие полезного сигнала. Рассмотрен алгоритм адаптивной компенсации сетевой наводки, основанный на принципе минимизации полной выходной мощности. Параметром, оказывающим наибольшее влияние на качество фильтрации, является шаг адаптации алгоритма. Исследовано влияние шага адаптации на добротность фильтра, скорость настройки и на вносимые в электрокардиосигнал искажения.
На рис. 1 показаны последовательные стадии предварительной обработки фрагмента электрокардиосигнала с использованием предложенных фильтров.
Исходный ал«кгрокардиоеигнал
Рис. 1. Этапы предварительной обработки электрокардиосигнала.
Предложен метод контроля уровня помех в сигнале, основанный на оценке относительного содержания в сигнале высокочастотных составляющих. Выделение высокочастотной составляющей сигнала предложено осуществлять с использованием фильтра второй разности отсчётов, определяемого уравнением у(п) = х{п) - 2х(п -1)+х{п - 2), где х{п), у(п) - соответственно отсчёты входного и выходного сигналов. Текущее значение оценки уровня помех рассчитывается с использованием рекуррентной формулы скользящего среднего:
г(и-1) + 1[у(В)-2(и-1)]
где у(п) - сигнал с выхода фильтра второй разности, а N - размер скользящего окна в отсчётах. Решение о наличии в сигнале помехи в момент времени, соответствующий отсчёту с индексом п, принимается при выполнении одного из следующих условий:
г(п)>Хх или 2(0>21,|' = и-Х+1,...,и, где 2,, 72 и X - экспериментально выбранные константы.
Третья глава посвящена исследованию алгоритмов обнаружения комплекса ЭКГ.
Рассмотрены и исследованы шесть различных вариантов цифровых дифференциаторов (как описанных в литературе, так и предложенных автором), служащих для выделения С}118-комплекса непосредственно на входе процедуры его обнаружения. При этом в качестве критериев оценки эффективности предложено использовать показатели, характеризующие как степень относительного ослабления зубцов Р и Т, так и эффективность выделения желудочковых комплексов на фоне широкополосных шумов. По результатам проведённых исследований предложено использовать сглаживающий дифференциатор, определяемый уравнением:
у(п) = х(п - 3) - х(п - 2) - х(п -1)+х(п +1) + х(п + 2) + х(п + 3), где х{п), у(п) - соответственно отсчёты входного и выходного сигналов.
Рассмотрен вариант простейшего порогового алгоритма обнаружения С}118-комплекса, на вход которого может быть подан взятый по модулю сигнал с выхода предложенного выделителя желудочкового комплекса. Показано, что при отсутствии существенных помех, а также низкоамплитудных (ЗЯБ-комплексов, такой алгоритм способен эффективно обнаруживать желудочковые комплексы на фоне других компонентов ЭКГ. В то же время, для практического использования в системах кардиологического контроля необходимо применение более сложных алгоритмов, обладающих способностью к адаптации и к учёту контекста электрокардиосигнала.
С целью разработки практического алгоритма обнаружения СЖЗ-комплекса, на основе статистического анализа реальных записей ЭКГ были определены соотношения, характеризующие зависимости длительностей некоторых интервалов кардиоцикла от величины М1-интервала Т^:
т ГО,12с, Ти <0,2с "п (0,1252^ + 0,1с, >0,2с'
0Д2с, Тм<0,2с Тлт2 =• 0,4ГЫ +0,05с, 0,2с*Тм <0,6с;
0,257^ +0,15с, Тщ, ¿0,6с
0,15с, Гы<0,3с Тп = ■ 0,25Гм +0,075с, 0,3с<Тм <0,7с.
0,25с, Тм 2 0,7с
Здесь - интервал от вершины Л-зубца до вершины Т-зубца, Тйп и Тт -соответственно нижняя и верхняя границы возможного разброса параметра Ткт> Тп - интервал от вершины Р-зубца до вершины Я-зубца.
Ниже приводится краткое описание предложенного алгоритма обнаружения желудочкового комплекса. Предполагается, что к моменту начала поиска очередного желудочкового комплекса известны:
• опорная точка (точка в пределах комплекса, относительно которой вычисляется оценка КЯ-интервала) последнего обнаруженного {к — 1)-го желудочкового комплекса которая для удобства изложения далее будет принята за исходный момент времени (т.е. будет считаться, что =0);
• текущее среднее значение А максимальной амплитуды входного сигнала алгоритма для участков, содержащих желудочковые комплексы;
• текущее среднее значение Ты величин КЯ-интервалов.
На первом этапе работы алгоритма вычисляются величины параметров, зависящих от текущих значений А и Гм, т. е. интервалы времени Тт,Тт,Тп, интервал Т1=ТКп + А-(С1-С1)/т, а также т- А (1-С,)/(ТКТ2-Гт) - тангенс угла наклона порога обнаружения <1 на его спадающем участке. Здесь С^,С2,С2,СА -экспериментально определенные постоянные коэффициенты алгоритма.
Промежуток времени от исходной точки до момента Тяп пропускается, так как предполагается, что на этом участке не может встретиться очередной комплекс. Начиная с отсчета, соответствующего моменту времени Ткп выставляется линейно спадающий порог начальное значение которого равняется А. Наклон этого порога характеризуется параметром т и определяется точкой Т„т7, в которой его значение становится равным величине С, -А (где С, < 1). Спад порога продолжается до момента времени Тг, после чего порог остается неизменным до обнаружения следующего желудочкового комплекса и равняется Сг • А (где С2 < С,).
Если, начиная с момента Т„п, абсолютное значение а некоторого отсчета = хь превысит текущее значение порога й, то предполагается наличие на соответствующем участке сигнала очередного желудочкового комплекса. Сигнал просматривается на 0,15 с вперед, и если зафиксированное значение текущего максимума а не превышено, то комплекс считается предварительно обнаруженным. Если ранее, чем через 0,15 с от момента времени, соответствующего текущему максимуму, будет найден отсчет, значение которого больше или равно а, то фиксируется новое значение переменной а и процедура просмотра вперед повторяется до тех пор, пока не будет найден абсолютный максимум, превышающий текущее значение порога с1 на интервале ±0,15 с.
Далее, если значение зафиксированного максимума а ниже величины С, • А (где С3 <1), то предполагается, что этот максимум может принадлежать Р-зубцу. На интервале от г„ = 0,15с до гй =Тп выставляется новый порог, равный СА •а (где С4 »1). Если этот порог не превышен в пределах указанного интервала времени, то очередной комплекс считается обнаруженным, а точка, где зафиксировано значение последнего текущего максимума а (отсчет с индексом / = ¡а) принимается за предварительную опорную точку найденного желудочкового комплекса. В противном случае, ранее найденный максимум считается принадлежащим Р-зубцу и анализ сигнала продолжается уже для нового текущего максимума.
После того как обнаружен желудочковый комплекс, выполняется определение его опорной точки Д. Оценка КЯ-интервала, предшествующего к -му найденному комплексу, вычисляется как промежуток времени между опорными
точками двух последних комплексов:
=(/,-/«)■*.
Текущие средние значения А и Трл обновляются с учетом величин Ак и , соответствующих вновь обнаруженному (к -му) комплексу. За исходный момент времени принимается отсчет с индексом / = /4 и происходит возврат к процедуре поиска очередного желудочкового комплекса.
В предложенном алгоритме используются четыре постоянных коэффициента (С, = 0,5,Сг =0,35,С3 =0,5,С4 = 3,0), которые выбраны с учётом статистических оценок соответствующих характеристик электрокардиосигнала.
Для уточнения опорной точки, определённой описанным выше алгоритмом, предложена процедура, основанная на вычислении площади под кривой сипнала на участке (¿ЯЗ-комплекса, обладающая более высокой устойчивостью к изменениям сигнала и помехам.
Предложенный алгоритм обнаружения С^ЯБ-комплекса был положен в основу алгоритма, использующего два или три отведения ЭКГ. В качестве входного сигнала для этого алгоритма используется суммарный сигнал, получаемый соответственно из двух или трёх отведений ЭКГ, прошедших описанные выше процедуры предобработки и выделения риЗ-комплекса. Логика работы алгоритма остаётся той же, но отличаются значения некоторых из используемых параметров. Кроме того, в алгоритм добавлена возможность его автоматической перестройки при внезапном изменении числа входных каналов, что отражает часто встречающуюся в ходе длительного наблюдения ЭКГ ситуацию, когда по каким-либо причинам сигнал на отдельных каналах может временно пропадать и потом восстанавливаться.
Тестирование разработанных алгоритмов осуществлялось с использованием контрольного набора данных. При этом оценка качества выполнялась с использованием критериев, предложенных для тестирования детекторов С}118-комплексов с использованием стандартной базы данных аритмий М1Т-ВЩ:
ТР тр
Р8е=—^—100% и 0+Р=—1-—100%., тр+га х ТР+ЕР
Показатель <38е (чувствительность) определяется как процент числа правильно обнаруженных комплексов ТР по отношению к сумме этой величины ТР и числа пропущенных алгоритмом комплексов КЫ. Показатель 0+Р (положительная предсказательность) определяют как процент ТР по отношению к сумме ТР и числа ошибочно обнаруженных комплексов БР.
Для сравнительной оценки качества разработанного алгоритма (алгоритма А) он сопоставлялся с разработанным ранее аналогичным по назначению алгоритмом (алгоритмом Б). В таблице 1 приведены результаты оценки качества работы всех вариантов алгоритмов.
Таблица 1. Оценки качества алгоритмов обнаружения ОКБ-комплексов, полученные на контрольном наборе записей ЭКГ.
Число Отношение сигнал/шум
Алгоритм отведений Показатель Без помехи 20:1 15:1 10:1
0Бе,% 100,0 99,77 99,45 95,9
1 0+Р,% 100,0 99,75 98,8 88,7
А С^е, % 100,0 99,89 99,61 96,8
2 0+Р,% 100,0 99,86 99,1 92,2
<33 е, % 100,0 99,90 99,72 97,0
3 0+Р,% 100,0 99,88 99,2 93,1
С^Бе, % 100,0 99,7 99,2 95,1
Б 1 0+Р,% 100,0 99,7 98,3 82,3
Как видно из таблицы, наиболее существенное улучшение качества работы алгоритма достигается за счёт использования двух отведений вместо одного. Обработка сигнала одновременно по трём отведением даёт относительно небольшой прирост качества по сравнению с вариантом двух отведений. При отношении сигнал/шум ниже 15:1 качество всех алгоритмов резко ухудшается, хотя алгоритмы, использующие два или три отведения, оказываются более помехоустойчивыми.
Оценки качества, полученные с использованием записей из базы данных МГГ-ВШ, приведены в таблице 2.
Таблица 2. Оценки качества алгоритмов обнаружения ОКБ-комплексов, полученные с использованием записей из базы данных МГГ-В1Н.
Алгоритм Число отведений Показатель
<ЗБе,% 0+Р, %
А 1 99,13 98,01
2 99,29 98,76
Б 1 98,93 97,34
Четвертая глава посвящена исследованию проблемы классификация ОКБ-комплексов по характеру их морфологии. Задача классификации форм ОКБ-комплексов осложняется их разнообразием и изменчивостью, а также наличием помех. Наибольшее распространение находят следующие три основных типа методов:
• анализ параметров формы, вычисляемых во временной области (метод I);
• использование взаимной корреляционной функции (метод II);
• анализ спектральных параметров (метод 1П).
Как показывают исследования и данные литературных источников, ни один из перечисленных подходов не позволяет достичь безошибочной классификации. С другой стороны, так как каждый из методов основан на использовании различных свойств сигнала, то можно предположить, что совместное применение этих методов может дать гораздо более высокую точность классификации, чем каждый из них, взятый в отдельности. Целью представленного исследования была оценка разделяющей способности и помехоустойчивости трёх перечисленных методов вычисления признаков формы ОКБ-комплексов, как при их раздельном использовании, так и в сочетании друг с другом. При проведении исследований были поставлены следующие основные задачи:
• оценка разделяющей способности каждого вида признаков и оптимизация параметров процедур их вычисления;
• выбор наиболее эффективного сочетания признаков;
• разработка решающего правила как для каждого из видов признаков, так и для их сочетаний.
Исследование проводилось с использованием обучающего набора реальных записей ЭКГ и модели шумов, позволяющей выполнить оценку помехоустойчивости разрабатываемых алгоритмов. При этом оценивалась ошибка классификации, отражающая способность алгоритмов группировать ОКБ-
комплексы одинакового класса морфологии и разделять комплексы, относящиеся к разным классам. Для каждого из трёх методов расчёта признаков формы исследовались зависимости ошибок классификации от отношения сигнал/шум. В качестве показателя ошибки классификации использовалось значение относительной ошибки в точке пересечения кривых для ошибок I и II рода, полученных по нормализованным распределениям расстояний (значений показателей сходства) между QRS-комплексами, относящимися к одному и тому же классу формы, и комплексами, относящимися к разным классам.
В случае использования параметров формы, вычисляемых во временной области (метод I) для каждого из QRS-комплексов анализируемой ЭКГ рассчитываются четыре признака формы: длительность Т, с; размах А, мВ; смещение относительно нулевой линии S, мВ и суммарная площадь волн Р, мВ-с. Расчёт признаков выполняется по следующим формулам:
T = K-hT
к к
А = max x(k) - min х{к)
Г х к 1
S= шах х(к)+min х(к) -д:(1)
Р = 1>(*)-х(1)|
JU1
где К - число отсчётов сигнала в пределах QRS-комплекса, АГ = 1/РЛ - интервал дискретизации сигнала при частоте отсчётов FA, х(к) - отсчёты сигнала в пределах данного QRS-комплекса (fe =1,2,...,/Г). При этом значение первого отсчёта соответствующего комплекса условно принимается за уровень нулевой линии.
Сопоставление форм двух QRS-комплексов между собой выполняется с помощью показателя сходства Dhj, рассчитываемого следующим образом:
Af = wtct -И■~Tj\+waCa\А, -Aj\+ wsCs - wpCp\pt-Pj\, где признаки формы с индексами i и j относятся к соответствующим комплексам, Ст,Сл,С3иСе - это нормировочные коэффициенты, необходимые для приведения всех признаков формы к безразмерным единицам и для уравнивания их масштабов, a wT,wil,ws и w, - весовые коэффициенты, учитывающие значимость используемых параметров формы T,A,S и Р. Нормировочные коэффициенты рассчитывались как средние значения модулей соответствующих признаков для всех QRS-комплексов экспериментального набора записей ЭКГ, а весовые - определены путём минимизации показателя ошибки классификации и имеют следующие значения: wT =1,2; =1,1; ws =1,3; и^ =0,8.
В случае использования корреляционного метода (метода II), для двух QRS-комплексов вычисляется взаимная корреляционная функция (ВКФ):
С„(т) =
- у х,(п + т)х,{п), 0£т£Л/
(я)ху(п+т), -М £т <0
где т - значение сдвига, М - максимальный сдвиг, х,(п) и ж, (л) - отсчёты двух сравниваемых комплексов (г-го и у-го), N- число отсчётов в каждом из образцов сигнала, <г, и сг; - соответствующие стандартные отклонения. Величина
максимального сдвига М = 5 (или 20 мс) выбрана из тех соображений, чтобы учесть возможную ошибку в определении условной опорной точки (ДОЗ-комплекса, которая может приводить к неточному совмещению сопоставляемых сигналов. Показатель сходства форм двух СЛ^З-комплексов (г-го и у -го) рассчитывается с использованием максимума из (т) для всех заданных значений сдвига по формуле:
Г я-М
1-тахС„(т) ,
благодаря чему обеспечивается условие, что чем лучше коррелированны два сигнала, тем ближе к нулю будет значение показателя £>щ, а случаю наихудшей корреляции ( С^. {т) = -1) будет соответствовать значение двд = 2. По результатам минимизации показателя ошибки классификации величина длительности фрагмента сигнала // для расчёта ВКФ выбрана равной 45 отсчётам (180 мс).
В случае подхода на основе спектральных методов (метода Ш), вычисляется дискретное преобразование Фурье (ДПФ) для участка сигнала, соответствующего (ЗК8-комплексу:
п=0
где *(£) - отсчёты сигнала, а N - размер фрагмента сигнала (окна), по которому рассчитывается ДПФ. Далее вычисляется амплитудный спектр:
N
Компоненты амплитудного спектра могут рассматриваться в качестве признаков формы (^ЦБ-комплекса. Так ка" большая часть энергии ЭКС в пределах ОКБ-комплекса сосредоточена в полосе частот от 4 Гц до 50 Гц, то для расчёта показателя сходства форм используются только спектральные компоненты, относящиеся к этому диапазону частот. Показатель сходства форм 0КЗ-комплексов (¿-го и у-го) рассчитывается по формуле:
где В ¡{к) и В ¡{к) - спектральные компоненты с номером к для соответствующих комплексов, К - номер элемента разложения для частотного поддиапазона, включающего частоту 50 Гц, а а, и ст. - соответствующие стандартные
отклонения. Альтернативным подходом может служить использование не амплитудного спектра, а спектра мощности, однако сравнительный анализ ошибки классификации показал, что использование амплитудного спектра даёт лучшие результаты. По результатам минимизации показателя ошибки классификации размер окна N для расчёта ДПФ выбран равным 64 отсчётам (256 мс).
Оптимизация параметров каждого из методов позволила получить зависимости оценок показателя ошибки классификации от отношения сигнал/шум (см. ниже рис. 3). Логично предположить, что совместное использование исследованных методов может обеспечить более высокое качество классификации, чем каждый из них в отдельности. В то же время, не исключена возможность, что показатели сходства форм 0Б18-комплексов, получаемые с помощью этих методов, могут оказаться коррелированными между собой. В таком случае их совместное использование не даст заметного выигрыша. Попарная оценка коэффициентов корреляции между показателями сходства форм С®.8-комш1ексов для этих методов показала, что наиболее коррелированны между собой методы I и П1 (до 0,57), а наименее - пара методов П и Ш (не более 0,32).
С целью проверки предположения о возможном преимуществе совместного использования различных типов признаков, были получены совместные распределения значений используемых показателей сходства форм ОЫв-комплексов для всех трёх возможных пар методов при различных значениях отношения сигнал/шум. Анализ попарных распределений показателей сходства форм для трёх методов показал, что использование любой из трёх возможных пар методов способно дать лучший результат, чем каждый из методов в отдельности. Исходя из характера распределений, в качестве разделяющей линии предложено использовать духу окружности с центром в начале координат. Минимизация показателя ошибки классификации позволила определить оптимальные значения радиуса этой окружности для каждой из трёх пар методов (см. рис. 2).
0ц.н.9. Методы 1 и II Ек=2.58% Ош,н.е. Мвтоды|иН1 Ек=4,32% Ош,н.е. Методы II и III Ее=2.24%
Рис. 2. Совместные распределения значений показателей сходства форм (¡>Е.8-комплексов для трёх пар методов при значении отношения сигнал/шум 30:1, а также разделяющие линии (дуги), при которых достигаются наименьшие значения показателя ошибки классификации.
Был также исследован вариант совместного использования всех трёх методов. Для этого случая предложено использовать разделяющую поверхность в форме сегмента сферы с центром в начале координат. Минимизация показателя
ошибки классификации позволила определить оптимальные значения радиуса этой сферы. На рис. 3 приведены графики зависимостей ошибки классификации Ек от отношения сигнал/шум для каждого из трёх рассмотренных методов в отдельности (левый график), а также для случаев попарного использования методов и комбинации из всех трёх методов (правый график). Из приведённых зависимостей видно, что наилучший результат (ошибка классификации около 2%) достигается в случае совместного использования методов П и Ш, т.е. корреляционного и спектрального методов. Использование третьего метода в дополнение к данным двум даёт лишь незначительное снижение ошибки.
сигнал/шум.
Для вариантов алгоритмов классификации, продемонстрировавших наилучшие результаты, было выполнено тестирование на контрольном наборе записей ЭКГ, результаты которого представлены в таблице 3.
Таблица 3. Результаты тестирования методов классификации ОЯв-комплексов. _ _ _ _
Метод Показатель ошибки классификации (в %) при разных значениях отношения сигнал/шум
15:1 20:1 30:1 50:1 100:1
П+Ш 4,7 3,9 2,6 2,5 2,2
I+II+III 4,4 3,7 2,5 2,0 1,9
Пятая глава посвящена исследованию методов анализа вариабельности сердечного ритма (ВСР). В основе методик анализа вариабельности сердечного ритма лежит представление о том, что последовательность, образуемая величинами длительности интервалов времени между смежными сокращениями сердца фонового ритма (NN-интервалами), несёт информацию о регуляторных функциях вегетативной нервной системы организма. Одним из наиболее распространённых подходов к анализу ВСР является оценка спектральных параметров сигнала, образуемого этой последовательностью. При этом в первую очередь ставится задача определения суммарных мощностей, сосредоточенных в трёх частотных диапазонах: очень низких частот VLF (Very Low Frequency, 0,003-0,04 Гц), низких частот LF (Low Frequency, 0,04-0,15 Гц) и высоких частот HF (High Frequency, 0,15-
0,4 Гц). Корректное решение данной задачи с использованием общепринятых методов частотного анализа сигналов затрудняется следующими факторами:
• наблюдается не сама функция управления сердечным ритмом, которая является предметом анализа, а вторичный по отношению к ней сигнал -последовательность №1-интервалов, представляющая собой последовательность точечных событий, неравномерно распределённых по времени;
• последовательность М1-интервалов, получаемая в результате анализа ЭКГ, может содержать интервалы не только фонового ритма, но и другого происхождения (связанные с нарушениями ритма, помехами или ошибками обнаружения (ЗЯБ-комплекса);
• поскольку сигнал сердечного ритма является случайным процессом, то и рассчитанные по нему показатели будут являться случайными величинами; при этом не существует возможности однозначной верификации получаемых результатов;
• сигнал сердечного ритма является нестационарным сигналом, что связано как с природой его возникновения, так и с внешними факторами, оказывающими влияние на пациента в процессе съёма сигнала.
В работе была поставлена задача исследования предлагаемых методов получения оценок спектральных показателей ВСР с точки зрения точности и статистической состоятельности получаемых результатов. Рассматривались два альтернативных подхода:
• использование представления функции управления сердечным ритмом в виде последовательности равноотстоящих отсчётов, восстановленной по исходной последовательности ИМ-интервалов;
• непосредственный анализ последовательности НЫ-интервалов.
В рамках первого из подходов были исследованы непараметрические методы на основе дискретного преобразования Фурье (ДПФ) — периодограммный с различными видами окон и метод Уэлча с окном фон Ханна, а также параметрические методы - авторегрессионное моделирование на основе методов Берга, ковариационного и модифицированного ковариационного. Для реализации второго подхода использовался периодограммный метод Ломба-Скаргле, представляющий собой обобщение ДПФ на случай описания процесса в виде последовательности точечных событий.
Для исследования методов оценки спектральных показателей ВСР была разработана модель сигнала сердечного ритма, обладающая заданными частотными свойствами. В качестве отправной точки для построения модели использовалась функция СПМ, имеющая вид, характерный для сигнала ВСР в норме: приблизительно одинаковая концентрация мощности в диапазонах частот УТЛ-1, и и Ш7 при значениях суммарной мощности в данных диапазонах, имеющих порядок от 300 мс2 до 1000 мс2. В диапазонах частот УЬБ, У и НР были сформированы три огибающие функции СПМ в форме гауссовых кривых, центр каждой из которых расположен в середине соответствующего диапазона частот, а значения на границах диапазона составляют приблизительно 1% от максимума для данной кривой. Масштаб каждой из трёх кривых был выбран так, чтобы величина площади под ней соответствовала 500 мс2.
Выражение для отсчётов полученной функции имеет вид:
где ЛГ = 512 - выбранное число отсчётов по частоте в диапазоне частот от 0 Гц до /ши=0>5Гц, А/" = /М/ЛГ = 0,5/512 - шаг по частоте, /' = 1,2,3 - номер диапазона частот (соответственно для диапазонов "УЫ7, 1Л7 и НЕ), ст, = (/ц-/|,)/6 -среднеквадратичное отклонение для соответствующей гауссовой кривой (здесь /п и /¡г ~ границы г-го диапазона). По модельной СПМ были восстановлены значения модулей амплитудного спектра:
Далее значения компонент амплитудного спектра были использованы для получения модельного сигнала функции управления сердечным ритмом:
где К =102400 - выбранное число отсчётов сигнала, Г = 10мс - интервал дискретизации (соответствует частоте дискретизации 100 Гц), С=1000мс -произвольно выбранное среднее значение RR-интервала, a <j>j-rand(j) - фазовый сдвиг для J-ой синусоиды, полученный как случайное число с равномерным распределением в диапазоне от 0 до 1 (случайный фазовый сдвиг использован для предотвращения интерференции синусоид с частотами кратными А/). В результате была получена реализация модельного сигнала, имеющая длительность 1024 секунды (или 17 минут и 4 секунды), с частотой дискретизации 100 Гц.
Модельная последовательность NN-интервалов была сгенерирована с использованием концепции модели порождения сигнала сердечного ритма, известной как IPFM (Integral Pulse Frequency Modulation, интегральная импульсно-частотная модуляция). Далее с помощью интерполяции кубическими сплайнами была восстановлена исходная функция управления в виде равномерно дискретизованного сигнала с частотой отсчётов 4 Гц. Число отсчётов полученной реализации составило 4096. Расчёт СПМ по модельной реализации показал высокую степень её совпадения с изначально заданной (значение стандартного отклонения - около 0,9%). Таким образом, было показано, что модельный сигнал обладает заданными частотными свойствами и может рассматриваться в качестве образца реализации сигнала сердечного ритма, стационарного на всём его протяжении.
Для получения оценок точности и статистической устойчивости результатов из модельной последовательности RR-интервалов случайным образом выбирались 20 фрагментов продолжительностью по 5 минут (300 секунд) каждый. Эти фрагменты были использованы для вычисления СПМ и спектральных параметров с помощью каждого из перечисленных методов. На рис. 4 приведены примеры графиков СПМ для одного и того же фрагмента сигнала, полученных с использованием различных методов, а также указаны рассчитанные значения оценок спектральных параметров В СР.
i.O j.0
Рис. 4. примеры графиков СПМ, полученных с использованием различных методов: а) периодограммный метод с прямоугольным окном; б) метод Уэлча с окном фон Ханна; в) модифицированный ковариационный метод с порядком равным 20; г) метод Ломба-Скаргле. На графиках также показана СПМ модельного сигнала и приведены значения оценок спектральных параметров ВСР.
Как можно видеть из приведённых графиков, величины показателей ВСР, полученные разными методами, существенно отличаются как от теоретических значений, так и друг от друга. Статистический анализ ошибок показал, что точность и устойчивость результатов, получаемых с помощью простейшего периодограммного метода с использованием прямоугольного окна, оказывается не ниже, чем при использовании других методов, которые значительно сложнее в вычислительном отношении. Этот результат объясняется тем, что в самом принципе расчёта частотных параметров ВСР заложено усреднение по частоте, что избавляет от необходимости использования дополнительных процедур усреднения, а также нивелирует эффект спектральной утечки, свойственный прямоугольному окну. Наилучшие результаты продемонстрировали следующие варианты методов: • периодограммный с использованием прямоугольного окна;
• авторегрессионная модель на основе модифицированного ковариационного метода при значении порядка модели от 20 до 30;
• метод Ломба-Скаргле.
Оценки относительных среднеквадратичных ошибок расчета параметров ВСР для диапазонов частот УЫ7, Ц? и Ш7 оказались для этих вариантов примерно одинаковыми и составили соответственно: 30-32 %; 9-11 % и 5-6 %.
В работе исследованы методы оценки стационарности сигнала сердечного ритма с целью решения задачи автоматической сегментации продолжительных реализаций сигнала на локально-стационарные фрагменты, что позволяет избежать получения заведомо ошибочных результатов на участках сигнала, содержащих переходные процессы или помехи. Исследование выполнено с использованием как специально предложенной модели сигнала, позволяющей получать реализации, включающие локально стационарные (с точки зрения спектрального описания) сегменты, разделённые переходными процессами, так и набора реальных записей сигнала, полученных при проведении ортостатических функциональных проб (36 реализаций длительностью от 12 до 15 минут каждая). Исследованы три различных подхода, которые по данным литературных источников позволяют наиболее эффективно осуществлять оценку стационарности сигналов:
• метод мониторинга коэффициентов авторегрессии;
• метод анализа сигнала с удалённым тревдом;
• метод на основе обобщенного отношения правдоподобия.
В результате исследования с использованием модельных сигналов для каждого из методов была определена область значений параметров, при которых достигаются удовлетворительные результаты. Исследование на реальных записях позволило определить оптимальные значения данных параметров, при которых среднеквадратичная ошибка (СКО) определения границ локально стационарных участков оказывается наименьшей. Наилучшие результаты (относительная СКО около 15 %) продемонстрировал метод на основе обобщённого отношения правдоподобия, в котором используется принцип оценки средней ошибки предсказания авторегрессионной модели в скользящем окне.
С появлением технической возможности одновременной регистрации сигналов сердечного ритма и мгновенного кровяного давления возникла необходимость разработки математических методов, позволяющих выявить и количественно оценить взаимосвязи между этими двумя сигналами. Использование традиционно применяемых методов, рассчитанных на обработку сигналов, имеющих физическое или техническое происхождение, не всегда позволяет получать статистически устойчивые результаты, что связано со спецификой биологических сигналов. Задача представленного в работе исследования состояла в том, чтобы используя как записи реальных сигналов, так и модели сигналов, обладающие свойствами, характерными для сигналов сердечного ритма и мгновенного кровяного давления, разработать методы их совместного анализа, которые позволяют получить корректные оценки параметров, характеризующих взаимосвязи данных сигналов. При этом наибольший интерес для физиологов представляют оценки взаимной спектральной плотности мощности (ВСПМ) сигналов и взаимных фазовых спектров (частотных зависимостей задержек).
Рассмотрены следующие альтернативные подходы:
• Непосредственное вычисление ВСПМ по ДПФ двух синхронно снятых дискретных выборок сигналов.
• Получение оценки ВСПМ как ДПФ от оценки ВКФ.
• Расчёт оценки ВСПМ с использованием одного из распространённых методов практического спектрального анализа - периодограммного метода Уэлча.
С целью оценки точности и статистической устойчивости рассчитываемых взаимных характеристик сигналов, была предложена модель двух рассматриваемых процессов, обладающая заданным видом как амплитудных, так и фазовых спектров, и имеющая частотные и статистические свойства, характерные для сигналов сердечного ритма и артериального давления.
В результате исследований на модельных сигналах было показано, что первый из перечисленных методов позволяет получить точность, как оценок спектральной мощности, так и оценок фазовых сдвигов, в 3-10 раз выше, чем в случае использования двух других методов. Показано также, что статистически устойчивые оценки фазовых сдвигов удаётся получил, только на тех участках частотного диапазона, где относительная взаимная мощность составляет не менее 3-5 % от общей взаимной мощности сигналов.
В работе также предложен альтернативный метод получения оценок временного сдвига между сигналами сердечного ритма и мгновенного кровяного давления, основанный на анализе ВКФ двух сигналов, пропущенных через один и тот же полосовой фильтр. Значение временного сдвига непосредственно измеряется по ВКФ, как расстояние от первого положительного пика до точки, соответствующей нулевому сдвигу. Полоса пропускания фильтра выбирается на основании анализа предварительно полученной ВСПМ сигналов с целью выделить тот или иной частотный диапазон, в котором отчётливо выражено наличие когерентных колебаний.
Шестая глава посвящена вопросам реализации разработанных методов и алгоритмов автоматического анализа электрокардиосигнала в практических системах медицинского назначения.
При реализации методов и алгоритмов обработки сигналов в системах кардиологического наблюдения неизбежно приходится учитывать ряд ограничений, связанных с необходимостью непрерывной обработки сигнала в реальном масштабе времени. В первую очередь это касается требующихся вычислительных ресурсов: быстродействия вычислителя и объёма доступной оперативной памяти. Наиболее остро данная проблема встаёт при реализации приборов и систем обработки сигналов на базе микропроцессоров.
В работе рассмотрены возможные меры как алгоритмического, так и чисто технического характера, позволяющие снизить загрузку процессора и потребность в оперативной памяти при анализе сигналов в режиме реального времени. К таким мерам относятся следующие:
• в случае наличия альтернатив, выбор математических методов и алгоритмических решений, требующих наименьших вычислительных затрат;
• оптимизация методов обработки сигналов с целью снижения их вычислительной сложности;
• тестирование разрабатываемых программно-алгоритмических средств с целью оценки требующихся вычислительных ресурсов;
• использование средств и языков программирования, обеспечивающих получение в результате компиляции эффективных исполняемых кодов;
• использование, там где это возможно, целочисленной арифметики;
• использование методов буферизации потоков входных и выходных данных;
• соблюдение правил программирования, обеспечивающих рациональный расход ресурсов процессора.
Предложенные методы и алгоритмы обработки элекгрокардиосигналов были внедрены в следующих компьютерных системах медицинского назначения:
1. Комплекс монигорного наблюдения ЭКГ «РИТМОН».
Комплекс предназначен для круглосуточного мониторного контроля сердечной деятельности кардиологических пациентов в отделениях интенсивной терапии и реанимации клиник и рассчитан на одновременное наблюдение ЭКГ восьми пациентов. Комплекс «РИТМОН» выпускается ООО «Биосигнал» (Санкт-Петербург), и к настоящему времени эксплуатируется более чем в 100 клиниках России, а также более чем в 50 клиниках Польши.
В составе программного обеспечения комплекса «РИТМОН» реализованы следующие разработанные автором методы и алгоритмы:
• алгоритм предварительной цифровой фильтрации электрокардиосигнала и оценки его зашумлённости;
• одноканальный алгоритм обнаружения желудочкового комплекса ЭКГ;
• алгоритм классификации форм (ЗИЯ-комплексов ЭКГ;
• алгоритм расчёта оценок частотных показателей ВСР.
Пакет программ автоматической обработки электрокардиосигнала в комплексе «РИТМОН» официально зарегистрирован в РосАПО РФ.
2. Компьютерная система для функциональных исследований сердечнососудистой системы «Кардиометр-МТ».
Система «Кардиометр-МТ» выпускается ЗАО «Микард-Лана» (Санкт-Петербург) и к настоящему времени эксплуатируется более чем в 400 медицинских учреждениях России. Система предназначена для использования в кабинетах функциональной диагностики поликлиник и стационаров и рассчитана на проведение нескольких видов стандартных исследований:
• съём и автоматическая интерпретация ЭКГ в 12-ти общепринятых отведениях;
• проведение нагрузочных проб;
• исследование вариабельности сердечного ритма;
• проведение электрофизиологических исследований с искусственной элекгрокардиостимуляцией сердца.
В составе программного обеспечения системы «Кардиометр-МТ» реализованы следующие разработанные автором методы и алгоритмы:
• алгоритм предварительной цифровой фильтрации электрокардиосигнала и оценки его зашумлённости;
• многоканальный алгоритм обнаружения желудочкового комплекса ЭКГ;
• алгоритм классификации форм QRS-комплексов ЭКГ;
• алгоритм расчёта оценок частотных показателей ВСР;
• метод автоматической сегментации сигнала сердечного ритма на локально стационарные участки.
Пакеты программ автоматической обработки электрокардиосигнала, используемые в компьютерной системе «Кардиометр-МТ» («КардиоКит -Стимуляция», «КардиоКит - Стресс-тест», «КардиоКит - Анализ ритма»), официально зарегистрированы в РОСПАТЕНТ РФ.
3. Пакет прикладных программ «Оценка вариабельности сердечного ритма и артериального давления, измеряемого методом непрерывной неинвазивной регистрации».
Пакет предназначен для проведения как клинических, так и научных исследований сердечно-сосудистой системы и проходит клиническую апробацию в ФГУ Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова (Санкт-Петербург).
В составе данного программного пакета реализованы следующие разработанные автором методы и алгоритмы:
• алгоритм расчёта оценок частотных показателей ВСР;
• метод автоматической сегментации сигнала сердечного ритма на локально стационарные участки;
• алгоритм вычисления оценок взаимной спектральной мощности и взаимных фазовых сдвигов сигналов сердечного ритма и мгновенного кровяного давления.
Пакет прикладных программ «Оценка вариабельности сердечного ритма и артериального давления, измеряемого методом непрерывной неинвазивной регистрации» официально зарегистрирован в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам РФ.
Накопленный автором опыт научно-исследовательской и педагогической работы, связанной с проблемами автоматической обработки биомедицинских сигналов, позволил ему выполнить перевод на русский язык монографии известного канадского учёного профессора P.M. Рангайяна, представляющей собой фундаментальное учебное пособие для студентов и аспирантов, обучающихся по данному направлению: Рангайян P.M. Анализ биомедицинских сигналов. Практический подход / Пер. с англ. А.Н. Калиниченко; под ред. А.П. НемиркоМ.: ФИЗМАТЛИТ, 2007.-440 с.
В заключении излагаются основные результаты теоретических исследований и практических разработок, представленных в диссертационной работе.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ
В результате проведения представленных в диссертации теоретических и экспериментальных исследований, был решен ряд проблем теоретического характера и создан комплекс методов цифровой обработки и анализа биомедицинских сигналов, что позволило расширить класс анализируемых
показателей сердечной деятельности человека и повысить качество и надежность приборов и систем кардиологического наблюдения за счет реализации разработанных алгоритмов и методов в виде прикладных программных комплексов.
1. Разработана обобщённая структура алгоритмического обеспечения анализа элеетрокардиосигнала в системах кардиологического наблюдения, основанная на комплексном подходе к созданию методов и алгоритмов автоматического непрерывного анализа элеетрокардиосигнала.
2. Обоснован выбор параметров процедур предварительной цифровой фильтрации, обеспечивающих оптимальные условия для решения задачи обнаружения желудочкового комплекса ЭКГ. Показано, что наилучшие результаты достигаются при использовании полосовой фильтрации электрокардиосигнала с частотами среза цифрового фильтра равными 5 Гц и 30 Гц при значениях ширины переходной полосы соответственно равных 4 Гц и 25 Гц.
3. Разработан алгоритм автоматического обнаружения желудочкового комплекса ЭКГ по электрокардиосигналу в одном отведении, учитывающий статистические характеристики и контекст элеетрокардиосигнала, обладающий высокой помехоустойчивостью, а также способностью адаптироваться к динамически возникающим изменениям сигнала. Оценка качества разработанного алгоритма показала его преимущество перед ранее разработанным алгоритмом аналогичного назначения.
4. Разработан алгоритм обнаружения желудочкового комплекса ЭКГ по электрокардиосигналу в двух или трёх синхронно снимаемых отведениях, обладающий существенно более высокими показателями качества работы, чем алгоритм, использующий одно отведение ЭКГ.
5. Разработан и исследован алгоритм классификации форм желудочковых комплексов ЭКГ, основанный на одновременном использовании морфологических признаков, рассчитанных во временной области, в частотной области и с использованием корреляции. Алгоритм продемонстрировал качество классификации в 1,5-2 раза превышающее результаты, получаемые для каждого из перечисленных методов в отдельности.
6. Предложена и разработана математическая модель сигнала сердечного ритма, способная воспроизводить реалистичный сигнал с заданными значениями частотных параметров вариабельности сердечного ритма и предназначенная для тестирования и оценки качества методов математического анализа ВСР.
7. Предложены процедуры расчёта спектральных показателей вариабельности сердечного ритма, позволяющие получить наиболее точные и статистически устойчивые оценки параметров ВСР.
8. Разработаны и исследованы методы оценки стационарности сигнала сердечного ритма, позволяющие локализовать стационарные участки продолжительных записей сигнала с целью исключения возможности получения некорректных и статистически несостоятельных оценок спектральных показателей вариабельности сердечного ритма.
9. Разработаны методы оценки фазовых соотношений между сигналами сердечного ритма и мгновенного артериального давления, позволяющие
количественно охарактеризовать временные задержки между когерентными колебаниями данных двух сигналов.
10. Созданы новые программные средства для компьютерных систем и приборов кардиологического наблюдения и диагностики, а также исследовательские комплексы, позволяющие решать задачи текущего контроля сердечной деятельности человека, оценки регуляторной функции вегетативной нервной системы и состояния организма по частотным показателям В CP, что способствует повышению эффективности применения средств компьютерной диагностики и автоматизации в лечебном процессе. Разработанные алгоритмы предварительной фильтрации ЭКГ, обнаружения и классификации форм желудочковых комплексов и методы анализа ВСР внедрены в практические компьютерные системы «РИТМОН» и «Кардиометр-МТ», которые имеют регистрационные удостоверения МЗ РФ, а также сертификат Госстандарта РФ и выпускаются несколькими предприятиями г. С.-Петербурга.
СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ
В изданиях, определённых ВАК Минобрнаукн России:
1. Калиниченко, А.Н. Влияние частоты дискретизации ЭКГ на точность вычисления спектральных параметров вариабельности сердечного ритма / А.Н. Калиниченко, О.Д. Юрьева // Информационно-управляющие системы. - 2008. -№2.-С. 46-49.
2. Калиниченко, А.Н. О точности и достоверности спектральных методов расчёта показателей вариабельности сердечного ритма / А.Н. Калиниченко // Информационно-управляющие системы. - 2007. - Ks 6. - С. 41 - 48.
3. Калиниченко, А.Н. Исследование алгоритмов оценки стационарности сердечного ритма / А.Н. Калиниченко, М.И. Коляденко // Известия СПбГЭТУ "ЛЭТИ" {Известия Государственного электротехнического университета). Сер. Биотехнические системы в медицине и экологии. - 2006. -Вып. 2. - С. 101-105.
4. Калиниченко, А.Н. Оценка разделяющей способности методов классификации форм ЭКГ/ А.Н. Калиниченко // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). Сер. Биотехнические системы в медицине и экологии. - 2006. - Вып. 1.- С. 21- 30.
5. Investigation of Time, Amplitude, and Frequency Parameters of a Direct Fetal ECG Signal during Labor and Delivery (Исследование временных, амплитудных и частотных параметров электрокардиосигнала плода непосредственно снимаемого во время родов) / R.A. Shepovalnikov, А.Р. Nemirko, A.N. Kalinichenko, et al. // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. -2006. - Vol. 16,No 1. -P. 74-76.
6. Software Complex for the Recognition of Diagnostically Significant ECG Changes (Программный комплекс для распознавания диагностически значимых изменений ЭКГ) / А.Р. Nemirko, A.N. Kalinichenko, P.V. Murashov, et al. // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. -2006. — Vol. 16,No 1.-P. 9-11.
7. Пакет программ для функциональных электрокардиографических исследований / А.Н. Калиниченко и др. // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). Сер. Биотехнические системы в медицине и экологии. - 2004. - Вып. 1. - С. 36-39.
8. Исследование методов анализа электрокардиограммы плода во время родов / Р.А. Шеповальников, А.П. Немирко, А.Н. Калиниченко и др. // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). Сер. Биотехнические системы в медицине и экологии. - 2004. -Вып. 1.-С. 33-36.
9. Software Package for the Functional Investigations Using ECG (Программный комплекс для функциональных исследований с использованием ЭКГ) / А.Р. Nemirko, A.N. Kalinichenko, Y.I. Goncharenko, et al. //- Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. - 2003. - Vol. 13, No 2. -P. 308-310.
10. Кардиомониторная система RITMON для отделений интенсивной терапии и реанимации / А.П. Немирко, А.Н. Калиниченко и др. // Научное приборостроение. - 1996. - Т. 6, № 1. - С. 115-116.
11. Nemirko, А.Р. Waveform Classification for Dynamic Analysis of ECG (Классификация сигналов в задачах непрерывного анализа ЭКГ) / А.Р. Nemirko, LA. Manilo, A.N. Kalinichenko // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. - 1995. - Vol. 5, № 1. - P.131-134.
и в других изданиях:
12. Kalinichenko, A.N. Investigation of the ECG QRS-complex morphologies classification methods (Исследование методов классификации морфологий QRS-комплексов ЭКГ) / A.N. Kalinichenko, K.S. Shuruhina // 9-th International Conference "Pattern Recognition and Image Analysis: New Information Technologies" (PRIA-9-2008), Nizny Novgorod, Sept. 15-20, 2008. Conference Proceedings. - 2008. - Vol. 1. -P. 254-257,
13. Kalinichenko, A.N. ECG waveform classification methods based on spectral and correlation techniques (Методы классификации форм ЭКГ, на основе корреляции и спектрального анализа) / A.N. Kalinichenko // 8-th International Conference "Pattern Recognition and Image Analysis: New Information Technologies" (PRIA-8-2007), Yoshkar-Ola, Oct 8-12, 2007, Conference Proceedings. - 2007. - Vol. 2.-P.270-272. '
14. Калиниченко, А.Н. Анализ спектральных параметров вариабельности сердечного ритма в реальном масштабе времени / А.Н. Калиниченко, Ю.И. Гончаренко, Н.И. Родина // Биотехнические системы в медицине и биологии. Под общ. ред. проф. Е.П. Попечителева. - СПб.: Изд-во "Политехника", 2002. - С. 6871.
15. Kalinichenko, A.N. Real-time Analysis of HRV Spectral Parameters (Анализ параметров вариабельности сердечного ритма в реальном масштабе "времени) / A.N. Kalinichenko et al. // In: SYMBIOSIS 2001. VI International Conference, Szczyrk, Poland, 11-13 Sept., 2001, Conference Proceedings. -2001. - P. 228-230.
16. Nemirko, A.P. Computer Net for ECG Monitoring (Компьютерная сеть для мониторного контроля ЭКГ) / А.Р. Nemirko, A.N. Kaiinichenko et al. // In: SYMBIOSIS 2001. VI International Conference, Szczyrk, Poland, 11-13 Sept., 2001, Conference Proceedings.-2001.-P. 145-148.
17. Вальденберг, A.B. Мониторный контроль ЭКГ в интенсивной терапии / А.В. Вальденберг, А.Н. Калиниченко // Мир медицины. - 1999. - № 2. - С. 42-45.
18. Калиниченко, А.Н. Автоматическая диагностика фибрилляции предсердий / А.Н. Калиниченко, Л.А. Манило, А.А. Саяпина II Радиоэлектроника в медицинской диагностике: Материалы 3-й междунар. конф., г. Москва, 29 сент. -1 окт. 1999 г. - М., 1999. - С. 96 - 99.
19. Kaiinichenko, A.N. Waveforms Classification Algorithm for the Paced ECG (Алгоритм классификации форм сигнала для ЭКГ при искусственной электрокардиостимуляции сердца) / A.N. Kaiinichenko, K.V. Sveshnikov II Proceedings of the International Workshop «Biomedical Engineering & Medical Informatics», ВЕМГ97; Gliwice, Poland, Sept. 2 - 5 1997. Gliwice: Techn. Univ. Gliwice. - P. 150-153.
20. Nemirko, A.P. Reconstruction of cardiac rhythm control function for the spectral estimation of heart rate variability (Восстановление функции управления для получения спектральных оценок вариабельности сердечного ритма) / А.Р. Nemirko, L.A. Manilo, A.N. Kaiinichenko // Proceedings of 5th International Symposium SYMBIOSIS'97; Jiri Holcik, Peter Fedra, Jan Slezak (Eds.), Brno, Sept. 10 - 12 1997. Brno: Techn. Univ. Brno. - P. 40 - 44.
21. Kaiinichenko, A.N. The ECG analysis algorithm and software for noninvasive electrophysiological studies (Алгоритм анализа ЭКГ и программное обеспечение для неинвазивных электрофизиологических исследований) I A.N. Kaiinichenko, D.V. Korobkob, K.V. Sveshnikov // Proceedings of 5 International Symposium SYMBIOSIS'97; Jiri Holcik, Peter Fedra, Jan Slezak (Eds.), Bmo, Sept. 10 - 12 1997. Brno: Techn. Univ. Brno. - P. 67-69.
22. Boyarkin, M.V. Heart Rate Variability as an Index of Autonomic Heart Regulation in Acute Miocardia1 Infarction Patients (Вариабельность сердечного ритма как показатель вегетативной регуляции у пациентов с острым инфарктом миокарда) / M.V. Boyarkin, A.N. Kaiinichenko, А.Р. Nemirko // Computers in Cardiology, IEEE. - 1997. - Vol. 24. - P. 45-48.
23. Valdenberg, A.V. The Experience of Computer-Based Monitoring System Utilization in CCU (Опыт использования компьютерной системы мониторного контроля в отделении интенсивной терапии) / A.V. Valdenberg, A.N. Kaiinichenko, А.Р. Nemirko // Computers in Cardiology, IEEE. - 1997. - Vol. 24. - P. 429-432.
24. Калиниченко, А.Н. Алгоритм анализа ЭКГ при элекгрокардиостимуляции / А.Н. Калиниченко, А.Ю. Левин, А.А. Трушев II Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). - 1996. - Вып. 491.-С. 44-51.
25. Nemirko, А.Р. Algorithm and Software for ECG Monitoring System (Алгоритмическое и программное обеспечение для системы мониторного контроля ЭКГ) / А.Р. Nemirko, A.N. Kaiinichenko, S.Y. Levashov, et al. // Analysis of Biomedical Signals and Images. 13-th Biennial International Conference
BIOSIGNAL'96. Proceedings. J. Jan, P. Kilian, I. Provaznic (eds). Technical University Brno Press. - 1996. - P. 192 - 194.
26. Калиниченко, A.H. Мониторы для наблюдения больных в клинике / А.Н. Калиниченко // Медицинская техника и химические реактивы. Информационный бюллетень. - 1996. - № 4. - С. 2-4.
27. Калиниченко, А.Н. Оперативная обработка многоканальной ЭКГ / А.Н. Калиниченко, С.Ю. Левашов. // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). - 1994. - Вып. 468. - С. 2631.
28. Kalinichenko, A.N. Method of QRS detection based on digital filtering (Метод обнаружения QRS-комплекса на основе цифровой фильтрации) / A.N. Kalinichenko U Proceedings of the International Symposium SYMBIOSIS'93, Brno, Technical University of Brno. - 1993. - P. 75-89.
29. Кардиомониторы. Аппаратура непрерывного контроля ЭКГ / А.Л. Барановский, А.Н. Калиниченко и др.; Под ред. А.Л. Барановского и А.П. Немирко. - М.: Радио и связь, 1993. - 248 с.
30. Оценка вариабельности сердечного ритма и артериального давления, измеряемого методом непрерывной неинвазивной регистрации (программа для ЭВМ): Федеральная служба по интеллектуальной собственности, патентам и товарным знакам РФ, гос. per. № 2007615223 / O.B. Мамонтов, Е.А. Бирюкова, А.Н. Калиниченко и др., заявитель ФГУ Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова. - 2007.
31. Программа исследования ЭКГ при электрокардиостимуляции (КардиоКит - Стимуляция): РОСПАТЕНТ РФ, гос. per. № 2003611609 / А.П. Немирко, А.Н. Калиниченко, Ю.И. Гончаренко и др., заявитель Общество с ограниченной ответственностью "Биосигнал". - 2003.
32. Программа автоматизации нагрузочной пробы (КардиоКит - Стресс-тест): РОСПАТЕНТ РФ, гос. per. № 2003611610 / А.П. Немирко, А.Н. Калиниченко, Ю.И. Гончаренко и др., заявитель Общество с ограниченной ответственностью "Биосигнал".-2003.
33. Программа исследования сердечного ритма (КардиоКит - Анализ ритма): РОСПАТЕНТ РФ, гос. per. № 2003611611 / А.П. Немирко, А.Н. Калиниченко, Ю.И. Гончаренко и др., заявитель Общество с ограниченной ответственностью "Биосигнал".-2003.
34. Программный комплекс мониторного контроля ЭКГ "RITMON": РосАПО РФ, гос. per. № 960002 / А.П. Немирко, А.Н. Калиниченко, С.Ю. Левашов и др., заявитель Товарищество с ограниченной ответственностью "БИОСИГНАЛ". -1996.
Подписано в печать 09.10.08. Формат 60*84 1/16. Бумага офсетная. Печать офсетная. Печ. л. 2,0. Тираж 100 экз. Заказ 47.
Отпечатано с готового оригинал-макета в типографии Издательства СПбГЭТУ "ЛЭТИ"
Издательство СПбГЭТУ "ЛЭТИ" 197376, С.-Петербург, ул. Проф. Попова, 5
Оглавление автор диссертации — доктора технических наук Калиниченко, Александр Николаевич
Введение.
Глава 1. Автоматический анализ ЭКГ в кардиологических системах реального времени.
1.1. Приборы и системы кардиологического наблюдения.
1.2. Автоматический анализ ЭКГ в системах кардиологического наблюдения.
1.2.1. Задачи автоматического анализа ЭКГ в системах кардиологического наблюдения.
1.2.2. Характеристики и особенности электрокардиосигнала
1.2.3. Виды и свойства помех.
1.3. Алгоритмы и методы оперативного анализа ЭКГ.
1.3.1. Основные этапы обработки и анализа ЭКГ.
1.3.2. Выбор разрядности и частоты аналого-цифрового преобразования.
1.3.3. Предварительная обработка ЭКГ и оценка уровня помех.
1.3.4. Обнаружение С^ЯЗ-комплекса и измерение Ш1-интервала.
1.3.5. Анализ морфологии (^ЯЗ-комплекса.
1.3.6. Распознавание нарушений сердечного ритма.
1.3.7. Анализ ишемических изменений БТ-сегмента.
1.3.8. Анализ вариабельности сердечного ритма.
1.4. Методы оценки качества алгоритмов анализа ЭКГ и стандартные базы данных.
1.5. Информационная модель алгоритмического обеспечения анализа ЭКГ в системе кардиологического наблюдения.
1.6. Постановка задач исследования.
Глава 2. Методы предварительной цифровой фильтрации электрокардиосигнала.
2.2. Методика экспериментального исследования процедур предварительной фильтрации ЭКС.
2.2.1. Этапы предварительной фильтрации ЭКС.
2.2.2. Экспериментальный набор записей ЭКС.
2.2.3. Метод моделирования помехи.
2.2.4. Критерии оценки качества процедур цифровой фильтрации ЭКС.
2.3. Разработка и экспериментальное исследование процедур предварительной цифровой фильтрации ЭКС.
2.3.1. Фильтрация нижних частот.
2.3.2. Фильтрация верхних частот.
2.3.3. Адаптивная цифровая фильтрация сетевой наводки . 88 Выводы.
Глава 3. Алгоритм обнаружения желудочкового комплекса ЭКГ.
3.1. Исследование методов выделения желудочкового комплекса, основанных на цифровой фильтрации.
3.2. Алгоритм обнаружения желудочкового комплекса по ЭКГ в одном отведении.
3.2.1. Разработка алгоритма обнаружения желудочкового комплекса.
3.2.2. Выбор параметров алгоритма обнаружения желудочкового комплекса.
3.2.3. Алгоритм определения опорной точки желудочкового комплекса.
3.3. Алгоритм обнаружения желудочкового комплекса по ЭКГ в двух и более отведениях.
3.4. Оценка качества работы алгоритмов обнаружения желудочкового комплекса ЭКГ.
Выводы.
Глава 4. Исследование методов анализа морфологии
QRS-комплекса ЭКГ.
4.1. Задачи и этапы анализа морфологии QRS-комплекса ЭКГ.
4.2. Выбор и исследование информативных морфологических признаков.
4.2.1. Методика исследования.
4.2.2. Параметры формы, вычисляемые во временной области.
4.2.3. Использование взаимной корреляционной функции
4.2.4. Анализ спектральных параметров.
4.3. Разработка решающих правил для кластеризации форм
QRS-комплексов.
4.3.1. Попарное использование методов сравнения форм QRS-комплексов.
4.3.2. Одновременное использование трёх методов сравнения форм QRS-комплексов.
Выводы.
Глава 5. Разработка и исследование методов анализа вариабельности сердечного ритма.
5.1. Методика частотного анализа ВСР.
5.2. Моделирование сигнала сердечного ритма.
5.3. Исследование точности и статистической устойчивости методов расчёта спектральных параметров ВСР.
5.4. Исследование методов оценки стационарности сигнала сердечного ритма.
5.5. Исследование методов совместного анализа сигналов сердечного ритма и мгновенного кровяного давления.
Выводы.
Глава 6. Разработка систем автоматического анализа ЭКГ для кардиологического наблюдения.
6.1. Реализация алгоритмов анализа ЭКГ в компьютерных системах кардиологического наблюдения.
6.2. Комплекс мониторного наблюдения ЭКГ «РИТМОН».
6.3. Компьютерная система для функциональных исследований сердечно-сосудистой системы «Кардиометр-МТ».
6.4. Трёхканальный электрокардиограф ЭК1Т-07 "АКСИОН".
6.5. Пакет прикладных программ для совместного анализа вариабельности сердечного ритма и артериального давления
Выводы.
Введение 2008 год, диссертация по приборостроению, метрологии и информационно-измерительным приборам и системам, Калиниченко, Александр Николаевич
Актуальность работы. Приборы и системы для медицины постоянно совершенствуются и обновляются. Это связано, с одной стороны, с развитием технологической базы электроники и вычислительной техники, а с другой - с появлением новых медицинских технологий, совершенствованием существующих и с расширением сфер применения медицинской техники.
Одна из наиболее важных задач медицинской электронной аппаратуры - это автоматический анализ биомедицинской информации, целями которого являются: оценка физиологических параметров организма, информационная поддержка диагностических решений врача, а также автоматическая диагностика патологических изменений состояния человека. В связи с этим, практически в любом виде медицинской аппаратуры в том или ином виде присутствуют вычислительные компоненты (микропроцессоры, встраиваемые микро-ЭВМ, персональные компьютеры), программное обеспечение которых реализует функции автоматической обработки данных.
При оценке состояния сердца и сердечно-сосудистой системы ключевую роль играет анализ электрокардиограммы (ЭКГ), представляющей собой запись наблюдаемых на поверхности тела проекций объёмных электрических процессов, происходящих в сердце. ЭКГ несёт информацию как о текущем состоянии сердечно-сосудистой системы, так и о патологических изменениях в самом сердце.
К настоящему времени проблема автоматической обработки и анализа электрокардиосигнала (ЭКС) сложилась в отдельное направление, разветвлённое на множество более частных задач, связанных с различными применениями и аспектами исследования сердечно-сосудистой системы. Одной из таких задач является длительный непрерывный контроль ЭКС, представляющий собой одну из важнейших функций аппаратуры для кардиологического наблюдения, к которой относятся приборы и системы для прикроватного и амбулаторного мониторного наблюдения ЭКГ, телеметрического наблюдения за состоянием организма, автономного контроля сердечной деятельности, функциональных исследований сердечно-сосудистой системы и решения ряда других задач.
Автоматический анализ ЭКС представляет собой достаточно сложную теоретическую проблему. Это в первую очередь связано с физиологическим происхождением сигнала, которое обусловливает его недетерминированность, разнообразие, изменчивость, непредсказуемость, нестационарность и подверженность многочисленным видам помех. Повышение эффективности методов автоматической обработки и анализа ЭКС сдерживается ограничениями, связанными с вычислительной мощность используемых процессоров. Это в наибольшей степени относится к аппаратуре непрерывного наблюдения, так как обработка сигналов в ней должна выполняться в реальном масштабе времени. С другой стороны, производительность вычислительных средств постоянно повышается. В связи с этим, становятся востребованными такие методы обработки и анализа сигналов, применение которых в системах реального времени представлялось ранее технически неосуществимым.
Основной задачей данной работы является разработка теоретической базы и практических методов для создания нового поколения алгоритмов длительного непрерывного автоматического анализа ЭКС, опирающихся на наиболее современные подходы к обработке сигналов и обладающие более высоким качеством работы, чем использовавшиеся ранее.
Внедрение разработанных методов и алгоритмов в приборы и системы медицинского назначения позволяет обеспечить повышение точности и надёжности формируемых диагностических заключений, что, в конечном счёте, способствует повышению эффективности диагностики и лечения патологий сердечно-сосудистой системы человека.
Цель диссертационной работы: повышение точности и надёжности формирования диагностических заключений о состоянии сердечно-сосудистой системы человека в приборах и системах непрерывного кардиологического наблюдения за счёт развития новых компьютерных методов обработки электрокардиосигнала, а также создания алгоритмического и программного обеспечения, реализующего эти методы.
Для достижения поставленной цели должны быть решены следующие задачи исследования.
1. Обоснование и разработка общей логической структуры процесса обработки и анализа электрокардиосигнала в системах кардиологического наблюдения, ориентированной на достижение конечных целей автоматического анализа и обеспечивающей информационное согласование всех этапов обработки.
2. Теоретическое и экспериментальное обоснование выбора параметров процедур предварительной цифровой фильтрации электрокардиосигнала, реализующих эффективное подавление помех и позволяющих обеспечить оптимальные условия для последующих стадий обработки и анализа сигнала.
3. Разработка и экспериментальное исследование эффективного и помехоустойчивого алгоритма обнаружения желудочкового комплекса ЭКГ, обладающего способностью к адаптации как к сигналу конкретного пациента, так и к динамически возникающим изменениям электрокардиосигнала в ходе длительного непрерывного наблюдения.
4. Экспериментальное исследование статистических и частотных свойств электрокардиосигнала с целью обоснования выбора информативных признаков и разработки решающих правил для создания эффективного алгоритма автоматической классификации желудочковых комплексов ЭКГ по видам их морфологий.
5. Экспериментальное исследование частотных методов анализа вариабельности сердечного ритма (ВСР) и артериального давления человека с целью разработки новых процедур расчёта спектральных параметров, позволяющих получать математически корректные и статистически состоятельные оценки спектральных параметров указанных сигналов в условиях возможного появления помех и нарушений стационарности анализируемых процессов.
6. Создание новых программно-алгоритмических средств, предназначенных для использования в приборах и системах длительного кардиологического наблюдения и обеспечивающих повышение точности и надёжности решения задач автоматического анализа ЭКС с целью получения значимой для диагностики информации о состоянии сердечно-сосудистой системы человека.
Методы исследования. Для решения поставленных теоретических задач в диссертационной работе использовались методы математической статистики, спектрального анализа, математического моделирования, распознавания образов, анализа случайных процессов.
Экспериментальные исследования выполнены с использованием наборов реальных записей сигналов, полученных как непосредственно в медицинских учреждениях, так и из доступных банков данных, в частности, из баз данных, размещённых на сайте Массачусетского технологического института (США) «http://www.physionet.org/». Программное обеспечение для проведения экспериментов разрабатывалось с использованием программных сред MS Visual С++ и MATLAB.
Научная новизна результатов заключается в разработке и исследовании:
• комплексного подхода к созданию методов и алгоритмов автоматического непрерывного анализа элекгрокардиосигнала, заключающегося в ориентации на конечные цели обработки сигнала и в согласовании последовательных стадий обработки как по составу и виду входных и выходных сигналов, так и по используемым математическим методам анализа сигналов;
• методики оценки влияния параметров процедур предварительной цифровой фильтрации элекгрокардиосигнала на эффективность решения задачи обнаружения желудочковых комплексов ЭКГ в условиях наличия помех, а также разнообразия форм и изменчивости сигнала;
• метода автоматического обнаружения желудочкового комплекса ЭКГ, учитывающего статистические характеристики и контекст электрокардиосигнала, обладающего высокой помехоустойчивостью, а также способностью адаптироваться к динамически возникающим изменениям сигнала;
• теоретической основы и методов для решения задачи классификации форм желудочковых комплексов ЭКГ по видам их морфологий с использованием информативных признаков, вычисляемых как во временной, так и в частотной областях;
• математической модели сигнала сердечного ритма, способной воспроизводить реалистичный сигнал с заданными значениями частотных параметров вариабельности сердечного ритма и предназначенной для тестирования и оценки качества методов математического анализа ВСР;
• методов и алгоритмов, обеспечивающих вычисление статистически состоятельных и надёжных оценок спектральных показателей вариабельности сердечного ритма и артериального давления, а также оценки фазовых взаимосвязей между этими сигналами в условиях существования нарушений непрерывности и стационарности сигналов.
Достоверность научных положений и выводов подтверждается результатами использования математических методов анализа, теории исследования случайных процессов, результатами экспериментов с использованием как модельных, так и реальных сигналов, оценкой эффективности разработанных алгоритмов и методов, а также результатами практического использования созданных алгоритмических и программных средств.
Практическую ценность работы представляют следующие полученные в диссертационной работе результаты.
1. Методы и алгоритмы автоматического анализа электрокардиосигнала, предназначенные для использования в составе программно-алгоритмического обеспечения приборов и систем медицинского назначения:
• обобщённая логическая структура алгоритмического обеспечения систем кардиологического наблюдения, решающего задачу получения значимой для диагностики информации о текущем состоянии сердечно-сосудистой системы человека.
• алгоритмы предварительной цифровой фильтрации электрокардиосигнала и оценки уровня шумов, обеспечивающие эффективное подавление помех и создающие оптимальные условия для работы последующих стадий анализа сигнала;
• алгоритм обнаружения желудочкового комплекса ЭКГ, решающий задачу текущего контроля частоты сердечных сокращений и определения значений Ш1-интервалов, используемых далее для анализа ритма сердца и его нарушений;
• алгоритм классификации форм желудочковых комплексов ЭКГ, результаты работы которого используются для последующего анализа вариабельности сердечного ритма, распознавания аритмий и анализа ишемических изменений кардиоцикла ЭКГ;
• алгоритмы расчёта частотных параметров вариабельности сердечного ритма и совместных характеристик сигналов сердечного ритма и артериального давления, предназначенные для оценки вегетативной регуляции ритма сердца в системах для кардиологического наблюдения и функциональной диагностики.
2. Прикладные программные средства, реализующие предложенные алгоритмы анализа электрокардиосигнала и предназначенные как для использования в приборах и системах кардиологического наблюдения, так и для решения исследовательских задач.
Научные положения, выносимые на защиту:
1. Наиболее эффективное решение задач автоматической обработки и анализа электрокардиосигнала достигается при условии информационного и логического согласования всех этапов обработки сигнала с ориентацией на конечные цели анализа.
2. Выбор оптимальных параметров процедур предварительной фильтрации электрокардиосигнала позволяет существенно " повысить эффективность обнаружения желудочкового комплекса ЭКГ. При этом наилучшие результаты обеспечиваются при последовательном использовании адаптивной фильтрации сетевой наводки и полосовой фильтрации в диапазоне частот от 5 Гц до 30 Гц.
3. Повышение качества процедуры обнаружения желудочкового комплекса ЭКГ достигается за счёт использования алгоритма, учитывающего контекст электрокардиосигнала и его статистические параметры, а также обладающего способностью к адаптивному отслеживанию динамически изменяющихся свойств сигнала.
4. Использование двух синхронно снимаемых отведений для решения задачи обнаружения желудочкового комплекса ЭКГ даёт существенный прирост качества работы алгоритма по сравнению со случаем использования одного отведения. В то же время, добавление третьего отведения ЭКГ сказывается на результатах работы алгоритма незначительно.
5. Задача классификации форм желудочковых комплексов ЭКГ наиболее эффективно решается за счёт одновременного использования морфологических признаков, рассчитанных альтернативными методами: во временной области, в частотной области, с использованием корреляции. При этом наилучшие результаты даёт совместное использование частотного и корреляционного методов.
6. Наибольшей точностью и статистической устойчивостью обладают спектральные оценки вариабельности сердечного ритма, рассчитанные периодограммным методом на основе быстрого преобразования Фурье при использовании прямоугольного окна.
7. Наиболее точные оценки показателей фазовых соотношений (задержек) между сигналами сердечного ритма и мгновенного артериального давления получаются с использованием метода непосредственного сопоставления фазовых спектров, рассчитанных отдельно для каждого из сигналов, при условии наличия существенной когерентности между сигналами в соответствующих частотных диапазонах.
Реализация результатов работы. Полученные в диссертационной работе результаты теоретических и прикладных исследований использовались при выполнении НИР в СПбГЭТУ «ЛЭТИ» (более 20 проектов). В том числе по грантам РФФИ: 97-01-00260 «Исследование методов распознавания образов для анализа биомедицинских сигналов» (1997-1999); 00-01-00448 «Исследование методов обработки и распознавания биомедицинских сигналов» (2000-2002); 02-01-08073-инно «Разработка и создание опытного образца компьютерного комплекса для функциональных исследований в кардиологии» (2002-2004); 03-01-00216 «Исследование методов распознавания формы биомедицинских сигналов» (20032005); 06-01-00546 «Разработка методов и алгоритмов распознавания биомедицинских сигналов» (2006-2008); 08-01247-а «Компьютерный комплекс мониторного контроля ЭКГ» (2006 - 2008).
В рамках ФЦНТП «Исследования и разработки по приоритетным направлениям развития науки и техники гражданского назначения» автор участвовал в выполнении проектов: 0201.05.251 «Разработка информационных технологий и инструментальных средств для создания и развития прикладных инструментальных систем в технике, образовании, медицине и в системах специального назначения» (1999-2001); 01.37.03.01.05 «Методы распознавания образов, обработки сигналов и изображений для самоорганизующихся систем» (2002-2004).
Результаты научных исследований внедрены в виде пакетов прикладных программ в компьютерном комплексе мониторного контроля ЭКГ «РИТМОН» и диагностической системе «Кардиометр-МТ», разработанных и выпускаемых соответственно предприятиями Санкт-Петербурга ООО «Биосигнал» и ЗАО «Микард-Лана» совместно с СПбГЭТУ «ЛЭТИ».
Полученные в ходе исследований результаты внедрены в учебный процесс СПбГЭТУ «ЛЭТИ» по направлениям подготовки специалистов в области медицинского приборостроения: «Биомедицинская техника» и «Биомедицинская инженерия». Они включены в разработанные автором учебно-методические комплексы по дисциплинам: «Методы обработки биомедицинских сигналов и данных», «Компьютерные технологии в медико-биологических исследованиях».
Апробация работы. Основные научные и практические результаты диссертационной работы докладывались и обсуждались в период 1980 - 2008 гг. более чем на тридцати конференциях и симпозиумах по проблемам теории и практики обработки и распознавания биосигналов, медицинского приборостроения и автоматизации электрокардиографических исследований, в том числе на следующих Международных и Всероссийских конференциях и симпозиумах:
Всесоюзной научно-технической конференции «Проблемы создания технических средств для диагностики и лечения заболеваний сердечно-сосудистой th fU системы» (1990, Львов); 5 and 7 International Conference on Biomedical Engineering and Medical Informatics (SYMBIOSIS 1997, Brno; SYMBIOSIS 2003, St. Petersburg); • International Workshop «Biomedical Engineering & Medical Informatics» - ВЕМГ97, (1997, Gliwice, Poland); Международных конференциях «Распознавание образов и анализ изображений: новые информационные технологии» (РОАИ-5-2000, Самара; РОАИ-6-2002, Великий Новгород; РОАИ-7-2004, С.-Петербург; РОАИ-8-2007, Йошкар-Ола; РОАИ-9-2008, Нижний Новгород.); II и VII Международных симпозиумах «Электроника в медицине. Мониторинг, диагностика, терапия» (КАРДИОСТИМ-1998, С.-Петербург; КАРДИОСТИМ-2000, С.-Петербург); The 24й1 and 35л Annual Conference Computers in Cardiology (1997, Lund, Sweden; 2008, Bologna, Italy); The 3rd European Medical and Biological Engineering Conference EMBEC'05 (2005, Prague, Czech Republic); а также на ежегодных научно-технических конференциях профессорско-преподавательского состава СПбГЭТУ «ЛЭТИ» (1980-2007 гг.)
Приборы и системы автоматического анализа элекгрокардиосигнала, разработанные на основе полученных научных и практических результатов работы, неоднократно демонстрировались на выставках медицинской техники.
Публикации. По теме диссертации опубликовано 92 научных работы, из них: 29 статей (опубликованных в ведущих рецензируемых журналах и изданиях, определенных ВАК Минобрнауки России, - 11 статей), 57 работ в материалах российских и международных научно-технических конференций, 1 монография, 5 официально зарегистрированных комплексов алгоритмов и программ.
Структура и объем диссертации. Диссертация состоит из введения, шести глав, заключения, списка литературы, включающего 156 наименований, списка условных обозначений и аббревиатур. Основная часть работы изложена на 253 страницах машинописного текста. Работа содержит 84 рисунка и 22 таблицы.
Заключение диссертация на тему "Компьютерные методы автоматического анализа ЭКГ в системах кардиологического наблюдения"
Выводы
1. Выполнен анализ мер как алгоритмического, так технического характера, позволяющих снизить загрузку процессора и потребность в оперативной памяти в компьютерных системах кардиологического наблюдения, осуществляющих автоматическую обработку и анализ электрокардиосигнала в режиме реального времени.
2. Созданы новые программные средства для компьютерных систем и приборов кардиологического наблюдения и диагностики, а также исследовательские комплексы, позволяющие решать задачи текущего контроля сердечной деятельности человека, оценки регуляторной функции вегетативной нервной системы и состояния организма по частотным показателям ВСР, что способствует повышению эффективности применения средств компьютерной диагностики и автоматизации в лечебном процессе.
3. Разработанные методы и алгоритмы предварительной фильтрации ЭКГ, обнаружения и классификации форм желудочковых комплексов и методы анализа ВСР внедрены в практических компьютерных системах «РИТМОН» и «Кардиометр-МТ», которые имеют регистрационные удостоверения МЗ РФ, а также сертификат Госстандарта РФ и выпускаются несколькими предприятиями г. С.-Петербурга.
4. Разработанные методы и алгоритмы адаптивной цифровой фильтрации сетевой наводки, фильтрации нижних и верхних частот, обнаружения С)Я8-комплекса ЭКГ и измерения БЖ-интервала, анализа вариабельности сердечного ритма внедрены в серийно выпускаемом ОАО «Ижевский мотозавод. "Аксион-холдинг"» трёхканальном электрокардиографе ЭК1Т-07 "АКСИОН".
Заключение
В результате проведения представленных в диссертации теоретических и экспериментальных исследований, был решен ряд проблем теоретического характера и создан комплекс методов цифровой обработки и анализа биомедицинских сигналов, что позволило расширить класс анализируемых показателей сердечной деятельности человека и повысить качество и надежность приборов и систем кардиологического наблюдения за счет реализации разработанных алгоритмов и методов в виде прикладных программных комплексов.
1. Разработана обобщённая структура алгоритмического обеспечения анализа электрокардиосигнала в системах кардиологического наблюдения, основанная на комплексном подходе к созданию методов и алгоритмов автоматического непрерывного анализа электрокардиосигнала.
2. Обоснован выбор параметров процедур предварительной цифровой фильтрации, обеспечивающих оптимальные условия для решения задачи обнаружения желудочкового комплекса ЭКГ. Показано, что наилучшие результаты достигаются при использовании полосовой фильтрации электрокардиосигнала с частотами среза цифрового фильтра равными 5 Гц и 30 Гц при значениях ширины переходной полосы соответственно равных 4 Гц и 25 Гц.
3. Разработан алгоритм автоматического обнаружения желудочкового комплекса ЭКГ по электрокардиосигналу в одном отведении, учитывающий статистические характеристики и контекст электрокардиосигнала, обладающий высокой помехоустойчивостью, а также способностью адаптироваться к динамически возникающим изменениям сигнала. Оценка качества разработанного алгоритма показала его преимущество перед ранее разработанным алгоритмом аналогичного назначения.
4. Разработан алгоритм обнаружения желудочкового комплекса ЭКГ по электрокардиосигналу в двух или трёх синхронно снимаемых отведениях, обладающий существенно более высокими показателями качества работы, чем алгоритм, использующий одно отведение ЭКГ.
5. Разработан и исследован алгоритм классификации форм желудочковых комплексов ЭКГ, основанный на одновременном использовании морфологических признаков, рассчитанных во временной области, в частотной области и с использованием корреляции. Алгоритм продемонстрировал качество классификации в 1,5-2 раза превышающее результаты, получаемые для каждого из перечисленных методов в отдельности.
6. Предложена и разработана математическая модель сигнала сердечного ритма, способная воспроизводить реалистичный сигнал с заданными значениями частотных параметров вариабельности сердечного ритма и предназначенная для тестирования и оценки качества методов математического анализа ВСР.
7. Предложены процедуры расчёта спектральных показателей вариабельности сердечного ритма, позволяющие получить наиболее точные и статистически устойчивые оценки параметров ВСР.
8. Разработаны и исследованы методы оценки стационарности сигнала сердечного ритма, позволяющие локализовать стационарные участки продолжительных записей сигнала с целью исключения возможности получения некорректных и статистически несостоятельных оценок спектральных показателей вариабельности сердечного ритма.
9. Разработаны методы оценки фазовых соотношений между сигналами сердечного ритма и мгновенного артериального давления, позволяющие количественно охарактеризовать временные задержки между когерентными колебаниями данных двух сигналов.
10. Созданы новые программные средства для компьютерных систем и приборов кардиологического наблюдения и диагностики, а также исследовательские комплексы, позволяющие решать задачи текущего контроля сердечной деятельности человека, оценки регуляторной функции вегетативной нервной системы и состояния организма по частотным показателям ВСР, что способствует повышению эффективности применения средств компьютерной диагностики и автоматизации в лечебном процессе. Разработанные алгоритмы предварительной фильтрации ЭКГ, обнаружения и классификации форм желудочковых комплексов и методы анализа ВСР внедрены в практические компьютерные системы «РИТМОН» и «Кардиометр-МТ», которые имеют регистрационные удостоверения МЗ РФ, а также сертификат Госстандарта РФ и выпускаются несколькими предприятиями г. С.-Петербурга.
Библиография Калиниченко, Александр Николаевич, диссертация по теме Приборы, системы и изделия медицинского назначения
1. Анализ сердечного ритма / Под ред. Д. Жемайтите, Л. Тельксниса. -Вильнюс: Мокслас. 1982. - 130 с.
2. Ахутин, В.М. Теория и проектирование диагностической электронно-медицинской аппаратуры / В.М. Ахутин и др. Л.: Изд-во ленингр. ун-та, -1980.-147 с.
3. Баевский, P.M. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем (методические рекомендации) / P.M. Баевский и др. // Вестник аритмологии. 2001. - № 24. - С. 65-87.
4. Баевский, P.M. Вариабельность сердечного ритма: теоретические аспекты и возможности клинического применения / P.M. Баевский, Г.Г. Иванов // Ультразвуковая и функциональная диагностика. 2001. - № 3. - С. 106 -127.
5. Баевский, P.M. К проблеме прогнозирования функционального состояния человека в условиях длительного космического полета / P.M. Баевский // Физиол. Журн. СССР. 1972. -№ 6. - С.819-827.
6. Баевский, P.M. Кибернетический анализ процессов управления сердечным ритмом / P.M. Баевский // Актуальные проблемы физиологии и патологии кровообращения М.: Медицина, 1976. С. 161 - 175.
7. Баевский, P.M. Математический анализ изменений сердечного ритма при стрессе / P.M. Баевский, О.И. Кириллов, С.З. Клецкин. М.: Наука, 1984. -220 с.
8. Баевский, P.M. Прогнозирование состояний на грани нормы и патологии. -М.: Медицина, 1979. 205 с.
9. Баевский, Р.М.Оценка адаптационных возможностей организма и риск развития заболеваний / P.M. Баевский, А.П. Берсенева. М.: Медицина, 1997.-265 с.
10. Бендат, Дж. Прикладной анализ случайных данных / Дж. Бендат, А. Пирсол; пер. с англ. М.: Мир, 1989. - 540 с.
11. Березный, Е.А. Корреляционная ритмография при исследовании и лечении больных с мерцательной аритмией // Кардиология. 1981. - Т. 21, № 5. - С. 94 - 96.
12. Биотехнические системы: теория и проектировании / В.М. Ахутин и др.; под ред. В.М. Ахутина. Л.: Изд-во ЛГУ, 1981.-220 с.
13. Борин, В.П. Автоматический вывод грамматики для распознавания структурных элементов биомедицинских сигналов / В.П. Борин, Л.А. Манило, А.П. Немирко // Изв. ЛЭТИ. 1994. - Вып. 468. - С. 12-17.
14. Вайсман, М.В. Программируемый имитатор электрокардиосигналов / М.В.Вайсман,. Д.А. Прилуцкий, С.В.Селищев // Медицинская техника. -2000,-№2.-С. 34-37.
15. Вальденберг, A.B. Мониторный контроль ЭКГ в иетенсивной терапии / A.B. Вальденберг, А.Н. Калиниченко // Мир медицины. 1999. - № 1-2. с. 42-45.
16. Воскресенский, А.Д. Статистический анализ сердечного ритма и показателей гемодинамики в физиологических исследованиях / А.Д. Воскресенский, М.Д. Вентцель.-М.: Наука, 1974 -221 с.
17. Танеев, P.M. Математические модели в задачах обработки сигналов. М.: Горячая линия-Телеком, 2002. - 83 с.
18. Гофман, Б. Электрофизиология сердца / Б. Гофман, П. Крейнфилд; пер. с англ. Т.С.Цузмер; под ред. Е.Б. Бабского. М.: Изд-во иностр. лит., 1968. -390 с.
19. Дженкинс, Г. Спектральный анализ и его приложения / Г. Дженкинс, Д. Ватте; пер. с англ. М.: Мир, 1971. - 316 с.
20. Дроздов, Д.В. Автоматический анализ ЭКГ: проблемы и перспективы / Д.В. Дроздов, В.М. Леванов // Здравоохранение и медицинская техника. 2004. -№1.
21. Дуда, 3. Распознавание образов и анализ сцен / 3. Дуда, П. Харт; пер. с англ. -М.: Мир, 1976.-511 с.
22. Кавасма, P.A. Автоматизированный анализ и обработка электрокардиографических сигналов. Методы и система. / P.A. Кавасма, A.A. Кузнецов, Л.Т. Сушкова: под ред проф. Л.Т. Сушковой. М.: Сайнс-пресс. -2006. - 144 с.
23. Калиниченко, А.Н. Алгоритм анализа ЭКГ при элекгрокардиостимуляции / А.Н. Калиниченко, A.IO. Левин, A.A. Трушев // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). 1996. -Вып. 491.-С. 44-51.
24. Калиниченко, А.Н. Влияние частоты дискретизации ЭКГ на точность вычисления спектральных параметров вариабельности сердечного ритма / А.Н. Калиниченко, О.Д. Юрьева // Информационно-управляющие системы. -2008,-№2.-С. 46-49.
25. Калиниченко, А.Н. Методы цифровой фильтрации электрокардиосигнала в кардиомониторных системах. Дисс. . канд. техн. наук. Л.: ЛЭТИ, 1988. -206 с.
26. Калиниченко, А.Н. Мониторный контроль ЭКГ пациентов с имплантированными электрокардиостимуляторами / А.Н. Калиниченко и др. // Вестник аритмологии, 2000 - № 15. - С. 155.
27. Калиниченко, А.Н. Мониторы для наблюдения больных в клинике / А.Н. Калиниченко // Медицинская техника и химические реактивы. Информационный бюллетень. 1996. - № 4. - С. 2-4.
28. Калиниченко, А.Н. Оперативная обработка многоканальной ЭКГ / А.Н. Калиниченко, С.Ю. Левашов. // Известия СПбГЭТУ "ЛЭТИ" (Известия Государственного электротехнического университета). 1994. - Вып. 468. -С. 26-31.
29. Калиниченко, А.Н. О точности и достоверности спектральных методов расчёта показателей вариабельности сердечного ритма / А.Н. Калиниченко // Информационно-управляющие системы. 2007. - № 6. - С. 41 - 48.
30. Калиниченко, А.Н. Разработка автоматизированного архива электрокардиограмм для исследований мониторных систем / А.Н. Калиниченко, Л.А. Манило, И.С. Терентьева // Известия ЛЭТИ. 1986. -Вып. 367.-С. 48-53.
31. Кардиомониторы. Аппаратура непрерывного контроля ЭКГ / А. Л. Барановский, А.Н. Калиниченко, Л.А. Манило и др.; под ред. А.Л. Барановского и А.П. Немирко. М.: Радио и связь, 1993. - 248 с.
32. Коробков, Д.В. Методы и алгоритмы анализа многоканальной ЭКГ для оперативного контроля ишемии миокарда. Дисс. . канд. техн. наук. СПб.: Гос. электротехн. ун-т (ЛЭТИ), 2000. - 151 с.
33. Кушаковский, М.С. Аритмии сердца. 2-е изд. СПб.: Фолиант. - 1998. - 633 с.
34. Лебедева, H.A. Алгоритмы анализа многоканальной ЭКГ для классификации форм QRS-комплексов: Дисс. . канд. техн. наук. СПб.: Гос. электротехн. ун-т (ЛЭТИ), 1999.- 155 с.
35. Левашов, С.Ю. Исследование методов поциклового сжатия электрокардиосигнала: Дисс. . канд. техн. наук. СПб.: Гос. электротехн. ун-т (ЛЭТИ), 1995.- 174 с.
36. Манило, Л.А. Преобразование пространства спектральных признаков с использованием весовых функций в задачах распознавания сигналов / Л.А.
37. Манило // Известия вузов России. Радиоэлектроника. 2007. - Вып.2. - С. 38 -44.
38. Манило, Л.А. Авторегрессионные модели случайных процессов в задачах распознавания нарушений сердечного ритма / А.Л.Манило // Известия СПбГЭТУ "ЛЭТИ". Сер. Биотехнические системы в медицине и экологии. -2004.-Вып. 2.-С. 1 -8.
39. Манило, Л.А. Новый подход к спектральному анализу вариабельности сердечного ритма / Л.А. Манило, Н.И. Родина // Известия СПбГЭТУ "ЛЭТИ", сер. Биотехнические системы в медицине и экологии. 2003. -Вып. 1. С. 16-20.
40. Манило, Л.А. Оценка допустимого уровня остаточных помех при анализе нагрузочной ЭКГ / Л.А. Манило, К.Н. Милева // Изв. ЛЭТИ, сер. Биотехнические и медицинские системы. 1990. - Вып. 428. - С. 45 - 50.
41. Манило, Л.А. Построение решающих функций в пространстве спектральных признаков для систем кардиологического наблюдения / Л.А. Манило// Известия СПбГЭТУ "ЛЭТИ". Сер. Биотехнические системы в медицине и экологии-2006.-Вып. 1.-С. 13-21.
42. Манило, Л.А. Теория и методы анализа сердечного ритма и распознавания аритмий в медицинских диагностических системах. Дис. . докт. техн .наук.- СПб.: Гос. электротехн. ун-т (ЛЭТИ), 2007. 333 с.
43. Манило, Л.А. Упорядочение спектральных признаков по эмпирическим оценкам межгруппового расстояния в задачах классификации биосигналов / Л.А. Манило // Известия вузов России. Радиоэлектроника. 2006. - Вып.З. -С. 20 -29.
44. Марпл-мл., С. Л. Цифровой спектральный анализ и его приложения; пер. с англ. М.: Мир. - 1990. - 584 с.
45. Микрокомпьютерные медицинские системы: Проектирование и применение / Под ред. У.Томпкинса, Дж. Уэбстера: Пер. с англ. М.: Мир. - 1983. - 544 с.
46. Милева, К.Н. Разработка и исследование методов автоматического анализа 8Т-сегмента электрокардиограммы в реальном масштабе времени. Дисс. . канд. техн. наук. Л.: ЛЭТИ, 1989. - 261 с.
47. Миронова, Т.Ф. Вариабельность сердечного ритма при ишемической болезни сердца / Т.Ф. Миронова, В.А. Миронов. Челябинск: Рекпол. -2006.- 136 с.
48. Миронова, Т.Ф. Клинический анализ волновой структуры синусового ритма сердца (Введение в ритмокардиографию и атлас ритмокардиограмм) / Миронова Т.Ф., Миронов В.А. Челябинск: Челябинский Дом печати -1998.- 162 с.
49. Михайлов, В.М. Вариабельность ритма сердца. Опыт практического применения. Иваново: НейроСофт. - 2000. - 200 с.
50. Немирко, А.П. Алгоритм оперативного распознавания опасных аритмий / А.П Немирко., Л.А. Манило, А.Н. Калиниченко // Изв. ЛЭТИ. 1981. - Вып. 283.-С. 71-75.
51. Немирко, А.П. Кардиомониторная система RITMON для отделений интенсивной терапии и реанимации / А.П. Немирко, А.Н. Калиниченко и др. // Научное приборостроение (РАН). 1996. - Т. 6. - С. 115-116.
52. Немирко, А.П. Обработка и автоматический анализ электрокардиосигналов / А.П. Немирко // Изв. СПбГЭТУ. 2002. - Вып.1. - С.34-36.
53. Немирко, А.П. Распознавание волн ЭКГ при кардиостимуляции / А.П. Немирко, М.М. Гасанов, Д.Ф. Егоров // Изв. ЛЭТИ. 1986. - Вып. 367. - С. 53-58.
54. Немирко, А.П. Цифровая обработка биологических сигналов. М.: Наука, 1984.- 145 с.
55. Нидеккер, И.Г. Проблема математического анализа сердечного ритма / И.Г. Нидеккер, Б.М. Федоров // Физиология человека. 1993. - Т. 19, № 3, вып. 6. - С. 80-87.
56. Обработка биомедицинских сигналов с использованием программного пакета LabVIEW: Методические указания к выполнению лабораторных и практических работ / Сост.: Л.А. Манило, С.Ю. Левашов, А.Н. Калиниченко; СПб.: СПбГЭТУ. 1998. - 38 с.
57. Орлов, В.Н. Руководство по электрокардиографии. М.: Медицина, 1984. -526 с.
58. Петров, Г.А. Поцикловое обнаружение Р-зубцов ЭКГ в кардиомониторных системах. Дисс. . канд. техн. наук. СПб.: Гос. электротехн. ун-т (ЛЭТИ), 2002.-151 с.
59. Программа исследования ЭКГ при электрокардиостимуляции (КардиоКит -Стимуляция): РОСПАТЕНТ РФ, гос. per. № 2003611609 / А.П. Немирко,
60. A.Н. Калиниченко, Ю.И. Гончаренко и др., заявитель Общество с ограниченной ответственностью "Биосигнал". -2003.
61. Программа автоматизации нагрузочной пробы (КардиоКит Стресс-тест): РОСПАТЕНТ РФ, гос. per. № 2003611610 / А.П. Немирко, А.Н. Калиниченко, Ю.И. Гончаренко и др., заявитель Общество с ограниченной ответственностью "Биосигнал". - 2003.
62. Программа исследования сердечного ритма (КардиоКит Анализ ритма): РОСПАТЕНТ РФ, гос. per. № 2003611611 / А.П. Немирко, А.Н. Калиниченко, Ю.И. Гончаренко и др., заявитель Общество с ограниченной ответственностью "Биосигнал11. - 2003.
63. Программный комплекс мониторного контроля ЭКГ "RITMON": РосАПО РФ, гос. per. № 960002 / А.П. Немирко, А.Н. Калиниченко, С.Ю. Левашов и др., заявитель Товарищество с ограниченной ответственностью "БИОСИГНАЛ". 1996.
64. Рангайян, P.M. Анализ биомедицинских сигналов; пер. с англ. А.Н. Калиниченко под ред. А.П. Немирко. М.: Физматлит. 2007. - 440 с.
65. Родина, Н.И. Разработка метода анализа процессов управления сердечным ритмом для компьютерных медицинских систем. Дисс. . канд. техн. наук. -СПб.: Гос. электротехн. ун-т (ЛЭТИ), 2003. -163 с.
66. Руксин, В.В. Стандартизация и мониторирование спектральных показателей вариабельности сердечного ритма. / Руксин В.В., Пивоваров В.В., Кудашев
67. B.Х., Федченко Е.И. // Terra Medica. 1998. - № 1. - С. 2 - 8.
68. Рябыкина, Г.В. Анализ вариабельности ритма сердца / Г.В. Рябыкина, А.В. Соболев // Кардиология 1996. 10. С. 87-97.
69. Рябыкина, Г.В. Вариабельность ритма сердца. / Рябыкина Г.В., Соболев А.В. М.: СтарКо, 1998. - 200 с.
70. Свешников, К.В. Исследование методов и алгоритмов автоматизированного анализа электрокардиосигнала при кардиостимуляции: Дисс. . канд. техн. наук. СПб.: Гос. электротехн. ун-т (ЛЭТИ), 1999. - 173 с.
71. Сергиенко, А.Б. Цифровая обработка сигналов. СПб.: Питер, 2003. 604 с.
72. Солонина, А.И. Основы цифровой обработки сигналов. Курс лекций / А.И. Солонина и др. // СПб.: БХВ-Петербург, 2003. 608 с.
73. Томпкинс, У. Микрокомпьютерные медицинские системы: Проектирование и применения. / У. Томпкинс, Дж. Уэбстер. Пер. с англ. М.: Мир, 1983 -544 с.
74. Хан, М.Г. Быстрый анализ ЭКГ. Пер. с англ. СПб.: «Невский диалект» -«Издат. БИНОМ», 1999. - 286 с.
75. Хемминг, Р.В. Цифровые фильтры. М.: Сов. Радио, 1980. 224 с.
76. Шакин, В.В. Вычислительная электрокардиография. М.: Наука, 1981. - 167 с.
77. Шальдах, М. Элекгрокардиотерапия: Пер. с. англ. и ред. В.Н. Хирманова. -СПб., 1992.-256 с.
78. Afonso, V.X. ECG beat detection using filter banks / V.X. Afonso, et al. // IEEE Trans. Biomed. Eng. 1999. - Vol. 46. - P. 192 - 202.
79. Akay, M. Biomedical Signal Processing. Academic Press, 1994, - 377 p.
80. Akselrod, S. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat cardiovascular control / S. Akselrod and oth. // Science. 1981. -Vol. 213.-P. 220-222.
81. Avenda, L.D. Improvement of an Extended Kalman Filter Power Line Interference Suppressor for ECG Signals / L.D. Avenda, et al. // IEEE. Computers in Cardiology. 2007. - Vol. 34. - P. 553-556.
82. Barro, S. Classifying multichannel ECG patterns with an adaptive neural network / S. Barro, at al. // Engineering in Medicine and Biology Magazine. 1998. - Vol. 17(1).-P. 45-55.
83. Berger, R.D. An Efficient Algorithm for Spectral Analysis of Heart Rate Variability / R.D.Berger, at al. // IEEE Transaction on Biomedical Engineering. -1986. Vol. BME-33, No 9. - P. 900-904.
84. Bortolan, G. Hyperbox classifiers for ECG beat analysis / G. Bortolan, I.I. Christov, W. Pedrycz // IEEE. Computers in Cardiology. 2007. - Vol. 34. - P. 145 - 148.
85. Boyarkin, M.V. Heart Rate Variability as an Index of Autonomic Heart Regulation in Acute Miocardial Infarction Patients / M.V, Boyarkin, A.N. Kalinichenko, A.P. Nemirko // IEEE. Computers in Cardiology. 1997. - Vol. 24. - P. 45 - 48.
86. Cellar, B. ECG analysis and processing using wavelets and other methods / B. Cellar, et al. // Biomed. Eng. Appl. Basis Commun. 1997. - Vol. 9(2). - P. 81 -90.
87. Chiarugi, F. Adaptive Threshold QRS Detector with Best Channel Selection Based on a Noise Rating System / F. Chiarugi, V. Sakkalis, D. Emmanouilidou, T. Krontiris, M. Varanini, I. Tollis // IEEE. Computers in Cardiology. 2006 - Vol. 33.- 157-160.
88. Clifford, G.D. Advanced Methods and Tools for ECG Data Analysis / G.D. Clifford, F.J. Azuaje, P.E. McSharry (editors). Artech House Publishers. - 2006. -384 p.
89. Clifford, G.D. Quantifying Errors in Spectral Estimates of HRV Due to Beat Replacement and Resampling / Gari D. Clifford // IEEE Trans. Biomed. Eng. -2005. Vol. 52(4). - P. 630 - 638.
90. Coast, D.A. An approach to cardiac arrhythmia analysis using hidden Markov models / D.A. Coast, at al. // IEEE Trans. Biomed. Eng. 1990. - Vol. 37. - P. 826-836.
91. Cohen, A. Biomedical Signal Processing. CRC Press, 1986 - 362 p.
92. Cohen, L. Time-frequency distributions. A review // Proc. IEEE. - 1989. - V. 77.-P. 941-981.
93. DeBoer, R.W. Comparing spectra of a series of point events particularly for heart rate variability data / R.W.DeBoer, J.M.Karemaker, J.Strackee // IEEE Transaction on Biomedical Engineering. 1984. - Vol. BME-31, No 4. - P. 384387.
94. Delgado, E. Recognition of Cardiac Arrhythmias by Means of Beat Clustering on ECG-Holter Records / E. Delgado, at al. // IEEE. Computers in Cardiology. -2007. Vol. 34. - P. 161 - 164.
95. DePinto, V. Filters for the reduction of baseline wander and muscle artifact in the ECG / V. de Pinto // J.Electrocardiology. 1992. - Vol. 25. - P. 40 - 48.
96. Friesen, G.M. A comparison of the noise sensitivity of nine QRS detection algorithms / G.M. Friesen at al. // IEEE Trans. Biomed. Eng. 1990. - Vol. 37. -P. 85-98.
97. Giraldo, B.F. Automatic Detection of Atrial Fibrillation and Flutter using the Differentiated ECG Signal. / B.F. Giraldo, P. Laguna, R. Jane, P. Caminal // Proceedings of Computers in Cardiology, pp.369-372. IEEE Computer Society, 1994.
98. Guimaraes, H.N. A comparative analysis of preprocessing techniques of cardiac event series for the study of heart rhythm variability using simulated signals / H.N. Guimaraes, R.A.S. Santos // Braz. J. Biol. Res. 1998. - 31(1). - P. 421^130.
99. Guvenir, H.A. A supervised learning algorithm for arrhythmia analysis / H.A. Guvenir, at al. // IEEE. Computers in Cardiology. 1997. - Vol. 24. - P. 433 -436.
100. Ham, F.M. Classification of cardiac arrhythmias using fuzzy ARTMAP / F.M. Ham, S. Han // IEEE Trans. Biomed. Eng. 1996. - Vol. 43. - P. 425-430.
101. Heart rate variability. Standards of Measurements, Physiological Interpretation, and Clinical Use // Circulation. 1996. 93 (5). - P. 1043 - 1065.
102. Hu Y.H. Detection and Suppression of Power-Line Interference in Electrocardiogram Signals / Y.H. Hu, Y.D. Lin // IEEE. Computers in Cardiology. 2007. - Vol. 34. - P. 549 - 552.
103. Hyndman, B.W. A model of the cardiac pacemaker and its use in decoding the information content of cardiac intervals / B.W. Hyndman, R.K. Mohn // Automedica. 1975. Vol. 1. - P. 239-252.
104. Jager, F. Detection of Transient ST Segment Episodes During Ambulatory ECG Monitoring / J. Franc, G. Moody, R.G. Mark // Computers and biomedical research. 1998. - Vol. 31. - P. 305 - 322.
105. Kadambe, S. Wavelet transform-based QRS complex detector / S. Kadambe, R. Murray, G.F. Boudreaux-Bartels // IEEE Trans. Biomed.Eng. 1999. -Vol. 46. -P. 838-848,
106. Kamath, M.V. Power spectral analysis of HRV: a non-invasive signature of cardiac autonomic functions. Crit. Rev. / M.V. Kamath, E. L. Fallen // Biomed. Eng. 1993; Vol. 21(3). - P. 245-311.
107. Khadra, L. Detection of life-threatening cardiac arrhythmias using the wavelet transformation / Med. Biol. Eng. Comput. 1997. - Vol. 35(6). - P. 626 - 632.
108. Kohler, B.U. QRS Detection Using Zero Crossing Counts / B.U. Kohler, C. Hennig, R. Jrglmeister // Progress in Biomedical Research. 2003 - Vol. 8 (3). -P. 138- 145.
109. Kohler, B.U. The principles of software QRS detection / B.U. Kohler, C. Hennig, R. Orglmeister // Engineering in Medicine and Biology Magazine, IEEE. 2002. -Vol. 21.-P. 42-57.
110. Lagerholm, M. Clustering ECG complexes using Hermite functions and self-organizing maps / M. Lagerholm, at al. // IEEE Trans. Biomed. Eng. 2000. -Vol. 47.-P. 838-848.
111. Last, T. Multi-Component Based Neural Network Beat Detection in Electrocardiogram Analysis / T. Last, C.D. Nugent, F.J. Owens // IEEE. Computers in Cardiology. 2006. - Vol. 33. - P. 573 - 576.
112. Li, C. Detection of ECG characteristic points using wavelet transforms / C. Li, C. Zheng, C. Tai // IEEE Trans. Biomed. Eng. 1995. - Vol. 42. - P. 21-28.
113. Maglaveras, N. ECG pattern recognition and classification using non-linear transformations and neural networks: A review / N. Maglaveras, at al. // Int. J. Med. Informatics. 1998.-Vol. 52.-P. 191-208.
114. Manilo, L.A. Estimation of the Frequency Properties of Rhythmograms in Problems of Recognition of Physiological States / L.A. Manilo, N.I. Rodina // Pattern Recognition and Image Analysis. 2003. - Vol. 13. No 2. - P. 298 - 301.
115. Manilo, L.A. Investigation of a Model of the Cardiac Rhythm Pacemaker Control for the Spectral Analysis of a Rhythmogram / L.A. Manilo, N.I. Rodina // Pattern Recognition and Image Analysis. 2001. - Vol. 11, No 2. - P. 342 - 344.
116. Mantaras, M.C. Non-parametric and Parametric Time-Frequency Analysis of Heart Rate Variability during Arousals from Sleep / M.C. Mantaras, et al. // IEEE. Computers in Cardiology. 2006. - Vol. 33. - P. 745 - 748.
117. Markad, V. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function / V. Markad, et al. // Critical Reviews in Biomedical Engineering. 1993. - Vol. 21(3). - P. 245-311.
118. McSharry, P.E. A dynamical model for generating synthetic electrocardiogram signals / P.E. McSharry at al. // IEEE Trans. Biomed. Eng. 2003. - Vol. 50(3). -P. 289 - 294.
119. MIT-BIH Arrhythmia Database. Available from MIT-BIH Database Distribution. Massachusetts Institute of Technology. 77 Massachusetts Avenue, Room E25-505. http://www.physionet.org/physiobank/database/mitdb. [http://ecg.mit.edu]. Cambridge, MA 02139 USA.
120. Mneimneh M.A. An Adaptive Kalman Filter for Removing Baseline Wandering in ECG Signals / MA Mneimneh, et al. // IEEE. Computers in Cardiology. 2006. -Vol. 33.-P. 253-256.
121. Mortara, D.V. Digital filters for ECG signals / D.V. Mortara. // IEEE. Computers in Cardiology. -1977. Vol. 4. - P. 511 - 514.
122. Murashov, P.V. Fast Wavelet Transform Application for the QRS Complex Detection / P.V. Murashov // Pattern Recognition and Image Analysis. 2005, Vol. 15.-No4.-P. 706-708.
123. Nemirko, A.P. Software Package for the Functional Investigations Using ECG / A.P. Nemirko, A.N. Kalinichenko, et al. // Pattern Recognition and Image Analysis. 2003/ — Vol. 13(2). - P. 308 - 310.
124. Nemirko, A.P. Waveform Classification for Dynamic Analysis of ECG / A.P. Nemirko, L.A. Manilo, A.N. Kalinichenko // Pattern Recognition and Image Analysis.- 1995.-Vol. 5.-No 1. -P.131-134.
125. Pan, J. F. real-time QRS-detection algorithm / J. Pan, W.J. Tompkins // IEEE Trans. Biomed. Eng. 1985. - Vol. 32(3). - P. 230 - 236.
126. Perfetto, J.C. Detrended Fluctuation Analysis (DFA) and R-R Interval Variability: A New Linear Segmentation Algorithm / J.C. Perfetto, A. Ruiz, C. D'Attellis // IEEE. Computers in Cardiology. 2006. - Vol. 33. - P. 629 - 632.
127. Reddy, B.R.S. Detection of Complex Atrial Arrhythmias in Resting ECG / B.R.S. Reddy, at al. //Proceedings of Computers in Cardiology, IEEE Computer Society. 1994.-P.777-780.
128. Ribeiro, B.R. Premature Ventricular Beat Detection by Using Spectral Clustering Methods / B.R. Ribeiro, at al. // IEEE. Computers in Cardiology. 2007. - Vol. 34.-P. 149- 152.
129. Suzuki, Y. Self-organizing QRS-wave recognition in ECG using neural networks / Y. Suzuki // IEEE Trans. Neural Networks. 1995. - Vol. 6. - P. 1469 - 1477.
130. Tompkins, WJ. Biomedical digital signal processing. Prentice Hall, 2000. - 366 P
131. Trahanias, P. Syntactic pattern recognition of the ECG / P. Trahanias, E. Skordalakis // IEEE Trans. Pattern Anal. Machine Intell. 1990. - Vol. 12. - P. 648-657.
132. Xue, Q. Neural-network-based adaptive matched filtering for QRS detection / Q. Xue, Y. H. Hu, W. J. Tompkins // IEEE Trans. Biomed. Eng. 1992. - Vol. 39. -P. 317-329.
133. СПИСОК УСЛОВНЫХ ОБОЗНАЧЕНИЙ И АББРЕВИАТУР1. АД артериальное давление;
134. АКФ автокорреляционная функция;
135. АР авторегрессия (модель процесса);
136. АРСС авторегрессия - скользящее среднее (модель процесса);
137. БПФ быстрое преобразование Фурье;
138. ВКФ взаимная корреляционная функция;
139. ВСПМ взаимная спектральная плотность мощности;
140. В CP вариабельность сердечного ритма;
141. ВФС взаимный фазовый спектр
142. ДПФ дискретное преобразование Фурье;
143. ЖЭ — желудочковая экстрасистола;
144. СПМ спектральная плотность мощности;
145. ЧСС частота сердечных сокращений;1. ЭКГ электрокардиограмма;1. ЭКС электрокардиосигнал;
146. DFA Detrended Fluctuation Analysis, флуктуационный анализ сигналас удаленным трендом;
147. HF High Frequency (высокая частота), диапазон частот от 0,15 до 0,4
148. Гц, рассматриваемый при анализе В CP;
149. FM Integral Pulse Frequency Modulation, интегральная импульсночастотная модуляция (модель порождения последовательности RR-интервалов);
150. Low Frequency (низкая частота), диапазон частот от 0,04 до 0,15
151. Гц, рассматриваемый при анализе ВСР;
152. NN-интервал промежуток времени между смежными R-зубцами,относящимися к фоновому ритму сердца;
153. Р-зубец волна кардиоцикла ЭКГ, соответствующая фазе деполяризациисокращения) предсердий;
-
Похожие работы
- Алгоритмы анализа многоканальной ЭКГ для классификации форм QRS-комплексов
- Поцикловое обнаружение Р-зубцов ЭКГ в кардиомониторных системах
- Исследование методов поциклового сжатия электрокардиосигнала
- Разработка специализированного алгоритмического и программного обеспечения систем мониторинга центральной гемодинамики
- Модели и алгоритмы спектрального анализа обработки кардиологических временных рядов
-
- Приборы и методы измерения по видам измерений
- Приборы и методы измерения времени
- Приборы навигации
- Приборы и методы измерения тепловых величин
- Приборы и методы измерения электрических и магнитных величин
- Акустические приборы и системы
- Оптические и оптико-электронные приборы и комплексы
- Радиоизмерительные приборы
- Электронно-оптические и ионно-оптические аналитические и структурно-аналитические приборы
- Приборы и методы для измерения ионизирующих излучений и рентгеновские приборы
- Хроматография и хроматографические приборы
- Электрохимические приборы
- Приборы и методы контроля природной среды, веществ, материалов и изделий
- Технология приборостроения
- Метрология и метрологическое обеспечение
- Информационно-измерительные и управляющие системы (по отраслям)
- Приборы, системы и изделия медицинского назначения
- Приборы и методы преобразования изображений и звука