автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Идентификация математических моделей внешнего теплообмена в машинах непрерывного литья заготовок

кандидата технических наук
Калитаев, Александр Николаевич
город
Магнитогорск
год
2006
специальность ВАК РФ
05.13.18
Диссертация по информатике, вычислительной технике и управлению на тему «Идентификация математических моделей внешнего теплообмена в машинах непрерывного литья заготовок»

Автореферат диссертации по теме "Идентификация математических моделей внешнего теплообмена в машинах непрерывного литья заготовок"

На правах рукописи

Калитаев Александр Николаевич

ИДЕНТИФИКАЦИЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ВНЕШНЕГО ТЕПЛООБМЕНА В МАШИНАХ НЕПРЕРЫВНОГО ЛИТЬЯ ЗАГОТОВОК

Специальность 05.13.18 — Математическое моделирование, численные методы и комплексы программ

Автореферат диссертации на соискание ученой степени кандидата технических наук

Магнитогорск — 2006

Работа выполнена в ГОУ ВПО «Магнитогорский государственный технический университет им. Г.И. Носова».

Научный руководитель

- доктор технических наук, профессор Девятов Диляур Хасанович

Официальные оппоненты:

- доктор технических наук, профессор Панферов Владимир Иванович

- доктор физико-математических наук, профессор Кадченко Сергей Иванович

Ведущая организация

- ОАО «Магнитогорский металлургический комбинат», г. Магнитогорск

Защита диссертации состоится « »2006 г.

в /5 часов на заседании диссертационного совета Д 212.298.02 при ГОУ ВПО «Южно-Уральский государственный университет» по адресу: 454080, г. Челябинск, пр. Ленина, 76.

С диссертацией можно ознакомиться в библиотеке ТОУ ВПО «ЮжноУральский государственный университет».

Автореферат разослан « // » ИРА^ОЛ- 2006 г.

Ученый секретарь диссертационного совета, доктор технических наук, профессор

А.О. Чернявский

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

В настоящее время процесс непрерывной разливки стали является определяющим в сталелитейном производстве и связан с совершенствованием отдельных технологических элементов и оптимизацией функционирования машин непрерывного литья заготовок (МНЛЗ) со всей производственной цепочкой металлургического завода.

Увеличение объема разливки стали на МНЛЗ связано с одновременным расширением сортамента и улучшением качества отливаемых заготовок, что невозможно без теплотехнического обоснования рациональных режимов литья. Правильно выбранные режимы охлаждения непрерывнолитой заготовки в зоне вторичного охлаждения (ЗВО) МНЛЗ позволяют получить заготовки не только с заданной температурой поверхности, но и с заданной кристаллической структурой, которая, в свою очередь, определяет наличие внутренних дефектов.

. Исследование процесса затвердевания и улучшения качества непрерывнолитой заготовки в условиях действующих МНЛЗ нуждается в тщательном экспериментальном и теоретическом изучении. Математическое моделирование процессов внешнего теплообмена непрерывнолитых заготовок в МНЛЗ остается актуальным до настоящего времени в связи с заменой на металлургических заводах старых технологий на новые и разработкой режимов охлаждения при освоении новых марок стали.

Цель работы - совершенствование методики идентификации параметров моделей внешнего теплообмена в МНЛЗ и оптимизация режимов охлаждения непрерывнолитой заготовки, удовлетворяющих требованиям повышенного качества макроструктуры.

Задачи работы:

1. Разработка методики применения регрессионной и нейросетевой моделей для интерполяции распределения значений температуры поверхности непрерывнолитой заготовки по длине МНЛЗ при идентификации коэффициентов теплоотдачи.

2. Разработка и проверка в реальных условиях математической модели процесса затвердевания непрерывнолитых заготовок с учетом несимметричности охлаждения поверхности заготовки в ЗВО МНЛЗ.

3. Идентификация коэффициентов теплоотдачи с поверхности непрерывнолитой заготовки, охлаждаемой в ЗВО МНЛЗ, методами нелинейного программирования.

4. Учет при идентификации параметров модели внешнего теплообмена движения координаты фронта затвердевания, подбор наилучших эмпирических выражений для описания роста затвердевающей корки заготовки.

5. Определение оптимальных расходов охладителя по зонам вторичного охлаждения МНЛЗ согласно выбранному критерию качества макроструктуры непрерывно-литой заготовки.

6. Разработка программного обеспечения для расчета режимов охлаждения непрерывнолитой заготовки в ЗВО МНЛЗ для использования в лаборатории непрерывной разливки Центральной лаборатории комбината (ЦЛК) ОАО ММК.

Методы исследований

В данной работе использовались методы моделирования на основе нейронных сетей и математического моделирования. Топологией нейронной сети является многослойный полносвязный персешрон, обучаемый по алгоритму обратного распространения ошибки. При разработке модели затвердевания непрерывнолитой заготовки использована квазиравновесная модель затвердевания расплава, при этом дифференциальное уравнение теплопроводности решалось методом конечных разностей. При идентификации модели внешнего теплообмена методами нелинейного программирования используем численные методы минимизации функций: метод наискорейшего градиентного спуска и метод Фибоначчи.

Научная новизна:

1. Разработана методика применения нейросетевых и регрессионных моделей для интерполяции распределения значений температуры поверхности непрерывнолитой заготовки по длине МНЛЗ при отсутствии экспериментальных данных в первых зонах вторичного охлаждения.

2. Применены методы нелинейного программирования и оценена их эффективность для определения коэффициентов теплоотдачи на поверхности заготовки при граничных условиях третьего рода для решения нелинейного уравнения теплопроводности прямоугольной призмы с учетом фазовых превращений и закономерности формирования твердой фазы.

3. Разработана методика расчета оптимальных расходов охладителя по зонам вторичного охлаждения согласно выбранному критерию качества макроструктуры непрерывнолитой заготовки.

Практическая ценность исследования заключается в разработке режимов вторичного охлаждения непрерывнолитых заготовок, позволяющих обеспечивать заданные показатели качества макроструктуры, в условиях кислородно-конвертерного цеха (ККЦ) ОАО ММК на основе созданного программного обеспечения, реализованного в среде программирования Borland Delphi для операционных систем Windows 9Х/2000/МЕ/ХР.

Реализация работы Ч.

На основе модели расчета режимов вторичного охлаждения непрерывнолитой заготовки реализовано программное обеспечение «Идентификация параметров внешнего теплообмена заготовки в ЗВО МНЛЗ», на которую получено свидетельство об отраслевой регистрации разработки № 5588 в Отраслевом фонде алгоритмов и программ.

Результаты диссертационной работы используются в учебном процессе кафедры вычислительной техники и прикладной математики Магнитогорского государственного технического университета им. Г.И. Носова. В частности, результаты работы применены при подготовке учебного курса «Моделирование технологических процессов» для студентов специальности 230105 «Программное обеспечение вычислительной техники и автоматизированных систем».

Разработанное программное обеспечение рекомендовано к использованию в КИС лаборатории непрерывной разливки ЦЛК и ККЦ ОАО ММК.

Апробация работы

Основные результаты работы были доложены и обсуждены на 3-й региональной научно-технической конференции «Новые программные средства для предприятий Урала» (Магнитогорск, ГОУ ВПО МГТУ, 2004 г.); на 3-й межвузовской конференции по научному программному обеспечению (Санкт-Петербург, СПбГПУ, 2005 г.); на Всероссийской научно-технической конференции «Создание и внедрение корпоративных информационных систем (КИС) на промышленных предприятиях Российской Федерации» (Магнитогорск, ГОУ ВПО МГТУ - ОАО «ММК», 2005 г.); на 64-й научно-технической конференции, посвященной 100-летию Г.И. Носова (Магнитогорск, ГОУ ВПО МГТУ, 2005 г.); на II Международной научно-практической конференции «Высокие технологии, фундаментальные и прикладные исследования, образование» (Санкт-Петербург, СПбГПУ, 2006 г.).

Публикации

По материалам диссертации опубликовано 9 печатных работ в научных сборниках, монография и получено свидетельство об отраслевой регистрации разработки.

Структура и объем диссертации

Диссертационная работа состоит из введения, четырех глав, заключения и приложения. Общий объем работы составил 132 страницы машинописного текста, который включает в себя 58 рисунков, 17 таблиц и список литературы, состоящий из 94 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулированы цель, задачи и методы исследований, проведенных в ходе работы над диссертацией.

В первой главе выполнен анализ основных направлений математического моделирования при описании внешнего теплообмена заготовки в МНЛЗ.

Основной задачей при непрерывной разливке стали является управление процессом затвердевания металла с целью обеспечения условий, необходимых для формирования качественной непрерывнолитой заготовки, т.е. обеспечение химической и структурной однородности.

В данной главе представлена краткая характеристика существующих математических моделей затвердевания и охлаждения непрерывнолитых заготовок, которые отражены в работах А.И. Вейника, Б.Я. Любова, Ю.А. Самойловича, Д.П. Евтеева, В.А. Емельянова и др.

Согласно исследованиям ВТ. Борисова, Ю.А. Самойловича, В.А. Журавлева, В.В. Соболева разработаны новые подходы к моделированию затвердевания заготовок: квазйравновесная теория двухфазной зоны, которая была использована при моделировании и решении задач выбора оптимальных режимов вторичного охлаждения непрерывнолитой заготовки в данной работе.

Одним из важнейших факторов в выборе оптимальных режимов вторичного охлаждения МНЛЗ является распределение расходов охлаждающей воды по длине ЗВО, а также соотношение расходов воды по большому и малому радиусу криволи-

нейных МНЛЗ, получивших широкое применение в последние годы. Решение этой задачи потребовало проведения расчетов затвердевания непрерывнолитой заготовки с использованием математического моделирования тепловых процессов.

При выполнении настоящей работы были поставлены и решены следующие задачи:

- обоснование и описание методики применения нейронных сетей в задаче идентификации параметров модели внешнего теплообмена непрерывнолитой заготовки в МНЛЗ при отсутствии экспериментальных данных в первых зонах вторичного охлаждения;

- разработка методики расчета коэффициентов теплоотдачи с поверхности непрерывнолитой заготовки и оптимальных расходов охладителя по зонам вторичного охлаждения согласно выбранному критерию режима охлаждения непрерывно-литой заготовки в ЗВО МНЛЗ методами нелинейного программирования;

- разработка режимов вторичного охлаждения, уменьшающих поражения не-прерывнолитых заготовок внутренними дефектами при разливке углеродистых марок стали в условиях ККЦ ОАО ММК.

Во второй главе разработана методика идентификации параметров модели внешнего теплообмена заготовки в МНЛЗ статистическими методами.

Теплообмен на поверхности непрерывнолитой заготовки определяется функцией распределения коэффициентов теплоотдачи по длине МНЛЗ, которая связана с интенсивностью охлаждения заготовки по периметру, выбранной из условий получения качественного металла на выходе из МНЛЗ.

Коэффициент теплоотдачи авт определялся из выражения для плотности теплового потока, проходящего через застывший слой стали а _ Я _ Л-(Тспл -Тпов)

вт (т -т ) елт -т ■)'

где q = X-{Тсап -Тпов)/£ -плотность теплового потока, Вт/м2;, £ - толщина застывшей корки стали, рассчитывалась по методу Лейбенздна-Вейника, мм; Тсол -температура солидуса, К; Т„ов - температура поверхности заготовки в зоне вторичного охлаждения, К; Тср — температура окружающей среды, К; X —

теплопроводность, Вт/(м-К).

Проблема идентификации объекта (внешний теплообмен непрерывнолитой заготовки в ЗВО МНЛЗ) сводится к построению такой его параметрической модели, чтобы отклики объекта (экспериментальные данные по температуре поверхности заготовки) у и модели у (результаты моделирования) на одно и то же возбуждение были в пределах допустимой погрешности е, то есть

\y~y\le- (2)

Среди многих возможных подходов в решении задачи идентификации температурного поля поверхности непрерывнолитой заготовки вдоль технологической

оси МНЛЗ предлагаются следующие способы: построение регрессионной модели и модели, основанной на применении нейронной сигмоидальной многослойной сети.

Для настройки и обучения модели были использованы экспериментальные данные о температуре металла, полученные на криволинейной МНЛЗ в условиях ККЦ ОАО ММК при разливке стали марки СтЗсп. Для каждой исследуемой плавки по длине опытного сляба фиксировались абсолютные расходы. охладителей, скорость разливки с предварительным замером температуры металла в промежуточном ковше, замеры температуры поверхности заготовки оптическим пирометром Comet 1000 (Portable radiation thermometer Ш-АН), начиная с 5 зоны, и температуры воздушной "подушки" в 15 см от поверхности.

Для идентификации значений температуры поверхности непрерывнолитой заготовки температурные кривые аппроксимированы зависимостью:

Г(£, а) = еА+Д'^+А К^УЛ faa? _ (3)

где L = l + Zi. •——— ; Lt = [---| -и — максимальная длина жидкой фазы, м;

Lk-1 * ^0,026-2 J

I - длина заготовки от мениска расплава, м; а - ширина заготовки, м; Ъ -толщина заготовки, м; и - скорость вытягивания заготовки, м/мин; pQ,P\,@2>fh ~ значения коэффициентов уравнения регрессии.

Коэффициенты полученных уравнений зависимости температуры поверхности по центру Т^, четверти Т^ и краю Т^ заготовки и оценка параметров уравнений вида (3) представлены в табл. 1.

Таблица 1

Оценка параметров уравнения зависимости температуры поверхности непрерывнолитой заготовки

Зависимость температуры Ото. ошибка аппроксимации, % Коэффициент детерминации Значение крит. Фишера ^««,=4161 при р = 0,05% ) Коэф. уравн. регрессии Значение коэф. Сгьюдента ('таб, =1.9626 при р = 0,05%)

По центру заготовки f(l) 2,69 0,957 22,40 А> 7,104087 334,28

ft -0,005341 10,66

Рг 0,398045 3,89

Рл -0,095970 4,39

По четверти заготовки f( 2) 2,72 0,958 23,04 Ра 7,100507 1336,16

ft -0,006427 25,05

Рг 0,398055 12,03

А -0,095973 8,16

По краю заготовки 3,97 0,951 19,70 Ра 7,078952 947,68

ft -0,008197 22,03

Рг 0,398345 5,12

Рл -0,095921 3,98

Полученные модели Ти Т^ адекватны (см. табл. 1), о чем свидетельствуют значения множественного коэффициента детерминации и относительная ошибка аппроксимации.

При решении данной нелинейной системы предложено использовать нейронную сеть (НС) с прямыми связями с обучением по методу обратного распространения ошибки. Топологией сети является многослойный полносвязный персептрон, а в качестве актив ационной функции используется сигмоидальная функция

'«-Х-.—

Алгоритм обратного распространения ошибки для обучения НС, предложенный Д.Е.Руммельхартом, Г.Е. Хинтоном и Р.Дж. Уильямсом (Rummelhart D.E., Hinton G.E., Williams R.J.):

1. Подача на вход НС одного го требуемых образов и расчёт значений нейронов сети.

2. Расчёт = и изменения весов Aw^N) =-г/<5$юх" для

'dSj

выходного слоя N НС.

3. Расчёт

=

. к

1—— и Äw!"1 = -tjS^x? для остальных сло-jdS, 4 J

ев НС, и = ЛГ-1,..,1.

4. Коррекция весов НС и^0 (/) = (г -1) + Ди£°(0.

Если величина ошибки превышает заданную точность метода, то перейти на

шаг 1.

Для выбора оптимальной структуры НС был проведен сравнительный анализ влияния параметров обучения (точность) и структуры НС (количество скрытых слоев и нейронов в каждом слое) на время обучения и максимальную ошибку при обучении НС. Структура оптимальной нейронной сети включает, два скрытых слоя по 9 нейронов в каждом (рис. 1).

Входные параметры модели: XI - координата по длине МНЛЗ; Х2 - координата по сечению широкой грани; ХЗ - температура металла в промежуточном ковше; Х4 — скорость вытягивания. Выходные параметры: У - температура поверхности за-г готовки в ЗВО

Рис. 1. Структура НС (с двумя скрытыми слоями)

Оценка параметров нейросетевой модели температурного поля поверхности непрерывнолитой заготовки приведена в табл. 2.

Таблица 2

Оценка параметров нейросетевой модели температурного поля поверхности непрерывнолитой заготовки

Зависимость температуры Отн. ошибка аппроксимации, % Коэффициент детерминации Значение критерия Фишера ( ?наб, = Ш 61 при р = 0,05% )

По центру заготовки Ту 2,13 0,969 32,06

По четверти заготовки Т^ 2,38 0,973 36,44

По краю заготовки Т^ 3,53 0,968 31,30

Высокая доля объясненной дисперсии свидетельствует о хорошей адекватности нейросетевой модели.

В табл. 3 приведены результаты расчета оценочных характеристик на тестирующей выборке для рассматриваемых моделей идентификации температурных полей поверхности непрерывнолитых заготовок вдоль технологической оси МНЛЗ.

Таблица 3

Результаты расчета оценочных характеристик для рассматриваемых моделей

Оценочные характеристики

Точка замера Макс. Ср. квадр. Огн. ошибка Макс. Ср. квадр. Ото. ошибка

по ширине ошибка отклонение аппроксимации ошибка отклонение аппроксимации

заготовки Мах£ А Мах$ А

Регрессионная модель Нейросетевая модель

Центр 62,84 23,24 2,41 60,77 17,27 1,68

Четверть 57,18 18,71 2,12 43,53 15,30 1,86

Край 106,13 31,38 3,24 58,66 16,93 1,46

Ошибка аппроксимации в пределах 2-4% свидетельствует о хорошем подборе модели к исходным данным.

Сравнение статистических критериев адекватности регрессионной (см. табл. 1), нейросетевой моделей (см. табл. 2) и оценочных характеристик (см. табл. 3) рассматриваемых моделей показывает, что наилучшие результаты идентификации температурного поля поверхности непрерывнолитой заготовки вдоль технологической оси МНЛЗ получены с помощью нейросетевой модели. В связи с этим, для идентификации параметров модели внешнего теплообмена (коэффициентов теплоотдачи с поверхности непрерывнолитой заготовки, степени усвоения воды) принято решение использовать нейросетевую модель.

С использованием модели проведен расчет температуры поверхности заготовки вдоль технологической оси МНЛЗ для марки стали СтЗсп и сечением 250x1250мм2, 250x1310мм2 (рис.2), 250x1370мм2 при соответствующих скоростях вытягивания 0,62, 0,73, 0,67 м/мин и температурах стали в промежуточном ковше 1549, 1553, 1548 °С. В ходе идентификации были определены средние значе-

ния степени испарения охлаждающей воды для разных зон (табл. 4) и изменение коэффициента теплоотдачи с поверхности заготовки в ЗВО.

00.71Я 3.1 4 2 3 « Я Я 7.7 6Э1П 211 В13.31 «.Я 1 Я.( 1 ЯД & 21.1 23.124 2 25.7 27Д *Л.В ЗС.» Л в М 5 » 3

Рис. 2. Изменение температуры и коэффициентов теплоотдачи заготовки вдоль технологической оси МНЛЗ

Таблица 4

Значения степени испарения воды в условиях ММК

Номер ЗВО 1 2 3 4 5 б

По малому радиусу 0,007 0,015 0,022 0,033 0,041 0,048

По большому радиусу 0,007 0,015 0,019 0,021 0,025 0,031

В третьей главе рассматривается идентификация параметров модели внешнего теплообмена заготовки в МНЛЗ методами нелинейного программирования.

Задача ставится следующим образом: требуется найти такую кусочно-постоянную функцию распределения коэффициента теплоотдачи по длине технологической оси МНЛЗ а{1) , которая соответствует минимуму функционала:

Ла) = /\\?\х,1)-Т{х,1)}<Ш1, (4)

52.

где а -значение искомого коэффициента теплоотдачи, Вт/(м2К); т'(х,Г) -рекомендуемое распределение температуры поверхности непрерывнолитой заготовки, соответствующее выбранному режиму охлаждения, К; Т(х,1) — распределение температур, полученное при варьировании коэффициента а, К.

Математическая модель затвердевания непрерывнолитой заготовки была построена на основе следующих общих положений:

1. Процессы теплообмена во всех фазах заготовки описываются нестационарным уравнением теплопроводности вида:

где Т = Т(х,у,т) - функция распределения температур по сечению заготовки во времени; р(Т) — плотность металла, кг/м3; сэф(Т) —эффективная теплоемкость металла, Дж/(кг-К); Лэф{Т) —эффективная теплопроводность металла, Вт/(м-К).

Коэффициенты сэф(Т) и Л~,ф{Т) определяются в зависимости от температуры фазового состояния металла по формулам:

сж{Т) йц/

Кф -

(6)

(?)

при Т > Тяик; ст(Т)-Ч*^ "Р" Тсо,<Т<.Т„ ; ст,(Т) при Т<Тсод\ Лж при Т>Ттк;

(1-у) при Л™, при Т <Тсал,

где — скрытая теплота кристаллизации, Дж/кг; Тлиж — температура ликвидуса, К; у/ — относительное количество твердой фазы, находящейся в равновесии с жидкостью при температуре Т.

Относительное количество твердой фазы у/ и темп кристаллизации определяются по формулам:

(ГЬ-Г)

(То

* лик'

(*0-1)

(2-*,)

¿У _ V

Го Т„ик Г„-Г

йТ (¡-АоХтЬ-Г0 )'

(8)

(9)

где Т -температура ликвидуса для сплава исходной концентрации, К: Та -

лик

температура кристаллизации чистого (без примесей) железа, К; к0 - коэффициент распределения углерода в жидкой и твердой фазах кристаллизующегося сплава.

2. Разность расходов охладителя по большому и малому радиусу машины можно учитывать несимметричностью граничных условий третьего рода:

— для широкой грани:

дх

-мтЛ

ах

- ак(Тп0в. —Тср);

х=Ь

= "Лтповг ~тсРУ>

(10) (И)

для узкой грани: — Л(Т)

ду

дТ

= а{Тпоа-Тср), (12)

ср

уО.а

где aR и аг — коэффициенты теплоотдачи с поверхностей к большому и малому радиусам заготовки, Вт/(м2-К); Tnoe/¡ и Т„Мг -температура поверхности заготовки со стороны большого и малого радиуса, К; Тср - температура охладителя, подающегося к поверхности заготовки, К; Тпов - температура поверхности узкой грани заготовки, К; а -коэффициент теплоотдачи с поверхности узкой грани заготовки, Вт/(м2К).

В начальный момент времени температурное поле принимается однородным: температура во всем объеме постоянна и равна температуре металла в промежуточном ковше.

Температура ликвидуса определяется с учетом влияния содержания в металле химических элементов согласно зависимости

TL =1534-8аИ+1Ф[Л]+4 [А^+^6 [М]+1,4 [С|]+и-[Л^+314 [^5+35И+35И, (13)

где [С], [Si], [Л/л], [М], [О], [Mó\, [Al], [Р], [S] - процентное содержание элемента в сплаве, %.

Для определения температуры солидуса использовались аппроксимирующие функции линии солидуса в области диаграммы состояния системы Fe-C.

Уточнение коэффициентов теплоотдачи с поверхности заготовки по длине ЗВО производится с учетом динамики роста затвердевшей корки заготовки:

(xj)-e(x, l)fdxdl, (14)

sl sl

где e*(x,/) - значение толщины затвердевшей корки заготовки, рассчитанное по методу Лейбензона-Вейника, основанному на определении закона затвердевания £ = ¿;(x,y,l) и поля температур в заготовке Т = Т{х,у, I), гдь.скорость перемещения границы раздела фаз зависит от градиентов температуры по обе стороны границы соответственно, поле градиентов температуры - от толщины затвердевшего слоя расплава; е(х,1) —рассчитанное значение толщины затвердевшей корки заготовки по плотности теплового потока при варьировании а .

Использование критерия J(a) в численной реализации удобно в виде

Л«]+(ZZe(xtJ)-YZe(x,I))i- (15)

Sí s l s l s l

Поиск коэффициентов теплоотдачи с помощью идентифицируемой математической модели подразумевает использование методов идентификации, опирающихся на математический аппарат алгоритмов математического программирования.

Для идентификации коэффициентов теплоотдачи применяем методы поиска экстремума функционала:

- метод наискорейшего градиентного спуска;

- метод Фибоначчи.

Оценочный критерий J"\cc\ имеет графическую форму (рис. 3). Данный оценочный критерий представляет собой унимодальную функцию, достигающую экстремум в точке min, что обеспечивает сходимость численных методов, используемых при идентификации коэффициента теплоотдачи а .

Оценка J*. Е-М2

a Mi «m eco 1эм im

OtBrtlu'lQ

Рис. 3. Графическая форма оценочного критерия У* [а] Для настройки модели к условиям МНЛЗ ККЦ ОАО ММК были использованы данные об изменении температуры поверхности непрерывнолитых заготовок, начиная с пятой зоны, полученные при проведении эксперимента. На рис. 4 приведены графики изменения температуры поверхности широкой грани в сердцевине непрерывнолитой заготовки, полученные в результате моделирования, и экспериментальные значения при технологических параметрах процесса непрерывного литья заготовок: марка стали СтЗсп, плавка № 209832, ручей 8, сечение заготовки 250x1250 мм2, скорость вытягивания заготовки v-0,57 м/мин, температура в промежуточном ковше Т = 1545 °С.

ООД1ЯЭ.1 4.3 5.4 6.6 7.7 8Л ЮЛ 11Я 1Э.414Л 16.518.01Я.6 21.222.7 24.2 25 4 27.4 2ял Э0.5 32Л ЭЭД Э5.1

Тпокроур* ■иртжп мгпвпос 1 - ш тярчтл хрищ. 3-ю ^ '»'р.» гршж, З.в краю пмжя;

аяквртнпяашмяпКА.яа^шрп;*.»«»^!]»!;*.»!!)»!]!«; 4-шеяратлшт хилша

Рис. 4. Изменение температуры в сердцевине и на поверхности широкой грани заготовки, полученное в результате моделирования, и экспериментальные значения вдоль технологической оси МНЛЗ

Результаты моделирования, представленные на рис. 4, позволяют судить об адекватности математической модели затвердевания непрерывнолитой заготовки и возможности ее применения при идентификации параметров модели внешнего теплообмена непрерывнолитой заготовки с учетом выбранного режима охлаждения заготовки в ЗВО МНЛЗ.

В результате моделирования внешнего теплообмена непрерывнолитой заготовки в ЗВО МНЛЗ в условиях НЛМК были получены зависимости температуры сердцевины и поверхности заготовки, значения коэффициентов теплоотдачи с поверхности заготовки в ЗВО при скоростях вытягивания от 0,4-1,2 м/мин и сечением заготовки 250x1550 мм2, соответствующие режиму «мягкого» охлаждения. Расчеты производились для конструкционной группы марок стали на примере СтЗсп (химический состав: 0,15 %С, 0,17 0,44 %Мп, 0,016 %8, 0,012 %Р, 0,002 %Сг, 0,001 %№, 0,001 %Си, 0,001 %Мо, 0,001 %У, температура ликвидуса 1517 °С и со-лидуса 1499 °С) с температурой металла в промежуточном ковше Тгос=15500С. Идентификация параметров модели внешнего теплообмена производилась по критерию (3) с использованием методов градиентного спуска и Фибоначчи с заданной точностью 0,01.

На рис. 5 представлены распределения коэффициентов теплоотдачи с поверхности непрерывнолитой заготовки и температуры поверхности заготовки, соответствующие данным ВНИИЧермета в условиях НЛМК (метод Фибоначчи).

Рис. 5. Изменение температуры и коэффициентов теплоотдачи заготовки вдоль технологической оси МНЛЗ при скорости вытягивания 0,6 м/мин Предлагаемые режимы охлаждения свидетельствуют о том, что с увеличением скорости вытягивания непрерывнолитых заготовок наблюдается рост коэффициентов теплоотдачи с поверхности заготовки в ЗВО МНЛЗ.

В табл. 5 представлены значения коэффициентов теплоотдачи с поверхности непрерывнолитой заготовки, полученные при идентификации методами градиентного спуска и Фибоначчи, и их уточненные значения (метод Фибоначчи) с учетом толщины затвердевающей корки заготовки.

Таблица 5

Коэффициенты теплоотдачи с поверхности заготовки в ЗВО МНЛЗ при скорости вытягивания 0,6 м/мин

Метод идентификации Зоны вторичного охлаждения Зона охлаждения на воздухе

1|2|3|4|5|6|7|8

Длина, м

1,33 | 2,0 | 1,65 1,65 | 1,8 | 1,8 | 3,52 | 5,28 | 12

Коэф( зициенты теплоотдачи, Вт/См^К)

Град, спуска 726,9 441,6 433,8 366,3 350,7 319,4 296,6 254,4 176,3

Фибоначчи 727,0 441,6 433,8 366,4 350,7 319,4 296,7 254,5 176,3

Фибоначчи" 723,3 441,0 420,9 360,4 337,8 309,2 292,8 253,8 206,6

* Уточненные значения коэффициентов теплоотдачи с учетом толщины затвердевающей корки заготовки, рассчитанные по критерию (14).

Сравнивая коэффициенты теплоотдачи, рассчитанные по критерию (4), и их уточненные значения (критерий (14)), напрашивается вывод, что в случае полного затвердевания заготовки можно увеличить отвод тепла с поверхности заготовки в последующих зонах.

Анализ результатов, полученных при идентификации параметров модели внешнего теплообмена заготовки в ЗВО МНЛЗ в условиях НЛМК, показал о необходимости пересмотреть режимы охлаждения с целью недопущения резкого тепло-отвода на краю непрерывнолитой заготовки вдоль технологической оси МНЛЗ.

В работе идентификация параметров модели внешнего теплообмена непрерывнолитой заготовки в ЗВО МНЛЗ проводилась для следующих режимов охлаждения заготовки, заданных температурным распределением поверхности Т*(х,1) непрерывнолитой заготовки:

— режим «мягкого» охлаждения по данным ВНИИЧермета (Д.П. Евтеев)

Т\х,1)°

Т (х,0 = — , (16)

1п(Г*(дс,/)°/800)

где п --; Н — полная длина заготовки от мениска в кристаллиза-

1п(Я-й*+1)

торе до конца зоны вторичного охлаждения, мм; / - текущая длина заготовки, мм; кк -рабочая высота кристаллизатора, мм; Т*(х,1) и Г*(дг,/)° -температура поверхности заготовки соответственно при текущем значении I и / = Ик, К;

- режим охлаждения, рекомендуемый ПО «Уралмаш» для МНЛЗ ОАО ММК:

т*(х е(7,07-0,01113Л+0,1062/А+0,00022361'-0,05И/£2) ^^

где ¿ = 1+22- 1~1 .

Ьк -1

На основе закона распределения температурного поля заготовки (17), рекомендованного специалистами ПО «Уралмаш» при охлаждении непрерывнолитой заготовки в условиях ККЦ ОАО ММК, произведено моделирование внешнего теплообмена непрерывнолитой заготовки в ЗВО МНЛЗ. При этом получены зависимости температуры сердцевины и поверхности заготовки, значения коэффициентов теплоотдачи с поверхности заготовки в ЗВО при скоростях вытягивания от 0,41,2 м/мин и сечением заготовки 250x1250 мм2, соответствующие данному режиму охлаждения непрерывнолитой заготовки. Произведены расчеты расходов охладителя в ЗВО по большому и малому радиусу, соответствующие данному режиму охлаждения, при скоростях вытягивания 0,4-1,2 м/мин (рис. 6, при скорости вытягивания 0,6 м/мин).

В четвертой главе разработана методика оптимизации режимов охлаждения непрерывнолитой заготовки в ЗВО МНЛЗ

Для общей оценки пораженности непрерывнолитой заготовки различными дефектами был сформирован комплексный критерий качества аддитивного типа. Критерий был использован для определения оптимальных расходов охладителя по зонам вторичного охлаждения для стали марки СтЗсп.

Комплексные критерии качества для расчета расходов охладителя представлены в виде следующих выражений:

- по большому радиусу

= 1,26 - 0,09 • /, - ОД 1 • 12 - 0,01 • /3 + 0,10 • /4 + 0,22 • /5 + 0,27 • /б; (18)

- по малому радиусу

=0,66-0,05-12 -0,30-/3 + 0,07-14 + 0,10-«5 , (19)

где I■=g ¡1 - удельная интенсивность подачи охладителя в ] -й зоне со сто' к\ ^ й j

роны большого радиуса, м3/(м-ч); = - удельная, интенсивность подачи

охладителя в _/ -й зоне со стороны малого радиуса, м3/(м-ч); и — расходы охладителя в ] -й зоне вторичного охлаждения по большому и малому радиусам соответственно, м3/ч; — длина ] -й зоны вторичного охлаждения МНЛЗ, м.

Эти критерии были использованы в качестве целевых функций для определения расходов охладителя по зонам вторичного охлаждения методами оптимизации.

На основе математического моделирования затвердевания непрерывнолитой заготовки, экспериментальных данных (нейрометод), согласно рекомендациям ВНИИЧермета («мягкое» охлаждение) и рекомендациям ПО «Уралмаш» и МГТУ был выполнен расчет расхода воды на каждую ЗВО и комплексного критерия показателя качества при скорости вытягивания заготовки 0,4-1,2 м/мин для стали марки СтЗсп сечением 250x1250 ммг. На рис. 6 приведены расходы воды по большому и

малому радиусу в ЗВО при скорости вытягивания 0,6 м/мин, полученные разными методами.

Сравнение рассчитанных данных расхода охладителя по малому и большому радиусам МНЛЗ показывает, что, в среднем, расход воды на первую зону на малом радиусе меньше на 15%, чем на большом радиусе. Во второй и третьей зонах расходы воды по большому и малому радиусам совпадают. Охлаждение заготовки до конца 8 зоны позволяет сохранить равномерность распределения температуры по сечению заготовки и, следовательно, обеспечить повышение качества готовой продукции.

Нсяшр юш аюхячхшго опшшш Нотр хомш жм>яшшога ожтэшюшя

1 - т инструкции;2 - го ограничениям ж тяхгиратуру пэверыюстн (14); 3 - ш огриапа)а(лк(15)

Рис. б. Расходы воды по большому (а) и малому (б) радиусу в ЗВО при скорости вытягивания 0,6 м/мин

Основные этапы теоретического подхода к разработке режимов охлаждения, реализующих лучшее качество заготовки, заключаются в следующем:

1. На основе полученных эмпирических данных, обработанных статистическими методами, строятся возможные функциональные зависимости, определяющие связь между показателями качества заготовки и параметрами тепловой обработки заготовки.

2. Из построенных функциональных зависимостей выбираются наиболее удобные для использования в решении задачи выбора оптимальных режимов охлаждения заготовки, представленные в виде функционала:

' = Й/УоКСОК (20)

07=1

где Ь - длина МНЛЗ; 1/к(1) -значения управляющих воздействий (например, расходы охладителя в к -й зоне вторичного охлаждения); Fj — функциональные зависимости, определяющие связь между показателями качества заготовки и параметрами тепловой обработки заготовки ик(1); Ц] - весовые коэффициенты; п - число показателей качества.

3. На основе разработанной математической модели, выбранного критерия оптимальности, определенных ограничений на фазовые координаты процесса затверде-

вания и управляющие воздействия с помощью принципа максимума для распределенных систем управления определяется на качественном уровне оптимальное управление: вид графика изменения расхода охладителя в ЗВО МНЛЗ, позволяющий обеспечить наилучшее качество заготовки.

4. Производится моделирование системы оптимального управления охлаждением заготовки, уточняются полученные результаты решения задачи оптимизации и доводятся до конкретных предложений по режимам охлаждения.

Зависимости коэффициента теплоотдачи от расхода охладителя предполагают следующий общий вид:

« = + </"*, (21)

где с1 и ¿' - постоянные коэффициенты.

Поэтому граничные условия для уравнения теплопроводности можно записать относительно нового управления расходами воды на обе поверхности заготовки и так:

дТ

г-. iл - л- л ^ст -i !\\\ л .

Я(Г)

дх

, дТ ЧТ)-Ч

дх

(22)

= (^+<&г(/))(гс/,-Гл<м(х,/)) (23)

ср

Используя для качественного анализа вида управления С/(|ГЛ1£Г) принцип максимума, получим систему сопряженных уравнений относительно введенных функций ц/(х,Т), где £/, -расход охладителя со стороны большого радиуса, а 1/2 — расход охладителя со стороны малого радиуса.

ах

= д?ги^{Ъ,Р>% х = 5; (25)

*=о дх

= (26)

где Р(Т) - подынтегральное выражение в уравнениях, описывающих суммарный критерий показателей качества для большого и малого радиусов.

Проведем анализ возможных качественных решений задачи; для чего составим Я , /г,, - функции системы (10), (11) и (24)-(26), что соответствует решению задачи несимметричного приближения в конце ЗВО (/ = /0) к заданному распределению:

Я = ^(х,/) - Р(Ту, (27)

А,=К0АШТср-Т^хШ Аг=^Ь,/)[/2(Гс/,-Гпов(х,0)). (28)

Условия максимума определяются из функций \ и Л2:

= Лтср-Тлав{х,Ь)} (29)

= 0)) (30)

Из выражений (26)-(28) и (29), (30) следует, что:

£/, (0 = i/u / 2 - i/u / 2 ■ sign у(0, /); ' (31)

<У2(/) = Un/2-Un/2- sign I), (32)

где ¡У,, - максимальное значение расхода воды, м3/ч; U12 - минимальное значение расхода воды, мэ/ч.

Таким образом, управления С/, и i/2 представляют собой переключательную функцию, моменты переключений которой зависят от функций T(b,l), Г(0,/) и iy(S,l), начальных условий и значений длин.

Поскольку вид управления (/,(/) и иг{1) определен, то оптимизационная задача может быть решена без решения сопряженной системы, с помощью использования известных методов математического моделирования системы (10), (11) и стабилизации ее на ограничении:

Тпов, ^ Т„„. Ф, I), Тпвв (0,1) < Тповя, (33)

где Тповг, Tnoeg - значения температуры поверхности заготовки по малому и большому радиусам МНЛЗ, К.

Ограничения на изменение управляющих воздействий (расходы охладителя по зонам вторичного охлаждения) на оптимизацию устанавливались на основании результатов математического моделирования, исходя из требований выбрашюго режима охлаждения, задаваемого температурой поверхности заготовки в ЗВО МНЛЗ. На рис. 7 цифра 1 соответствует расходам охладителя по технологической инструкции; 2 —«мягкому» охлаждению по данным ВНИИЧермета (16); 3 - при режимах охлаждения, выбранных согласно рекомендациям ПО «Уралмаш» и МГТУ (17).

Результаты расчетов значений комплексного критерия показателя качества по большому радиусу (рис. 7, а) показывают, что низкоскоростные режимы вытягивания (0,4-0,5 м/мин) не нуждаются в коррекции, поскольку значения критерия качества для используемых режимов не превышают рассчитанные. Для скоростей вытягивания 0,6 м/мин и выше показатели качества в расчетных режимах (по рекомендациям ПО «Уралмаш» и МГТУ при скорости вытягивания 0,6 м/мин; «мягкое» охлаждение по данным ВНИИЧермета при скорости вытягивания 0,8-1,2 м/мин) выше, чем в использованных, что говорит о необходимости изменения режимов охлаждения.

Рис. 7. Изменение комплексного критерия показателя качества от скорости вытягивания по большому (а) и малому (б) радиусам Практически та же самая картина наблюдается для расходов воды по малому радиусу (рис. 7, б). Из результатов расчета значений критерия качества вытекает следующее: режимы охлаждения для всех скоростей согласно инструкции недостаточно корректны. Наилучший показатель комплексного критерия качества при низких скоростях достигается при режимах охлаждения, выбранных согласно рекомендациям ПО «Уралмаш» и МГТУ, а при скоростях вытягивания 0,8 м/мин и выше — согласно «мягкому» охлаждению по данным ВНИИЧермета.

На рис. 8 приведены оптимальные распределения расходов воды по большому (рис. 8, а) и малому (рис. 8, б) радиусам, полученные по результатам предложенной методики для группы углеродистых спокойных и полуспокойных сталей обыкновенного качества сечением 250x1250 мм2 для скоростей вытягивания 0,4-1,2 м/мин.

Рис. 8. Оптимальное распределение расходов воды по большому (а) и малому (б) радиусам в ЗВО МНЛЗ

В целом, следует отметить, что тенденция к повышению производительности MHJI3 обязательно приведет к увеличению скорости вытягивания слитка, и тогда расчетные режимы охлаждения позволят улучшить качество непрерывнолитой заготовки.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Основные результаты работы сводятся к следующему:

1. Разработана методика применения нейронных сетей Для интерполяции распределения значений температуры поверхности непрерывнолитой заготовки по длине МНЛЗ при отсутствии экспериментальных данных в первых зонах вторичного охлаждения. Это позволило исследовать характер изменения температуры поверхности заготовки в зоне вторичного охлаждения, рассчитать суммарные коэффициенты теплоотдачи с поверхности непрерывнолитой заготовки и определить коэффициенты испарения воды по большому и малому радиусу на основе экспериментальных данных в условиях ОАО ММК.

2. Применены методы нелинейного программирования и оценена их эффективность для определения коэффициентов теплоотдачи на поверхности заготовки при граничных условиях третьего рода для решения нелинейного уравнения теплопроводности прямоугольной призмы с учетом фазовых превращений и закономерности формирования твердой фазы.

3. Апробированы методы оптимизации с уточнением значений коэффициентов теплоотдачи по данным роста толщины затвердевшей корки заготовки для идентификации параметров модели внешнего теплообмена.

4. Разработана методика определения оптимальных расходов охладителя по зонам вторичного охлаждения согласно выбранному критерию качества макроструктуры непрерывнолитой заготовки.

5. Разработано программное обеспечение, реализованное в среде программирования Borland Delphi для операционных систем Windows 9Х/2000/МЕ/ХР для расчета режимов охлаждения непрерывнолитой заготовки в ЗВО МНЛЗ.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ ОПУБЛИКОВАНО В РАБОТАХ:

1. Калитаев,А.Н. Управление качеством непрерывнолитой заготовки в МНЛЗ: монография / А.Н. Калитаев [и др.]. - Магнитогорск: ГОУ ВПО МГТУ, 2006. -368 с.

2. Калитаев, А.Н. Сравнительный анализ методов прогнозирования толщины затвердевшей корки непрерывнолитого слитка в кристаллизаторе / А.Н. Калитаев, В.Д. Тутарова // Известия Челябинского научного центра: интернет-журнал. -Челябинск: УрО РАН, 2005. - Вып. 4 (30). - С. 87-91. - Режим доступа: http://wvvw.csc.ac.ru:8003/news/2005_4/2005_4_7_2.pdf.

3. Калитаев, А.Н. Идентификация коэффициентов теплоотдачи непрерывнолитого слитка в зоне вторичного охлаждения машины непрерывного литья заготовок методами оптимального управления / А.Н. Калитаев // Наука. Технологии. Инновации : тез. докл. Всерос. конф, : в 2 т. - Новосибирск : НГТУ, 2004. - Т. 1. - С. 91-92.

4. Калитаев, А.Н. Расчет коэффициентов внешнего теплообмена при охлаждении заготовки в MHJI3 / А.Н. Калитаев, В.Д. Тугарова, Д.Х. Девятов // Новые программные средства для предприятий Урала : сб. науч. тр. Регион, конф. — Магнитогорск : МГТУ, 2004. - Вып. 3. - С. 80-85.

5. Калитаев, А.Н. Моделирование процессов теплообмена непрерывнолитых заготовок в МНЛЗ / А.Н. Калитаев, В.Д. Тугарова // Практика применения научного программного обеспечения в образовании и научных исследованиях: сб. науч. тр. межвуз. конф. - СПб.: СПбГПУ, 2005. - С. 153-157.

6. Калитаев, А.Н. Алгоритмизация расчета параметров внешнего теплообмена при охлаждении непрерывнолитой заготовки в МНЛЗ / А.Н. Калитаев, В.Д. Тутарова, Д.Х. Девятов // Создание и внедрение корпоративных информационных систем (КИС) на промышленных предприятиях Российской Федерации: сб. науч. тр. Все-рос. конф. - Магнитогорск : ИПЦ ООО «Проф-Принт», 2005. - Вып. 1. - С. 186-189.

7. Калитаев, А.Н. Нейрокомпьютерные методы в моделировании внешнего теплообмена при непрерывной разливке / А.Н. Калитаев, В.Д. Тутарова // Прогрессивные процессы и оборудование металлургического производства: сб. науч. тр. Между-нар. конф.: в 3 т. - Череповец: ЧТУ, 2005. - Т. 1. - С. 117-119.

8. Калитаев, А.Н. Программное обеспечение для моделирования внешнего теплообмена непрерывнолшых заготовок в ЗВО МНЛЗ / А.Н. Калитаев, В.Д. Тутарова // Практика применения научного программного обеспечения в образовании и исследованиях : сб. науч. тр. Регион, конф. - СПб.: СПбГПУ, 2006. - С. 107-109.

9. Калитаев, А.Н. Идентификация коэффициентов теплоотдачи с поверхности заготовки при охлаждении в ЗВО МНЛЗ / А.Н. Калитаев, В.Д. Тутарова, Д.Х. Девятов // Материалы 64-й НТО по итогам научно-исследовательских работ за 20042005 гг.: сб. науч. тр. межвуз. конф.: в 3 т. — Магнитогорск: ГОУ ВПО МГТУ, 2006.-Т. 2.-С. 151-155.

10. Калитаев, А.Н. Компьютерное моделирование режимов охлаждения непрерывнолитой заготовки в ЗВО МНЛЗ / А.Н. Калитаев, В.Д. Тутарова // Высокие технологии, фундаментальные и прикладные исследования, образование >сб. тр. Междунар. науч.-практ. конф.: в 4 т. - СПб.: СПбГПУ, 2006. - Т. 4. - С.,295-298.

11. Калитаев, А.Н. Программное обеспечение «Идентификация параметров внешнего теплообмена заготовки в ЗВО МНЛЗ» : свидетельство об отраслевой регистрации разработки № 5588 / А.Н. Калитаев, В.Д. Тутарова, Д.Х. Девятов // Инновации в науке и образовании.-2006.-№ 1.-С. 11.

Подписано в печать 07.11.06. Формат 60x84 1/16. Бумага тип.№ 1.

Плоская печать. Усл.печ.л.1,0. Тираж 100 экз. Заказ 772.

455000, Магнитогорск, пр. Ленина, 38 Полиграфический участок ГОУ ВПО «МГТУ»

Оглавление автор диссертации — кандидата технических наук Калитаев, Александр Николаевич

Введение.

Глава 1. Состояние вопроса и основные направления математического моделирования при описании внешнего теплообмена непрерывнолитой заготовки в MHJI3.

1.1. Развитие работ в области математического моделирования затвердевания сплавов и применение их к обоснованию процессов, протекающих при непрерывной разливке стали.

1.2. Применение методов идентификации параметров внешнего теплообмена непрерывнолитой заготовки при исследовании процесса затвердевания.

1.3. Выводы по главе 1.

Глава 2. Идентификация параметров модели внешнего теплообмена статистическими методами.

2.1. Обоснование применения статистических методов в задаче идентификации параметров модели внешнего теплообмена.

2.2. Описание экспериментальных данных, применяемых в задаче идентификации температурного поля поверхности заготовки.

2.3. Построение регрессионной модели распределения значений температуры поверхности непрерывнолитой заготовки.

2.4. Идентификация температуры поверхности непрерывнолитой заготовки методами нейронных сетей.

2.4.1. Описание математического аппарата используемых нейросетевых методов.

2.4.2. Описание структуры нейронной сети и результаты ее применения.

2.5. Сравнение статистических оценок точности регрессионной и нейросетевой моделей.

2.6. Определение параметров модели внешнего теплообмена в ЗВО MHJI3 в условиях ОАО ММК.

2.7. Выводы по главе 2.

Глава 3. Идентификация параметров модели внешнего теплообмена методами нелинейного программирования.

3.1. Критерии идентификации.

3.1.1. Постановка задачи идентификациии.

3.1.2. Опорные зависимости температуры поверхности непрерывнолитой заготовки вдоль технологической оси MHJI3.

3.2. Математическое описание процессов внешнего теплообмена при затвердевании непрерывнолитой заготовки.

3.2.1. Описание внешнего теплообмена непрерывнолитой заготовки в кристаллизаторе и ЗВО.

3.2.2. Квазиравновесная модель затвердевания расплава.

3.2.3. Численное решение задачи затвердевания непрерывнолитой заготовки.

3.3. Алгоритм идентификации методами нелинейного программирования.

3.4. Анализ результатов идентификации параметров модели внешнего теплообмена.

3.4.1. Анализ температурных полей и коэффициентов теплоотдачи непрерывнолитых заготовок.

3.4.2. Расчет расходов охладителя в ЗВО MHJI3 в условиях OAOHJIMK.

3.4.3. Определение параметров теплообмена в ЗВО MHJI3 в условиях ОАО ММК.

3.5. Выводы по главе 3.

Глава 4. Оптимизация режимов охлаждения непрерывнолитой заготовки вМНЛЗ.

4.1. Методика расчета оптимальных режимов охлаждения, позволяющих получить заготовку с наилучшим качеством макроструктуры.

4.2. Критериальная форма оценки качества заготовки.

4.3. Оптимизация режимов охлаждения непрерывнолитой заготовки вМНЛЗ.

Введение 2006 год, диссертация по информатике, вычислительной технике и управлению, Калитаев, Александр Николаевич

В настоящее время процесс непрерывной разливки стали является определяющим в сталелитейном производстве и связан с совершенствованием отдельных технологических элементов и оптимизацией функционирования машин непрерывного литья заготовок (MHJI3) со всей производственной цепочкой металлургического завода.

Черная металлургия России занимает четвертое место в мире по объему производства стали и второе - по объему экспорта готового проката. Темпы роста объемов производства стали в России в период 1998-2004 гг. выше (~на49%), чем в мире в целом, но ниже, чем в Китае в 2,2 раза) и на Украине на 58%). В 2004 г. мировое производство стали превысило в первый раз отметку в 1 млрд т, при этом доля стран и регионов в мировом производстве стали составила: Россия-7,0%, Япония-7,2%, Китай-25,7%, страны ЕС-15,8%, США и Канада - 13,5%, остальные страны - 30,8%.

Непрерывная разливка стали освоена более чем в 90 странах мира. Успешно действует примерно 1750 MHJT3, что позволяет отливать на них более 85% всей производимой стали. Ожидается, что практически полное оснащение предприятий черной металлургии машинами непрерывной разливки стали произойдет примерно к 2020 г. Промышленно производятся непрерывнолитые is заготовки следующих максимальных сечений: блюм 600x670 мм, сляб 250x3200 мм2 и круг диаметром 600 мм. В 2004 г. в связи с вводом в эксплуатацию 5 машин непрерывной разливки стали на металлургических комбинатах г. Магнитогорска, Нижнего Тагила, Челябинска и «Уральская сталь» общей мощностью 5,5 млн т доля метода непрерывной разливки стали в общем объеме производства превысила 60% (по данным на 2002 г. [1] составляла: Россия-45.50%, Япония - 96.97%, Китай - 54.55%, США-93.94%, страны ЕС-95.97%). Около 60% отливаемых непрерывным литьем заготовок разливается на слябовых MHJI3. Сейчас в мире насчитывается более 500 слябовых MHJ13 с общим числом ручьев свыше 700 шт.

К преимуществам непрерывной разливки относится следующее [2]:

- однородность кристаллического строения и технологических свойств литой стали вдоль оси заготовки;

- повышение качества непрерывнолитой стали (по сравнению со сталью, полученной при разливке в изложницы) за счет интенсивного охлаждения поверхности заготовки;

- улучшение условий для механизации и автоматизации процессов и существенное улучшение условий труда на разливочной площадке;

- возможность совмещения непрерывного литья и прокатки в единой технологической линии.

Увеличение объема разливки стали на MHJI3 связано с одновременным расширением сортамента и увеличением качества отливаемых заготовок невозможно без теплотехнического обоснования рациональных режимов литья. Правильно выбранные режимы охлаждения непрерывнолитой заготовки в зоне вторичного охлаждения (ЗВО) MHJI3 позволяют не только получить заготовки с заданной' температурой поверхности, но и с заданной кристаллической структурой, которая, в свою очередь, определяет наличие внутренних дефектов.

Знание основных теплотехнических закономерностей работы ЗВО позволяет совершенствовать работу действующих установок, а также прогнозировать изменение основных параметров при проектировании новых машин.

Для изучения работы ЗВО применяются методы промышленных экспериментов на действующих установках, проводятся лабораторные исследования на специальных стендах и физических моделях, широко используются расчетно-теоретические исследования на основе метода математического моделирования с применением ЭВМ.

При проведении теплотехнических исследований ЗВО необходимо решать следующие практические задачи [3]:

- определение основных теплотехнических и технологических параметров ЗВО: коэффициентов теплоотдачи с поверхности заготовки, расходов воды по секциям ЗВО, количества и типа форсунок, схемы их расстановки и др.;

- установление зависимости основных режимных параметров (расходов воды, длины и ширины форсуночного охлаждения и др.) от скорости вытягивания заготовки, марки стали, сортамента заготовок и т.д.;

- определение зависимости интенсивности охлаждения от расхода охлаждающей воды и других охладителей, рекомендации по совершенствованию режимов охлаждения с целью уменьшения вероятности образования трещин и других дефектов непрерывной заготовки.

Цель данной работы заключается в совершенствовании методики идентификации параметров моделей внешнего теплообмена в MHJI3 и оптимизация режимов охлаждения непрерывнолитой заготовки, удовлетворяющих требованиям повышенного качества макроструктуры. При этом ставятся следующие задачи:

- обоснование и описание методики применения нейронных сетей в задаче идентификации параметров модели внешнего теплообмена непрерывнолитой заготовки в MHJ13 при отсутствии экспериментальных данных в первых зонах вторичного охлаждения;

- разработка методики расчета коэффициентов теплоотдачи с поверхности непрерывнолитой заготовки и оптимальных расходов охладителя по зонам вторичного охлаждения согласно выбранному критерию режима охлаждения непрерывнолитой заготовки в ЗВО MHJ13 методами нелинейного программирования;

- разработка режимов вторичного охлаждения, уменьшающих поражения непрерывнолитых заготовок внутренними дефектами при разливке углеродистых марок стали в условиях ККЦ ОАО ММК.

В данной работе использовались методы математического моделирования и нейронных сетей. При разработке модели затвердевания непрерывнолитой заготовки использованы квазиравновесная модель затвердевания расплава и метод конечных разностей. Для минимизации функции применены методы Фибоначчи и градиентного спуска.

Практическая ценность исследования заключается в разработке режимов вторичного охлаждения непрерывнолитых заготовок, позволяющих достигать заданных показателей качества макроструктуры, в условиях кислородно-конвертерного цеха (ККЦ) ОАОММК. При этом получены следующие наиболее существенные новые научные результаты: разработана методика применения нейросетевых и регрессионных моделей для интерполяции распределения значений температуры поверхности непрерывнолитой заготовки по длине MHJI3 при отсутствии экспериментальных данных в первых зонах вторичного охлаждения; применены методы нелинейного программирования и оценена их эффективность для определения коэффициентов теплоотдачи на поверхности заготовки при граничных условиях третьего рода для решения нелинейного уравнения теплопроводности прямоугольной призмы с учетом фазовых превращений и закономерности формирования твердой фазы; разработана методика определения оптимальных расходов охладителя по зонам вторичного охлаждения согласно выбранному критерию качества макроструктуры непрерывнолитой заготовки.

Заключение диссертация на тему "Идентификация математических моделей внешнего теплообмена в машинах непрерывного литья заготовок"

4.5. Выводы по главе 4

В главе 4 были рассмотрены вопросы построения критерия оптимальности для показателей качества по основным внутренним дефектам непрерывнолитой заготовки и использования этих критериев для определения оптимальных режимов подачи воды в ЗВО для стали марки СтЗсп.

В результате расчетов можно сделать следующий вывод: все режимы охлаждения непрерывнолитой заготовки в условиях МНЛЗ ККЦ нуждаются в корректировке.

115

Заключение

1. Разработана методика применения нейронных сетей для интерполяции распределения значений температуры поверхности непрерывнолитой заготовки по длине МНЛЗ при отсутствии экспериментальных данных в первых зонах вторичного охлаждения. Это позволило исследовать характер изменения температуры поверхности заготовки в зоне вторичного охлаждения, рассчитать суммарные коэффициенты теплоотдачи с поверхности непрерывнолитой заготовки и определить коэффициенты испарения воды по большому и малому радиусу на основе экспериментальных данных в условиях ОАО ММК.

2. Применены методы нелинейного программирования и оценена их эффективность для определения коэффициентов теплоотдачи на поверхности заготовки при граничных условиях третьего рода для решения нелинейного уравнения теплопроводности прямоугольной призмы с учетом фазовых превращений и закономерности формирования твердой фазы.

3. Апробированы методы оптимизации с уточнением значений коэффициентов теплоотдачи по данным роста толщины затвердевшей корки заготовки для идентификации параметров модели внешнего теплообмена.

4. Разработана методика определения оптимальных расходов охладителя по зонам вторичного охлаждения согласно выбранному критерию качества макроструктуры непрерывнолитой заготовки.

5. Разработано программное обеспечение, реализованное в среде программирования Borland Delphi для операционных систем Windows 9Х/2000/МЕ/ХР, для расчета режимов охлаждения непрерывнолитой заготовки в ЗВО МНЛЗ.

116

Библиография Калитаев, Александр Николаевич, диссертация по теме Математическое моделирование, численные методы и комплексы программ

1. Смирнов, А.Н. Процессы непрерывной разливки: монография / А.Н. Смирнов и др.. Донецк : ДонНТУ, 2002. - 536 с.

2. Паршин, В.М. Перспективы развития технологии непрерывной разливки стали / В.М. Паршин и др. // Процессы разливки, модифицирования и кристаллизации стали и сплавов: тр. XI Всесоюз. конф. по проблемам непрерывной разливки стали. Волгоград, 1990. - С. 3-4.

3. Емельянов, В.А. Тепловая работа машин непрерывного литья заготовок / В.А. Емельянов. М.: Металлургия, 1988. - 143 с.

4. Краснов, Б.И. Оптимальное управление режимами непрерывной разливки стали / Б.И. Краснов. М.: Металлургия, 1975. - 195 с.

5. Краснов, Б.И. Оптимизация режима кристаллизации заготовки на машинах непрерывного литья заготовок / Б.И. Краснов, Д.П. Евтеев // Сталь. -1974.-№10.-С. 89-93.

6. Тихонов, А.Н. Уравнения математической физики / А.Н. Тихонов, А.А. Самарский. М.: Наука, 1972. - 736 с.

7. Бойченко, М.С. Непрерывная разливка стали / М.С. Бойченко. М. : Металлургиздат, 1957. - 240 с.

8. Вейник, А.И. Тепловые основы теории литья / А.И. Вейник. М. : Металлургиздат, 1953. - 286 с.

9. Ефимов, В.А. Разливка и кристаллизация стали / В.А. Ефимов. М. : Металлургия, 1976. - 552 с.

10. Maekawa, S. Results of preliminary experiments on the relation b etween solidifying rate and segregation / S. Maekawa, Y. Nakagawa, A. Momose // Iron and Steel Inst. Jap. 1963. - Vol. 49. - № 3. - P. 209-211.

11. Непрерывная разливка стали // Труды I Всесоюз. конференции по проблемам непрерывной разливки стали. М.: АН СССР, 1956. - 300 с.

12. Евтеев, Д.П. Непрерывное литье стали / Д.П. Евтеев, И.Н. Колыбалов. М.: Металлургия, 1984. - 199 с.

13. Скворцов, А.А. Теплопередача и затвердевание стали в установках непрерывной разливки / А.А. Скворцов, А.Д. Акименко. М. : Металлургия, 1966.- 190 с.

14. Борисов, В.Т. О применимости теории квазиравновесной зоны к описанию кристаллизации слитка / В.Т. Борисов и др. // Изв. АН СССР. Металлы. 1971. -№ 3. - С. 94-103.

15. Борисов, В.Т. Теория двухфазной зоны сплавов и ее применение к задачам непрерывного слитка / В.Т. Борисов и др. // Непрерывная разливка стали.-1974.-№2.-С. 5-28.

16. Мили, В.Э. Численный анализ / В.Э. Мили. М.: ИЛ, 1951. - 315 с.

17. Вдовин, К.Н. Идентификация математической модели процесса охлаждения и затвердевания непрерывнолитых слябовых заготовок / К.Н. Вдовин, В.И. Панферов, С.В. Горосткин // Изв. вузов. Черная металлургия. 1998. - № 8. - С. 58-60.

18. Девятов, Д.Х. Определение коэффициентов теплоотдачи в зоне вторичного охлаждения МНЛЗ с помощью идентифицируемой математической модели / Д.Х. Девятов, И.И. Пантелеев // Изв. вузов. Черная металлургия. -1999.-№8.-С. 62-65.

19. Нисковских, В.М. Воздействие различных параметров на качество непрерывнолитого слитка / В.М. Нисковских, С.Е. Карлинский // Сталь. 1983. -№ 12.-С. 33-36.

20. Самойлович, Ю.А. Формирование заготовки / Ю.А. Самойлович. М.: Металлургия, 1977. - 160 с.

21. Марченко, И.К. Полунепрерывное литье стали / И.К. Марченко. М. : Металлургия, 1986. - 246 с.

22. Клявинь, Я.Я. Некоторые решения задач затвердевания, полученные с использованием метода оптимального управления / Я.Я. Клявинь, Я.Р. Шмит // Изв. АН Латвийской ССР. 1974. - № 5. - С. 84-87.

23. Берзинь, В.А. Оптимизация режимов затвердевания непрерывнолитой заготовки / В.А. Берзинь. Рига : Зинатне, 1977. - 248 с.

24. Девятов, Д.Х. Оптимальное управление тепловой обработкой в непрерывной разливке стали / Д.Х. Девятов. Магнитогорск : МГМА, 1998. -130 с.

25. Соболев, В.В. Процессы тепломассопереноса при затвердевании металла непрерывных слитков / В.В. Соболев. Красноярск: Изд-во Красноярск, ун-та, 1984. - 264 с.

26. Соболев, В.В. Оптимизация тепловых режимов затвердевания расплавов /В.В. Соболев, П.М. Трефилов. Красноярск : Изд-во Красноярск, ун-та, 1986.-356 с.

27. Буланов, JI.B. Машины непрерывного литья заготовок. Теория и расчет / JI.B. Буланов и др.. Екатеринбург : Уральский центр ПР и рекламы, 2003.-320 с.

28. Елетина, Е.Ю. Применение нейронных сетей для управления качеством тонколистового плаката / Е.Ю. Елетина, С.В. Борисова, Ю.И. Ларин // Сталь. 2005. - № 9. - С. 48-52.

29. Шевченко, С.Ю. Применение нейронных сетей для прогнозирования твердости сталей после закалки / С.Ю. Шевченко // Заготовительные производства в машиностроении. 2004. - № 9. - С. 56-59.

30. Осовский, С.И. Нейронные сети для обработки информации / С.И. Осовский; пер. с пол. И.Д. Рудинского. М.: Финансы и статистика, 2002.-344 с.

31. Галушкин, А.И. Нейрокомпьютеры и их применение: Теория нейронных сетей / А.И. Галушкин. М.: Изд-во ИПРЖР, 2000. - 416 с.

32. Галушкин,А.И. Нейрокомпьютеры и их применение: Нейроматематика / А.И. Галушкин. М.: Изд-во ИПРЖР, 2002. - 448 с.

33. Уоресмен, Ф. Нейрокомпьютерная техника / Ф. Уоресмен. М. : Мир, 1992.-530 с.

34. Haykin, S. Neural Networks: A Comprehensive Foundation / S. Haykin // Macmillan. New York, 1994. - 696 p.

35. Галушкин, А.И. Современные направления развития нейрокомпьютерных технологий в России / А.И. Галушкин // Открытые системы. 1997. - №4 (24). - С. 25-28.

36. Тутарова, В.Д. Совершенствование режимов вторичного охлаждения непрерывнолитых заготовок с целью повышения их качества : дис. канд. техн. наук : 05.16.02 / Тутарова Власта Диляуровна. Магнитогорск, 1998. —146 с.

37. Шмрга, JI. Затвердевание и кристаллизация стальных слитков : пер. с чеш. / JI. Шмрга; под ред. В.И. Кашина. М.: Металлургия, 1985. - 248 с.

38. Калитаев, А.Н. Идентификация коэффициентов теплоотдачи непрерывнолитого слитка в зоне вторичного охлаждения машины непрерывного литья заготовок методами оптимального управления /

39. A.Н. Калитаев // Наука. Технологии. Инновации : тез. докл. Всерос. конф. : в 2 т. Новосибирск : НГТУ, 2004. - Т. 1. - С. 91-92.

40. Самойлович, Ю.А. Тепловые процессы при непрерывном литье стали / Ю.А. Самойлович и др.. М.: Металлургия, 1982. - 152 с.

41. Борисов, В.Т. Теория двухфазной зоны металлической заготовки /

42. B.Т. Борисов. М : Металлургия, 1987. - 222 с.

43. Flemings, М.С. Macrosegregation / М.С. Flemings, G.E. Nereo // Trans. AIME. 1968. - Vol. 242. - № 1. - P. 50-55.

44. Бахвалов, Н.С. Численные методы / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. М.: Лаборатория базовых знаний, 2001. - 632 с.

45. Самарский, А.А. Теория разностных схем / А.А. Самарский. М. : Наука, 1983.-616 с.

46. Васильев, Ф.П. Численные методы решения экстремальных задач / Ф.П. Васильев. М.: Наука, 1980. - 520 с.

47. Марчук, Г.И. Методы вычислительной математики / Г.И. Марчук. -М.: Наука, 1989.-608 с.

48. Лисиенко, В.Г. Теплотехнические основы технологии и конструирования машин непрерывного литья заготовок / В.Г. Лисиенко, Ю.А. Самойлович. Красноярск : Изд-во Красноярск, ун-та, 1986. - 120 с.

49. Физическое металловедение / под ред. Р. Кана. М.: Мир, 1968. -490 с.

50. Китаев, Е.М. Затвердевание стальных слитков / Е.М. Китаев. М. : Металлургия, 1982. - 168 с.

51. Шварцкопф,А.А. Оптимизация нагрева и охлаждения заготовки: дис. канд. техн. наук / А.А. Шварцкопф. Магнитогорск, 1985. - 205с.

52. Соболев, В.В. Теплофизика затвердевания металла при непрерывном литье / В.В. Соболев. М.: Металлургия, 1988. - 160 с.

53. Девятов, Д.Х. Оптимальное управление обработкой массивных тел при наличии фазовых превращений / Д.Х. Девятов // Теплотехника процессов выплавки стали и сплавов : межвуз. сб. науч. тр. Магнитогорск : МГМИ, -1991.-С. 26-31.

54. Разливка стали на машинах непрерывного литья заготовок (МНЛЗ) кислородно-конвертерного цеха№ 1 : технологическая инструкция ТИ-101-СТ-ККЦ-10-89. Магнитогорск, 1989.

55. Сиразетдинов, Т.К. Оптимизация систем с распределенными параметрами / Т.К. Сиразетдинов. М.: Наука, 1977. - 480 с.

56. Евтеев, Д.П. О выборе граничных условий при расчетах затвердевания заготовки / Д.П. Евтеев, А.А. Соколов, Б.И. Лебедев // Сталь. 1975. - № 1. -С. 32-34.

57. Разливка стали на машинах непрерывного литья заготовок (МНЛЗ) кислородно-конвертерного цеха № 1 : технологическая инструкция ТИ-101-СТ-ККЦ-10-95. -Магнитогорск, 1995.

58. Панферов, В.И. Идентификация математической модели нагрева слябов в методических печах / В.И. Панферов // Изв. вузов. Черная металлургия. 1994. - № 1. - С. 3-6.

59. Разумов, С.Д. Поверхностные дефекты непрерывного слитка и пути предотвращения их образования / С.Д. Разумов и др. // Сталеплавильное производство. М.: Черметинформация, 1984. - Вып. 1. - С. 23-28.

60. Калитаев, А.Н. Алгоритмизация расчета параметров внешнего теплообмена при охлаждении непрерывнолитой заготовки в MHJI3 /

61. A.Н. Калитаев, В.Д. Тутарова, Д.Х. Девятов // Создание и внедрение корпоративных информационных систем (КИС) на промышленных предприятиях Российской Федерации: сб. науч. тр. Всерос. конф. -Магнитогорск : ИПЦ ООО «Проф-Принт», 2005. Вып. 1. - С. 186-189.

62. Калитаев, А.Н. Нейрокомпьютерные методы в моделировании внешнего теплообмена при непрерывной разливке / А.Н. Калитаев,

63. B.Д. Тутарова // Прогрессивные процессы и оборудование металлургического производства : сб. науч. тр. Междунар. конф.: в 3 т. Череповец : ЧГУ, 2005. -Т. 1.-С. 117-119.

64. Калитаев, А.Н. Управление качеством непрерывнолитой заготовки в MHJI3: монография / А.Н. Калитаев и др.. Магнитогорск : ГОУ ВПО «МГТУ», 2006. - 368 с.

65. Девятов, Д.Х. Об одной задаче оптимального управления затвердеванием непрерывнолитой заготовки в MHJI3 / Д.Х. Девятов // Процессы разливки стали и качество заготовки. Киев : ИПЛ АН УССР, 1989. -С. 68-71.

66. Бутковский, А.Г. Оптимальное управление нагревом металла / А.Г. Бутковский, С.А. Малый, Ю.Н. Андреев. М.: Металлургия, 1972. - 440 с.

67. Акименко, А.Д. Исследование теплоотдачи в зоне вторичного охлаждения УНРС / А.Д. Акименко и др. // Изв. вузов. Черная металлургия. -1972.-№6.-С. 167-170.

68. Самойлович, Ю.А. Системный анализ кристаллизации заготовки / Ю.А. Самойлович. Киев : Наук, думка, 1983. - 248 с.

69. Сладкоштеев, В.Т. Непрерывная разливка стали на радиальных установках / В.Т. Сладкоштеев и др.. М : Металлургия, 1974. - 286 с.

70. Ефимов, В.А. Главное направление и некоторые подходы к исследованию теплофизических процессов кристаллизации сплавов / В.А. Ефимов, В.Н. Карножицкий // Оптимизация теплофизических процессов литья. Киев : ИПЛ АН УССР, 1977. - С. 3-23.

71. Оболенцев, Ф.Д. Задача быстродействия применительно к теплофизическим процессам металлических литейных форм / Ф.Д. Оболенцев, Ю.Б. Юрченко, Л.А. Иванова // Изв. вузов. Черная металлургия. 1976. - № 11. -С. 161-165.

72. Непрерывная разливка стали / под ред. О.В. Мартынова. М.: Металлургия, 1970. - 332 с.

73. Евтеев, Д.П. Освоение технологии разливки стали на высокопроизводительных криволинейных МНЛЗ / Д.П. Евтеев и др. // Сталь. 1982.- №6. -С 19-22.

74. Никитенко, Н.И. Исследование нестационарных процессов тепло- и массообмена методом сеток / Н.И. Никитенко. Киев : Наук, думка, 1971. -266 с.

75. Никитенко, Н.И. К исследованию кристаллизации непрерывного слитка прямоугольного сечения / Н.И. Никитенко, Л.А. Соколов // Изв. АН СССР. Металлы. 1969. - № 3. - С. 72-79.

76. Березовский, Б.А. Многокритериальная оптимизация. Математические аспекты / Б.А. Березовский и др.. М.: Наука, 1989. - 128 с.

77. Пустыльник, Е.И. Статистические методы анализа и обработки наблюдений / Е.И. Пустыльник. М.: Наука, 1968. - 212 с.

78. Львовский, Е.Н. Статистические методы построения эмпирических формул / Е.Н. Львовский. М.: Высш. шк., 1988. - 378 с.

79. Тайц, Н.Ю. Технология нагрева стали / Н.Ю. Тайц. 2-е изд., испр. и доп. - М.: Металлургиздат, 1962. - 568 с.

80. Рудой, Л.С. К вопросу о формировании и поведении непрерывного стального слитка в кристаллизаторе / Л.С. Рудой // Изв. вузов. Черная металлургия. 1962. - № 2. - С. 51-55.

81. Тутарова, В.Д. Сравнительный анализ математических моделей внешнего теплообмена процесса затвердевания непрерывнолитых слитков / В.Д. Тутарова и др. // Электротехнические системы и комплексы : сб. ст. -Магнитогорск : МГТУ, 1998. С. 48-51.

82. Мусин, А.Р. Разработка динамической модели охлаждения и затвердевания сляба на машинах непрерывного литья заготовок: автореф. дис. канд. техн. наук / А.Р. Мусин. Череповец, 2004. - 24 с.

83. Самарский, А.А. Математическое моделирование / А.А. Самарский,

84. A.П. Михайлов. 2-е изд., испр. - М.: ФИЗМАТЛИТ, 2002. - 320 с.

85. Столяров, A.M. Разработка рационального режима вторичного охлаждения непрерывнолитых слябов / A.M. Столяров и др. // Изв. вузов. Черная металлургия. 2004. - № 2. - С. 55-57.

86. Телегин, А.С. Термодинамика и тепломассоперенос / А.С. Телегин,

87. B.C. Швыдкий, Ю.Г. Ярошенко. М.: Металлургия, 1980. - 264 с.

88. Бигеев, A.M. Математическое описание и режимы сталеплавильных процессов / A.M. Бигеев. М.: Металлургия, 1982. - 160 с.

89. Халафян, А.А. Статистический анализ данных. STATISTICA 6.0: учеб. пособие / А.А. Халафян. 2-е изд., испр. и доп. - Краснодар : КубГУ, 2005.-307 с.

90. Кузин, Ф.А. Кандидатская диссертация. Методика написания, правила оформления и порядок защиты : практ. пособие для аспирантов и соискателей ученой степени / Ф.А. Кузин. М.: ОСЬ-89, 1997. - 208 с.

91. Леднова, И.В. Оформление нормативных документов диссертации и документов по защите диссертации: метод, указ. / И.В. Леднова, Н.В. Соломина. Магнитогорск : МГТУ, 2004. - 43 с.