автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.16, диссертация на тему:Модели потокораспределения газовых смесей в трубопроводах

кандидата физико-математических наук
Елгин, Борис Александрович
город
Красноярск
год
1999
специальность ВАК РФ
05.13.16
Диссертация по информатике, вычислительной технике и управлению на тему «Модели потокораспределения газовых смесей в трубопроводах»

Оглавление автор диссертации — кандидата физико-математических наук Елгин, Борис Александрович

ВВЕДЕНИЕ.

ГЛАВА 1. МОДЕЛИ ПОТОКОРАСПРЕДЕЛЕНИЯ НА ГРАФАХ

1.1. Множества и операции на графе.

1.2. узловые потенциалы.

1.3. Узловые функции состояния

1.4. Обобщенная модель потокораспределения на графах.

1.5. Динамическая модель потокораспределения на графах.

1.6. О втором законе Кирхгоффа и контурных методах.

ГЛАВА 2. АНАЛИЗ ЧАСТНЫХ СЛУЧАЕВ ДИНАМИЧЕСКОЙ МОДЕЛИ ПОТОКОРАСПРЕДЕЛЕНИЯ НА ГРАФАХ.

2.1. Марковская цепь как модель потокораспределения на графах

2.2. Описание динамики фазовой структуры популяций на основе модели потокораспределения на графах.

ГЛАВА 3. МОДЕЛИ ПОТОКОРАСПРЕДЕЛЕНИЯ ГАЗА В ТРУБОПРОВОДАХ.

3.1. Ламинарное течение жидкости в трубах.

3.2. Турбулентное течение жидкости в трубах.

3.3. Местные сопротивления.

3.4. Течение сжимаемого газа в трубах.

3.5. Тепломассоперенос в потоке газа.

Локально изотермическое течение сжимаемого газа в трубах 57 Локально политропическое течение сжимаемого газа в трубах

3.6. Реакции в потоке газа по трубопроводу.

ГЛАВА 4. РАСЧЕТ ГАЗОХОДНЫХ ТРАСС НА ОСНОВЕ МОДЕЛЕЙ ПОТОКОРАСПРЕДЕЛЕНИЯ.

4.1. Среда проектирования моделей потокораспределения.

4.2. Модель газоходной трассы раздачи воздуха по топочной камере

4.3. Модель компрессорной установки и трасс высокого давления

4.4. Модель газового тракта цеха анодной массы.

4.5. Модель рекуперативного теплообменника.

ГЛАВА 5. МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ ГАЗОХОДНОЙ СЕТИ ЭЛЕКТРОЛИЗНОГО ПРОИЗВОДСТВА

5.1. Анализ работы газоходных трактов от электролизеров.

5.2. Модель потокораспределения смеси горючих газов в сети газоходов.

Введение 1999 год, диссертация по информатике, вычислительной технике и управлению, Елгин, Борис Александрович

Эффективность работы систем транспортировки газовых смесей по трубопроводам промышленных предприятий во многом определяет экономические и экологические показатели производства в целом. Неустойчивая работа газоотсосных трубопроводов приводит к нарушениям режимов эксплуатации оборудования, что влечет за собой значительный перерасход электроэнергии и снижению их производительности, а также к ухудшению очистки газов от вредных примесей, с дальнейшими экологическими последствиями. Нарушения и несбалансированность в системах раздачи воздуха и горючей смеси котельных агрегатов приводят к неэффективному сгоранию топлива, увеличению выхода вредных окислов и ухудшению теплообмена. Это сказывается на эффективности работы котлов и повышением экологической нагрузки на окружающую среду. Важнейшим элементом теплоэнергетических систем на предприятиях алюминиевой промышленности, в том числе и на глиноземных производствах, являются мощные турбокомпрессорные станции. Отклонение фактических термодинамических режимов работы турбокомпрессоров от номинальных приводит к значительному перерасходу электроэнергии и снижению их производительности.

Фундаментальной базой описания процессов движения сплошной среды внутри сложной сети трубопроводов являются законы сохранения массы, энергии и количества движения, позволяющие получить систему уравнений, где неизвестные функции (плотность, концентрации компонент, температура, скорость и давление) определяются в каждой точке континуума. Эта система состоит из уравнения сплошности потока, уравнения движения, уравнения энергии, уравнений сохранения газовых компонент и некоторого алгебраического уравнения связи давления и плотности (уравнения состояния). В общем виде эта система нелинейных дифференциальных уравнений в частных производных для расчета реальных газоходных трасс неприемлема из-за большого объема вычислительной работы, поэтому сложился традиционный путь упрощения с помощью различных допущений и предположений. Для решения подобных задач газораспределения, возникающих при расчете трубопроводных сетей, вентиляции зданий и шахт, систем охлаждения двигателей и др., применяются модели гидравлических цепей [14]. Гидравлическая цепь состоит из узлов, в которых обеспечиваются законы сохранения массы и энергии, выраженные в форме уравнений баланса расходов и тепловой энергии (законы Кирхгоффа), и соединяющих их ветвей, которые моделируют различные конструкции газоходного тракта. Каждая ветвь сети характеризуется своей зависимостью, связывающей перепад давления на данной ветви с расходом газа через ее сечение.

Для применения модели гидравлической цепи к задачам потокораспределения газовых смесей в трубопроводах требуется углубление этого подхода в следующих аспектах. Во-первых, для трубопроводов высокого давления следует принять во внимание эффекты, связанные со сжимаемостью газа. Сжатие газа в потоке приводит к изменению закона сопротивления, и его нагреву, что влечет за собой возрастание потока энергии, переносимой газом, по мере его продвижения по трубе. Закон сопротивления для изотермического потока газа в трубе приведен в [15], его модификация на случай политропического течения в [16] (уравнение теплового баланса, однако, не учитывалось). Во-вторых, при химических реакциях в потоке газа происходит изменение молекулярного состава, что приводит к модификации уравнения состояния по мере его продвижения по трубопроводу, и, следовательно, к изменению сопротивления трубы. Тепловыделение, обусловленное химической реакцией, влияет на тепловой баланс газовой смеси. В результате для полного описания течения реагирующих газов требуется рассмотрение самосогласованной системы уравнений, включающей уравнения баланса массы, теплового баланса и баланса газовых компонент. Уравнение теплового баланса и баланса газовых компонент рассматривалось в работе [14] в рамках модели гидравлической цепи с распределенными параметрами. Требуется, однако, несколько модифицировать приведенные там балансовые уравнения на случай потоков, направление течения которых не обязательно совпадает с ориентацией графа, поскольку иногда в газоходных трактах заранее неизвестно куда будет направлено течение. В-третьих, газораспределение в трубопроводах часто носят нестационарный характер. Можно указать три механизма возникновения переходных режимов течения газа в трубопроводе. Первый связан с инерцией движения массы газа, заключенного в объеме трубы - чтобы придать ускорение газу необходимо приложить силу, а ускорение, умноженное на массу газа, есть скорость изменения расхода. Этот механизм подробно рассмотрен в работах [17-22]. Вторая причина возникновения нестационарности заключается в конечном времени распространения возмущения, следующего со скоростью потока газа, от одного конца трубы к другому. Например, тепловое (или концентрационное) возмущение, возникшее в начальном конце трубы, заполнит весь объем трубы за время сноса этого возмущения вниз по потоку к другому концу трубы. То есть, для установления теплового (или концентрационное) потока по всей длине трубы требуется время не меньшее, чем время движения газа по трубе. Естественно, что возмущение плотности газа распространяется со скоростью звука, оно обусловлено сжимаемостью газа, и в тех случаях, когда ее имеет смысл учитывать, представляет собой третью причину возникновения нестационарных режимов.

При анализе электрических [23-24] и гидравлических [14] цепей широкое применение имеют контурные методы решения уравнений потокораспределения. Хорошо развиты методы решения этих уравнений, обеспечивающие эффективное использование слабой заполненности матриц [25]. Однако, на пути применения контурных методов к анализу задач потокораспределения имеется несколько естественных препятствий, попытки преодоления которых, следует признать нецелесообразными. Во-первых, в случае, когда коэффициент сопротивления в законе переноса является функцией от узловых переменных (например, потенциала), преобразование к контурному закону представляется, по крайней мере, малополезным. Во-вторых, закон переноса, содержащий эффект сноса, вообще не дает каких либо полезных следствий при контурном суммировании. Столь же бесполезными представляются попытки применения контурных методов анализа при рассмотрении нестационарных моделей потокораспределения. Здесь результат применения контурного суммирования приводит к тому, что система уравнений, изначально разрешенная относительно производной, переходит в контурную систему уравнений, заданную неявно. В итоге, для содержательного анализа контурной системы уравнений требуются довольно серьезные усилия, даже при рассмотрении небольших, двухконтурных цепей (см., например [19-22]). Отчасти, причина необоснованного применения контурных методов заключается в том, что по исторической традиции метод контурного анализа цепей имеет статус закона (второй закон Кирхгоффа), которым он по сути дела не является. Как метод его можно применять в рамках задачи, когда есть основания для его применимости, и целесообразность в смысле его эффективности.

Мы видим, что вопрос о последовательном рассмотрении моделей потокораспределения реагирующих газовых смесей в трубопроводах (или, более обще - моделей потокораспределения на графах) на основе уравнений баланса и адекватных законов переноса является актуальной проблемой, для решения которой необходимы проведение комплексных исследований, обобщение теоретических знаний и практических результатов различных научных дисциплин.

Основной целью работы являются:

- разработка модели потокораспределения на графах, описывающей нестационарные процессы переноса, диффузии и фазовых превращений, являющейся прототипом для моделей потокораспределения реагирующих газовых смесей в трубопроводах;

- постановка и решение задач (в рамках этой модели) тепломассопереноса в сжимаемом потоке реагирующих газовых смесей; применение моделей и методов исследования к расчету трубопроводов газоотсосных систем, компрессорных установок и других;

- внедрение методик исследования и программных средств на предприятия для проведения мероприятий по конструированию, реконструкции и оптимизации режимов работы промышленных систем и оборудования.

Диссертационная работа обобщает результаты теоретических и прикладных исследований и разработок, выполненных автором в области прикладной физики, вычислительной математики, программирования и обработки информации.

Проведенные исследования позволили получить ряд новых результатов:

- На ориентированном графе введены аналоги таких континуальных понятий как скалярное и векторное поле, операции градиента и дивергенции, операторы Лапласа и сноса. Аналогия продолжена на уравнения математической физики, описывающие явления диффузионного, конвективного переноса и фазовых превращений. Доказано, что полученная модель потокораспределения на графе является обобщением теории электрических и гидравлических цепей.

- Показано, что совмещение континуальной и дискретной модели дает широкие возможности для описания динамики пространственнонеоднородных объектов, имеющих внутреннюю фазовую структуру. Построена модель потокораспределения на расслоенном графе, предназначенная для изучения нестационарных процессов переноса и превращений в сложных многокомпонентных системах.

- Доказана ограниченность подходов моделирования, основанных на втором законе Кирхгоффа.

- Для марковской цепи, как частного случая модели потокораспределения на графах, получен критерий существования равномерного стационарного распределения вероятностей (микроканонического распределения), который наряду с принципом детального равновесия может быть полезен при анализе ассимтотического поведения решений. Дано описание динамики фазовой структуры популяций микроорганизмов на основе модели потокораспределения на графах, проведен анализ устойчивости сообщества на основе критерия существования равномерного стационарного распределения.

- На основе модели потокораспределения на графе углублена теория гидравлических цепей в вопросах описания нестационарных сжимаемых потоков газа в трубопроводах с процессами теплообмена. Построены согласованные модели потокораспределения газовых смесей в трубопроводах с учетом химических превращений и теплового баланса. Полученные модели успешно применены при конструировании газоходных трасс раздачи воздуха по топочной камере, изучении режимов работы турбокомпрессорных установок глиноземного производства и оптимизации системы газоотсоса электролизного производства.

Основные научные результаты диссертационной работы были использованы при проведении следующих исследовательских и опытно-констукторных работ:

- "Реконструкция газоходной системы цеха анодной массы (ЦАМ)", КРАЗ, 1995 г. Автором разработана специализированная программа ТЫЕТ, позволяющая в диалоговом режиме исследовать режимы работы газоходной системы ЦАМ. Программа передана на КРАЗ для использования сотрудниками ЦАМа.

- "Оптимизация газоходных трактов с целью выравнивания объемов отсоса газа", КРАЗ, 1996 г. Автор принял участие в разработке специализированного программного обеспечения и визуальной среды для формирования схемы газоходной трассы (Аего№1:). Сформированный программный комплекс использовался на всех этапах выполнения договора и был внедрен на КРАЗе в качестве автоматизированного рабочего места (АРМ).

- "Совершенствование газоотсосной системы корпусов завода с выбором режимов работы горелочного устройства для дожигания низкокалорийных газов корпуса №19", КРАЗ, 1997 г. С участием автора была продолжена работа над программным комплексом и расчетной оптимизацией газоотсосной системы электролизного производства. Программный комплекс освоен сотрудниками КРАЗа и применяется по настоящее время при настройке газоотсосной системы нескольких корпусов завода.

- Сетевая модель потокораспределения используется в СибВТИ на стадии конструкторских разработок газоходных трасс для раздачи воздуха по топочной камере. Автор принимает участие в совершенствовании расчетных моделей и создании версии диалоговой программы АегоЫе1:, приспособленной для применения в теплоэнергетике.

- В красноярском филиале ВНИИ ПО программа Аего№1 использовалась для расчета трубопроводной системы пожаротушения.

Пояснительная записка к концепции реформирования ЖКХ Красноярского края" (рабочий документ), Красноярск, 1998 г. При анализе инженерной инфраструктуры ЖКХ и прогнозных исследованиях ее динамики применялась модель потокораспределения на графе (ресурсопотоковая модель ЖКХ).

Основные теоретические результаты, отдельные положения, а также результаты конкретных прикладных исследований и разработок обсуждались на научных семинарах в ЮГУ (1995-1998 гг.), ИВМ СО РАН (1997-1999 гг.), , Научно-практической конференции «Экологическое состояние и природоохранные проблемы Красноярского края» (Красноярск, 1995 г.), Первой и Второй Межрегиональных и Третьей Всероссийской конференциях «Проблемы информатизации региона» (Красноярск, 1995-1997 гг.), Научно-технической конференции «Использование методов математического моделирования в котельной технике» (Красноярск, 1996 г.), Первой всероссийской конференции «Симметрия в физике и естествознании» (Красноярск, 1998 г.), «Всероссийском семинаре по трубопроводным системам» (Иркутск 1998 г.), Первом всероссийском семинаре «Моделирование неравновесных систем-98 - МНС-98» (Красноярск 1998 г.), Седьмой международной конференции «Системы безопасности - СБ-98» (Москва, 1998 г.), Международной конференции «Пожары в лесу и на объектах лесохимического комплекса: возникновение, тушение и экологические последствия» (Томск-Красноярск, 1999), Пятой научной конференции «Современные методы математического моделирования природных и антропогенных катастроф» (Красноярск, 1999 г.), Семинаре вузов Сибири и Дальнего Востока по теплофизике и теплоэнергетике, посвященном памяти академика С.С. Кутателадзе (Новосибирск, 1999 г.).

Результаты исследований использовались при подготовке специалистов и обучении студентов на кафедре Теплофизика КГТУ и в Котельной лаборатории СибВТИ.

Настоящая диссертация выполнена автором в Институте вычислительного моделирования СО РАН.

По теме диссертации опубликовано 13 печатных работ.

Автор выражает благодарность и признательность Васильеву В.В., Горбаню А.Н., Дектереву А.А. и Замай С.С. за плодотворное сотрудничество и полезное обсуждение работы, всем коллегам - участникам совместных исследований по проблемам создания математических моделей, разработки программного обеспечения, проектирования и внедрения программного продукта и методик на производство: Поздяеву В.Н., Талдыкину Ю.А., Журавлеву Ю.А., Борисову Ф.И., Безбородову Л.С., Козьмину Г.Д., Печерской Т.Д.

Библиография Елгин, Борис Александрович, диссертация по теме Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)

1. Талдыкин Ю.А., Елгин Б.А., Дектерев A.A., Журавлев Ю.А., Борисов Ф.И. Способ исследования газодинамических характеристик компрессорных установок с использованием сетевого моделирования. Информационный листок №124-97. Красноярск: ЦНТИ, 1997. 5 с.

2. Безбородов B.C., Васильев В.В., Дектерев A.A., Елгин Б.А. Оптимизация системы газоочистки электролизного производства с целью повышения пожаровзрывобезопасности. // Сибирский вестник пожарной безопасности, 1999, №4, 18с.

3. Васильев В.В., Дектерев A.A., Елгин Б.А. О комбинированном подходе при моделировании теплообменных аппаратов. // «XVI Международная школа-семинар по численным методам механики вязкой жидкости», Новосибирск, 1998. с. 31.

4. Дектерев A.A., Елгин Б.А. Метод поузловой увязки потенциалов в теории динамических сетевых моделей. // «Моделирование неравновесных систем-98 (МНС-98)». Тезисы докладов первого всероссийского семинара, Красноярск, 1998. с. 65-66.

5. Елгин Б.А., Дектерев A.A., Васильев В.В. Оптимизация режимов работы газоходиых трасс электролизного производства. // Материалы 7-ой международной конференции «Системы безопасности-СБ-98», 28 октября 1998 г., Москва, 1998. с. 113.

6. Дектерев A.A., Елгин Б.А., Поздяев В.Н. Программа "AeroNet" для сетевого моделирования процессов в газоходных трассах. // Вестник КГПИ, Вып. 14, «Теплообмен и гидродинамика», Издательство КГПИ, Красноярск, 1998. с. 203-207.

7. Елгин Б.А., Дектерев A.A., Васильев В.В. Расчетная оптимизация системы газоотсоса электролизных корпусов. // Вестник КГПИ, Вып. 14, «Теплообмен и гидродинамика», Издательство КГПИ, Красноярск, 1998. с. 16-20.

8. Елгин Б.А., Дектерев A.A. Сетевая модель развития лесного пожара // Материалы международной конференции «Пожары в лесу и на объектах лесохимического комплекса: возникновение, тушение и экологические последствия», Томск-Красноярск, 1999. с. 73.

9. Elgin В.А., Dekterev A.A. The use of networks modeling to study of physical-chemical processes in the gas lines. // Russian Journal of Engineering Thermophysics, 1999, № 4, pp. 75-86.

10. Меренков А. П. , Хасилев В. Я. Теория гидравлических цепей. М. : Наука, 1985,278 с.

11. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 733 с.

12. Каганович Б.М., Меренков А.П., Балышев O.A. Элементы теории гетерогенных гидравлических цепей. Новосибирск: Наука. Сиб. отделение, 1997. 119 с.

13. Громов Б.Н., Свинухов Б.И. Неустановившиеся гидравлические процессы в тепловых сетях // Электрические станции, № 10, 1972. с. 18-24.

14. Громов Б.Н., Синдлер В.Г. Расчет нестационарных гидравлических режимов тепловых сетей на ЭЦВМ // Электрические станции, № 3, 1973. с. 37-42.

15. Балышев O.A., Таиров Э.А., Соколов П.А. Альтернативное описание динамики систем централизованного снабжения. Иркутск: ИСЭМ СО РАН, препринт № 7, 1998. 22 с.

16. Балышев O.A. Математические модели динамических процессов в гидравлических цепях с сосредоточенными параметрами. Иркутск: ИСЭМ СО РАН, препринт № 10, 1998. 36 с.

17. Балышев O.A., Таиров Э.А. Анализ переходных и стационарных прцессов в трубопроводных системах (теоретические и экспериментальные аспекты). Новосибирск: Наука. Сиб. отделение, 1998. 161 с.

18. Балышев O.A. Нестационарные модели в теории гидравлических цепей (на примере трубопроводных систем энергетики и коммунального хозяйства) // Автореферат диссертации на соискание ученой степени доктора технических наук, Иркутск: ИСЭМ СО РАН, 1998. 49 с.

19. Сигорский В.П., Петренко А.И. Алгоритмы анализа электрических схем. М.: Сов. радио, 1976. 608 с.

20. Свами М., Тхуласираман К. Графы, сети и алгоритмы. Пер. с англ. М.: Мир, 1984. 455 с.

21. Брамеллер А., Аллан Р., Хэмэн Я. Слабозаполненные матрицы (анализ электроэнергетических систем). Пер. с англ. М.: Энергия, 1979. 192 с.

22. Лыков A.B. Тепломассообмен. М.: Энергия, 1978. 432 с.

23. Васильев В.А., Романовский Ю.М., Яхно В.Г. Автоволновые процессы. М.: Наука, 1987. 240 с.

24. Бердичевский B.JI. Вариационные принципы механики сплошной среды. М.: Наука, 1983. 448 с.

25. Левинов Е.И., Сотский E.H. Теплоперенос с учетом релаксации теплового потока // В кн. Математическое моделирование. Нелинейные дифференциальные уравнения математической физики. Под ред. A.A. Самарского и др. М.: Наука, 1987. с. 155-190.

26. Вольперт А.И. Дифференциальные уравнения на графах // Математический сборник. 1972, Т. 88, № 4. с. 1019-1023.

27. Вольперт А.И., Гельман Е.А., Иванова А.И. Некоторые вопросы качественной теории дифференциальных уравнений на графах. Черноголовка, 1975, препринт ОИХФ АН СССР.

28. Горбань А.Н. Обход равновесия. Уравнения химической кинетики и их термодинамический анализ. Новосибирск: Наука. Сиб. отделение, 1984. 226 с.

29. Каганович Б.М., Филиппов С.П., Анциферов Е.Г. Моделирование термодинамических процессов. Новосибирск: Наука. Сиб. отделение, 1993. 100 с.

30. Каганович Б.М., Филиппов С.П., Павлов П.П. Термодинамическое моделирование на графах. Иркутск: ИСЭМ СО РАН, препринт № 18, 1998. 30 с.

31. Гиббс Дж. В. Термодинамика. Статистическая механика. М.: Наука, 1982. 584 с.

32. Розоноэр Л.И. Термодинамика необратимых процессов вдали от равновесия // В кн. Термодинамика и кинетика биологических процессов. М.: Наука, 1980. с. 169-186.

33. Feinberg M., Horn F. Dynamics of open chemical systems and the algebraic structure of the underlying reaction network // Chem. Eng. Sci., 1974, v. 29, № 3. pp. 775-797.

34. Лайфут Э. Явления переноса в живых системах. М.:Мир, 1977. 403 с.

35. Кирхгоф Г.О. О прохождении электрического тока через пластину, например, круглой формы // Избранные труды. М.: Наука, 1988. с. 155-165.

36. Кирхгоф Г.О. О решении уравнений, к которым приводит изучение линейного распределения гальванических токов // Избранные труды. М.: Наука, 1988. с. 170-178.

37. Кирхгоф Г.О. О применении формул для силы гальванического тока в системе линейных проводников к системе, частично состоящей из нелинейных проводников // Избранные труды. М.: Наука, 1988. с. 178-189.

38. Кирхгоф Г.О. О выводе закона Ома, согласующемся с теорией электростатики // Избранные труды. М.: Наука, 1988. с. 189-193.

39. Кирхгоф Г.О. О движении электричества в проводах // Избранные труды. М.: Наука, 1988. с. 194-211.

40. Розанов Ю.А. Случайные процессы. Краткий курс. М.: Наука, 1979. 184 с.

41. Боровков А.А. Теория вероятностей. М.: Наука, 1976. 352 с.

42. Кемени Дж., Снелл Дж. Конечные цепи Маркова. М.: Наука, 1970. 271 с.

43. Репке Г. Неравновесная статистическая механика. М.: Мир, 1980. 320 с.

44. Полуэктов Р.А., Пых Ю.А., Швытов И.А. Динамические модели экологических систем. Ленинград: Гидрометеоиздат, 1980. 288 с.

45. Заславский Б.Г. Стохастическая модель роста клеточной популяции // В кн. Проблемы кибернетики. Вып. 25. М.: Наука, 1972. с. 139-152.

46. Идельчик И.Е. Справочник по гидравлическим сопротивлениям (Коэффициенты местных сопротивлений и сопротивления трения). Ленинград: Госэнергоиздат., 1960. 558 с.

47. Альтшуль А.Д. Гидравлика и аэродинамика. М.: Стройиздат, 1975. 323 с.

48. Гликман Б.Ф. Математические модели пневмогидравлических систем. М.: Наука, 1986. 368 с.

49. Хейл Дж. Теория функционально-дифференциальных уравнений. М.: Мир, 1984. 422 с.

50. Технологическая инструкция КрАЗа «Очистка отходящих газов электролизеров» (КД 4, ТИ 4-02-96), Красноярск, 1996. 37 с.

51. Баевский В.А., Немов В.П., Печерская Т.Д. и др. Оказание технической помощи по производству алюминия. Обобщить опыт эксплуатации систем газоочистки на КРАЗе. Отчет ВАМИ, тема 5-80—854/11, Этап 4, Ленинград, 1980.

52. Комплексное обследование систем колокольной газоочистки и газоотсоса на КрАЗе. Иркутский филиал ВАМИ, 1989.

53. Кесова A.A., Шиллин Г.В. О гидродинамике пылепроводов тепловых электростанций //Теплоэнергетика, 1978, № 8. с. 46-49.

54. ГОСТ 12.1.044.-89. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения. М. 1991.

55. Корольченко А.Я. Пожаровзрывоопасность промышленных пылей. М.: Химия, 1986. 216 с.

56. Поляков В.П. Возможности использования мирового опыта производства алюминия на Красноярском алюминиевом заводе // Цветные металлы, 1995 №11. с. 30-34.

57. Справочник по пыле- и золоулавливанию. Под ред. Русанова A.A. М.: Энергоатомиздат, 1983. 277 с.

58. Бурков П.А., Александров И.В. Войтковский Ю.Б. Образование пирорфорных веществ в процессе самовозгорания каменных углей //Уголь, 1989, № 5. с.32-34.

59. Камнева А.И., Александров И.В., Бурков П.А. и др. О механизме самовозгорания твердых горючих ископаемых // Уголь, 1986, № 11. с. 1416.

60. Полетаев Н.Л., Корольченко А.Я. Проблемы оценки взрывоопасности дисперсных материалов. М.: ГИЦ МВД СССР, 1988. 132 с.

61. Корольченко А.Я. Пожаровзрывобезопасность промышленной пыли. М.: Химия, 1986. 216 с.

62. Годжелло М.Г. Взрывы промышленных пылей и их предупреждение. М.: МКХ РСФСР, 1952. 322 с.

63. Таубкин С.И., Таубкин И.С. Пожаро- и взрывоопасность пылевидных материалов и технологических процессов их переработки. М.: Химия, 1976. 254 с.

64. Кисельгоф M.J1. Взрывы угольной пыли в пылеприготовительных установках. М.: Гостранстехиздат, 1937. 112 с.

65. Fire Protection Handbook NFPA. 13th Edition, Boston, 1969.7. Palmer K.W. Dust explosions and fired. London, 1973. 344 p.

66. Корольченко А.Я., Шевчук A.П. Оценка пожаровзрываемости промышленных пылей. Обзорная информация. Вып.5, М.: ВНИИПО, 1981. 38 с.

67. Ritter К. International Symposium uber Staubexplosionsgefahr in Bergbau und Industrie. CSSR, 1972. 23 s.

68. Шорин C.H. Взрывы угольной пыли и борьба с ними // Тепло и сила, 1936, №4. с. 13-18.

69. Бибиков В.П. Результаты изучения взрыва торфяной пыли // Тепло и сила, 1933, № 10. с. 13-21.

70. Эфроимсон O.A. Классификация твердых энергетических топлив по их взрываемости // Теплоэнергетика, 1979, № 5. с. 55-56.

71. Эфроимсон O.A. Опыт эксплуатации пылеприготовительных установок с ШБМ и промбункером при газовоздушной сушке топлива с точки зрения взрывобезопасности (обзор). СЦНТИ ОРГРЭС, 1975. 36 с.

72. Кушнаренко В.В., Лузин П.М., Резник В.А. О классификации твердых энергетических топлив по взрывоопасное™ // Теплоэнергетика, 1984, № 3. с. 55-57.

73. Шагалова С.Л. Исследование взрываемости пыли натуральных топлив. // Теплоэнергетика, 1955, № 5. с. 22-26.

74. Померанцев В.В. и др. Самовозгорание и взрывы пыли твердых топлив. Л.: Энергия, 1978. 144 с.

75. Резник В.А. и др. Повышение взрывобезопасности пылеприготовительного и пылесжигающего оборудования тепловых электростанций // Теплоэнергетика, 1976, № 3. с.26-29.

76. Гордеев С.В. Определение и классификация взрывоопасное™ // В кн.: Повышение надежности и экономичности энергетических блоков, Челябинск, 1979. с.43-46.

77. Кушнаренко В.В. Исследование с целью усовершенствования способов обеспечения взрывобезопасной работы пылеприготовительного оборудования. Отчет ЦКТИ, 1989. 44 с.

78. Денисов Е.Е. Решение задач теплообмена методом температурных сетей // Изв. АН СССР. Энергетика и транспорт, 1991, № 4. с. 160-166.

79. Денисов Е.Е. Расчет течения вязкой несжимаемой жидкости сетевым методом // Изв. АН СССР. Энергетика и транспорт, 1991, № 5. с. 150-158.

80. Денисов Е.Е. Применение узлового расчета сетей в динамике жидкости // Изв. АН СССР. Энергетика и транспорт, 1995, № 2. с. 82-88.

81. Денисов Е.Е. Применение методов теории цепей к решению задач теплопереноса// Электрон, моделирование, 1992, Т. 14, № 1. с. 77-81.

82. Чупин Л.В., Логинов К.В., Файзуллин Р.Т. Автоматизированная система «Принципиальная гидравлическая схема тепловых сетей» (ПГСТ) // Тезисы докладов на международной конференции «Методы оптимизации и экономические приложения», Омск, июль 1997, с.58-63.

83. Файзуллин Р.Т. Конечноэлементные аппроксимации и аналогии. Омск: Изд. ОмГУ, 1999. 116 с.

84. Leslie Р.Н. On the use of matrices in certain population mathematics // Biometrika, № 33, 1945. pp. 183-212.

85. Lewis E.G. On the generation and growth of a population // Sankhya, № 6, 1942. pp. 93-96.

86. Usher M.B. A matrix approach to the management of renewable resources, with special reference to selection forest // J. Appl. Ecol., № 3, 1966. pp. 355-367.

87. Usher M.B. A structure for selection forest Sylva // Edinb., № 47, 1967. pp. 6-8.

88. Usher M.B. A matrix model for forest management // Biometrics, № 25, 1969. pp. 309-315.

89. Usher M.B. A matrix approach to the management of renewable resources, with special reference to selection forest two extensions // J. Appl. Ecol., № 6, 1969. pp. 347-348.

90. Lefkovich L.P. The study of population growth in organisms grouped by stages // Biometrics, № 21, 1965. pp. 1-18.

91. Lefkovich L.P. The effects of adult emigration on populations of Lasioderma serricorne (F.) // Oikos, № 15, 1966. pp. 200-210.

92. Lefkovich L.P. A theoretical evaluation of population growth after removing individuals from some age groups // Bull. Ent. Res., № 57, 1967. pp. 437-445.

93. Usher M.B. Development in the Leslie matrix model // In: Mathematical model in ecology, Ed. Jeffer J.N.R., Blackwells, Oxford, 1972. pp. 29-69

94. Воеводин А.Ф. Газотермодинамический расчет потоков в простых и сложных трубопроводах // Известия СО АН СССР, серия технических наук, № 8, вып. 2, 1969. с. 45-55