автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.05, диссертация на тему:Методы, алгоритмы и программы контроля и диагностирования дефектов устройств систем управления техническими объектами с учётом влияния внешней среды
Автореферат диссертации по теме "Методы, алгоритмы и программы контроля и диагностирования дефектов устройств систем управления техническими объектами с учётом влияния внешней среды"
На правах рукописи
Л'
ПИМЕНОВ Михаил Юрьевич
МЕТОДЫ, АЛГОРИТМЫ И ПРОГРАММЫ КОНТРОЛЯ И ДИАГНОСТИРОВАНИЯ ДЕФЕКТОВ УСТРОЙСТВ СИСТЕМ УПРАВЛЕНИЯ ТЕХНИЧЕСКИМИ ОБЪЕКТАМИ С УЧЁТОМ ВЛИЯНИЯ ВНЕШНЕЙ СРЕДЫ
Специальность 05.13.05 - Элементы и устройства вычислительной техники
и систем управления
Автореферат
диссертации на соискание ученой степени кандидата технических наук
Саратов 2011
4842458
Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Саратовский государственный технический университет»
Научный руководитель - доктор технических наук, профессор
Дрогайцев Валентин Серафимович
Официальные оппоненты: доктор технических паук, профессор
Глазков Виктор Петрович
кандидат технических наук Улыбин Вячеслав Иванович
Ведущая организация - научная организация
ОАО «КБ Электроприбор» (г. Саратов)
Защита состоится « 2 » марта 2011 г. в 13.00 часов на заседании диссертационного совета Д 212.242.08 при ГОУ ВПО «Саратовский государственный технический университет» по адресу: 410054, г. Саратов, ул. Политехническая, 77, корп. 1, ауд. 319.
С диссертацией можно ознакомиться в научно-технической библиотеке ГОУ ВПО «Саратовский государственный технический университет».
Автореферат размещён на сайте Саратовского государственного технического университета www.sstu.ru « 27 » января 2011 г.
Автореферат разослан « 25 » января 2011 г.
Ученый секретарь диссертационного совета
Терентьев А. А.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. Показатели надёжности и качества функционирования систем управления существенно зависят от своевременного обнаружения и диагностирования дефектов входящих в их состав устройств.
Проблемы в области технического диагностирования дефектов цифровых и аналоговых технических объектов исследовались и обсуждались отечественными и зарубежными учёными (Пархоменко П.П., Мозгалевским A.B., Богомоловым A.M., Сытником A.A., Сперанским Д.В., Мироновским Л.А., de Kleer J., Console L., Williams B.C. и др.). Вместе с тем в настоящее время недостаточно исследованы методы и алгоритмы обнаружения и диагностирования нескольких (кратных) дефектов в технических объектах. Кроме того, существующие методы поиска дефектов не учитывают влияния внешней среды, которое может привести к появлению в структуре устройства одновременно нескольких дефектов.
В этой связи задача разработки теоретических и практических положений, методов и алгоритмов обнаружения и диагностирования кратных дефектов (в частности, кратности два) устройств, функционирующих, в том числе, в специальных условиях внешней среды, является актуальной, нужной и практически значимой задачей.
Цель работы заключается в разработке методов, алгоритмов, программных продуктов и развитии аппаратных средств контроля и диагностирования одиночных и кратных дефектов устройств систем управления в номинальных и специальных условиях их функционирования, обеспечивающих снижение временных и материальных затрат на поиск дефектов, улучшение технических характеристик на ранней стадии создания устройств.
Для достижения поставленной цели необходимо решить следующие задачи:
- разработать модель устройства и обосновать состав допустимых дефектов в его поведении;
- предложить подход к выявлению причинно-следственных связей между параметрами состояния выхода устройства и дефектами и к агрегированию информационно-значимых признаков обнаружения дефектов;
- разработать новые методы и алгоритмы обнаружения и диагностирования кратных дефектов устройства, функционирующего в специальных условиях внешней среды;
- разработать методики построения и обучения нейросетевых структур принятия решений в процессах диагностирования дефектов устройства.
Методы и средства исследований. В работе использованы методы теории управления, технического диагностирования, распознавания образов, искусственного интеллекта.
Научная новизна работы состоит в следующем:
1. Развит метод диагностирования одиночных дефектов устройств систем управления, который заключается в формировании соответствующей диагностической модели и отборе информативных параметров устройств с помощью предлагаемого усовершенствованного алгоритма.
2. Разработан метод диагностирования дефектов кратности два устройств систем управления, отличающийся исследованием влияния всевозможных пар одиночных дефектов на параметры устройства и параллельным анализом этих параметров, в результате чего достигнуто существенное сокращение времени диагностирования.
3. Развиты методы диагностирования, обеспечивающие обнаружение дефектов в критичных условиях внешней среды. Это позволяет на этапе создания своевременно принимать обоснованные упреждающие решения по улучшению технических характеристик устройств и повышению показателей их надёжности, сокращению дорогостоящих доработок.
4. Обоснована перспективность предложенных нейросетевых структур принятия решений в процессах обнаружения и диагностирования дефектов устройств, разработка которых включает: обоснование структуры сети и состава нейронов в её слоях; синтез эталонных образов; настройку весовых коэффициентов синаптических связей. Нейросетевые структуры позволяют проводить параллельный анализ переменных описания состояния устройств, состояния внешней среды и оперативно выносить решения по идентификации одиночных и кратных дефектов.
5. Дополнена и развита структура аппаратных средств и разработан комплекс программ практической реализации методов контроля работоспособности и диагностирования дефектов устройств систем управления в номинальных и специальных условиях внешней среды.
Научные положения и результаты, выносимые на защиту:
1. Методы диагностирования одиночных и кратных дефектов направлены на формирование матриц диагностирования на основе данных, полученных в результате моделирования функциональных зависимостей (испытания) устройства системы управления, которое содержит дефект и находится под воздействием внешней среды.
2. Технология моделирования вход-выходных функциональных зависимостей устройства заключается в формировании входных воздействий, контроле выходных и дополнительных параметров, имитации и контроле состояния внешней среды при условии, что один из элементов устройства является неработоспособным (дефектным). Параллельно этому
процессу определяются информационно-значимые параметры и ограниченный состав факторов внешней среды, оказывающих существенное влияние на поведение устройства.
3. Разработка матриц контроля и диагностирования одиночных и кратных дефектов устройства в условиях воздействия критичных факторов внешней среды включает: синтез причинно-следственных связей между переменными описания состояния устройства, состояния внешней среды и заданным множеством дефектов; минимизацию количества причинно-следственных связей по предложенному критерию для выделения информативных контролируемых параметров, достаточных для идентификации заданного множества дефектов.
4. Методика построения и обучения нейросетевых структур для диагностирования дефектов устройства системы управления основана на использовании разработанных методов и сформированных матриц диагностирования дефектов.
Практическая ценность основных результатов диссертационного исследования состоит в том, что использование разработанных методов и аппаратных средств контроля и диагностирования устройств систем управления позволяет идентифицировать кратные дефекты, в том числе в критичных условиях внешней среды, тем самым существенно снижать временные затраты на диагностирование. При этом открывается возможность сокращения номенклатуры специализированных средств контроля и диагностирования.
Наряду с отраслями машино- и приборостроения результаты работы могут быть востребованы в других смежных отраслях.
Реализация и внедрение. Теоретические и практические положения работы нашли применение в научной организации ОАО «КБ Электроприбор» г. Саратова при разработке функционального программного обеспечения пульта проверки опытных образцов изделий. Соответствующий акт внедрения прилагается к диссертационной работе. Результаты исследования также используются в учебном процессе Саратовского государственного технического университета при проведении занятий по дисциплине «Математические основы интеллектуальных систем управления техническими объектами» (направление 550200).
Апробация работы. Основные положения диссертационной работы докладывались на Международной научной конференции «Проблемы управления, передачи и обработки информации (АТМ-ТКИ-50)» (г.Саратов, 16-18 сентября 2009 г.), Всероссийской научно-технической конференции «Совершенствование техники, технологий и управления в машиностроении» (г. Саратов, 20-24 октября 2009 г.), XIV Молодежной научной конференции «Наукоемкие информационные технологии» (г. Переславль-Залесский, 21-24 апреля 2010 г.).
Публикации. Основные результаты диссертации опубликованы в 10
печатных работах, из них 3 работы в журнале из перечня ВАК РФ.
Структура и объём диссертации. Диссертация состоит из введения, 4 глав, заключения, списка использованной литературы и 5 приложений. Основное содержание работы изложено на 171 странице, содержит 6 таблиц, 40 рисунков. Список использованной литературы включает 130 наименований.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность работы, сформулированы цель и задачи исследования, показаны научная новизна работы, область практических приложений теоретических материалов, полученных в диссертации, их практическая значимость.
Первая глава посвящена обзору литературы по задаче технического диагностирования цифровых и аналоговых устройств систем управления техническими объектами. Описан объект исследования, в заключение главы поставлены задачи исследования.
В работе рассматриваются устройства системы управления производственным оборудованием (в том числе силовыми установками летательных аппаратов). Типовая структура такой системы приведена на рис. 1. Элементы данной системы представлены конструктивно законченными устройствами. Исследования проводились на примере устройства электропривода типа «Кемрон», структурно-функциональная схема которого изображена на рис. 2а. Функционально привод осуществляет управление угловой скоростью у электродвигателя 14 на основании заданного входного сигнала и, а также с помощью двух контуров обратной связи - по току и скорости двигателя. Объект исследования - электропривод типа «Кемрон» - состоит из аналоговых (блоки 1-9, 11-13, ВЙ, ИБ) и цифровых (блоки 10, СР) элементов. На рис. 26 приведена схема привода на уровне конструктивных модулей. Каждый модуль может быть либо работоспособным, либо неработоспособным (то есть иметь дефект). Если, например, плата «Регуляторы» неработоспособная, то этому случаю соответствует дефект 5Р. Работоспособность всего устройства определяется работоспособностью модулей, входящих в его состав.
Общая задача диссертации - составить программы поиска дефектов (неработоспособных модулей) в устройстве привода. Решение этой задачи включает следующие этапы.
На первом этапе необходимо исследовать зависимость параметров устройства от того или иного дефекта. Для этого один из модулей привода приводится в неработоспособное состояние. Далее на устройство подаётся входное управляющее напряжение и и измеряются выход устройства у, а также дополнительные параметры: токи, напряжения, импульсные характеристики модулей устройства (рсггРсп, РигРпз, РфугРфуь, Рль Р?г
рп, Рбт, рп)- Данные эксперимента записываются в протоколах наблюдений. Перечисленные действия совершаются для каждого модуля устройства.
Рис. 1. Типовая структура системы управления производственным оборудованием (силовыми установками летательных аппаратов)
На втором этапе значения всех указанных выше измеряемых параметров оцениваются с позиции их нахождения в допусках. Если параметр вышел из допуска, то его состояние оценивается признаком/[ = 1, если параметр в допуске - признаком/о = 0.
На третьем этапе составляется матрица диагностирования, строки которой соответствуют дефектам, а столбцы - контролируемым параметрам для заданного входа и'. Элементом матрицы является «1» -если при заданном дефекте параметр вышел из допуска, или «О» - если при заданном дефекте параметр остался в допуске. Общий вид матрицы диагностирования приведён в табл. 1.
Имея большой объём предварительной информации (этапы 1-2), оформленный в виде матрицы диагностирования, связывающей дефекты и параметры, можно решить задачу локализации дефекта в устройстве: измерить параметры устройства, оценить их относительно допусковых уровней (то есть перейти к признакам состояния привода), сопоставить признаки состояния с данными, содержащимися в матрице диагностирования, и определить причину дефекта, то есть неработоспособный модуль устройства.
В общем случае матрица диагностирования одиночных дефектов (см. табл. 1) может быть избыточной, то есть иметь лишние столбцы, соответствующие малоинформативным параметрам. Для исключения таких параметров на четвёртом этапе исходная матрица диагностирования минимизируется.
m.
12
ii
13
10
ш
BR
CP
14
RS
1"
Плата С"
«Регуляторы» ОРг.
(дефект st ) О'»
Плата «ФозовоеОЛт управление» {дефект s ) O'V
Ь
Блок Ся
тиристоров
(дефект 5ЬТ)
Плата Си,
«Питание»
(дефект.?,,) О''...
к двигателю
Силовой 0''сп трансформатор O^i-(дефект .vr1) Q /у,,
Плата «Логика» (дефектлл)
О''..
Тахогенератор (дефекту)
О А
п - напряжение задания скорости привода; 1 - регулятор скорости;
2 - адаптация скорости; 3 - корректирующее звено; 4, 5 - токоограниченпе;
6,1 - регуляторы тока; 8 - блок формирования управляющих импульсов;
9 - блок синхронизации; 10 - блок логики; 11 - блок питания; 12 - силовой трансформатор; 13 - силовой управляемый выпрямитель; 14 - двигательный агрегат; BR - тахогенератор; ЯЭ - датчик тока;
СР- защита от обрыва фазы Рис. 2. Схемы устройства электропривода типа «Кемрон»: функциональная (а), структурная на уровне конструктивных единиц (б)
На пятом этапе формируются матрицы диагностирования кратных дефектов на базе сформированных матриц диагностирования одиночных дефектов.
Шестой этап заключается в развитии способа диагностирования с целью обеспечения поиска дефектов в критичных условиях внешней среды. Факторы внешней среды, представленные установленной температурой, быстро изменяющимися электрическими и магнитными полями, механическими воздействиями, оказывают существенное влияние на устройство системы управления. Это выражается в виде отличия признаков состояния устройства, находящегося в критичных условиях, от
Таблица 1 Общий вид матрицы диагностирования дефектов
Вход-выходные зависимости
Дефекты и1 „8
Реп Реп РТ1
¿Р 1 0 0 1
5фу 1 1 0 1
1 1 1 1
5Т 0 0 ] 1
признаков состояния того же устройства, находящегося в номинальных (нормальных) условиях.
Согласно представленным этапам, достоверность результатов диагностики определяется вход-выходными функциональными зависимостями (первый этап) и допусковыми уровнями на них (второй этап), которые устанавливаются техническими условиями на испытание устройства системы управления.
Решение поставленной задачи начинается с анализа структуры привода для определения допустимых дефектов и контрольных точек.
С этой целью во второй главе предложены способы формализации устройств систем управления, оценки влияния модулей устройства на выход устройства и на соседние элементы.
Формализация устройств систем управления осуществляется графоаналитическими средствами. Модель устройства анализируется с целью выделения значимых элементов в функциональном и структурном плане (структурная значимость элемента определяется его влиянием на другие элементы устройства). Этап функционального и структурного оценивания элементов устройства служит для исключения дефектов малозначимых элементов. Таким образом, акцент делается на значимых элементах, состав которых используется для определения допустимых контрольных точек устройства.
Этапы определения допустимых дефектов и контрольных точек предшествуют исследованию поведения привода типа «Кемрон». Во второй главе даётся обоснованное заключение о том, какие дефекты
привода имитируются и какие дополнительные параметры Р={рсп,Рпь-} контролируются (они приведены на рис. 26).
В третьей главе детально рассматриваются указанные выше этапы реализации методов диагностирования и их формализация.
На первых двух этапах испытывается устройство системы управления. При этом измеряются параметры устройства и его модулей, имитируется и измеряется состояние внешней среды, выраженное в виде факторов в[ (тепловые воздействия), е2 (электростатические воздействия), в} (электромагнитные поля), е4 (вибрации) и др.; анализируются измеренные характеристики. По результатам анализа происходит переход к признакам состояния устройства.
Формируемая на третье этапе матрица диагностирования одиночных дефектов в номинальных условиях внешней среды представляется в виде
Л/ну=|«НУ(,)|, (1)
где 1-я строка соответствует одиночному дефекту ; _/-й столбец отражает контролируемый параметр р]; и - заданное входное воздействие на устройство; тну(ц) представляет собой результат оценки значения /-го параметра относительно допусковой зоны при условии, что в устройстве находится г-й дефект.
Алгоритм минимизации матрицы диагностирования (четвёртый этап) заключается в количественном оценивании разделительных способностей параметров с учётом стоимости их измерения. После того, как найден очередной информативный параметр, матрица диагностирования преобразуется к новому варианту, в котором присутствуют две или более группы неразличимых дефектов. По мере последовательного отбора информативных параметров число таких групп сначала увеличивается, а затем уменьшается. Последнее связано с тем, что группы, образованные единственным дефектом, исключаются из матрицы, так как дефект идентифицируется отобранными информативными параметрами. Критерий отбора информативного параметра /?, среди всех имеющихся рк имеет вид
Р, = аг^тсиЩр,)],
(2)
где п^у , '1(!/!)/е - соответственно число не обнаруживаемых элементами
модели {т'^к) = 0) и обнаруживаемых (»?(«) = I) дефектов проверкой к-то параметра (проверка параметра заключается в его измерении и оценке относительно допуска);
- число не обнаруживаемых дефектов проверкой к-го параметра с учётом параметров, включённых в состав информативных на предыдущих шагах преобразования матрицы; 1гк -наибольшее число обнаруживаемых (не обнаруживаемых) дефектов проверкой к-то параметра в группе на текущем шаге; ск - стоимость проверки рк\ I - число элементов модели, определяемых проверкой /с-го параметра; g - число групп элементов модели на данном шаге.
Пятым этапом является создание матриц диагностирования дефектов кратности два (в устройстве одновременно присутствуют два неработоспособных модуля) на основе матриц диагностирования одиночных дефектов.
Элементы матрицы диагностирования парных дефектов образуются
поразрядным суммированием по модулю два элементов матрицы диагностирования одиночных дефектов, которые отражают признаки для всевозможных парных сочетаний одиночных дефектов. Так, у'-й признак для /-го парного дефекта есть результат логического сложения признаков для к-го и к-го одиночных дефектов:
Исходный вариант матрицы диагностирования парных дефектов минимизируется с помощью предложенного выше алгоритма и преобразуется к конечному варианту. Конечный вариант матрицы может содержать элементы которые отражают неоднозначность
отклонения у-го параметра от допуска при ;'-м парном дефекте, образованным к-м и /г-м одиночными дефектами. На самом деле, если при одиночном дефекте ^ параметр р] вышел из допуска (то есть т",уи1) = 1) и
при дефекте параметр р) также вышел из допуска (т"„[1:1} = 1), то при их
одновременном появлении параметр может выйти из допуска, а может остаться в допуске (случай, когда дефекты компенсируют отклонение параметра).
Математический аппарат формирования матриц диагностирования кратных дефектов основан на принципе суперпозиции. Поэтому применение аппарата возможно, если устройство представляет собой линейный объект (зависимости, связывающие дефекты в устройстве и признаки, являются линейными).
Важным свойством предложенного метода является способность составлять матрицы диагностирования для дефектов произвольной кратности. Например, для идентификации дефектов кратности три необходимо логически сложить значения признаков для трёх дефектов. При этом конечный вариант матрицы диагностирования тройных дефектов расширится за счёт привлечения новых контролируемых параметров.
Шестой этап связан с разработкой матриц диагностирования одиночных дефектов при воздействии на устройство критичных факторов внешней среды. При этом для каждого отдельного состояния внешней среды е (представленного заданным воздействием факторов ей ег, ...) строится модель диагностирования
МЕЫУ =\тЕМ[и\- (4)
Воздействие внешней среды приводит к ухудшению технических характеристик, поэтому матрица диагностирования, построенная для критичных условий внешней среды, отличается от матрицы диагностирования, построенной для номинальных условий внешней
среды. Это может привести к ситуации, когда параметров, полученных в результате минимизации матрицы диагностирования для номинальных условий внешней среды, может быть недостаточно для идентификации дефектов устройства, которое находится в критичных условиях внешней среды. Следовательно, требуется привлечь дополнительную информацию в виде контролируемых параметров, наиболее чувствительных к воздействию внешней среды.
Для этого сопоставляются две матрицы диагностирования Мт и
Мешу , их соответствующие элементы логически складываются, образуя новую матрицу отличия Мотл :
Л^тлНК^Ц.
V /
'"отл(5) = '"нуМ Ф
Матрица отличия минимизируется с помощью изложенного выше алгоритма, то есть определяется множество её информативных параметров Р". Полученные параметры Р1 являются наиболее чувствительными к воздействию внешней среды и выражают отличие матриц Мну и М"ЕЫГ. Поэтому их можно использовать для поиска дефектов при условии, что на устройство оказывают воздействие факторы внешней среды.
Конечный вариант матрицы диагностирования одиночных дефектов в критичных условиях внешней среды предполагает использование множества параметров, определённых в конечном варианте модели диагностирования одиночных дефектов для номинальных условий внешней среды, а также подмножества параметров из Р" при условии идентификации всех дефектов.
Предложенные выше методы и способы, направленные на обеспечение процесса диагностирования, были реализованы и апробированы на практически важных задачах. Их решение подтвердило адекватность предложенных методов и алгоритмов.
Первая задача состояла в диагностировании одиночных и кратных дефектов устройства привода типа «Кемрон». Предварительно было исследовано влияние дефектов модулей устройства на контролируемые параметры. На основании этой информации сформирован исходный вариант матрицы диагностирования одиночных дефектов в номинальных условиях внешней среды (табл. 2), связывающий 8 состояний (работоспособное состояние и семь дефектов) и 18 параметров привода для 8 экспериментов.
Таблица 2
Исходный вариант матрицы диагностирования одиночных дефектов
д'/ну ии2 * и,Л7 1.8
Реп Реп Реп лii Р»1 Рш р«у| р»« Рж />фу4 Р. у, /»♦и Ли Рп Ра Рп Рь г Л,
0 0 0 0 0, 0 о 0: 0 уо 0 0:'" о 0 0 0
лег 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0
¿'и 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0
л'фу 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0
•v» 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
А 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0
«и 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1
•уг 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1
с 0.1 0.1 0,1 0,2 0,2 0,1 1 0,3 0,4 0,4 0,3 0,3 0,6 0,9 0,8 0,5 0,7 0,1
1 0,45 0,45 0,45 0,83 0,83 0,45 0,75 0,77 0,71 0,77 1 15 0,94 0,52 0,79 0,67 0,88 0,91
Исходная матрица является избыточной, то есть требует контроля большого числа параметров, что предъявляет требования как к самому устройству (обеспечение доступа к параметрам), так и техническим средствам диагностирования. Руководствуясь изложенным выше алгоритмом отбора информативных параметров, исходный вариант матрицы (см. табл. 2) преобразован к конечному варианту (см. табл. 3). На первом шаге к числу информативных отнесён параметр р®уз (он характеризуется максимальной величиной ¿(рфу!)= 1,22), что преобразовало матрицу диагностирования и выделило две группы неразличимых дефектов ({¿Ст, ¿л, -^бт} и {5п, 5фу, 5р, Аналогично отобраны параметры рП\, р-\\, Рп (£(рш)=1,оо; 1(рт,)=0,91; фга) = о,5б).
Значимость алгоритма отбора информативных параметров заключается в учёте стоимости измерения параметров, а также возможности малым числом параметров определять работоспособность устройства (за счёт //]0' в (2)).
Для привода типа «Кемрон» матрица диагностирования одиночных дефектов которого известна (см. табл. 2), разработана матрица диагностирования, позволяющая идентифицировать парные дефекты зст-л, ■Уст-фу, ^п-фу, ¿'фу-р, 5Фу-л, 5Р_бт, 5бт-т и др. Элементы модели образованы суммированием по модулю два соответствующих элементов для двух одиночных дефектов (см. табл. 4). Дальнейшая минимизация матрицы
Таблица 3 Конечный вариант матрицы диагностирования одиночных дефектов
Л'/ну и1 и и1 и и'
Р,п РфУ?. Рп Рту
5ч ; 0 0 0 0
•Уст 1 0 0 0
Л 1 1 1 0
.Уфу 0 1 0 0
5л 0 0 1 0
Л'р 0 1 1 0
Лег 0 0 1 1
Лт 0 1 1 1
С 0,2 0,4 0,8 0,1
позволила определить параметры (1(рФУ2)=1,54; 1(рФУ6)= 1,35; Ь(ре1)= 1,05; ¿(рст|)- 0,91), обладающие разделительными способностями на уровне появления в приводе парных дефектов. При построении конечного варианта матрицы диагностирования учтена способность парного дефекта компенсировать отклонения параметров от допуска (см. табл. 5).
Таблица 4
Исходный вариант матрицы диагностирования парных дефектов
1 я - ин и«6-' ш
Лщ Рт Р и. 1>т л»-. РфУ2 р*» Р ОУ6 Р., 1 Рт Рт Рт
&м 1 1 I 5Ш1 Н 1 0 0 1 0 1 1 0 I 1 0 1
Лст-фу 1 1 1 "П 0 1 0 1 1 _1_; 1 1 0 0
Л';|'1.ч 0 0 0 1 I 1 1 ] 0 1 0 0 0 1
Зтг 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 Ш8
Якм 0 0 0 0 0 1 1 1 0 0 [ 0 0 I
Л'лр 0 0 0 0 0 0 0 и® 0 0 0 1 1 1 I 0 ёШ
Хр-ет 0 0 0 0 0 1 0 1 1 0 1 0 I
Л'ьт.т 0 0 0 0 0 0 0 1 1 1 1 0 1 ]
■ВШШИ1И1 ШШШЕШ шп ШЕЕВЕШ Е£Я ВЕЯ по ЕЯЕЯЮЯ 1М11КЭ1ВД т ш. ШЕЯ шв
Таблица 5 Конечный вариант матрицы диагностирования парных дефектов
Дополнительное диагностирование парных дефектов повлияло на глубину поиска дефектов, которая рассчитывается следующим образом:
(6)
где К6и - число дефектов, определяемых однозначно; Л^оя _ общее число модулей в рассматриваемом устройстве
Кой=7.
Таким образом, глубина поиска дефектов при условии диагностирования семи
одиночных и восьми парных дефектов увеличилась с Кг п =1 до Кгп =2,14. То есть использование дополнительных параметров и их параллельное оценивание позволили разработать программу идентификации удвоенного числа состояний привода.
Далее рассмотрен этап создания матрицы диагностирования одиночных дефектов привода типа «Кемрон», находящегося в специальных условиях внешней среды (например, в условиях теплового удара). Для этого был сформирован исходный вариант матрицы на
основании протоколов наблюдения (см. табл. 6). Далее сопоставлялись матрицы диагностирования для номинальных условий внешней среды (табл. 2) и для специальных (табл. 6) с целью выделения подмножества отличительных параметров. Порядок получения параметров включал синтез матрицы отличия двух моделей, элементы которой образованы суммированием по модулю два соответствующих элементов двух исходных матриц; её минимизацию. Таким образом, найдены отличительные параметры рт, Рфуз, Рфу2, Рфу\- В конечный вариант матрицы диагностирования (см. табл. 7) вошли информативные параметры матрицы диагностирования для номинальных условий внешней среды (рП1, Рфуз, Рп, Рт\) и подмножество параметров из числа отличительных (рфу\, Рфуз)*
Таблица 6
Исходный вариант матрицы диагностирования одиночных дефектов в критичных условиях внешней среды
Кж >ии2 у иа" иы1-8
Рт А -г: Реп Рт />т Рт Р*vi Лл- л»-, Рфуа Рф vi А,™ Рл, Рг, р„ Рм Р„; Р„
Л'ст 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0
Л'н 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0
Л'лу 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1 0
■Ул 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0
Л> 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
■?ст 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0
Лг 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1
с 0,1 0,1 0.1 0,2 0,2 ОД 1 0,3 0,4 0,4 0,3 0,3 0,6 0,9 0,8 0,5 0,7 0,1
Таким образом, впервые предложен метод разработки матриц диагностирования для устройств, которые находятся в дестабилизирующих условиях внешней среды. Это достигнуто за счёт усложнения технических средств диагностирования (требуется имитация и учёт факторов внешней среды) и за счёт увеличения числа контролируемых параметров, которые чувствительны к изменению среды.
Результатом решения изложенной выше задачи является тот факт, что заданные априори одиночные и кратные дефекты устройства привода типа «Кемрон» были однозначно
Таблица 7 Конечный вариант матрицы диагностирования в критичных условиях внешней среды
м' '"йТ г/1 и а2 и г/8
Рт Рфу, Р?г Рп "ФУ: Рфу,
Лет ] 0 0 0 1 0
Л'н 1 1 1 0 1 0
Л'фу 0 1 1 0 1 1
Л'д 0 | 1 0
ЛР 0 0 0 0 0 1
■Уст 0 0
Лг 0 0 1 1 0 1
С 0,2 0,4 0,8 0,1 0,3 1
идентифицированы с помощью полученных моделей (матриц) поиска дефектов.
Вторая задача была связана с диагностированием устройства системы управления на основе нейронных сетей, применение которых представляется весьма перспективным. Нейронная сеть диагностирования дефектов представляет собой программу поиска неработоспособных модулей устройства на основании его измеренных технических параметров. Построение и обучение нейронной сети происходит с использованием результатов предыдущих шести этапов.
Структура нейронной сети диагностирования дефектов состоит из двух частей. Первая часть представляет собой многослойный персептрон, выполняющий функцию анализа значений измеренных параметров с учётом допусков на эти параметры, на основании чего происходит идентификация признаков состояния устройства. Вторая часть представляет собой логическую нейронную сеть, которая анализирует комбинацию признаков состояния устройства и осуществляет поиск дефектов.
Нейронная сеть идентификации признаков состоит из трёх слоев. Нейроны входного слоя соответствуют измеренным параметрам (входные, выходные и дополнительные параметры) и факторам внешней среды. Нейроны выходного слоя соответствуют признакам состояния для каждого анализируемого параметра. Количество нейронов скрытого слоя устанавливается экспериментально и зависит от сложности функционирования устройства. После третьего слоя находится интерпретатор решений сети, устанавливающий идентифицированный признак для заданного параметра («О» или «1»),
Построение и обучение логической нейронной сети идентификации дефектов происходит на основании конечных вариантов матриц диагностирования одиночных и кратных дефектов.
Апробирование предложенного подхода по использованию аппарата нейронных сетей для поиска одиночных и кратных дефектов проводилось для электропривода постоянного тока, представленного имитационной моделью (его схема приведена на рис. За).
Моделирование поведения привода осуществлялось исходя из следующих условий: дефекты имитировались варьированием параметров функциональных узлов (исследовались технические характеристики привода в случаях, когда он работоспособен 5о; в структуру привода внесён дефект из множества {5], —, ¿б}); на вход привода подавались управляющие сигналы в виде задающей скорости (г;,) и нагрузки на исполнительный механизм (м2); выход системы и дополнительные параметры (ри ..., р9) записывались в протоколе наблюдений. Как результат сформирована модель дефектов (см. рис. 36).
л/
Р> Р2 Р' Р4 Р5 рй Р1 р* Р"
Яо 0 0 0 0 0 0 0 0 0
51 0 1 0 0 0 1 1 0 1
0 1 0 0 1 0 0 1 1
55 0 1 0 0 1 1 I 0 0
0 1 1 1 1 1 1 0 0
У|-з 0 X 0 0 0 X 1 1 1
0 X 1 0 0 X 1 X 0
Рис. 3. Схема устройства электропривода (а) и матрица диагностирования дефектов в его поведении (б)
Результаты испытания, содержащиеся в протоколах наблюдений, использованы для построения и обучения нейросетевой структуры диагностирования, состоящей из двух частей: нейронной сети идентификации признаков состояния и логической нейронной сети идентификации дефектов. Нейронная сеть идентификации признаков образована тремя слоями: входным (2 нейрона входных воздействий и 9 нейронов контролируемых параметров привода), скрытым (состав нейронов варьировался от Ъ-5 до Л=8), выходным (18 нейронов, отражающих признаки для каждого контролируемого параметра). Её обучение проводилось по результатам моделирования - объём обучающего множества составил 310 примеров.
Анализ результатов моделирования показал, что нейронная сеть позволяет идентифицировать признаки состояния привода при низком уровне ошибок (относительная ошибка обучения составила 2,5% при Л=8).
Логическая нейронная сеть идентификации одиночных и кратных дефектов привода была построена и обучена на основе информации, содержащейся в матрице диагностирования дефектов (рис. 36). Логическая нейронная сеть состоит из трёх слоёв: нейроны входного слоя соответствуют признакам для каждого измеряемого и оцениваемого параметра; нейроны выходного слоя соответствуют диагностируемым дефектам в поведении привода; нейроны скрытого слоя отражают альтернативные логические зависимости между признаками и дефектами
(здесь-8Ь55).
Практическая ценность предложенной нейронной структуры диагностирования заключается в том, что сетевая структура объединяет большое число различных по физической природе параметров (входных, выходных и дополнительных характеристик устройства, факторов внешней среды), при этом обеспечивается параллельная обработка данных и практически мгновенное принятие решений сетью.
Анализ результатов решения приведённых выше задач позволяет сделать следующие выводы:
- разработанный алгоритм минимизации диагностических матриц
направлен на определение минимального состава информативных параметров за меньшее время, чем при использовании численных методов оптимизации (метод динамического программирования, метод ветвей и границ, метод проб);
- разработанный в работе метод формирования матриц диагностирования кратных дефектов позволяет предугадать последствия появления в устройстве нескольких неработоспособных элементов и определить их местоположение;
- предложенный способ формирования диагностических матриц для заданного состояния внешней среды позволяет выявлять слабые места в устройстве;
- использование аппарата нейронных сетей позволяет оперативно осуществлять поиск дефектов;
- предлагаемые методы ориентированы на использование в автоматизированных средствах диагностирования, обрабатывающих большие массивы измерительной информации.
В четвёртой главе исследованы вопросы, связанные с развитием существующей базовой структуры автоматизированного контрольно-измерительного комплекса испытания и диагностирования.
Предложен вариант структуры аппаратных средств (см. рис. 4а) для контроля и диагностирования дефектов электропривода типа «Кемрон» (рис. 2), который включает: модули формирования управляющих сигналов (М„) и контроля технических параметров (М); дополнительные модули оценки контролируемых параметров относительно допусковых зон (МК ) и анализа кодовых комбинаций признаков с целью обнаружения дефектов (МО). Конструктивное исполнение контрольно-измерительного комплекса приводится на рис. 46.
а б
Рис. 4. Автоматизированный контрольно-измерительный комплекс диагностирования дефектов привода типа «Кемрон»: структура на уровне аппаратно-программных модулей (а), конструктивное исполнение (б) - КСК-90А2
В рамках дополненной структуры автоматизированного контрольно-измерительного комплекса разработаны модель базы данных решения задачи диагностирования, комплекс программ, реализующий процедуры контроля работоспособности и поиска дефектов на основании диагностических матриц, приведённых в табл. 3, 5, 7.
ОСНОВНЫЕ ВЫВОДЫ РАБОТЫ
1. Выполнен анализ современных методов диагностирования дефектов устройств систем управления, который показал, что недостаточно исследованы задачи разработки программ поиска кратных дефектов и учёта влияния внешней среды на диагностируемое устройство.
2. Разработан системный подход к оценке работоспособности устройства системы управления, отличающийся способностью диагностировать кратные дефекты с помощью параллельного анализа информации о контролируемых параметрах устройства.
3. Предложено развитие методов диагностирования дефектов, которое заключается в учёте влияния внешней среды на диагностируемое устройство, что позволяет на ранних этапах создания своевременно обнаруживать слабые места в устройстве, улучшать его технические характеристики.
4. Развита методика разработки и обучения нейронных сетей диагностирования одиночных и кратных дефектов устройств систем управления, которая позволяет снизить временные затраты на поиск дефектов, а также минимизировать состав необходимых для этого аппаратных средств.
5. Развита базовая структура технических средств диагностирования и разработан комплекс программ практической реализации методов контроля и поиска дефектов в устройствах систем управления, ориентированные на применение в условиях создания, производства и эксплуатации устройств.
6. Предложенные методы, алгоритмы отличаются существенно сниженным временем поиска дефектов в устройствах систем управления. Наибольшая эффективность методов достигается в случае, когда устройство является сложным: состоит из большого числа элементов и межэлементных связей.
7. Определённая общность предложенных методов позволяет их использовать при диагностике различных устройств в различных системах управления.
Публикации по теме диссертации:
в изданиях, рекомендованных ВАК РФ
1. Пименов М.Ю. Описание структуры электротехнических средств в задаче технической диагностики / М.Ю. Пименов // Вестник Саратовского государственного технического университета. 2009. №3 (41). Вып. 2. С. 244-247.
2. Пименов М.Ю. Диагностирование дефектов сложных технических объектов в условиях влияния факторов внешней среды. I / B.C. Дрогайцев, Г.С. Говоренко, М.Ю. Пименов // Вестник Саратовского государственного технического университета. 2010. №1 (44). С. 102-112.
3. Пименов М.Ю. Поддержка средствами интеллектуальных систем процессов диагностирования дефектов технических объектов / B.C. Дрогайцев, В.А. Ушаков, М.Ю. Пименов // Вестник Саратовского государственного технического университета. 2010. №2 (45). С. 144-153.
в других изданиях
4. Пименов М.Ю. Интеллектуальный метод прогнозирования состояния технического объекта / М.Ю. Пименов // Проблемы управления, передачи и обработки информации — АТМ-ТКИ-50: сб. трудов Междунар. науч. конф. Саратов: Сарат. гос. техн.ун-т, 2009. С. 244-245.
5. Пименов М.Ю. Методы и системы диагностирования состояния технологического оборудования: эвристические системы и системы вывода / М.Ю. Пименов // Прогрессивные направления развития технологии машиностроения: сб. науч. тр. Саратов: Сарат. гос. техн. ун-т, 2009. С. 168-174.
6. Пименов М.Ю. Моделирование неисправностей в системах диагностирования, основанных на знаниях о модели технического объекта / М.Ю. Пименов // Прогрессивные направления развития технологии машиностроения: сб. науч. тр. Саратов: Сарат. гос. техн. ун-т, 2009. С. 174-180.
7. Пименов М.Ю. Обоснование состава дефектов сложных электротехнических комплексов / М.Ю. Пименов // Труды XIV Молодежной научно-практической конференции «Наукоёмкие информационные технологии»: сб. науч. тр. Переславль-Залесский: Университет города Переславля, 2010. С.194-201.
8. Пименов М.Ю. Оптимизация диагностических процедур с помощью эволюционного метода. I / М.Ю. Пименов // Автоматизация и управление в машино- и приборостроении: сб. науч. тр. Саратов: Сарат. гос. техн. ун-т, 2010. С.171-176.
9. Пименов М.Ю. Оптимизация диагностических процедур с помощью эволюционного метода. II / М.Ю. Пименов // Автоматизация и управление в машино- и приборостроении: сб. науч. тр. Саратов: Сарат. гос. техн. ун-т, 2010. C.176-18I.
10. Пименов М.Ю. Пакет программ для синтеза, преобразования и использования моделей диагностирования дефектов сложных электротехнических комплексов (SEIDOI) / М.Ю. Пименов, B.C. Дрогайцев: Свидетельство о государственной регистрации программы для ЭВМ № 2010614382 от 6 июля 2010 г.
Подписано в печать 19.01.11 Формат 60><84 1/16
Бум. офсет. Усл. печ. л. 0,93 (1,0) Уч.-изд. л. 1,0
Тираж 100 экз. Заказ 7 Бесплатно
Саратовский государственный технический университет
410054, Саратов, Политехническая ул., 77 Отпечатано в Издательстве СГТУ. 410054, Саратов, Политехническая ул., 77 Тел.: 24-95-70; 99-87-39, e-mail: izdat@sstu.ru
Оглавление автор диссертации — кандидата технических наук Пименов, Михаил Юрьевич
ВВЕДЕНИЕ
1. ОБЗОР МЕТОДОВ И СРЕДСТВ КОНТРОЛЯ И ДИАГНОСТИКИ УСТРОЙСТВ СИСТЕМ УПРАВЛЕНИЯ ТЕХНИЧЕСКИМИ ОБЪЕКТАМИ
1.1. Объект исследования
1.2. Этапы диагностирования устройства системы управления
1.3. Математические модели объектов диагностирования
1.4. Идентификация функциональных зависимостей диагностируемых объектов
1.5. Способы описания технического состояния объекта диагностирования
1.6. Методы и средства диагностирования одиночных дефектов
1.7. Диагностирование кратных дефектов
1.8. Номинальные и специальные условия внешней среды
1.9. Методы и средства прогнозирования технического состояния диагностируемого объекта
1.10.Контрольно-измерительные комплексы для испытания и диагностирования технических объектов
1.11 .Постановка цели и задач исследования
2. ИССЛЕДОВАНИЕ УСТРОЙСТВ СИСТЕМ УПРАВЛЕНИЯ
2.1. Модель предметной области диагностирования дефектов
2.2. Функциональная и информационная модели процесса диагностирования дефектов
2.3. Исходные условия и предпосылки создания методов и средств диагностирования устройств систем управления
2.4. Разработка формализованных моделей устройства системы управления
2.4.1. Аналитические модели
2.4.2. Разработка графоаналитической модели диагностируемого устройства
2.4.3. Исследование модели устройства
2.4.4. Определение допустимых дефектов и допустимых контрольных точек устройства
2.4.5. Формирование матриц покрытия устройства
2.5. Создание графоаналитической модели привода «Кемрон»
2.6. Выводы по главе
3. РАЗРАБОТКА МАТРИЦ КОНТРОЛЯ И ДИАГНОСТИРОВАНИЯ ДЕФЕКТОВ УСТРОЙСТВА СИСТЕМЫ УПРАВЛЕНИЯ С УЧЁТОМ ВЛИЯНИЯ ВНЕШНЕЙ СРЕДЫ
3.1. Моделирование поведения диагностируемого устройства
3.2. Определение критичных факторов внешней среды и режимов функционирования устройства
3.3. Критерии оценки соответствия технических характеристик диагностируемого устройства заданным требованиям
3.4. Исключение неинформативных тестов и параметров в процессе моделирования поведения устройства
3.5. Разработка моделей контроля и диагностирования дефектов устройства системы управления
3.5.1. Разработка матриц диагностирования одиночных дефектов в номинальных условиях внешней среды
3.5.2. Разработка матриц диагностирования дефектов кратности два в номинальных условиях внешней среды
3.5.3. Разработка матриц диагностирования одиночных дефектов для устройства, находящегося под воздействием критичных факторов внешней среды
3.5.4. Минимизация матрицы диагностирования дефектов для случая бинарного представления признаков
3.5.5. Минимизации матрицы диагностирования дефектов для варианта многозначного представления признаков
3.6. Разработка нейронной сети идентификации признаков состояния диагностируемого устройства
3.7. Разработка нейросетевого решателя задачи идентификации дефектов
3.7.1. Разработка логической нейронной сети идентификации одиночных дефектов в номинальных условиях внешней среды
3.7.2. Разработка логической нейронной сети идентификации кратных дефектов в номинальных условиях внешней среды
3.7.3. Разработка логической нейронной сети идентификации одиночных дефектов в критичных условиях внешней среды или для критичного режима функционирования
3.8. Пример практической разработки программ поиска одиночных и кратных дефектов привода «Кемрон», в том числе с учётом влияния внешней среды
3.8.1. Формирование причинно-следственных связей между дефектами и параметрами привода «Кемрон»
3.8.2. Формирование матрицы диагностирования одиночных дефектов привода «Кемрон» в номинальных условиях внешней среды
3.8.3. Формирование матрицы диагностирования дефектов кратности два привода «Кемрон» в номинальных условиях внешней среды
3.8.4. Формирование матрицы диагностирования одиночных дефектов привода «Кемрон» в условиях влияния факторов внешней среды
3.9. Пример разработки нейросетевых структур идентификации признаков технического состояния и дефектов на основе имитационного моделирования электропривода
3.10. Выводы по главе
4. РАЗВИТИЕ СТРУКТУРЫ КОНСТРОЛЬНО-ИЗМЕРИТЕЛЬНОГО КОМПЛЕКСА ИСПЫТАНИЯ И ДИАГНОСТИРОВАНИЯ ДЕФЕКТОВ УСТРОЙСТВ СИСТЕМ УПРАВЛЕНИЯ
4.1. Развитие базовой структуры аппаратных средств контроля работоспособности и диагностирования дефектов устройств систем управления
4.2. Модель базы данных поддержки процесса диагностирования дефектов устройств систем управления
4.3. Алгоритмы и программы контроля и диагностирования дефектов устройств систем управления
4.4. Выводы по главе 154 ЗАКЛЮЧЕНИЕ 156 СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 159 ПРИЛОЖЕНИЕ 1 172 ПРИЛОЖЕНИЕ 2 173 ПРИЛОЖЕНИЕ 3 179 ПРИЛОЖЕНИЕ 4 184 ПРИЛОЖЕНИЕ
ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ
БД — База данных
ЛНС — Логическая нейронная сеть
НС — Нейронная сеть
СПР — Система принятия решений
ТЗ — Техническое задание
ТУ — Технические условия
Введение 2011 год, диссертация по информатике, вычислительной технике и управлению, Пименов, Михаил Юрьевич
Устройства являются составными компонентами систем управления производственным оборудованием и силовыми установками летательных аппаратов и в значительной степени определяют их надёжность и качество функционирования, в том числе в условиях воздействия критичных (специальных) факторов внешней среды: электрических, электростатических, электромагнитных, тепловых.
Улучшение технических характеристик, показателей надёжности и качества функционирования устройств систем управления в значительной степени повышается в результате своевременного обнаружения и диагностирования дефектов в их поведении.
Проблемы в области технического диагностирования дефектов цифровых и аналоговых технических объектов исследовались и обсуждались отечественными и зарубежными учёными (Пархоменко П.П., Мозгалевским A.B., Богомоловым A.M., Сытником A.A., Сперанским Д.В., Мироновским JI.A., de Kleer J., Console L., Williams B.C. и др.). Вместе с тем в настоящее время недостаточно исследованы методы и алгоритмы обнаружения и диагностирования нескольких (кратных) дефектов в технических объектах. Кроме того, существующие методы поиска дефектов не учитывают влияния внешней среды, которое может привести к появлению в структуре устройства одновременно нескольких дефектов.
В этой связи задача разработки теоретических и практических положений, методов и алгоритмов обнаружения и диагностирования кратных дефектов (в частности, кратности два) устройств, функционирующих, в том числе в специальных условиях внешней среды, является актуальной, нужной и практически значимой задачей.
Объект исследований — устройство системы управления производственным оборудованием (системы управления силовыми установками летательных аппаратов); устройство электропривода «Кемрон».
Предмет исследования - методы контроля работоспособности, обнаружения и диагностирования одиночных и кратных дефектов в поведении устройств систем управления с учётом влияния факторов внешней среды.
Цель работы заключается в разработке методов, алгоритмов, программных продуктов и развитии аппаратных средств контроля и диагностирования одиночных и кратных дефектов устройств систем управления в номинальных и специальных условиях их функционирования, обеспечивающих снижение временных и материальных затрат на поиск дефектов, улучшение технических характеристик на ранней стадии создания устройств.
Для достижения поставленной цели необходимо решить следующие задачи:
- разработать модель устройства и обосновать состав допустимых дефектов в его поведении; предложить подход к выявлению причинно-следственных связей между параметрами состояния выхода устройства и дефектами и к агрегированию информационно-значимых признаков обнаружения дефектов; разработать новые методы и алгоритмы обнаружения и диагностирования кратных дефектов устройства, функционирующего в специальных условиях внешней среды;
- разработать методики построения и обучения нейросетевых структур принятия решений в процессах диагностирования дефектов устройства.
Методы и средства исследований. В работе использованы методы теории управления, технического диагностирования, распознавания образов, искусственного интеллекта.
Научная новизна работы состоит в следующем:
1. Развит метод диагностирования одиночных дефектов устройств систем управления, который заключается в формировании соответствующей диагностической модели и отборе информативных параметров устройств с помощью предлагаемого усовершенствованного алгоритма.
2. Разработан метод диагностирования дефектов кратности два устройств систем управления, отличающийся исследованием влияния всевозможных пар одиночных дефектов на параметры устройства и параллельным анализом этих параметров, в результате чего достигнуто существенное сокращение времени диагностирования.
3. Развиты методы диагностирования, обеспечивающие обнаружение дефектов в критичных условиях внешней среды. Это позволяет на этапе создания своевременно принимать обоснованные упреждающие решения по улучшению технических характеристик устройств и повышению показателей их надёжности, сокращению дорогостоящих доработок.
4. Обоснована перспективность предложенных нейросетевых структур принятия решений в процессах обнаружения и диагностирования дефектов устройств, разработка которых включает: обоснование структуры сети и состава нейронов в её слоях; синтез эталонных образов; настройку весовых коэффициентов синаптических связей. Нейросетевые структуры позволяют проводить параллельный анализ переменных описания состояний устройств, состояний внешней среды и оперативно выносить решения по идентификации одиночных и кратных дефектов.
5. Дополнена и развита структура аппаратных средств и разработан комплекс программ практической реализации методов контроля работоспособности и диагностирования дефектов устройств систем управления в номинальных и специальных условиях внешней среды.
Научные положения, выносимые на защиту:
1. Методы диагностирования одиночных и кратных дефектов направлены на формирование матриц диагностирования на основе данных, полученных в результате моделирования функциональных зависимостей устройства системы управления, которое содержит дефект и находится под воздействием внешней среды.
2. Технология моделирования вход-выходных функциональных зависимостей устройства заключается в формировании входных воздействий, контроле выходных и дополнительных параметров, имитации и контроле состояния внешней среды при условии, что один из элементов устройства является неработоспособным (дефектным). Параллельно этому процессу определяются информационно-значимые параметры и ограниченный состав факторов внешней среды, оказывающих существенное влияние на поведение устройства.
3. Разработка матриц контроля и диагностирования одиночных и кратных дефектов устройства в условиях воздействия критичных факторов внешней среды включает: синтез причинно-следственных связей между переменными описания состояний устройства, состояний внешней среды и заданным перечнем дефектов; минимизацию количества причинно-следственных связей по предложенному критерию для выделения информативных контролируемых параметров, достаточных для идентификации заданного множества дефектов.
4. Методика построения и обучения нейросетевых структур для диагностирования дефектов устройства системы управления основана на использовании разработанных методов и сформированных матриц диагностирования дефектов.
Практическая ценность основных результатов диссертационного исследования состоит в том, что использование разработанных методов и аппаратных средств контроля и диагностирования устройств систем управления позволяет идентифицировать кратные дефекты, в том числе в критичных условиях внешней среды, тем самым существенно снижать временные затраты на диагностирование. При этом открывается возможность сокращения номенклатуры специализированных средств контроля и диагностирования.
Наравне с отраслями машино- и приборостроения результаты работы могут быть востребованы в других смежных отраслях.
Теоретические и практические положения работы нашли применение в научной организации ОАО «КБ Электроприбор» г. Саратова при разработке функционального программного обеспечения пульта проверки опытных образцов изделий (соответствующий акт внедрения прилагается к диссертационной работе). Результаты исследования также используются в учебном процессе Саратовского государственного технического университета при проведении занятий по дисциплине «Математические основы интеллектуальных систем управления техническими объектами» (направление 550200).
Апробация работы. Основные положения диссертационной работы докладывались на Международной научной конференции «Проблемы управления, передачи и обработки информации (АТМ-ТКИ-50)» (г. Саратов, 16-18 сентября 2009 г.), Всероссийской научно-технической конференции «Совершенствование техники, технологий и управления в машиностроении» (г. Саратов, 20-24 октября 2009 г.), XIV Молодежной научной конференции «Наукоемкие информационные технологии» (г. Переславль-Залесский, 21-24 апреля 2010 г.).
Публикации. Основные результаты диссертации опубликованы в 10 печатных работах, из них 3 работы в журнале из перечня ВАК РФ.
Заключение диссертация на тему "Методы, алгоритмы и программы контроля и диагностирования дефектов устройств систем управления техническими объектами с учётом влияния внешней среды"
4.4. Выводы по главе
Предложена развитая структура контрольно-измерительного комплекса, который является автоматизированным средством испытания и диагностирования устройств систем управления.
Для поддержания предметной области разработана ЕК-модель базы данных, в которую вошли все объекты предметной области контроля работоспособности и диагностирования дефектов в поведении устройств систем управления техническими объектами.
Разработаны алгоритмы и программные продукты решения ключевых задач: синтеза и анализа моделей устройства системы управления; формирования и минимизации моделей диагностирования дефектов; создания и обучения ней-росетевых структур диагностирования устройства. Программные продукты приведены в приложениях 2-5 (свидетельство [130]).
Разработанные методы, алгоритмы и программы внедрены в научной организации ОАО «КБ Электроприбор» г. Саратова, о чём имеется соответствующий акт (см. приложение 1).
ЗАКЛЮЧЕНИЕ
Диссертационная работа посвящена решению актуальной научно-технической задачи разработки методов, алгоритмов, программных продуктов и развитию аппаратных средств контроля работоспособности и диагностирования дефектов устройств систем управления техническими объектами. Решение данной задачи направлено на построение автоматизированных и интеллектуальных средств диагностирования.
Результаты исследований имеют значение для поддержания процессов разработки сложных устройств систем управления, своевременного обнаружения дефектов в их составе.
В рамках диссертационной работы получены следующие общие выводы.
1. Выполнен анализ современных методов диагностирования дефектов устройств систем управления, который показал, что недостаточно исследованы задачи разработки программ поиска кратных дефектов и учёта влияния внешней среды на диагностируемое устройство.
2. Созданы методическое, алгоритмическое, программное обеспечения и развиты аппаратные средства разработки и использования инженерных программ контроля работоспособности, обнаружения и диагностирования одиночных дефектов и дефектов кратности два в поведении устройств систем управления, находящихся, в том числе, в условиях влияния негативных факторов внешней среды.
Предложены способы формализации устройства системы управления и анализа его модели с целью определения обоснованного состава дефектов и полюсов съёма измерительной информации.
Предложена технология моделирования функциональных зависимостей (испытания) устройства системы управления, заключающаяся в выделении причинно-следственных связей между техническими параметрами устройства и дефектами в условиях воздействия дестабилизирующих факторов внешней среды, оказывающих существенное влияние на поведение устройства.
Предложен вариант реализации нейросетевых структур решения задачи диагностирования состояния устройства, одна из которых реализует функцию аппроксимации функциональных зависимостей устройства и перехода от непрерывных значений технических параметров к дискретным значениям — признакам, вторая - идентификацию дефектов по заданной кодовой комбинации признаков состояния.
Акт внедрения разработанного комплекса методов, алгоритмов приводится в приложении 1. Разработанные программы приводятся в приложениях 2-5 (на программы получено свидетельство [130]).
3. Разработанные формализованные методы контроля работоспособности и диагностирования дефектов в поведении устройств систем управления техническими объектами в условиях влияния факторов внешней среды позволяют на ранней стадии создания, производства и эксплуатации систем обнаруживать одиночные дефекты и дефекты кратности два, что приводит к сокращению временных циклов распознавания и устранения причин появления соответствующих дефектов.
Предложены алгоритмы минимизации размерности моделей диагностирования одиночных и кратных дефектов, которые сокращают избыточную диагностическую информацию.
В рамках предложенных методов, алгоритмов разработаны диагностические модели применительно к системе управления электроприводом «Кемрон». Выводы, сделанные по результатам конечных вариантов моделей диагностирования одиночных дефектов, дефектов кратности два в номинальных и специальных условиях внешней среды, говорят об улучшении показателей контроле-способности данной системы в плане снижения затрат на диагностирование, увеличения глубины поиска дефектов.
4. Разработан интеллектуальный метод принятия решений в процессах оценивания степени соответствия значений параметров устройств заданным требованиям и диагностирования в них дефектов. Построение и обучение нейросетевых структур основано происходит согласно разработанным методам диагностирования и на основе конечных вариантов моделей диагностирования.
Принятие решение о месте возникновения дефекта в устройстве реализуется средствами логической нейронной сети, которая на основании знаний об устройстве, его функциональных зависимостях, полученных в результате экспериментального исследования его поведения, устанавливает код дефекта, соответствующего зафиксированным значениям технических характеристик.
5. Обоснован принцип единства методического, алгоритмического, программного обеспечений и аппаратных средств контроля работоспособности и диагностирования дефектов устройств систем управления на всех фазах их жизненного цикла, который позволяет существенно сокращать временные циклы разработки инженерных программ диагностирования устройств; сокращать номенклатуру специализированных аппаратных средств диагностирования дефектов, обеспечивать их метрологическую совместимость и соответственно повышать достоверность конечных результатов диагностирования дефектов.
В рамках разработанной единой системы методов контроля работоспособности и диагностирования одиночных и кратных дефектов сложных устройств систем управления результаты исследования устройства на стадии его создания, когда возможно внедрение в структуру с целью получения дополнительной информации для идентификации дефектов, могут быть использованы на стадиях производства и эксплуатации устройства.
6. Разработанные методы, алгоритмы и программные продукты управляются пользователем в плане достижения требуемой полноты и достоверности конечных результатов контроля работоспособности и диагностирования дефектов в поведении устройств систем управления.
Управляемыми являются ключевые процессы приведения исходных вариантов моделей диагностирования одиночных и кратных дефектов к конечным вариантам.
Библиография Пименов, Михаил Юрьевич, диссертация по теме Элементы и устройства вычислительной техники и систем управления
1. Liebowitz J. The Handbook of applied expert systems. CRC Press. 1998. 736 p.
2. Kleer J. D., and Kurien J. Fundamentals of model-based diagnosis // Proc. Safeprocess 03, Washington, U.S.A. 2003. PP. 25-36.
3. Isermann R., Model-based fault detection and diagnosis. Status and applications // Annual Reviews in Control. 2005. V. 29. PP. 71-85.
4. Console L., Dressier O. Model-based diagnosis in the real world: lessons learned and challenges remaining // Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence. 1999. PP. 1393-1400.
5. A Model-based Diagnosis with fault event models / Y. Kitamura, M. Ueda, M. Ikeda, etc. // Proc. of Pacific Asian Conference on Expert Systems (PACES) 97. Singapore. 1997. February. PP. 322-329.
6. MAD: A real world application of qualitative model-based decision tree generation for diagnosis / H. Milde, L. Hotz, J. Kahl, etc. // Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE). 1999. PP. 246-255.
7. Дмитриев А.К., Кравцов А.Н. Информационно-поисковая система диагностирования объекта на основе принципа согласованного оптимума // Изв. Вузов. Приборостроение. 2008. Т. 51. №1. С. 5-13.
8. Носенков А.А., Покидько С.В., Соколов М.И. Контроль качества узлов технических систем с помощью многофакторного эксперимента // Изв. Вузов. Приборостроение. 2008. Т. 51. №3. С. 17-20.
9. Кириллов Н.П. Выбор модели функционирования технической системы из множества её альтернативных модельных представлений // Изв. Вузов. Приборостроение. 2008. Т.51. №1. С. 57-62.
10. Мандель A.C. Метод аналогов в прогнозировании коротких временных рядов: экспертно-статистический подход // Автоматика и телемеханика. 2004. №4. С. 143-152.
11. Бауман Е.В., Дорофеюк A.A., Корнилов Г.В. Алгоритмы оптимальной кусочно-линейной аппроксимации сложных зависимостей // Автоматика и телемеханика. 2004. №10. С. 163-171.
12. Чадеев В.М. Цифровая идентификация нелинейных динамических объектов // Автоматика и телемеханика. 2004. №12. С. 85-93.
13. Старосельцев О.Н. Прогнозирование законов распределения времени доставки и времени сертификации при управлении запасами // Автоматика и телемеханика. 2005. №6. С. 138-146.
14. Двоенко С.Д., Копылов A.B., Моттль В.В. Задача распознавания образов в массивах взаимосвязанных объектов. Алгоритм распознавания // Автоматика и телемеханика. 2005. №12. С. 162-176.
15. Каргин A.B., Фатуев В.А. Об одном методе структурно-параметрической идентификации динамических систем // Автоматика и телемеханика. 2006. №4. С. 116-125.
16. Гроппен В.О. Принципы принятия решений с помощью эталонов // Автоматика и телемеханика. 2006. №4. С. 167-184.
17. Бунич А.Л. Минимаксная прогнозирующая модель в системе управления с идентификатором// Автоматика и телемеханика. 2006. №7. С. 120-132.
18. Агамалов Ю.Р. О построении средств измерений на основе принципа адаптации // Автоматика и телемеханика. 2007. №7. С. 166-179.
19. Ракитянская А.Б., Ротштейн А.П. Диагностика на основе нечётких отношений // Автоматика и телемеханика. 2007. №12. С. 113-130.
20. Миронов C.B., Сперанский Д.В. Генетические алгоритмы для сокращения диагностической информации // Автоматика и телемеханика. 2008. №6. С. 146156.
21. Системный подход к ситуационному управлению отказоустойчивостью технических объектов в условиях нештатных ситуаций / В.А.Ушаков, Г.С. Го-воренко, B.C. Дрогайцев, и др. // Вестник компьютерных и информационных технологий. 2007. №3. С. 20-27.
22. Жукова H.A., Тристанов А.Б. Методы контроля состояния сложных динамических объектов // Вестник компьютерных и информационных технологий. 2007. №9. С. 2-10.
23. Додин И.С., Миронов А.Н., Пеньков М.М. Прогнозирование границ поля допуска параметров элементов сложных технических систем // Изв. Вузов. Приборостроение. 2003. Т. 46. №1. С. 7-11.
24. Дмитриев А.К., Копкин Е.В., Павлов С.Б. Алгоритм оптимизации информационно-поисковой системы диагностирования на основе метода ветвей и границ // Изв. Вузов. Приборостроение. 2003. Т. 46. №10. С. 3-11.
25. Крылов С.М. Синтез универсальных информационно-измерительных приборов и систем // Изв. Вузов. Приборостроение. 2003. Т. 46. №12. С. 8-11.
26. Дмитриев А.К., Копкин Е.В. Оптимизация диагностических процедур на основе принципа максимума // Изв. Вузов. Приборостроение. 2004. Т. 47. №6. С. 3-10.
27. Дмитриев А.К., Копкин Е.В., Павлов С.Б. Оптимальная информационно-поисковая система диагностирования объекта с учётом неопределённости // Изв. Вузов. Приборостроение. 2004. Т. 47. №8. С. 3-10.
28. Фатеев В.Ф., Кремез Г.В., Кузнецов A.B. Оптимизация структуры бортовой вычислительной системы для обработки радиолокационной информации на борту малого космического аппарата // Изв. Вузов. Приборостроение. 2005. Т.48. №6. С. 5-10.
29. Якимов В.Л., Назаров A.B. Прогнозирование технического состояния малых космических аппаратов с использованием многослойных нейронных сетей // Изв. Вузов. Приборостроение. 2006. Т.49. №1. С. 7-11.
30. Михайлов А.Н. Диагностическое моделирование сложных устройств на основе несовпадения функций тока // Изв. Вузов. Приборостроение. 2006. Т.49. №1. С. 36-40.
31. Якимов В.Л. Прогнозирование параметров технического состояния стартового комплекса с использованием нейронных сетей // Изв. Вузов. Приборостроение. 2006. Т.49. №7. С. 7-11.
32. Сорокина М.И. Применение методов многокритериальной идентификации объектов в экспертных системах // Изв. Вузов. Приборостроение. 2007. Т.50. №1. С. 9-14.
33. Харламов В.В., Шкодун П.К., Ахмедзянов Г.Г. Использование граф-модели при решении задачи технического диагностирования коллекторно-щёточного узла однофазных коллекторных двигателей // Изв. Вузов. Приборостроение. 2008.Т.51.№6. С. 8-12.
34. Косьянчук В.В. Контроль и диагностирование подсистем в замкнутом контуре // Известия Академии наук. Теория и системы управления. 2004. №1. С. 67-76.
35. Методы и средства автоматизированного проектирования прикладной онтологии / Б.В. Добров, Н.В. Лукашевич, O.A. Невзорова, и др. // Известия Академии наук. Теория и системы управления. 2004. №2. С. 58-68.
36. Ракитянская А.Б., Ротштейн А.П. Нечёткая модель прогнозирования с гене-тико-нейронной настройкой // Известия РАН. Теория и системы управления. 2005. №1. С. 110-119.
37. Вагин В.Н., Оськин П.В. Эвристические и вероятностные методы снятия эффективных показаний в системах диагностики // Известия РАН. Теория и системы управления. 2006. №4. С. 78-93.
38. Караваев М.В. Построение самообучающихся нечётких контроллеров по методологии автономного адаптивного управления // Известия РАН. Теория и системы управления. 2007. №2. С.94-100.
39. Борисов П.А., Виноградов Г.П., Семёнов H.A. Интеграция нейросетевых алгоритмов, моделей нелинейной динамики и методов нечёткой логики в задачах прогнозирования // Известия РАН. Теория и системы управления. 2008. №1. С. 78-84.
40. Кукушкин Ю.А., Богомолов A.B., Ушаков И.Б. Математическое обеспечение оценивания состояния материальных систем // Информационные технологии. Приложение. 2004. №7. С. 25-31.
41. Меркушева A.B. Нейросетевые методы обработки сигналов в информационных системах. Элементы структуры, принципы обучения и мера многообразия отображений, реализуемых нейронной сетью // Информационные технологии. 2005. №3. С. 9-20.
42. Берштейн A.B., Кулешов А.П. Методология оценивания точности в технологии быстрого вычисления характеристик сложных технических объектов // Информационные технологии. 2006. №3. С. 17-22.
43. Барский А.Б. Логические нейронные сети: методика построения и некоторые применения // Информационные технологии. Приложение. 2006. №8. С. 210.
44. Галушкин А.И. О методике решения задач в нейросетевом логическом базисе // Информационные технологии. Приложение. 2006. №9. С. 2-20.
45. Субботин С.А. Методы синтеза нейронечётких классификаторов для случая нескольких классов // Информационные технологии. 2006. №11. С. 31-36.
46. Крехов Е.В., Нурматова Е.В. Анализ алгоритмов обучения нейронных сетей при прогнозировании технического состояния магистральных насосных агрегатов // Информационные технологии. 2006. №11. С. 36-43.
47. Рудакова И.В., Русинов JT.A., Ремизова О.А. Использование метода главных компонент в алгоритмах обнаружения нарушений в ходе технологических процессов // Информационные технологии. 2006. №11. С.62-65.
48. Павлов В.В., Чжан Хайянь О структурном моделировании материальных потоков в производстве сложных изделий // Информационные технологии. 2006. №12. С. 13-17.
49. Денисов А.Р. Сравнение методов кластерного анализа // Информационные технологии. 2007. №3. С. 7-9.
50. Жернаков C.B. Экспертная система контроля и диагностики авиационных двигателей. Часть I // Информационные технологии. 2007. №1. С. 62-68.
51. Жернаков C.B. Экспертная система контроля и диагностики авиационных двигателей. Часть II // Информационные технологии. 2007. №2. С. 51-57.
52. Барский А.Б. Математическая логика событий и логические нейронные сети //Информационные технологии. Приложение. 2007. №7. С. 2-16.
53. Жернаков C.B. Нейросетевые технологии для диагностики технического состояния авиационных двигателей // Информационные технологии. 2007. №8. С. 22-29.
54. Мошкин Н.И. Реализация метода постановки диагноза в сложной технической системы с помощью вероятностных оценок в составе компьютерного диагностического комплекса // Информационные технологии. 2007. №8. С. 40-42.
55. Дормачев В.Г., Полещук О.М., Комаров Е.Г. Мониторинг функционирования объектов на основе нечеткого описания их состояний // Информационные технологии. 2007. №11. С. 46-52.
56. Павлов В.В. Полихроматические множества и графы в структурном моделировании свойств технических систем // Информационные технологии. Приложение. 2008. №2. С. 2-10.
57. Батищев Д.И., Старостин Н.В., Филимонов A.B. Многоуровневая декомпозиция гиперграфовых структур // Информационные технологии. Приложение. 2008. №5. С. 2-29.
58. Николайчук O.A., Юрин А.Ю. Управление опытом при исследовании динамики технического состояния уникальных машин и конструкций: моделирование опыта// Информационные технологии. 2008. №6. С. 30-37.
59. Горшков А.П., Грызлова Т.П. Система диагностики состояния сложных технических объектов по характерным последовательностям цифровых сигналов // Информационные технологии. 2008. №9. С. 35-38.
60. Воронин В.В. Диагностические проверки и их логические формы // Меха-троника, автоматизация, управление. 2004. №9. С. 9-14.
61. Медведев B.C., Торбин C.B., Шеслер М.С. Синтез адаптивных нейроком-пьютерных систем управления на основе теории интерактивной адаптации // Мехатроника, автоматизация, управление. 2004. №10. С. 27-33.
62. Царев A.M. Принцип агрегатного построения структуры и компоновки ре-компонуемых систем машин // Мехатроника, автоматизация, управление. 2005. №4. С. 29-38.
63. Кореневский H.A. Проектирование нечётких систем принятия решений, обучаемых по структуре данных // Мехатроника, автоматизация, управление. 2005. №9. С. 47-53.
64. Жирабок А.Н., Якшин A.C. Диагностирование технических систем, заданных структурными схемами с нелинейными звеньями // Мехатроника, автоматизация, управление. 2006. №9. С. 36-44.
65. Ефимов В.В. Нейроинтеллектуализация бортовых комплексов управления космических аппаратов наблюдения // Мехатроника, автоматизация, управление. Приложение. 2006. №10. С. 2-15.
66. Сабо Ю.И., Ларкин Е.В. Отказоустойчивость авионики с иерархической структурой // Мехатроника, автоматизация, управление. Приложение. 2006. №12. С. 2-7.
67. Создание интеллектуальных систем автоматизации и управления на основе современных информационных технологий / И.М. Макаров, В.М. Лохин, C.B. Манько, и др. // Мехатроника, автоматизация, управление. 2007. №4. С. 13-20.
68. Гранкин Б.К., Козлов В.В., Лысенко И.В. Принципы декомпозиции сложных объектов в проектных исследованиях // Мехатроника, автоматизация, управление. 2008. №6. С. 2-6.
69. Надёжность и диагностика автоматизированных станков: учеб. пособие / Б.М. Бржозовский, A.A. Игнатьев, В.В. Мартынов, М.В. Виноградов, В.А. Добряков; Под ред. Б.М.Бржозовского. Саратов: Сарат. гос. техн. ун-т, 2004. 156с.
70. Технология процесса комплексирования автоматизированных средств испытания бортовых систем летательных аппаратов / B.C. Дрогайцев, В.Н. Писарев, Г.С. Говоренко, и др. // Информационные технологии в проектировании и производстве. 2004. №3. С. 53-76.
71. Шмакардин И.А. Применение генетических алгоритмов в задачах оптимизации схемотехнических решений // Интеллектуальные системы. 2004. №1. С. 21-26.
72. Потарусов Р.В. Модифицированные генетические операторы для задачи упаковки блоков // Интеллектуальные системы. 2006. №4. С. 42-47.
73. Методы нейроинформатики / Е.О. Горбунова, М.Г. Доррер, Л.А. Жуков, и др. / Под. ред. А.Н. Горбаня; отв. за выпуск М.Г. Доррер. КГТУ. Красноярск. 1998. 205 с.
74. Пименов М.Ю. Обоснование состава дефектов сложных электротехнических комплексов // Труды XIV Молодежной научно-практической конференции
75. Наукоёмкие информационные технологии» / Переславль-Залесский: Изд-во Университет, 2010. С. 194-201.
76. Пименов М.Ю. Оптимизация диагностических процедур с помощью эволюционного метода. I // Автоматизация и управление в машино- и приборостроении: сб. науч. трудов / Саратов: Сарат. гос. техн. ун-т, 2010. С. 171-176.
77. Иващенко В.А. Теоретические основы автоматизированного управления электропотреблением промышленных предприятий: дис. . д-ра. техн. наук: 05.13.01 / Иващенко Владимир Андреевич. Саратов. 2006. 254 с.
78. Alpert С.J., Kahng A.B. Multi-way partitioning via space-filling curves and dynamic programming // In Proc. Of the Design Automation Conference. 1994. PP. 652-657.
79. Коровков Б.П., Растригин JI.A. Рандомизированные методы разрезания графов. Часть 1 // Изв. АН СССР. Техническая кибернетика. 1982. №3. С. 163-172.
80. Коровков Б.П., Растригин JI.A. Рандомизированные методы разрезания графов. Часть 2 // Изв. АН СССР. Техническая кибернетика. 1982. №4. С. 120-126.
81. Kernighan B.W., Lin S. An efficient heuristic procedure for partittioning graphs // The Bell System Technical Journal. 1970. V.2. PP. 291-307.
82. Fiduccia C.M., Mattheyses R.M. A linear time heuristic for improving network partitions // In Proc. 19th IEEE Design Automation Conference. 1982. PP. 175-181.
83. Новиков П.С. Элементы математической логики. M.: Издательство физико-математической литературы, 1959. 400 с.
84. Барский А.Б. Применение логической нейронной сети для распознавания объектов временного ряда по заданному набору признаков // Информационные технологии. 2008. №8. С. 49-55.
85. Генетические алгоритмы, искусственные нейронные сети и проблемы виртуальной реальности / Г. К. Вороновский, К. В. Махотило, С. Н. Петрашев, С. А. Сергеев. Харьков: Основа, 1997. 112с.
86. Ушаков В.А., Говоренко Г.С., Дрогайцев B.C. Интегрированная нейросете-вая система ситуационного управления процессами обеспечения техническиххарактеристик динамических объектов I // Мехатроника, автоматизация, управление. 2006. №7. С. 14-19.
87. Ушаков В.А., Говоренко Г.С., Дрогайцев B.C. Интегрированная нейросете-вая система ситуационного управления процессами обеспечения технических характеристик динамических объектов II // Мехатроника, автоматизация, управление. 2006. №8. С. 21-28.
88. Биргер И.А. Техническая диагностика. М.: Машиностроение, 1978. 240 е.,ил.
89. Автоматизация типовых технологических процессов и установок: Учебник для вузов / А.М.Корытин, Н.К.Петров, С.Н.Радимов и др. М.: Энергоатомиздат, 1988. 432 е.: ил.
90. Новый подход к представлению гиперграфовых структур / Д.И. Батищев, С.Е. Власов, Н.В. Старостин, и др. // Вестник ВГАВТ. Межвузовская серия «Моделирование и оптимизация сложных систем». Вып. 14. 2005. С. 67-78.
91. Батищев Д.И, Старостин Н.В. k-разбиение графов // Вестник ННГУ «Математическое моделирование и оптимальное управление». Н. Новгород, 2000. С. 25-37.
92. Пименов М.Ю. Оптимизация диагностических процедур с помощью эволюционного метода. II // Автоматизация и управление в машино- и приборостроении: сб. науч. трудов / Саратов: Сарат. гос. техн. ун-т, 2010. С. 176-181.
93. Сосонкин B.J1. Задачи числового программного управления и их архитектурная реализация // Станки и инструмент. 1988. NolO. С. 39-40.
94. Сосонкин B.JI. Программное управление технологическим оборудованием. Учебник для вузов. М.: Машиностроение, 1991. 512 с.
95. Сосонкин B.J1. Системы числового программного управления: Учеб. пособие. М.: Логос, 2005. 296 с.
96. Banbury-Masland В. OPC's success based on teamwork, technology, and process // I&CS. 1997. January. PP. 78-79.'
97. OPC software speeds up process of connecting OPC client systems to OPC sever//I&CS. 1999. August. P. 28.
98. К. Дж. Дейт Введение в системы баз данных = Introduction to Database Systems. 8-е изд. М.: «Вильяме», 2006. 1328 с.
99. Джен Л. Харрингтон Проектирование реляционных баз данных = Relational Database Design. М.: «Лори», 2006. 230 с.
100. Пименов М.Ю. Описание структуры электротехнических средств в задаче технической диагностики // Вестник Сарат. гос. техн. ун.-та. 2009. №3 (41). Вып. 2. С. 244-247.
101. Дрогайцев B.C., Говоренко Г.С., Пименов М.Ю. Диагностирование дефектов сложных технических объектов в условиях влияния факторов внешней среды. I//Вестник Сарат. гос. техн. ун.-та. 2010. №1 (44). С. 102-112.
102. Дрогайцев B.C., Курзин М.П. К вопросу контроля и определения неисправностей в электромеханическом оборудовании В кн.: Техническая диагностика. М.: Наука, 1972. С. 141-144.
103. Дрогайцев B.C., Ушаков В.А., Пименов М.Ю. Поддержка средствами интеллектуальных систем процессов диагностирования дефектов технических объектов // Вестник Сарат. гос. техн. ун.-та. 2010. №2 (45). С. 144-153.
104. Хайкин С. Нейронные сети: полный курс, 2-е издание.: Пер. с англ. М.: Издательский дом «Вильяме», 2006. 1104 с.
105. Пименов М.Ю. Интеллектуальный метод прогнозирования состояния технического объекта // Проблемы управления, передачи и обработки информации — АТМ-ТКИ-50: сб. трудов Международ, науч. конф. / Саратов: Сарат. гос. техн. ун-т, 2009. С. 244-245.
106. Нестеров A.JI. Проектирование АСУТП. Методическое пособие. Книга 1. СПб.: ДЕАН, 2006. 552с.
107. Фёдоров Ю.Н. Справочник инженера по АСУТП: Проектирование и разработка. Учебно-практическое пособие. М.: Инфра-Инженерия, 2008. 928 е., 12 ил.
108. Диагностика цифровых устройств: конспект лекций / Д.Ю. Голембиовский. Саратов: Сарат. политехи, ин-т, 1991. 48 с.
109. Богомолов A.M., Сперанский Д.В. Аналитические методы в задачах контроля и анализа дискретных устройств. Саратов: Сарат. гос. ун-т, 1986. 240 с.
110. Иыуду К.А. Надёжность, контроль и диагностика вычислительных машин и систем. М.: Высш. шк., 1989. 216 с.
111. Методы контроля и диагноза сложных систем и автоматов / Сост. Г.Д. Вачиберидзе. К.: Ин-т кибернетики, 1972. 49 с.
112. Пархоменко П.П., Согомонян Е.С. Основы технической диагностики: (Оптимизация алгоритмов диагностирования, аппаратурные средства). М.: Энергия, 1981. 320 с.
113. Сагунов В.И., Миндров А.Е., Беляева С.И. Структурные методы технической диагностики. Горький: Изд. ГПИ им. А.А.Жданова, 1982. 82 с.
114. Ксёнз С.П. Диагностика и ремонтопригодность радиоэлектронных средств. М.: Радио и связь, 1989. 248 с.
115. Идентификация и диагностика систем / A.A. Алексеев, Ю.А. Кораблёв, М.Ю. Шестопалов. М.: Издательский центр «Академия», 2009. 352 с.
116. Диагностирование электронных систем / Под ред. A.B. Мозгалевского. Л.: Судостроение, 1984. 224 с.
117. Микропроцессорные агрегатные комплексы для диагностирования технических систем / A.A. Горовой, В.Ф. Ващевский, Б.И. Доценко и др. К.: Тэхника, 1990. 168 с.
118. Тиристорный преобразователь Кемрон. Техническое описание. 38 с.
119. Портнягин H.H., Пкжке Г.А. Теория и методы диагностики судовых электрических средств автоматизации. Петропавловск-Камчатский: КамчатГТУ, 2003. 112 с.
120. Лакшминарайянан В. Методы повышения надежности электронных систем. Часть 1 / Chip News. Инженерная микроэлектроника. 2000. №8. С. 46-52.
121. Лакшминарайянан В. Методы повышения надежности электронных систем. Часть 2 / Chip News. Инженерная микроэлектроника. 2000. №9. С. 34-40.
-
Похожие работы
- Структурные методы анализа диагностических моделей и диагностирования непрерывных систем управления
- Разработка и анализ методов диагностирования специальных классов управляемых динамических систем
- Методы оценки вероятности выявления дефектов и повреждений при диагностировании оборудования добычи сероводородсодержащих газа и нефти
- Алгоритмы и программные средства диагностирования систем автоматического управления на основе теории чувствительности
- Метод диагностирования дефектов бортовых радиотехнических устройств
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность