автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Математическое моделирование процессов, характеризующихся диффузионными связями и случайными воздействиями в виде белого и цветного шумов
Автореферат диссертации по теме "Математическое моделирование процессов, характеризующихся диффузионными связями и случайными воздействиями в виде белого и цветного шумов"
На правах рукописи
ПАРАМОШИНА Ирина Геннадьевна
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ, ХАРАКТЕРИЗУЮЩИХСЯ ДИФФУЗИОННЫМИ СВЯЗЯМИ И СЛУЧАЙНЫМИ ВОЗДЕЙСТВИЯМИ В ВИДЕ БЕЛОГО И ЦВЕТНОГО ШУМОВ
Специальность 05.13.18 - Математическое моделирование, численные методы и комплексы программ
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук
Уфа-2008
003456914
Работа выполнена на кафедре математики в ГОУ ВПО «Уфимский государственный авиационный технический университет»
Научный руководитель д-р физ.-мат. наук, проф.
НАСЫРОВ Фарит Сагитович
Официальные оппоненты д-р физ.-мат. наук, проф.
Асадуллин Рамиль Мидхатович
канд. физ.-мат. наук, доц. КОЛОДИЙ Александр Михайлович
Ведущая организация Нижегородский государственный университет
им. Н.И.Лобачевского
Защита диссертации состоится 25 декабря 2008 г. в Ю00 часов на заседании диссертационного совета Д 212.288.06 при ГОУ ВПО «Уфимский государственный авиационный технический университет» по адресу: 450000, г. Уфа, Республика Башкортостан, ул. К. Маркса, д. 12, корп. 2.
С диссертацией можно ознакомиться в библиотеке университета.
Автореферат разослан ^
2008 г.
Ученый секретарь диссертационного совета д-р физ.-мат. наук, проф.
БУЛГАКОВА Г. Т.
ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИИ
Актуальность темы
В данной работе исследуются модели некоторых процессов, описываемых стохастическими дифференциальными уравнениями (СДУ) в частных производных параболического типа. Как правило, такие модели описывают поведение распределенных в пространстве систем, которые характеризуются тем, что их состояние меняется в различных точках пространства, между отдельными точками существуют «диффузионные связи» или потоки вещества, и, кроме того, имеют место неизбежные случайные воздействия внешней среды.
Первой является модель процесса реакции деления тяжелых ядер (U, Ри и др.), когда при взаимодействии с нейтронами некоторые тяжелые ядра атомов делятся на более легкие ядра с испусканием нескольких новых нейтронов и выделением значительной ядерной энергии. Строится модель, отражающая основные динамические свойства этой реакции, а именно изменение концентрации нейтронов. При этом учитываются случайные воздействия на процесс в виде шума. Математическая модель такого процесса описывается первой краевой задачей для стохастического дифференциального уравнения в частных производных параболического типа. С помощью аналогичного уравнения строится вторая модель - модель развития популяции в случайной среде, которая описывает изменение «плотности» популяции с учетом распространения особей в пространство и случайных внешних воздействий на процесс в виде шума. Третья рассматриваемая в работе модель описывает поведение волн в вязкой среде, и представляется в виде первой краевой задачи для уравнения Бюргерса со случайным внешним источником, которое, как известно, с помощью преобразования Хопфа-Коула сводится к уравнению параболического типа.
Стохастические дифференциальные уравнения в частных производных исследовались многими авторами (Розовским Б. Л., AIos Е., Bonnacorsi S., Da Prato G., Мао X., Markus L., Maslowski В., Sowers R. и др.), но точное решение подобных уравнений удается получить лишь в ограниченном числе случаев. Поэтому существенную роль в изучении моделей со случайными возмущениями играют способы численного построения решения. Огромный вклад в теорию численного моделирования стохастических дифференциальных уравнений внесли работы Кузнецова Д. Ф., Милыптейна Г. Н., Allen Е., Kloeden Р. Е., Platen Е. Однако по-прежнему проблема численного моделирования решения СДУ в ча-
стных производных является трудной как с теоретической, так и с вычислительной точки зрения. Поэтому задача преодоления сложности моделирования процессов, характеризующихся диффузионными связями и случайными воздействиями в виде белого и цветного шумов, является весьма актуальной.
Цель работы
Целью данной работы является разработка численно - аналитических методов решения стохастических дифференциальных уравнений в частных производных параболического типа и моделирование на основе этих методов процессов в распределенных системах.
Поставленная цель достигается в результате решения следующих задач:
1. Разработки аналитического аппарата для решения стохастических дифференциальных уравнений в частных производных параболического типа;
2. Моделирования процессов, описываемых стохастическими дифференциальными уравнениями в частных производных параболического типа, а именно, процесса изменения концентрации нейтронов при реакции деления тяжелых ядер, процесса развития популяции в случайной среде и процесса распространения волн в вязкой среде со случайным источником;
3.Исследования структуры решения стохастических дифференциальных уравнений;
4. Оценки погрешности численных результатов.
Методы исследования
Аналитические исследования проводились с использованием методов теории случайных процессов, математической физики, функционального анализа, вычислительной математики и техники симметричных интегралов, разработанной в работах Насырова Ф. С. Использовался метод вычислительного эксперимента на ПЭВМ. Расчеты проводились в среде МаЙаЪ с использованием стандартных пакетов.
На защиту выносятся:
1. Новый аналитический метод решения одного широкого класса нелинейных стохастических дифференциальных уравнений в частных производных.
2. Новый способ численно-аналитического решения и моделирования процессов, которые характеризуются «диффузионными связями» и случайными воздействиями и описываются стохастическими дифференциальными уравне-
ниями в частных производных параболического типа и стохастическими уравнениями Бюргерса, а именно, процесса изменения концентрации нейтронов при реакции деления тяжелых ядер, процесса развития популяции в случайной среде и процесса распространения волн в вязкой среде со случайным источником;
3. Факторизация стохастических дифференциальных уравнений по случайному сносу, факторизация фундаментальных решений параболических уравнений, соответствующих стохастическим дифференциальным уравнениям, по коэффициенту переноса.
4. Оценка погрешности численных результатов, полученных для стохастического уравнения Бюргерса, с помощью вычислительного эксперимента.
Научная новизна
1. Разработан новый аналитический метод решения для моделей процессов в распределенных системах, учитывающих «диффузионные связи» и случайные воздействия в виде шума, которые описываются с помощью СДУ в частных производных параболического типа, заключающийся в том, что решение исходного СДУ в частных производных сводится к решению двух классических дифференциальных уравнений, но со случайными коэффициентами. Этот способ применим и к более общему классу стохастических дифференциальных уравнений в частных производных.
2. Впервые выявлена структура решения одного класса стохастических дифференциальных уравнений, которая включает в себя стохастические дифференциальные параболического типа. Определена структура одномерного диффузионного процесса и установлено, что множество стохастических дифференциальных уравнений можно разбить на классы эквивалентности по случайному сносу, а фундаментальные решения соответствующих параболических уравнений можно факторизовать по коэффициенту переноса.
3. Предложен новый способ численно-аналитического решения и моделирования процессов, описываемых СДУ в частных производных параболического типа и стохастических уравнений Бюргерса, отличающийся тем, что вместо существующих громоздких методов численного решения стохастических дифференциальных уравнений можно воспользоваться классическими методами численно-аналитического решения двух обычных дифференциальных уравнений в частных производных, где в качестве коэффициентов или краевых условий присутствует винеровский процесс. Методом вычислительного эксперимента проведена оценка погрешности для численных результатов, полученных для стохастического уравнения Бюргерса.
Теоретическая и практическая значимость
Разработанный в рамках данной работы численно-аналитический метод решения стохастических дифференциальных уравнений в частных производных может быть использован для исследования моделей, описывающих различные физические, механические, биологические процессы, характеризующиеся «диффузионными связями» и случайными воздействиями в виде шума.
Достоверность результатов диссертационной работы обусловлена строгостью аналитических доказательств полученных результатов. Сходимость численных результатов установлена методом вычислительного эксперимента.
Апробация работы
Основные результаты диссертации были представлены и обсуждались на научных семинарах и конференциях, соответствующих профилю диссертации. В частности были сделаны доклады:
1) на ХШ мевдународной научной конференции студентов, аспирантов и молодых ученых "Ломоносов" (Москва, 2006);
2) на XIV международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов" (Москва, 2007);
3) на XV международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов" (Москва, 2007);
4) на Международной школе-семинаре памяти Н. В. Ефимова (Абрау-Дюрсо, 2008 г.);
5) на XV Всероссийской школе-коллоквиуме по стохастическим методам (Волгоград - Волжский, 2008 г.);
6) на семинаре в институте математики с ВЦ УНЦ РАН, руководитель профессор Жибер А. В. (Уфа, 2008 г.);
7) на семинарах по теории вероятностей и математической статистике кафедры математики УГАТУ, руководитель профессор Насыров Ф. С.
Публикации
Основные результаты диссертации опубликованы в работах [1]-[10], в том числе 4 публикации в изданиях, рекомендованных ВАК, и 6 публикаций в других изданиях.
Структура и объем диссертации
Диссертационная работа состоит из введения, трех глав, разбитых на параграфы, заключения, библиографического списка литературы, включающего 62 работы отечественных и зарубежных авторов. Объем диссертации составляет 93 страницы.
КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ
Введение. Во введении обосновывается актуальность работы, сформулированы ее цели и задачи. Кроме этого, дан краткий обзор по тематике вопроса, сформулированы основные результаты, полученные в работе, излагается описание диссертации по главам.
Глава 1. Постановка задачи.
В данной главе строятся математические модели процессов, характеризуемых «диффузионными связями» и случайными воздействиями в виде шума.
Первая модель связана с процессом изменения концентрации испускаемых при реакции деления тяжелых ядер (U, Ри и др.) нейтронов. Модель отражает основные динамические свойства этой реакции, а именно, скорость изменения концентрации c(t,x) нейтронов. Пусть в начальный момент времени концентрация нейтронов равна с(0,х) = const. Введем предположение о быстром уходе нейтронов, вылетевших за пределы рассматриваемого объема. Это позволяет считать концентрацию нейтронов на границе практически равной нулю с(/)0) = с(/,1) = 0. Модель, описывающая такой процесс, представляет собой первую краевую задачу для СДУ в частных производных параболического типа: с%х) = Dc"„(t,x) + Rc(t,x) + a(i,x)W'(t), с( О, х) = const, c(t,0) = 0, c(t, 1) = О, где D - коэффициент диффузии нейтронов, R - коэффициент пропорциональности скорости изменения концентрации нейтронов к самой концентрации, слагаемое W'(t) есть формальная производная винеровского процесса в смысле Ито, а само уравнение следует рассматривать в интегральной форме.
Второй рассматриваемый процесс - процесс развития популяции, находящейся под воздействием случайных возмущений. Пусть u(t,x) - плотность популяции, R - удельная скорость роста численности, которую можно предста-
вить как разность b-d удельной рождаемости Ъ и удельной смертности d, D - коэффициент диффузии особей популяции в пространстве. Считаем, что плотность популяции на границе области равна нулю, а в начальный момент времени и(О, х) = const. Модель такого процесса описывается следующей первой краевой задачей:
u'(t, х) = Du^ (t, х) + Ru{t, х) + c(t, x)W'(t),
и(0,х) = const, u(t, 0) = 0, м(/,1) = 0. ^
Здесь слагаемое W'(t) есть формальная производная винеровского процесса в смысле Ито, а само уравнение следует рассматривать в интегральной форме. Таким образом, моделирование процесса роста популяции в случайной среде и реакции деления тяжелых ядер привело к аналогичным краевым задачам для СДУ в частных производных параболического типа.
В качестве третьего процесса рассматривается модель распространения волн в вязкой среде со случайным внешним источником, которая описывается стохастическим уравнением Бюргерса:
и\ (t, х) = (t, х) + ы(/, х)их (t, х) + oW'(t),
te[0,T],xe[ 0,1], (2)
с начальными и граничными условиями
м(0,х) = sin 2та, u(t,0) = u(t,l) = JV(t). (3)
Глава 2. Разработка аналитического аппарата, необходимого для решения поставленных задач.
Глава 2 посвящена аналитическому исследованию СДУ и их детерминированных аналогов.
В § 2.1 приводятся основные определения и понятия стохастического исчисления и теории симметричных интегралов. Пусть W(t) — W(t,m), W(0) = 0, ie[0,-K») - стандартный винеровский процесс, заданный на вероятностном пространстве с фильтрацией (Q,F,(F,),P). Вводятся в простейшем случае определения стохастических интегралов Ито и Стратоновича и формула Ито связи между ними.
Рассматривается стохастическое дифференциальное уравнение в форме
Ито:
dy(t) = a(t, y(t))dJV(t) + b(t, y{t))dt, t > 0,
с F0 - измеримым начальным условием у(0) - у0. Приводятся определения решений СДУ, теоремы о существовании и единственности решений, явные формулы решений для некоторых классов СДУ.
Вводятся основные понятия, связанные с симметричным интегралом, который является детерминированным аналогом стохастического интеграла Стратоновича. Пусть ^(s), ¿e[0,ao) - произвольная непрерывная функция.
Рассмотрим разбиения Т„, neN, отрезка [О,/]: Т„ ={t[n)}, 0 = t{0n) < t¡"' <...
neN, такие, что Г„сГ,+1, neN и А„ = тах|^'О
л * ' 1
при я—со. Через X("'(s),se[0,f] обозначим ломаную, построенную по функции X(s) и отвечающую разбиению Тп, а через NM(t,u) соответствующую ей индикатрису Банаха. Введем следующие обозначения: А4"1 = ~ 4-!>
Определение. Симметричным интегралом называется
если предел в правой части равенства существует и не зависит от выбора последовательности разбиений T„,neN.
Приводятся формулы для вычисления симметричного интеграла. Рассматриваются детерминированные аналоги СДУ, построенные на основе симметричного интеграла. Приводится метод, позволяющий свести решение такого уравнения к решению цепочки обыкновенных дифференциальных уравнений первого порядка.
В § 2.2 приводятся основные теоретические результаты о решении некоторых классов нелинейных СДУ в частных производных, на основе которых затем будет построен новый метод аналитического решения и численного моделирования. Рассматривается уравнение в частных производных с симметричным интегралом относительно неизвестной функции и = u{t,x), х ~ (xv—>xn) > вида
{
Яч г1к„
ds +
u(t, х) - и(0,х) =
s,X(s),x, и, — г т~
а*, дк}...еу
(4)
+я
ди дх,
дки
к к Х1 *п
где к1+...+кл = к<т, в области ($,х) е И.' хЯ". Здесь в правой части уравнения (4) мы опустили аргументы у функции и ~ и(я,х).
Решением уравнения (4) называется функция и($,х) = и(з,х,Х(з)) такая, что, если ее подставить вместе со своими производными в уравнение (4), то, во-первых, имеют смысл интегралы в правой части уравпения, и, во-вторых, она обращает уравнение (4) в тождество.
Решение ищется в виде и(з,х)~и(з,х,Х(з)) в классе функций ,
имеющих непрерывные частные производные и'х, и[ и непрерывные частные производные по переменным х1,...,х„ до т -го порядка включительно.
Теорема. Функция и(я,х,Х(я)) из приведенного выше класса функций является решением уравнения (4) тогда и только тогда, когда она удовлетворяет паре соотношений:
/
ди_ дки
? - »••♦5 Ь- V V
(5)
ди сЬс,
дки
\
х[ *п У
(6)
где в правой части соотношения (5) и = х, V), и и = и(з,х,Х(.ч)) в правой части соотношения (6).
Показано, что решение для одного класса дифференциальных уравнений с симметричным интегралом, если оно существует, имеет специальную структуру. Рассматривается уравнение в частных производных с симметричным интегралом относительно неизвестной функции и = , х = (х,,...,л:п), вида
/ \
ди дки
8,х{$),х,и,
о к
дх, Э'
+ ^(¿.х.и)*^^), где кх+...+кп = к<т
в области (л,х) е Л* х Я". Здесь в правой части уравнения (7), как и выше, мы опустили аргументы у функции и = х). Показано, что решение уравнения (7) имеет структуру и(я,х,Х(з)) = ф{з,х,ч + С(з,х)), где функции ф(з,х,у) и С(я,х) являются решениями классических дифференциальных уравнений.
Пусть в уравнении (7) функция ЛГ(^) есть типичная траектория вине-ровского процесса IV(я), функции
f
ди дки
s,v,x,u,
1 п
и F2(s,x,u) -
детерминированные. Поскольку вся вероятностная информация о случайном процессе u(s,x) = <ft(s,x,W(s)+C(s,x)) содержится в винеровском процессе с гладким случайным сносом £(s,x) = W(s) + C(s,x), то классы уравнений вида (7) с X(s) = W(s) разбиваются на классы эквивалентности по случайному сносу
При достаточно общих предположениях показано, что функция m(í,x) является решением уравнения в частных производных (7) тогда и только тогда, когда она удовлетворяет при каждом х обыкновенному стохастическому дифференциальному уравнению
du = F2 (s, х, £0, х)) * d¿;(s, х)+ф[ (5, х, %{s,x))ds,
где g(s,x) = W(s) + C(s,x), F2(s,x,¿;) = F2(s,x,<fi(s,x,¿;)).
Отмечено, что для уравнения вида (7) наряду с задачей Коши можно поставить и решать краевые задачи. Однако, в этом случае необходимо учесть следующее: поскольку решение уравнения вида (7) ищется в форме u(s,x,W(s)), то граничные условия должны быть согласованы с данным видом решения и, вообще говоря, зависеть от поведения процесса W(s).
На примере одномерного диффузионного процесса, который определяется как решение стохастического дифференциального уравнения
77(0 - ?7(0) = Ф)) * dW(s) + j¿(5, Г] (s))ds, (8)
показано, что решение (8) представляется в виде детерминированной функции
tj(s) = (p(s, W(s) + C(s)) от винеровского процесса со случайным сносом.
Множество стохастических дифференциальных уравнений вида (8), удовлетворяющих перечисленным выше предположениям, можно разбить на классы эквивалентности по случайному сносу С (s), поскольку вероятностная структура решений зависит от винеровского процесса со случайным сносом fF(s) + C(i). При этом винеровский процесс со случайным сносом ¿¡(s) = W(s) + С (s) является решением СДУ:
Ms, <p{s,Ç(s))) - — ф, х) |i=i(j)
--* m
^ (0) = W(0) + С(0).
Это позволило выявить связь между фундаментальными решениями уравнения Колмогорова-Фоккера-Планка с произвольными гладкими коэффициентами и такого же уравнения с единичным коэффициентом диффузии и некоторым коэффициентом переноса. Показано, что знание переходной плотности распределения процесса W(s) + C(s) позволяет построить фундаментальные решения для целого класса уравнений Колмогорова.
В § 2.3 изучаются линейные и квазилинейные СДУ в частных производных, с помощью которых описываются исследуемые в работе модели. В частности, рассматривается СДУ в частных производных параболического типа: и\ (î, х) = Au{t, х) + f{t, х, w,u(t, х)) + b{t, х, w, u{t, x))W\t), u(O,x) = u0(x),
где x e R", формальная производная W'(t) понимается в смысле Ито,
п Q2 п g
А = Хд(t,x,w) ——-+Yd>(f,x>w)T~ -
ij'\ OX fix J ,»! ОТ,
эллиптический оператор второго порядка, в котором av(t,x, w) и d,it,x,w) -предсказуемые и гладкие функции, а матрица {я;) {t,x,w)}"r] - положительно определенная. Показано, что структура решения этого уравнения имеет вид uit,x) = </>it,x,W(t) + C(t,x)), где фЦ,х,у) и C(t, х) - гладкие случайные функции. Причем неизвестную функцию ф(?,х,у) следует искать из соотношения
а функцию C(t,x) - из уравнения: C't{t,x) = AC(t,x) +
b{t,x,<i>(t,x,W{t) + C{t,x))) где оператор AC(t,x) имеет вид:
АС{1,х) = ^а^,хШ,х,ф)Ъ'ф{их,ф)С'х {Ux)C[ {t,x)^
и-1 ' ;
+ [b(t, X, ф) + Ъ\ (t, х, ФЩ (t, X, y(t, х))]с;. ] +
+ /(/, х, ф{и х, y{t, х))) - ф[{и X, y(t, х)) ---b't(t,xj(t,x,y(t,x))),
где Ъ(1,х,ф) = b(t,xJ(t,x,W(t)+C(t,x))), y(t,x)^W(t) + C(i,x).
Рассматриваются частные случаи стохастических дифференциальных уравнений вида (10). Таким образом, решение стохастического дифференциального уравнения в частных производных параболического типа сводится к решению для классического, а не стохастического, уравнения, но со случайными коэффициентами.
Рассматривается задача Коши для стохастического уравнения Бюргерса М; (t, х) = ¡м'а (t, x) + f (t, х, u(t, x)) -u(t, x)u'x (t, x) + + b{t,x,u{t,x))W'(t), u{ 0,х) = и0(х),
где x e R, fi - постоянный коэффициент вязкости среды, формальная производная W'(t) понимается в смысле Ито, а функция / непрерывна и удовлетворяет условию Липшица. Само уравнение следует понимать в интегральной форме. Показано, что решение такого уравнения представляется в виде u(t,x) = 0(t,x,W(t) + C(t,x)), где $(t,x,y) и C{t,x) - гладкие случайные функции. Причем неизвестную функцию C(t,x) следует искать из соотношения:
+ C'x(.t, x)[b'x (t, х, ф) + Ъ'ф (t, х, ф)ф'х (t, x,y(t, х))] +
b(t, x, ф)
+ 777~ 77 [/^С & Ж *))" ФИ, х, у(1, х))ф'х (I, х, у{1, х)) -
- ф[(и X, у((, х))] + 1 [/(;, х, ФИ, X, у(и х))) -ЬЦ,х,ф)
где Ь({,х,ф) = Ь({,х,ф(1,хЛ(() + С(1,х))), у$,х) = Г(0 + С(/,х).
Глава 3. Численно—аналитическое решение и моделирование поставленных задач.
Поскольку при определенных условиях выявлена структура решения СДУ в частных производных параболического типа, которая имеет вид и(я, х) = х, 1¥(я) + С(я, х)), то, с точки зрения моделирования решений, достаточно рассматривать уравнения с единичными коэффициентами перед шумом.
В §3.1 приведен алгоритм моделирования стандартного винеровского процесса.
В § 3.2 рассматривается первая краевая задача вида (1), которая описывает изменение концентрации нейтронов при процессе реакции деления тяжелых ядер с учетом случайных воздействий, и одновременно развитие популяции в случайной среде. Поскольку структура решения имеет вид = + где неизвестная функция С((,х) является, в свою
очередь, решением первой краевой задачи:
С,'(7, х) = ((, х) + ЯС(/, х) + аЯЩО, С(0,х) = со1и*, С(и = С(М) = -Г( о, (11)
то предлагается следующий алгоритм решения:
Алгоритм.
1. Моделируется траектория броуновского движения Ж^);
2. С помощью метода, описанного во второй главе текущей работы, выводится уравнение (11) в частных производных параболического типа на функцию С(я,х). В этом уравнении отсутствуют слагаемые в виде стохастических интегралов, что позволяет применить классические численные методы для построения его решения;
3. Первая краевая задача для уравнения на функцию C(s,x) решается аналитическими или численными методами. Ниже предложена неявная конечно-разностная схема для построения решения задачи (11);
4. Строится решение исходной первой краевой задачи (1), как функция ü(t, х, W(t)) = afV(t) + C(t, x).
Для решения первой краевой задачи (11) используется неявная конечно-разностная схема:
Г -Г С -9 С 4-С
п+\,т п+1,т п+l.nt+l +
г h2 "+la
+ crRWn+l, и = 0,...,ЛГ-1, m = \,...,М — \, C0.m= const, Cnfi = ~Wn{t), CnM=-W„{t).
Функция Wn является аппроксимацией W(t).
В § 3.4 рассматривается первая краевая задача вида (2), которая описывает затухание волн в вязкой среде со случайным внешним источником. Решение имеет вид u(t, х, W(t)) = aW{t) + C(t, х), где неизвестная функция C(t,x) является, в свою очередь, решением первой краевой задачи:
C[{t,x) = C»0(t,x) + {C{t,x) + oW(t))Cx{t,x),
С(0,х) = sin 2жс, C(i,0) = C(i,l) = 0. (12)
Таким образом, первая краевая задача (2) для стохастического уравнения Бюргерса свелась к решению первой краевой задачи (12) для уравнения того же типа, но уже без стохастического интеграла, следовательно, для построения решения исходной задачи, можно применить алгоритм, аналогичный предложенному в предыдущем параграфе.
Для построения численного решения первой краевой задачи (12) используются комплексные гармонические вейвлеты как базисные функции в методе Галеркина. Строится комплекснозначный базис Листлвуда - Пэйли
1 4 к О) = ^7 X ехр[-2ш(х - —)],
где j = 0,...,г и к = 0,...,2У -1, определенный при помощи материнского вейв-лета:
V(x) = ехР(4/жс) ~ ехр(2/ях) lim
Решение ищется в виде:
= (13)
;=0*=0
Подстановка выражения (13) в уравнение (12), позволяет получить систему уравнений на неизвестные коэффициенты а'к (?), которая выражает конечно-пространственное отображение уравнения (12) на пространство вейвлетов. Методом вычислительного эксперимента получена оценка погрешности численного решения. Исследуется поведение решения при изменении коэффициента вязкости и коэффициента шума в уравнении (2).
Основные результаты работы
1) Разработан новый аналитический метод, с помощью которого решение стохастических дифференциальных уравнений в частных производных параболического типа, описывающих модели процессов с диффузионными связями и внешними воздействиями в виде случайных флуктуаций, сводится к решению двух классических дифференциальных уравнений, но со случайными коэффициентами. Показано, что этот способ применим к более общему классу стохастических дифференциальных уравнений в частных производных;
2) Выявлена структура решения одного класса стохастических дифференциальных уравнений, которая включает в себя стохастические дифференциальные уравнения параболического типа, описывающие рассматриваемые в работе модели процессов изменения концентрации нейтронов при реакции распада тяжелых ядер, развития популяции в случайной среде и затухания волн в вязкой среде со случайным внешним источником. Определена структура одномерного диффузионного процесса и установлено, что множество стохастических дифференциальных уравнений можно разбить на классы эквивалентности по случайному сносу, а фундаментальные решения соответствующих параболических уравнений можно факторизовать по коэффициенту переноса;
3) Предложен новый способ численно-аналитического решения и моделирования стохастических дифференциальных уравнений в частных производных параболического типа и стохастических уравнений Бюргерса, который заключается в том, что, опираясь на аналитические результаты работы, исходную задачу можно свести к решению двух обычных дифференциальных уравнений в частных производных, где в качестве коэффициентов или краевых условий при-
сутствует винеровский процесс, и воспользоваться классическими численно-аналитическими методами. Методом вычислительного эксперимента проведена оценка погрешности для численных результатов, полученных для стохастического уравнения Бюргерса.
ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ
В рецензируемых журналах из списка ВАК
1. Квазимера в пространстве С[0,1], порожденная «тепловым» уравнением четвертого порядка / И. Г. Парамошина // Вестник УГАТУ, 2003. Т. 4. № 2. С. 158-163.
2. О структуре одномерного диффузионного процесса / Ф. С. Насыров, И. Г. Парамошина // Вестник УГАТУ, 2006. Т. 7. № 2 (15). С. 127-130.
3. О построении квазимеры в пространстве (С[0,1], В(С[0,1])) / Ф. С. Насыров, И. Г. Парамошина // Обозрение прикладной и промышленной математики, 2001, Т. 8, выпуск 1. № 7. С. 279-280.
4. Численно - аналитическое решение стохастического уравнения Бюргерса / И. Г. Парамошина // Обозрение прикладной и промышленной математики, 2008, Т. 15, выпуск 4. № 10. С. 644-645.
В других изданиях
5. О построении квазимеры на пространстве С[0,1] / Ф. С. Насыров, И. Г. Парамошина // Актуальные проблемы математики. Математические модели современного естествознания: межвуз. сборник. Уфа: Изд-во УГАТУ, 2002. С. 105-109.
6. О построении квазимеры в пространстве С[0,1] / И. Г. Парамошина // Сборник трудов региональной школы-конференции для студентов, аспирантов и молодых ученых по математике и физике. Уфа: Изд-во Башкирского университета, 2001. С. 16.
7. О структуре переходных плотностей диффузионного процесса / И. Г. Парамошина // Материалы ХШ международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов". М.: Изд-во СП «Мысль», 2006. стр. 104.
8. О структуре двумерного диффузионного процесса / И. Г. Парамошина // Материалы XTV международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов". М.: Изд-во СП «Мысль», 2007. Т. 2. С. 91.
9. О решении одного класса стохастических дифференциальных уравнений в частных производных параболического типа / И. Г. Парамошина // Материалы XV международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов". М.: Изд-во СП «Мысль», 2008. С. 42.
10. О решении стохастического уравнения Бюргерса / И. Г. Парамошина // Труды участников международной школы-семинара по геометрии и анализу памяти Н.В. Ефимова. Ростов-на-Дону: Изд-во РГУ, 2008. С. 237-239.
Соискатель
И.Г. Парамошина
ПАРАМОШИНА Ирина Геннадьевна
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ, ХАРАКТЕРИЗУЮЩИХСЯ ДИФФУЗИОННЫМИ СВЯЗЯМИ И СЛУЧАЙНЫМИ ВОЗДЕЙСТВИЯМИ В ВИДЕ БЕЛОГО И ЦВЕТНОГО ШУМОВ
Специальность 05.13.18 - Математическое моделирование, численные методы и комплексы программ
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата физико-математических наук
Подписано в печать 21.11.2008. Формат 60x84 1/16. Бумага офсетная. Печать плоская. Гарнитура Тайме. Усл. печ. л. 1,0. Усл. кр.-отт 1,0. Уч.-изд.л. 0,9. Тираж 100 экз. Заказ № 555
ГОУ ВПО Уфимский государственный авиационный технический университет Центр оперативной полиграфии УГАТУ 450000, Уфа-центр, ул. К. Маркса, 12
Оглавление автор диссертации — кандидата физико-математических наук Парамошина, Ирина Геннадьевна
Введение.
1 Постановка задачи.
1.1 Процесс реакции деления тяжелых ядер со случайными внешними воздействиями.
1.2 Процесс развития популяции, находящейся под воздействием случайных возмущений.
1.3 Модель, описываемая стохастическим уравнением
Бюргерса.
2 Разработка аналитического аппарата, необходимого для решения поставленных задач.
2.1 Необходимые сведения.
2.1.1 Стохастические интегралы и стохастические дифференциальные уравнения.
2.1.2 Симметричный интеграл как обобщение стохастического интеграла Стратоновича. Детерминированные аналоги стохастических дифференциальных уравнений.
2.2 Исследование некоторых классов дифференциальных уравнений в частных производных с симметричным интегралом.
2.2.1 Связь дифференциальных уравнений с симметричным интегралом с классическими дифференциальными уравнениями. Структура решения.
2.2.2 Структура диффузионного процесса и фундаментальное решение уравнения Колмогорова-Фоккера-Планка.
2.3 Стохастические дифференциальные уравнения в частных производных параболического типа и стохастическое уравнение Бюргерса.
2.3.1 Стохастические дифференциальные уравнения в частных производных параболического типа: связь с классическими дифференциальными уравнениями, структура решения.
2.3.2 Стохастическое уравнение Бюргерса.
3 Численно-аналитическое решение и моделирование исследуемых процессов.
3.1 Моделирование траектории винеровского процесса.
3.2 Численно-аналитическое решение моделей процесса реакции деления тяжелых ядер и процесса развития популяции в случайной среде.
3.3 Численно-аналитическое решение стохастического уравнения Бюргерса.
Введение 2008 год, диссертация по информатике, вычислительной технике и управлению, Парамошина, Ирина Геннадьевна
В данной работе исследуются модели некоторых процессов, описываемых стохастическими дифференциальными уравнениями (СДУ) в частных производных параболического типа. Как правило, такие модели описывают поведение распределенных в пространстве систем, которые характеризуются тем, что их состояние меняется в различных точках пространства, между, отдельными точками существуют "диффузионные связи" или потоки вещества, и, кроме того, имеют место неизбежные случайные воздействия внешней среды.
Первой является модель процесса реакции деления тяжелых ядер и др.), когда при взаимодейстсвии с нейтронами некоторые тяжелые ядра атомов делятся на более легкие ядра с испусканием нескольких новых нейтронов и выделением значительной ядерной энергии. Строится модель, отражающая основные динамические свойства этой реакции, а именно изменение концентрации нейтронов. При этом учитываются случайные воздействия на процесс в виде шума. Математическая модель такого процесса описывается первой краевой задачей для стохастического дифференциального уравнения в частных производных параболического типа. С помощью аналогичного уравнения представляется вторая модель - модель развития популяции в случайной среде, которая описывает изменение "плотности" популяции с учетом распространения особей в пространстве и случайных внешних воздействий на процесс в виде шума. Третья рассматриваемая в работе модель описывает поведение волн в вязкой среде, и представляется в виде первой краевой задачи для уравнения Бюргерса со случайным внешним источником, которое, как известно, с помощью преобразования Хопфа-Коула сводится к уравнению параболического типа.
Возникновение и развитие теории стохастических интегралов и стохастических дифференциальных уравнений восходит к К. Ито. В 1942 году ([56]) эта теория была впервые применена к проблеме Колмогорова о существовании марковских процессов с заданным свойством. А.
Н. Колмогоров [15] и В. Феллер [40] успешно получали марковские процессы путем решения дифференциальных уравнений для переходных вероятностей, введя тем самым аналитический подход в теорию вероятностей.
В отличие от этого аналитического метода, вероятностный подход, предложенный Леви и строго обоснованный Ито, дает возможность непосредственного построения диффузионных процессов как решений стохастических дифференциальных уравнений вида dy(t) = a(t, y(t))dt + b{t, y(t))dW(t), где W(t) = Ж(0) = 0, t 6 [0,+oo), - стандартный винеровский процесс. Винер и Леви показали, что почти все траектории броуновкого движения нигде не дифференцируемы, следовательно интеграл по dW (s) нельзя определить в обычном смысле. Чтобы обойти эту проблему, Ито вводит понятие "стохастических интегралов", и получает возможность строить диффузионные процессы как единственные решения стохастических дифференциальных уравнений при заданных начальных значениях и удовлетворяющих условию Липшица коэффициентах.
В Советском Союзе С. Н. Бернштейн [5] независимо ввел понятие стохастического дифференциального уравнения. Он понимал под этим понятием последовательность стохастических разностных по t уравнений и при некоторых предположениях доказывал сходимость одномерных распределений их решений к пределу при неограниченном уменьшении шага по t. При этом в стороне оставался вопрос о существовании предельного процесса, который естественно было бы назвать решением стохастического дифференциального уравнения. В работах И. И. Гихмана [7] уже есть решения подобных уравнений и аналитически описаны некоторые их свойства.
Сегодня теория Ито применена не только к марковским процессам, но и к большому классу случайных процессов. Этот подход дает мощное орудие для описания и анализа случайных процессов. Стало возможно построение и изучение процессов сложной природы с помощью более простых процессов, таких как винеровский и пуассоновский. Часто теория Ито называется случайным анализом или стохастическим исчислением, к настоящему времени этой теории посвящено огромное количество литературы. Часть этой литературы может быть найдена в ссылках: в книгах: И. И. Гихмана, А. В. Скорохода [9], С. Ватанабэ, Н. Икэда [6]. Для стохастических дифференциальных уравнений получены условия существования и единственности решений при различных условиях на коэффициенты ([19], [59], [64], [66]).
Под явными формулами для решений СДУ понимаются обыкновенное дифференциальное уравнение или цепочка таких уравнений, которые позволяют найти решение исходного СДУ. Хотя теория обыкновенных стохастических дифференциальных уравнений разработана достаточно полно, явные формулы для решений известны лишь применительно к достаточно узкому классу уравнений |2], [6], [19].
В работах [6], [12] рассматриваются такие вероятностные методы решения СДУ как преобразование сноса и случайная замена времени. Суть этих методов заключается в преобразовании исходного вероятностного пространства. При этом на исходное пространство и на само уравнение накладываются дополнительные условия, что значительно сужает область применения таких методов для решения.
Изначально стохастические уравнения Ито предназначались для описания на вероятностном языке диффузии в газах и жидкостях (первые варианты такого описания были получены в работах А. Энштейна, М. Смолуховского [42], Н. Винера [65], И. И. Гихмана [7] и др.). Однако, впоследствии оказалось, что они являются очень удобным аппаратом для решения многих других физических и инженерных задач. В частности, эти уравнения с успехом применяются в теории фильтрации случайных процессов диффузионного типа. Причем, как показано в работе [19], само уравнение для фильтрационной плотности представляет собой пример стохастического дифференциального уравнения в частных производных.
Подобные же уравнения возникают во многих областях знаний -физики, химии, биологии и других. В работах: [16, 36, 46, 51, 58, 61] собраны некоторые примеры таких уравнений. Характерной особенностью почти всех упомянутых работ является то, что в них строятся и исследуются модели, которые описываются стохастическими дифференциальными уравнениями в частных производных, и для них доказываются теоремы о существовании и единственности решений, но способов решения не предложено. В работе [14] получено точное решение стохастических задач для ряда моделей (марковские процессы с конечным числом состояний, гауссовский марковский процесс и функции от этих процессов). Говоря о стохастических дифференциальных уравнениях, следует также упомянуть работу [49], в которой условия существования и единственности решения получены для случая многомерного винеровского процесса и для нелинейных стохастических уравнений в частных производных.
Нелинейное стохастическое уравнение Бюргерса рассматривалось в работе [48]. Хотя литература, посвященная уравнению Бюргерса огромна, оно продолжает оставаться предметом многих работ ( [1], [34], [43], [44], [55]). При этом в последнее время в центре внимания оказывается именно уравнение Бюргерса с источником ( [34], [43]). В работах [43], [44] получены точные решения задачи Коши для уравнения Бюргерса в случае, когда зависимость от координаты функции источника сингулярная, то есть описывается либо 5-функцией, либо ее производной. В работе [34] предлагается метод, позволяющий получать решения для случая непрерывной функции источника.
Для численного решения стохастических дифференциальных уравнений существует общий метод Быоси [50], посредством которого может быть исследован, в принципе, широкий класс стохастических систем с использованием метода Монте-Карло. Этот метод, в силу большой общности, недостаточно эффективен для численного решения СДУ, поскольку он ориентируется на общие свойства стохастических систем и не учитывает специфическую структуру стохастических дифференциальных уравнений, характеризуемую их коэффициентами сноса и диффузии.
Другой известный численный подход Г. Дж. Кушнера [18] основывается на дискретизации как временной переменной, так и пространственных переменных. В результате этого случайные процессы превращаются в цепи Маркова с конечным числом состояний. При численной реализации этого подхода приходится иметь дело с матрицами перехода цепей Маркова, что приводит к значительным вычислительным затратам. Поэтому данный подход применим к задачам с небольшой размерностью пространства состояний.
Д. Ф. Кузнецов в монографии [17] строит явные и неявные сильные одношаговые и двухшаговые численные методы для решения СДУ и систем таких уравнений. В работе [17] также представлены результаты численного моделирования решений систем СДУ, описывающих различные физические, биологические, химические и др. процессы. В работе Д. Ф. Кузнецова используется подход к численному решению стохастических дифференциальных уравнений, который основан на конечной дискретизации временного интервала и численном моделировании решения СДУ в дискретные моменты времени с помощью стохастических аналогов формулы Тейлора и специальных методах аппроксимации стохастических интегралов. Важнейшей особенностью стохастических аналогов формулы Тейлора является присутствие в них, так называемых, повторных интегралов Ито или Стратоновича, которые являются функционалами сложной структуры. Проблемы численного моделирования таких интегралов является сложной как с теоретической, так и с вычислительной точки зрения. Отметим также работы [21], [45], [57], [60], в которых строятся модели различных процессов, описываемых стохастическими дифференциальными уравнениями, и приводятся конечно-разностные схемы для их численного решения.
Однако, следует заметить, что во всех упомянутых выше работах методы для численного моделирования стохастических дифференциальных уравнений разработаны только для обыкновенных еду.
Цель работы
Целью данной работы является разработка численно - аналитических методов решения стохастических дифференциальных уравнений в частных произ-водных параболического типа и моделирование на основе этих методов процессов в распределенных системах.
Поставленная цель достигается в результате решения следующих задач:
1. Разработки аналитического аппарата для решения стохастических дифференциальных уравнений в частных производных параболического типа;
2. Моделирования процессов, описываемых стохастическими дифференциальными уравнениями в частных производных параболического типа, а именно, процесса изменения концентрации нейтронов при реакции деления тяжелых ядер, процесса развития популяции в случайной среде и процесса распространения волн в вязкой среде со случайным источником;
3. Исследования структуры решения стохастических дифференциальных уравнений;
4. Оценки погрешности численных результатов.
Методы исследования
Аналитические исследования проводились с использованием методов теории случайных процессов, математической физики, функционального анализа, вычислительной математики и техники симметричных интегралов, разработанной в работах Насырова Ф. С. Использовался метод вычислительного эксперимента на ПЭВМ. Расчеты проводились в среде Matlab с использованием стандартных пакетов.
На защиту выносятся:
1. Новый аналитический метод решения одного широкого класса нелинейных стохастических дифференциальных уравнений в частных производных.
2. Новый способ численно-аналитического решения и моделирования процессов, которые характеризуются диффузионными связями и случайными воздействиями и описываются стохастическими дифференциальными уравнениями в частных производных параболического типа и стохастическими уравнениями Бюргерса, а именно, процесса изменения концентрации нейтронов при реакции деления тяжелых ядер, процесса развития популяции в случайной среде и процесса распространения волн в вязкой среде со случайным источником;
3. Факторизация стохастических дифференциальных уравнений по случайному сносу, факторизация фундаментальных решений параболических уравнений, соответствующих стохастическим дифференциальным уравнениям, по коэффициенту переноса.
4. Оценка погрешности численных результатов, полученных для стохастического уравнения Бюргерса, с помощью вычислительного эксперимента.
Научная новизна
1. Разработан новый аналитический метод решения для моделей процессов в распределенных системах, учитывающих диффузионные связи и случайные воздействия в виде шума, которые описываются с помощью СДУ в частных производных параболического типа, заключающийся в том, что решение исходного СДУ в частных производных сводится к решению двух классических дифференциальных уравнений, но со случайными коэффициентами. Этот способ применим и к более общему классу стохастических дифференциальных уравнений в частных производных.
2. Впервые выявлена структура решения одного класса стохастических дифференциальных .уравнений, которая включает в себя стохастические дифференциальные параболического типа. Определена структура одномерного диффузионного процесса и установлено, что множество стохастических дифференциальных уравнений можно разбить на классы эквивалентности по случайному сносу, а фундаментальные решения соответствующих параболических уравнений можно факторизовать по коэффициенту переноса.
3. Предложен новый способ численно-аналитического решения и моделирования процессов, описываемых СДУ в частных производных параболического типа и стохастических уравнений Бюргерса, отличающийся тем, что вместо существующих громоздких методов численного решения стохастических дифференциальных уравнений можно воспользоваться классическими методами численно-аналитического решения двух обычных дифференциальных уравнений в частных производных, где в качестве коэффициентов или краевых условий присутствует винеровский процесс. Методом вычислительного эксперимента проведена оценка погрешности для численных результатов, полученных для стохастического уравнения Бюргерса.
Краткое содержание работы
Введение. Во введении обосновывается актуальность работы, сформулированы ее цели и задачи. Кроме этого, дан краткий обзор по тематике вопроса, сформулированы основные результаты, полученные в работе, излагается описание диссертации по главам.
Заключение диссертация на тему "Математическое моделирование процессов, характеризующихся диффузионными связями и случайными воздействиями в виде белого и цветного шумов"
Заключение
В данной работе получены следующие результаты:
1) Разработан новый аналитический метод, с помощью которого решение стохастических дифференциальных уравнений в частных производных параболического типа, описывающих модели процессов с диффузионными связями и внешними воздействиями в виде случайных флуктуаций, сводится к решению двух классических дифференциальных уравнений, но со случайными коэффициентами. Показано, что этот способ применим к более общему классу стохастических дифференциальных уравнений в частных производных;
2) Выявлена структура решения одного класса стохастических дифференциальных уравнений, которая включает в себя стохастические дифференциальные уравнения параболического типа, описывающие рассматриваемые в работе модели процессов изменения концентрации нейтронов при реакции распада тяжелых ядер, развития популяции в случайной среде и затухания волн в вязкой среде со случайным внешним источником. Определена структура одномерного диффузионного процесса и установлено, что множество стохастических дифференциальных уравнений можно разбить на классы эквивалентности по случайному сносу, а фундаментальные решения соответствующих параболических уравнений можно факторизовать по коэффициенту переноса;
3) Предложен новый способ численно-аналитического решения и моделирования стохастических дифференциальных уравнений в частных производных параболического типа и стохастических уравнений Бюргерса, который заключается в том, что, опираясь на аналитические результаты работы, исходную задачу можно свести к решению двух обычных дифференциальных уравнений в частных производных, где в качестве коэффициентов или краевых условий присутствует винеровский процесс, и воспользоваться классическими численно-аналитическими методами.
Методом вычислительного эксперимента проведена оценка погрешности для численных результатов, полученных для стохастического уравнения Бюргерса.
Библиография Парамошина, Ирина Геннадьевна, диссертация по теме Математическое моделирование, численные методы и комплексы программ
1. Андерсон Д. Вычислительная гидромеханика и теплообмен / Андерсон Д., Таннехилл Дж., Плетчер Р. М.: Мир, 1990. - т. 1. - 268 с.
2. Анулова С.В. Стохастическое исчисление / Анулова С.В., Веретенников А.Ю., Крылов Н.В., Липцер Р.Ш., Ширяев А.Н.-ВИНИТИ, 1989. т. 49. - 260 с.
3. Бакалов В. П. Цифровое моделирование случайных процессов / Бакалов В. П. М.: Сайнс-Пресс, 2002. - 352 с.
4. Бахвалов Н. С. Численные методы / Бахвалов Н. С., Жидков Н.П., Кобельков Г.М М.: Наука, 2004. - 636 с.
5. Бернштейн С. Н. Принципы теории стохастических дифференциальных уравнений / Бернштейн С. Н. // Тр. физ. мат. ин-та им. В. А. Стеклова. 1934. - т. 5. - С. 95—124.
6. Ватанабэ С. Стохастические дифференциальные уравнения а диффузионные процессы / Ватанабэ С., Икэда Н. М.: Наука, 1986. - 445 с.
7. Гихман И. И. К теории дифференциальных уравнений случайных процессов / Гихман И. И. // Укр. мат. ж. 1950. - т. 2. - №4. - С. 37—63.
8. Гихман И.И. Введение в теорию случайных процессов / Гихман И.И., Скороход А.В. М.: Наука, 1977. - 568 с.
9. Гихман И.И. Стохастические дифференциальные уравнения и их приложения / Гихман И.И., Скороход А.В.- Киев: Наукова Думка, 1982. 611 с.
10. Дорогов В.И. Вероятностные модели превращения частиц / Дорогов В.И., Чистяков В. П. М.: Наука, 1988. - 110 с.
11. Дуб Дж.Л. Вероятностные процессы / Дуб Дж.Л. М.: Изд-во иностранной литературы, 1956. - 609 с.
12. Звонкин А.К. Преобразование фазового пространства диффузионного процесса, уничтожающее снос / Звонкин А.К. // Мат. сб. 1974. -93(135). - т. - С. 129 - 149.
13. Ито К. Диффузионные процессы и их траектории / Ито К., Маккин Г. М.: Изд-во иностранной литературы, 1968. - 395 с.
14. Кляцкин В.И. Стохастические уравнения глазами физика: Основные положения, точные результаты и асимптотические приближения / Кляцкин В.И. М.: Физматлит - 2001. - 528 с.
15. Колмогоров А.Н. Об аналитических методах в теории вероятностей / Колмогоров А.Н. // УМН 1938. - т.5. - С.10-100.
16. Колмогоров А.Н. Исследование уравнения диффузии, соединенной с возрастанием количества вещества, и его применение к одной биологической проблеме / Колмогоров А. Н., Петровский И. Г., Пискунов Н. С. // Бюлл. МГУ 1937. - №6. - с. 1-26.
17. Кузнецов Д.Ф. Численное моделирование стохастических дифференциальных уравнений и стохастических интегралов / Кузнецов Д.Ф. С.Петербург: Наука, 1999. - 463 с.
18. Кушнер Г.Дж. Вероятностные методы аппроксимации в стохастических задачах управления и теории эллиптических уравнений / Кушнер Г.Дж. М.: Наука - 1985. - 222 с.
19. Липцер Р.Ш. Статистика случайных процессов: нелинейная фильтрация и смежные вопросы / Липцер Р.Ш., Ширяев А.Н. -М.: Наука, 1974. 696 с.
20. Мартинсон Л.К. Дифференциальные уравнения математической физики / Мартинсон Л.К., Малов Ю.И. М.: Изд-во МГТУ им. Н. Э. Баумана, 2002. - 368 с.
21. Милыптейн Г.Н. Численное интегрирование стохастических дифференциальных уравнений / Милынтейн Г.Н. Свердловск.: Изд-во Уральского ун-та, 1988. - 225 с.
22. Насыров Ф.С. О локальных временах для функций и случайных процессов / Насыров Ф.С.// Теория вероятностей и ее применение -1995. т. 40. - № 4. - С. 798-812.
23. Насыров Ф.С. Симметричные интегралы и их применение в финансовой математике / Насыров Ф.С. // Труды МИРАН 2002.- т. 237. С. 265-278.
24. Насыров Ф.С. Симметричные интегралы и стохастический анализ / Насыров Ф.С. // Теория вероятностей и ее применение 2006. - т. 51.- № 3 С. 496-517.
25. Насыров Ф.С. О структуре одномерного диффузионного процесса / Насыров Ф.С., Парамошина И.Г. // Вестник УГАТУ 2006. - т. 7 - № 2 (15). - С. 127-130.
26. Насыров Ф.С. О построении квазимеры в пространстве (С0,1], В(С[0,1])) / Насыров Ф.С., Парамошина И.Г. // Обозрение прикладной и промышленной математики 2001. - т. 8.- вып.1. -№ 7. - С. 279-280.
27. Насыров Ф.С. О построении квазимеры на пространстве С0,1] / Насыров Ф.С., Парамошина И.Г. // Актуальные проблемы математики. Математические модели современного естествознания: межвуз. сборник. Изд-во УГАТУ 2002. - С. 105-109.
28. Парамошина И.Г. Квазимера в пространстве С0,1], порожденная "тепловым" уравнением четвертого порядка / Парамошина И.Г. // Вестник УГАТУ 2003. - т. 4.- № 2. - С. 158-163.
29. Парамошина И.Г. Численно аналитическое решение стохастического уравнения Бюргерса / Парамошина И.Г. // Обозрение прикладной и промышленной математи-ки - 2008. - т. 15.- вып. 4. - № 10. - С. 644645.
30. Парамошина И.Г. О структуре переходных плотностей диффузионного процесса / Парамошина И.Г. // Материалы XIII международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов". Изд-во СП "Мысль" 2006.- С. 104.
31. Парамошина И.Г. О структуре двумерного диффузионного процесса / Парамошина И.Г. // Материалы XIV международной научной конференции студентов, аспиран-тов и молодых ученых "Ломоносов". Изд-во СП "Мысль" 2007. - Т. 2. -С. 91.
32. Парамошина И.Г. О решении стохастического уравнения Бюргерса / Парамошина И.Г. // Труды участников международной школы-семинара по геометрии и анализу памяти Н.В. Ефимова 2008. - С. 237-239.
33. Петровский С.В. Точные решения уравнения Бюргерса с источником / Петровский С.В. // Журнал технической физики- 1999. т. 69.- № 8 - с. 10-14.
34. Полянин А.Д. Методы решения нелинейных уравнений математической физики и механики / Полянин А.Д., Зайцев В.Ф., Журов А.И. М.: ФИЗМАТЛИТ, 2005. — 256 с.
35. Розовский Б.Л. Эволюционные стохастические системы / Розовский Б.Л. М.: Наука, 1983. - 208 с.
36. Рубин А.Б. Биофизика: Теоретическая биофизика / Рубин А.Б. М.: Наука, 1999. - 433 с.
37. Семенов Н.Н. Цепные реакции / Семенов Н.Н. Л.: ОНТИ, 1934 - 203 с.
38. Тихонов А.Н. Дифференциальные уравнения / Тихонов А.Н., Ильин В.А., Свешников А.Г. М.: Наука, 1980. - 253 с.
39. Феллер В. К теории стохастических процессов (Теоремы существования и единственности) / Феллер В. // УМН 1938. -т. 5. - С. 57-96.
40. Ширяев А.Н. Вероятность / Ширяев А.Н. М.: МЦНМО, 2004. - т. 2.- 405 с.
41. Эйнштейн А. Броуновское движение / Эйнштейн А., Смолуховский М.- М.: ОНТИ, 1936. 287 с.
42. Ablowitz M.J. On the Burgers equation with moving boundary / Ablowitz M.J., De Lillo S. // Phys. Lett. 1991. - v. 156. - P. 483 - 487.
43. Ablowitz M.J. The Burgers equation under deterministic and stochastic forcing / Ablowitz M.J., De Lillo S. // Physica D.- 1996. v. 92. - P. 245- 261.
44. Allen E. Modeling with Ito Stochastic Differential Equations / Allen E. -Springer, 2007. 230 p.
45. Alos E. Stochastic partial differential equations with Dirichlet white-noise boundary conditions / Alos E., Bonnacorsi S. // Ann. Inst. H. Poincare Probab. Statist. 2002. - № 38(2). - P. 125 - 154.
46. Arnold L. On the consistency of the mathematical models of chemical reactions / Arnold L. // Dynamics of synergetic systems, Bielefeld 1980. - P. 107 - 118.
47. Aurely A. On numerical approximation of stochastic Burgers' equation / Aurely A., Istvan G. // The Shiryaev Festschrift 2001. - P. 1 - 17.
48. Boyce W.E. Approximate solution of random ordinary differential equations / Boyce W.E. // Adv. in Appl. Probab. 1978. - №10. - P. 172 -184.
49. Da Prato G. Evolution equations with white-noise boundary conditions / Da Prato G., Zabczyck J. // Stoch. and Stoch. Reports -1993. v. 42. -P. 167 - 182.
50. Dawson D.A. Spatially homogeneous random evolutions / Dawson D.A., Salehi H. // J.Multivariate 1980. - v. 10. - P. 141 - 180.
51. Gard T.C. Introduction to stochastic differential equations / Gard T.C. -Marsel Dekker, New York, 1988. 298 p.
52. Geman D. Occupation densities / Geman D., Horowitz J. // Ann. Probab.- 1980. v.8. - P. 1 - 67.
53. Hood S. New exact solutions of Burgers equation / Hood S. // J. Math. Phys. 1995. - v. 36. - P. 1971 - 1990.
54. Ito K. Differential equations determining Markov processes / Ito K. // Zenkoku Shijo Sugaku Danwakai 1942. - v. 244. - № 1077 - P. 1352 -1400.
55. Kloeden P.E. Numerical solution of stochastic differential equations / Kloe-den P.E., Platen E. Berlin.: Springer-Verlag, 1992. - 632 p.
56. Maslowski B. Stability of semilinear equations with boundary and point-wise noise / Maslowski B. // Annali della Scuola Normale Superiore di Pisa 1995. - v. 12. - P. 68-136.
57. Nakao S. On the pathwise uniqueness of solutions of one-dimensional sc-tochastic differential equations / Nakao S. // Osaka J. Math. -1972. -v. 3.- P. 513 518.
58. Platen E. Zur zietdiskreten approximation von Ito prozessen / Platen E. -Berlin, 1984, 124 p.1. О 4
59. Sowers R. Multidimensional reaction-diffusion equations with white noise boundary perturbations / Sowers R. // Ann. of Prob. 1994. - v. 22. - P. 2071 - 2121.
60. Szymon P. SPDEs Driven by a Homogeneous Wiener Process / Szymon P. // Stochastic partial differential equations and applications, Marcel Dekker, Inc., New York -Basel 2002. - P. 417 - 429.
61. Turelli M. A reexamination of stability in randomly varying versus deterministic environments with comments on the stochastic theory of limiting similarity / Turelli M. // Theor. Pop. Biol. 1978. - v.13. - P. 244 - 267.
62. Watanabe S. On the uniqueness of solutions of sctochastic differential equations / Watanabe S. // J. Math. Kyoto Univ 1971. - v.l. - P. 155 - 167.
63. Wiener N. Differential space / Wiener N. // J. Math. Phys. 1923. - v.2. - P. 131 - 174.
64. Yamada T. On comparison theorem for solutions of stochastic differential equations and its applications / Yamada T. // J. Math. Kyoto Univ. -1973. v.3. - P. 497 - 512.
-
Похожие работы
- Статистическое описание динамических систем в поле цветных шумов
- Фильтрация процесса, управляющего дисперсией нестационарного гауссовского шума
- Адаптивный анализ шума в измерительных каналах с пороговым отбором
- Разработка и анализ нелинейных алгоритмов подавления импульсного шума в полутоновых и цветных изображениях
- Улучшенное оценивание параметров регрессии с импульсными помехами
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность