автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Математическое моделирование некоторых колебательных процессов в среде со случайными возмущениями

кандидата физико-математических наук
Захарова, Ольга Владимировна
город
Уфа
год
2009
специальность ВАК РФ
05.13.18
Диссертация по информатике, вычислительной технике и управлению на тему «Математическое моделирование некоторых колебательных процессов в среде со случайными возмущениями»

Автореферат диссертации по теме "Математическое моделирование некоторых колебательных процессов в среде со случайными возмущениями"



На правах рукописи

ЗАХАРОВА Ольга Владимировна

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НЕКОТОРЫХ КОЛЕБАТЕЛЬНЫХ ПРОЦЕССОВ В СРЕДЕ СО СЛУЧАЙНЫМИ ВОЗМУЩЕНИЯМИ

Специальность 05.13.18 - Математическое моделирование, численные методы и комплексы программ

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

- з ЛЕН 2009

Уфа-2009

003486980

Работа выполнена на кафедре математики в ГОУ ВПО «Уфимский государственный авиационный технический университет»

д-р фю.-мат. наук, проф. НАСЫРОВ Фарит Сагитович

д-р физ.-мат. наук, проф. БРОНШТЕЙН Ефим Михайлович проф. кафедры вычислительной математики и кибернетики УГАТУ

д-р физ.-мат. наук

КУЗНЕЦОВ Дмитрий Феликсович проф. кафедры высшей математики СПбГПУ

Ведущая организация Институт математики с ВЦ УНЦ РАН, г. Уфа

Защита диссертации состоится 15 декабря 2009 г. в 14 часов на заседании диссертационного совета Д 212.288.06 при ГОУ ВПО «Уфимский государственный авиационный технический университет» по адресу: 450000, г. Уфа, Республика Башкортостан, ул. К. Маркса, д. 12, корп. 1.

С диссертацией можно ознакомиться в библиотеке университета.

Автореферат разослан «#,» /Ш^ 2009 г.

Ученый секретарь диссертационного совета д-р физ.-мат. наук, проф.

Научный руководитель

Официальные оппоненты

БУЛГАКОВА Г. Т.

ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИИ

Актуальность темы

В данной работе исследуются модели некоторых колебательных процессов, описываемых системами стохастических дифференциальных уравнений (СДУ), и стохастическими уравнениями в частных производных гиперболического типа.

Первой является модель взаимодействия двух конкурирующих видов. Рассматриваются две многочисленные взаимодействующие популяции, в которых большое место играет диффузия. Колонии одинаковых видов могут отличаться, например, местом обитания, статусом больной/здоровый в эпидемии, или иными признаками. Предполагается, что в каждой популяции с разной интенсивностью, зависящей от условий среды (пшца, природные катаклизмы и др.) индивиды могут рождаться, умирать и мигрировать (либо заболевать и выздоравливать, если популяции рассматривать как один и тот же вид, подверженный эпидемии). Частным случаем такой модели является стохастическая модель Лотки-Вольтерра. Кроме того, той же моделью описывается изменение концентраций химических веществ в автоколебательных реакциях.

Второй класс моделей представляет собой колебание упругой струны под действием случайной внешней силы. Оно характеризуется первой краевой задачей для волнового уравнения со случайной внешней силой в виде шума с начальными и граничными условиями, аналогичной задачей колебания прямоугольной мембраны, а также задачей о колебании бесконечной струны под действием случайной внешней силы в одномерном и многомерном случаях.

Рассматриваемые модели исследовались многими авторами (Кузнецовым Д. Ф., Розовским Б. JL, Allen Е., Alos Е., Oksendal В., и др.), но точное решение удавалось получить лишь в ограниченном числе случаев. Поэтому существенную роль в изучении моделей со случайными возмущениями играют способы численного решения. Огромный вклад в теорию численного моделирования СДУ и систем таких уравнений внесли работы Кузнецова Д. Ф., Мильштейна Г. Н., Allen Е., Kloeden Р. Е., Platen Е. Однако, численное моделирование решения систем СДУ продолжает оставаться трудной как с теоретической, так и с вычислительной точки зрения задачей.

СДУ в частных производных гиперболического типа исследовались в работах Allen Е., Da Prato G., Dalang R. С., Frangos N. E., Holden H.., Khoshnevisan D., Rassoul-Agha F., Kotelenez P., Oksendal В., Uboe, J., Zhang Т. и др., обсуждались вопросы существования и единственности решения, оценки моментов, гельдеровские условия и другие свойства решений, однако способов решения или численного моделирования предложено не было. Примеров моделей, опи-

сываемых такими уравнениями, можно привести множество: колебания струн, мембран, течение тока в проводниках в среде со случайными внешними возмущениями и др. Поэтому разработка методов численного решения колебательных процессов в среде со случайным возмущением, характеризующихся системами СДУ и СДУ в частных производных гиперболического типа, является весьма актуальной задачей.

Цель работы

Целью данной работы является численно-аналитическое решение и моделирование некоторых колебательных процессов в среде со случайными возмущениями, а именно: колебаний численности конкурирующих видов и концентраций реагентов в автоколебательных реакциях, колебаний бесконечной и закрепленной упругой струны и закрепленной мембраны.

Первые два процесса описываются системой СДУ, третий процесс можно описать задачей Коши. Четвертый и пятый - первой краевой задачей для стохастического волнового уравнения.

Поставленная цель достигается в результате решения следующих задач:

1. Выбор математических моделей колебательных процессов в среде со случайными возмущениями;

2. Разработка аналитического аппарата для решения одного класса систем СДУ, а также СДУ в частных производных гиперболического типа, в частности, стохастических волновых уравнений;

3. Численное моделирование динамики числешюсти конкурирующих видов и концентраций химических веществ, в среде со случайными возмущениями, а также колебаний закрепленной упругой струны и мембраны под действием случайной внешней силы.

Методы исследования

Аналитические исследования проводились с использованием методов теории случайных процессов, математической физики, теории функции действительной переменной, функционального анализа и вычислительной математики. Расчеты проводились в среде МаЙаЬ с использованием стандартных пакетов.

На защиту выносятся:

1. Способ численно-аналитического решения колебательных процессов в среде со случайными возмущениями, в частности, стохастической системы Лотки-Вольтерра динамики численности конкурирующих видов (концентраций реагентов в автоколебательной реакции) в среде со случайными возмущениями;

2. Способ численно-аналитического решения колебательных процессов в среде со случайными возмущениями, которые описываются СДУ в частных

производных гиперболического типа, а именно, колебания упругой струны и мембраны под действием случайных возмущений;

3. Аналитический метод решения одного класса систем СДУ. Первый интеграл стохастической системы Лотки-Вольтерра динамики численности конкурирующих видов (концентраций реагентов в автоколебательных реакциях) в среде со случайными возмущениями. Аналоги формул Даламбера и Кирхгофа для решения задачи Коши колебания бесконечной струны под действием случайной внешней силы.

Научная новизна

1. Разработан новый способ численно-аналитического решения широкого класса систем СДУ и СДУ в частных производных гиперболического типа;

2. Разработанный метод адаптирован к численному решению стохастической модели Лотаи-Вольтерра колебания численности конкурирующих видов и концентраций реагирующих химических веществ в среде со случайными возмущениями, к численному решению задач колебания упругой струны и мембраны под действием случайных внешних возмущений;

3. Построены стохастические аналоги формул Даламбера и Кирхгофа для решения модели колебания бесконечной, упругой струны под действием случайного внешнего возмущения.

Теоретическая и практическая значимость

Разработанный в рамках данной работы численно-аналитический метод решения СДУ в частных производных может быть использован для исследования моделей, описывающих различные физические, механические, биологические колебательные процессы в среде со случайными возмущениями.

Достоверность результатов диссертационной работы обусловлена строгостью аналитических доказательств полученных результатов. Численные схемы исследованы на предмет сходимости.

Апробация работы

Основные результаты диссертации были представлены и обсуждались на научных семинарах и конференциях, соответствующих профилю диссертации. В частности были сделаны доклады:

1) на XXXVII Региональной молодежной конференции (г. Екатеринбург, 2006г.);

2) на Х1П международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов" (г. Москва, 2006г.);

3) на XIV Всероссийской школе-коллоквиуме по стохастическим методам (г. Сочи, 2007г.);

4) на XV международной научной конференции студентов, аспирантов и

молодых ученых "Ломоносов" (г. Москва, 2008г.);

5) на XVI Всероссийской школе-коллоквиуме по стохастическим методам (г. Санкт-Петербург, 2009г.);

6) на семинаре в институте математики с ВЦ УНЦ РАН, руководитель профессор Жибер А. В. (Уфа, 2009 г.);

7) на семинарах по теории вероятностей и математической статистике кафедры математики УГАТУ, руководитель профессор Насыров Ф. С.

Публикации

Основные результаты диссертации опубликованы в работах [1] - [12], в том числе 5 публикаций в изданиях, рекомендованных ВАК, и 7 публикаций в других изданиях.

Структура и объем диссертации

Диссертационная работа состоит из введения, 3 глав, разбитых на параграфы, 3 таблиц, 11 рисунков, заключения и библиографического списка литературы, включающего 76 работ отечественных и зарубежных авторов, 3 приложений. Общий объем работы составляет 120 страниц.

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Введение. Во введении обосновывается актуальность работы, сформулированы ее цели и задачи. Кроме этого, дан краткий обзор по тематике вопроса, сформулированы основные результаты, полученные в работе, излагается описание диссертации по главам.

Глава 1. Постановка задачи.

В данной главе строятся математические модели некоторых колебательных процессов в среде со случайным возмущением в виде окрашенного шума.

Первый класс моделей описывает три процесса: динамику численности двух конкурирующих видов, развитие эпидемии в замкнутой популяции и изменение концентраций реагентов в автоколебательной реакции.

Рассмотрим две многочисленные взаимодействующие популяции, которые могут состоять из одного и того же или различных видов. Колонии одинаковых видов могут отличаться, например, местом обитания, или статусом больной/здоровый в эпидемии, или иными признаками. Естественно предположить, что в каждой популяции с разной интенсивностью, зависящей от условий среды (пища, природные катаклизмы и др.) индивиды могут рождаться, умирать и мигрировать (либо заболевать и выздоравливать, если две популяции рассматривать как один и тот же вид, подверженный эпидемии).

Пусть в начальный момент времени размеры популяций равны хо = (0), Х2(0)]г, а Х{{) = [X,(^,ЛГ2(0]Г- размеры популяций в момент вре-

мени t, by,b2- удельные коэффициенты рождаемости, a dvd2- смертности в первой и второй популяции, тп,т2] - коэффициенты перехода из одной популяции в другую. Для географически изолированных популяций тп представляет миграцию из первой популяции во вторую, а тп соответственно из второй в первую. Записывая вероятности возможных изменений в рассматриваемых популяциях, вычисляя математическое ожидание, ковариацию, получим дискретную модель, и переходя от нее к непрерывной, приходим к системе стохастических дифференциальных уравнений Ито (подробнее см. Allen E.J.-Modeling with Ito Stochastic Differential - Springer, 2007, 230 p.)

dX(t) = M(t,X(t))dt + B(t,X(t))dW(t), (1)

X(O) = x0,

где Щ0 = Щ(0Ш0]Т~ винеровский процесс, формальный дифференциал которого dW(l) понимается в форме Ито, а уравнения системы (1) следует рассматривать в интегральной форме.

' blXl-dlXl-ml2Xl+m2xX1\ _\(а + а b

b2X2-d2X2-mliX2+muXiJ г/^ b c + a

где ш-4ас-Ъ2 , d=4a^c + 2ш, а = 4,Х, +тх2Х1 +т21Х2 +Ь,Х,, Ъ = -т12Х1 - тп Х2, с = тпХ1 + d2X2 + Ъ2Х2 + т21Х2.

Оказывается, система стохастических дифференциальных уравнений вида (1) может описывать динамику концентраций реагирующих веществ в автоколебательных реакциях. Предположим, что имеются три химических вещества и 53, взаимодействующие через молекулярные столкновения или спонтанно. Пусть х0 = [X, (0), (0), Х3 (0)]7 - начальное число молекул реагентов и 53, Х(1) = [Х,(0,- число молекул веществ в момент времени г; /12, /х, и - постоянные. Записывая вероятности возможных реакций, вычисляя математическое ожидание, ковариацию, записываю дискретную модель, и переходя от нее к непрерывной, также приходим к системе стохастических дифференциальных уравнений Ито вида (1). Здесь ЯГ(1) = [ЯГХ(0,И>'2(1),1У,(1)]Т - винеровский процесс, формальный дифференциал которого <ПР(/) понимается в форме Ито.

в=

{ц,Х,Хг -frXlX, 12+ц^ /2

(МЛУ2 2{цгх1х,!2)и1 -2(^/2)"^

-(ft^)"

-(ftX,Jir2)"2 (//2X3)"J -2(MlX¡X}/2)ín 2(^/2)" U*,*,)"2 -Cu2X3)"2 ~(ргХ1Хг/2Уп /2)"

Частным случаем модели (1) является стохастическая модель Лотки-Вольтерра, так же описывающая колебание концентраций реагирующих веществ (динамику численности конкурирующих видов) в среде со случайным возмущением

" с/

х, (0 = (*, + а, х2 (í)K (0 + с, х, (0. at

-J- *2 (0 = (¿2 + а2*1 (0)*2 (0 + О"-. (0Í2 (0. at

(2)

где х, (í),x,(í) - численность популяций (концентрации реагирующих веществ), - коэффициенты рождаемости (новьнпения концентраций реагентов), a¡,a2 - коэффициенты гибели (снижения концентрации реагентов), и

(0 - случайные процессы, которые при определенных условиях проживания конкурирующих видов (течения химических реакций), могут считаться независимыми гауссовскими белыми шумами.

Второй класс моделей описывает колебание упругой струны под действием случайной внешней силы, которое можно записать с помощью первой краевой задачи для волнового уравнения со случайной внешней силой в виде шума с начальными и граничными условиями

u"(t, х) = и'1 (t, х) + x(egW(t) + sin я") + £f sin x*W' (r), x e [0,1], />0, u(Q,x) = x(l - x), и,'(/,х)|,г0= eos x, u(tfi) = 0, u(t,\) = 0, и аналогичной задачи колебания прямоугольной мембраны

ч" (t, X, у) = < (Г, X, у) + и^ (í, ху) + xy(egW(t)+sin л*) 4-sf sin(;r(x+y)) *tv'(t),

(3)

x 6 [0,1], y 6 [0,1], G = [0,l]x[0,l], />0, K(0,x,^) = sin7Dc-sin^, M,'(',X,J')¡,=o=0, =0.

(4)

а также задачи о колебании бесконечной струны под действием случайной внешней силы

u(0,x) = uo(x), u[{t,x)|,^=v0(x), xeR\ Гё[0,Г|, (5)

и

ul (t,x) = Au(t,M) + g(t,M> Щ0)+/('. M, W(t)) *W'(t),

к(0,М) = и0(М), u',(t,M)\ls0=va(M), M(x,y,z)eR\ /е[0,Г], (6)

Здесь g{t, x,v), f(t, x,v), g(t, M,v),f(t,M,v) - детерминированные функции, гладкие по своим переменным, формальная производная винеровского процесса W'(t) понимается в смысле Стратоновича, а сами уравнения (3)-(6) - в интегральной форме, Д- оператор Лапласа, £g, sf - константы, характеризующие степень влияния случайного воздействия на систему.

Глава 2. Разработка аналитического аппарата, необходимого для решения поставленных задач.

Данный раздел посвящен аналитическому исследованию СДУ с многомерным винеровским процессом, систем таких СДУ, их детерминированных аналогов, а также СДУ в частных производных гиперболического типа.

В § 2.1 приводятся основные определения и понятия стохастического исчисления и теории симметричных интегралов. Пусть ¡V(t) = W(t,a), W{0) = 0 , t e [0,+co), - стандартный винеровский процесс, заданный на вероятностном пространстве с фильтрацией (Q,F,(F,),P). Вводятся в простейшем случае определения стохастических интегралов Ито и Стратоновича и формула Ито, описывающая связь этих двух интегралов.

Рассматривается стохастическое дифференциальное уравнение в форме Ито: dy(t) = a(t,y(t))dW(t) + b(t,y(t))dt, t > 0, с начальным условием Я0)= Уо ■ Приводятся определения решений СДУ, теоремы о существовании и единственности решений, явные формулы решений для некоторых классов СДУ.

Вводятся основные понятия, связанные с симметричным интегралом, который является детерминированным аналогом стохастического интеграла Стратоновича. Пусть -A'(s), 5е[0,оо), _ произвольная непрерывная функция. Рассмотрим разбиения Тп , п<е N, отрезка [0,f]: Tn-{tf)}, 0 = <... </<"' <...</1л) =i, neN, такие, что Г„сГи], neN и К = тах|/£° -*й| ~> 0

п к *

при п —» оо. Через Xin)(s),s е [0, г] обозначим ломаную, построенную по функ-

ции X(s) и отвечающую разбиению Т п . Введем следующие обозначения:

Д4Л) = № - ii:>, Нл)] = [#ив)], Адг« = x(tl"})-x(tt\).

Определение. Симметричным интегралом называется

f/(j,A4j))*<£r(i)= lim ЕТТТ' (*))<&

о Л"->0 t (i,(»)j

если предел в правой части равенства существует и не зависит от выбора последовательности разбиений Тп,п е N .

Приводятся формулы для вычисления симметричного интеграла. Рассматриваются СДУ с многомерным винеровским процессом и их детерминированные аналоги, построенные на основе симметричного интеграла. Предлагается метод, позволяющий свести решение такого уравнения к решению цепочки обыкновенных дифференциальных уравнений первого порядка.

В §2.2 приводятся основные теоретические результаты о решении систем СДУ с многомерным винеровским процессом, с помощью которых описываются исследуемые в работе модели. Выделен класс систем, допускающий полностью явное аналитическое решение. Рассматривается система СДУ в форме Стратоновича вида

т-1 I I

п,(0 -72(0 = X Jau(s'4,(^47(4->7„ W) * dWt (,;) + Ja,(s,T]i(i),72(s),..., j;, (s))ds, 4=1 о о

(7)

чЛО -ЧЛО = X (i.7,СО.Пг(*)>•..,»7,(«)) * dWk(s) + }б„(s,rj,(s),щ(s),...,/?„ (s))ds, t-l о 0

где (fVt(s),...,- многомерный винеровский процесс с независимыми компонентами. Предполагается, что условие Липшица и условие линейного роста, обеспечивающие существование и единственность решения СДУ, выполнены, то есть существует положительная константа К такая, что для всех s е [0, t] и y.yeJT1, ; =

а коэффициенты системы (7) удовлетворяют условиям -А д

Т~ Vi W> »720).....In W) -a„(s,Ti, (s), цг (s).....Г}п (s)) =

" д

= Е "5— аи(s'lM>Пг(*)>-, 1„W) ■ а,* (>7i(О.Лг(«).•». In(-0).

n Q

■ а а (9)

,=1 ОГ}я os

где j,I,q = l,...,n; i,k = \,...,m~\.

Теорема 1. Если система СДУ (7), удовлетворяет условиям (8) и (9), то ее решение представляется в виде r¡¡(s) = <pl(s,Wl(s),...,Wa_](s)), i = 1,2,..., п, где p,(í,v,,..., ) - гладкие случайные функции, и удовлетворяет системе уравнений в полных дифференциалах

С т-1

I d<P¡(s, v) = £ a<t(s- <рА v).-, <p,(s. v))¿vk + b,(s. <p/s, v;.....v¿> ds,

[ = 1,(4 ' = 1.....

где veД""1.

В условиях этой теоремы винеровский процесс IV(s) можно заменить на произвольную непрерывную функцию неограниченной вариации X(s), утверждение теоремы останется справедливым.

В качестве иллюстративного примера, для системы СДУ

i s ■ Т]2 (i) + • щ (S) Js-щ (i) + X{s) • 7, (s)

X(0) = 1, 7, (0) = 1, 7j(0) = 0,

где первый интеграл в правой части уравнений понимается как симметричный по произвольной непрерывной функции неограниченной вариации ; найдено точное решение

В §2.3 изучаются СДУ в частных производных, с помощью которых описываются исследуемые в работе модели колебания струны и мембраны.

Рассматривается уравнение в частных производных следующего вида

а2

а<-

Tu(t,x) = Ft

д д 3^

t,x,X(i),u(t,x),—u(t,x),—u(t,x).....-¡—¡-(t.x),..

ot or, o'...o¡

+ F2\t,x,—u{t,x)\*X>{t),

У

где к^+...+кп=к<т! в области (з,х) е у. Я", есть формальная производная в смысле симметричного интеграла, а уравнение (10) понимается в виде

Э , л д

—«(Л*)--:

81 д1

>-u(t,x)-—u(0,x)= ffi t Sf J i

д Э ô s, X, .ВД, u(s, x),—u(s, x),~u(s, x)..... (i, x),...

OS ОХ | oJt'...oi"

(ÎS +

+ j>2| s,x,~u(s,x)

о V

где второй интеграл в правой части - симметричный интеграл по функции X(s).

Решением уравнения (10) называется функция u(t,x), такая, что, если ее подставить вместе со своими производными в уравнение (10), то, во-первых, имеют смысл интегралы в правой части уравнения, и, во-вторых, она обращает уравнение (10) в тождество.

t

Решение ищется в виде u(t,x) = Jçj(î, x,X(s))ds + V(x), в классе функ-

0

ций имеющих непрерывные частные производные u's, u'v и непрерывные частные производные по переменным xt,...,xn до m -го порядка включительно.

t

Теорема 2. Функция "(',*) = j<p(s,x,X(s))ds + V(x), из приведенного

о

выше класса функций является решением уравнения (10) тогда и только тогда, когда она удовлетворяет паре соотношений:

—tp^s, x, v) = F2 (j, x, <p(s, x, v)), dv

—ç(s,x,v)\y=XU)= F1 os

д д

s,x.X(s), u(s, x),—u(s, x),—~u{s, x),...,—-¡-«(s, x),...

ds dxl д'.-д"

i

Опираясь на эту теорему, для решения задачи Коши колебания бесконечной струны под действием случайной внешней силы (5) получен аналог формулы Даламбера

1+Г < t x+(t-r)

1 1 1

u{t,x) = Uu0(x + t) + ua(x-t))+- Jvo(0rf£+±J \g(.T,Ç,W(r№dT +

^ i-r ^ 0 i-(i-r)

I Jtv(i-r) i (11)

l . Я+1 . I Jt+(/-r) Г

+ jF(j,x,ÎT(j))A-i Jf(0,î,»T(0M+-J J \F£(y,Ç,W(y))dydÇdT,

о x-i ^ a i-e-0 о

a для решения задачи Коши (6) - аналог формулы Кирхгофа

u{t,M) = /ЦК(x+t4,y + trj,z+tQ)ds\ + ^- j](v0{x+tZ,y + t7j,z + t£))ds 1

s

-— fii Г"r~TgitAM'MlM'WttAM'Mlhix'dy'dz'- (12

ViH 1

M.w'wj

-— + + + fff г-7—г

dx'dy'dz',

)

где F(t,x,v) - первообразная функции / (/, x, v) по переменной v .

При f(t,x,v) = 0 задачи (5), (6) превращаются в классические, и формулы (11), (12) совпадают с классической формулой Даламбера и Кирхгофа соответственно. Таким образом, аналоги формул Даламбера и Кирхгофа (11), (12) являются ее обобщением и подходят для нахождения решения как классической задачи Коши для волнового уравнения, так и стохастической.

Рассматривается первая краевая задача для СДУ в частных производных гиперболического типа

4(i,x) + 2a и[ (/, x) + J3u(t,x)-Au = g(t, х, W(t'j) + f(t, х, W(f)) * W' (t), 1ёГсй",/>0, u(0,x)=u0(x), u,(t,x)|,l0=v0(x), хеГ,

"C>*)| «аг= К', *)|,e8r>

(13)

" д2 " д

где a, fieR, А = У au(t,x,a>)-+У d,(t,x,a)--эллиптический опе-

ijii dxfixj "Л дх,

ратор второго порядка, в котором a4(t,x,a>) и г/,л>) - предсказуемые гладкие функции, матрица {ajj(l,x,(D)}"j!_l с Р = 1 положительно определена, формальная производная винеровского процесса W'(t) понимается в смысле Стратоновича, а функции g(t,x,v),f(t,x,v) имеют непрерывные частные производные второго порядка по каждому аргументу. Показано, что решение задачи

t

(13) представляется в виде u{t,x)= ^(j,х,W(s))ds+c(t,х), где F(s,x,v) -первооб-

0

разная функции f(s,x,v) попеременной v , a c(t,x) является решением задачи

c"(kt,x) + 2aZl'{l,x) +fic(i,x)-Ac(t,x) = M{t,x,W{t)), xeTcR", t > 0, • с(0,x) = u0(x), с/(/,x)\= v0(x), IE Г,

I

о

где M(s,X,W(s)) = -F,'(j,X,fP(j))-2aF(s,x,W(s))-/fF(T,x,W(r))dr + л|]>(г,x,Щг))</r j +

+g(s,x,W(s)). Таким образом, решение первой краевой задачи для СДУ в частных производных гиперболического типа (13) сводится к решению классической первой краевой задачи, содержащей в правой части уравнения и в граничных условиях случайные функции.

Глава 3. Численно-аналитическое решение и моделирование поставленных задач.

В §3.1 приведен алгоритм моделирования стандартного винеровского процесса.

В §3.2 рассматривается стохастическая модель Лотки-Вольтерра (2), описывающая динамику численности двух конкурирующих видов (концентраций двух реагирующих химических веществ в автоколебательной реакции) в среде со случайными возмущениями. Впервые найден ее первый интеграл

где ь, =fc,+i<r,2, ъг=кг+^<7\.

Показано, что решение стохастической системы Лотки-Вольтерра (2) представляется в виде х{(/)=е"1^(t), х1(/)=е'7Л{'1с2(1) и находится из системы обыкновенных дифференциальных уравнений

c[(t) = с,+а,е^<"с2(0 4(0 = + a2e^\(t) + l-alj. (14)

Для численного решения стохастической системы Лотки-Вольтерра (2) предлагается следующий алгоритм: Алгоритм.

1. Моделируются две независимые траектории броуновского движения

щ(0, Щ0;

2. С помощью метода, описанного во второй главе работы, выводится система уравнений (14). В этой системе отсутствуют слагаемые в виде стохастических интегралов, что позволяет применить классические численные методы для построения ее решения, например, метод Эйлера. Последнее связано с тем, что

решение этой системы c¡(í),c2(t) имеет непрерывную производную только первого порядка

с[= c¡ +rc¡(t, +a,e"wíc'2 + iсг,2>, c'2 = с'г + тс[{к2 + a2e"¡w> с[ + ),

где i = l,..., N,t = Т / N; W{,W¿ - аппроксимация fV¡(t), W2(t) в узлах i расчетной сетки;

3. С помощью соотношений x,(í) - е*'щ,"с1((), х2(/) = e'72"/,('>c2(?) строится решение стохастической системы Лотки-Вольтерра (2).

Используя правило Рунге, оценена погрешность численных результатов. В §3.3 рассматривается первая краевая задача вида (3), которая описывает колебания закрепленной упругой струны под действием случайной внешней силы. Решение уравнения (3) имеет вид u(t,x)= jef sin х • W (s)ds + c(t,x), где неиз-

0

вестная функция c(t,x) является решением первой краевой задачи

i

с,"(г,х) = c"/j,х) + х(£gW(t)+sinг) + s, sinх (fF(s)ds, хе[0,1], г>О,

(15)

c(0¡х) = x(l—х), c,'(/,x)|,t0 = cosx, с(г,0) = 0, с(г,1) = 0. Для решения первой краевой задачи вида (3) предлагается следующий алгоритм:

Алгоритм.

1. Моделируется траектория броуновского движения W(í);

2. С помощью метода, описанного во второй главе текущей работы, приходим к начально-краевой задаче (15), в которой отсутствуют слагаемые в виде стохастических интегралов, что позволяет применить классические численные методы для построения ее решения, например, явную трехточечную схему

i

где г-шаг по времени, а А - по пространству, /„,„ = х„(е Wn +sin;zf„) + £/sinxmIn,

In - аппроксимация интеграла Jw (j)cíy.

о

i

3. С помощью соотношения u(t,x)= je/smx-ÍV(s)ds+c(t,x) строится ре-

0

шение исходной первой краевой задачи (3).

В §3.4 предлагается численно-аналитический метод решения первой

краевой задачи (4) для описания вибрации закреплешюй прямоугольной мембраны под действием случайной внешней силы. Решение уравнения (4) имеет

вид u{jt,x) = sfünn(x + y)-^W(s)ds + c(t,x,y), где неизвестная функция c(t,x) яв-

0

ляется решением первой краевой задачи

с„" (í, у) = с* (/, X, у) + 2(f, Х>У) + М (t, X, у, W (/))■ х е [0,1], У е [0,1], G =[0,1] х [0,1], t > 0,

с (0, X, у) = sin !tx sin c,'(t,x,y)|,=0 = о, (16)

c{t,x,y) = -)F(s,x,y,W(S))lyeSads,

о

где

S

Щ, х, у, W(t))=-2nsf s ит(х+у) ^W(z}dr+X}(ce W(t)+s i пй). о

Для решения первой краевой задачи вида (4) предлагается следующий алгоритм:

Алгоритм.

1. Моделируется траектория броуновского движения W(í);

2. С помощью метода, описанного во второй главе текущей работы, приходим к начально-краевой задаче (16), в которой отсутствуют слагаемые в виде стохастических интегралов, что позволяет применить классические численные методы для построения ее решения, например, явную трехточечную схему

где ¿=2,...Д, т-шаг по времени, а Л — по пространству, rx =

Ах

г, = —-, Мк,, - аппроксимация функции M(t,x,y,W{t)); лу

i

3. С помощью соотношения = sf sinя(х + у)-§V(s)ds + c{t,x,y),

о

строится решение исходной первой краевой задачи (4).

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

1. Разработан новый способ численного моделирования колебательных процессов в среде со случайными возмущениями, которые описываются систе-

мами СДУ, в частности стохастической системы Лотки-Вольтерра динамики численности конкурирующих видов (концентраций реагентов в автоколебательной реакции) под действием случайных возмущений. Метод заключается в том, что, опираясь на аналитические результаты работы, исходная задача сводится к системе обычных дифференциальных уравнений в полных дифференциалах, где в качестве коэффициентов присутствует винеровский процесс, и которая решается классическими численно-аналитическими методами. Используя правило Рунге, оценена погрешность численных результатов;

2. Разработан новый способ численного моделирования колебательных процессов в среде со случайными возмущениями, которые описываются начально-краевой задачей для СДУ в частных производных гиперболического типа, а именно, колебаний упругой струны и мембраны под действием случайных возмущений. Метод заключается в том, что, опираясь на аналитические результаты работы, исходная стохастическая начально-краевая задача сводится к классической начально-краевой задаче, где в качестве коэффициентов или краевых условий присутствует винеровский процесс, что позволяет воспользоваться классическими численно-аналитаческими методами для ее решения;

3 . Предложен новый аналитический метод решения широкого класса систем СДУ, включающий в себя, в частности, стохастическую систему Лотки-Вольтерра. Впервые найден первый интеграл последней в виде функции, связывающей численности конкурирующих видов (концентрации реагентов в автоколебательных реакциях). Предложены аналоги формул Даламбера и Кирхгофа для решения задачи Коши колебаний бесконечной струны под действием случайной внешней силы.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ В рецензируемых журналах из списка ВАК

1. О явных формулах для решения стохастических интегральных уравнений и их детерминированных аналогов / Захарова О.В. // Обозрение прикладной и промышленной математики, 2005. Т. 12, выпуск 3, С. 857.

2. О решении некоторых классов стохастических дифференциальных и интегральных уравнений и их детерминированных аналогов / Насыров Ф.С., Захарова О.В., Крымская М.В. // Вестник УГАТУ, 2006, Т.7, №1, С. 137-143.

3. Явные формулы для решения стохастических интегральных уравнений типа Вольтера / Захарова О.В. // Обозрение прикладной и промышленной математики, 2007, Т. 14, выпуск 5, С. 831.

4. О решении одного класса систем стохастических дифференциальных уравнений / Захарова О.В. // Известия ВУЗов. Математика, 2009, № 6, С. 3-9.

5. Аналог формулы Даламбера для решения задачи Коши колебания бес-

конечной струны под действием случайной внешней силы / Захарова О.В. // Обозрение прикладной и промышленной математики, 2009, Т. 16, выпуск 2, С.

6. О явных формулах для решения детерминированных аналогов стохастических интегральных уравнений в форме Стратоновича / Захарова О.В. // Материалы «5-ой региональной школы-конференции для студентов, аспирантов и молодых ученых по математике и физике» - Уфа: РИО БашГУ, 2005, С. 15.

7. Об одном методе решения стохастических дифференциальных уравнений и их детерминированных аналогов / Захарова О.В. // Труды «37-й Региональной молодежной конференции». - Екатеринбург: УрО РАН, 2006, С. 191194.

8. О решении детерминированных аналогов систем стохастических дифференциальных уравнений / Захарова О.В. // Материалы 13-й Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов», Москва: издательство Московского университета, 2006, Т. 4, С. 70-71.

9. О решении детерминированных аналогов систем стохастических интегральных уравнений / Захарова О.В. // Сборник трудов участников Международной школы-семинара по геометрии и анализу памяти Н.В. Ефимова, Ростов-на-Дону, 2006, С. 230-231.

10. О решении задачи Коши для стохастического дифференциального уравнения в частных производных гиперболического типа / Захарова О.В. // Материалы докладов XV Международной конференции студентов, аспирантов и молодых ученых «Ломоносов». М.: Издательство СП «МЫСЛЬ», 2008, 1 электрон. Опт. Диск (CD-ROM); 12 см.

11. О решении задачи Коши для стохастического дифференциального уравнения в частных производных гиперболического типа / Захарова О.В. // В сборнике трудов участников Международной школы-семинара по геометрии и анализу памяти Н.В. Ефимова, Ростов-на-Дону, 2008, С. 223-224с.

12. О стохастической модели Лотки-Вольтерра / Захарова О.В. // Материалы докладов XVI Международной конференции студентов, аспирантов и молодых ученых «Ломоносов». М.: «МАКС Пресс», 2009, 1 электрон. Опт. Диск (CD-ROM); 12 см.

261-262

В других изданиях

Соискатель

О.В. Захарова

ЗАХАРОВА Ольга Владимировна

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НЕКОТОРЫХ КОЛЕБАТЕЛЬНЫХ ПРОЦЕССОВ В СРЕДЕ СО СЛУЧАЙНЫМИ ВОЗМУЩЕНИЯМИ

Специальность 05.13.18- Математическое моделирование, численные методы и комплексы программ

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Подписано в печать 11.11.2009. Формат 60x84 1/16. Бумага офсетная. Печать плоская. Гарнитура Тайме. Усл. печ. л. 1,0. Усл. кр.-отт 1,0. Уч.-изд.л. 0,9. Тираж 100 экз. Заказ № 556

ГОУ ВПО Уфимский государственный авиационный технический университет Центр оперативной полиграфии УГАТУ 450000, Уфа-центр, ул. К. Маркса, 12

Оглавление автор диссертации — кандидата физико-математических наук Захарова, Ольга Владимировна

Введение

1 Постановка задачи

1.1 Колебания численности взаимодействующих популяций, находящихся под воздействием случайных возмущений.

1.2 Колебания концентраций реагирующих химических веществ в среде со случайными внешними возмущениями.

1.3 Колебания упругой струны и мембраны под действием случайной внешней силы

2 Разработка аналитического аппарата, необходимого для решения поставленных задач

2.1 Необходимые сведения.

2.1.1 Стохастические интегралы и стохастические дифференциальные уравнения.

2.1.2 Симметричный интеграл как обобщение стохастического интеграла Стратоновича. Детерминированные аналоги стохастических дифференциальных уравнений.

2.2 Решение стохастических дифференциальных уравнений и систем с многомерным винеровским процессом и их детерминированных аналогов.

2.2.1 Явные формулы для решения одного класса систем стохастических дифференциальных уравнений.

2.2.2 Явные формулы для решения стохастических интегральных уравнений типа Вольтерра.

2.3 Об одном классе уравнений с симметричным интегралом

2.3.1 Аналог формулы Даламбера для решения задачи Коши колебания бесконечной струны под действием случайной внешней силы.

2.3.2 Аналог формулы Кирхгофа для решения задачи Коши колебания бесконечной струны под действием случайной внешней силы.

2.3.3 Первая краевая задача для стохастического дифференциального уравнения в частных производных гиперболического типа.

3 Численно-аналитическое решение и моделирование исследуемых процессов

3.1 Моделирование траектории винеровского процесса.

3.2 Численное-аналитическое решение модели колебания концентраций двух реагирующих химических веществ (численности двух конкурирующих видов) в среде со случайным внешним возмущением.

3.3 Численно-аналитическое решение модели колебания закрепленной упругой струны под действием случайной внешней силы

3.4 Численно-аналитическое решение модели колебания закрепленной упругой мембраны под действием случайной внешней силы.

Введение 2009 год, диссертация по информатике, вычислительной технике и управлению, Захарова, Ольга Владимировна

Глава 1. Постановка задачи. В данной главе строятся математические модели колебательных процессов различной физической природы в среде со случайным внешним возмущением в виде шума.

Первый класс моделей описывает три процесса: динамику численности двух конкурирующих видов, изменение концентраций реагентов в автоколебательной реакции и развитие эпидемии в замкнутой популяции. dX(t) = X{t))dt + B(t, X(t))dW(t), Х(0) = xQ, где

• для динамики численности конкурирующих видов и эпидемии: xq = [Xi(0), Х2(0)]т - размеры популяций в начальный момент времени, X(t) — [Xi(t), X2(t)]T - размеры популяций в момент времени t; J?i, 62 удельные коэффициенты рождаемости, a d\, d2 - смертности в первой и второй популяции, mi2, iri2i — коэффициенты перехода из одной популяции в другую. Для географически изолированных популяций т\2 представляет миграцию из первой популяции во вторую, a т2\ соответственно из второй в первую. Для модели эпидемии т\2 представляет степень заболевающих, а т2i соответственно выздоравливающих. W(t) = [W\(t), W2(t)]T - винеровский процесс, формальный дифференциал которого dW(t) понимается в форме Ито, а уравнения системы (1) следует рассматривать в интегральной форме. biXi - diXi - тпХ] + ГП21Х2

Ль Л2) = |

О2Х2 - d2X2 - m2\X2 + ггщХх где oj — \Jac — b2, d — л/a + с + 2ui, a — diXi + rrii2Xi + ТП21Х2 + biXi, b = -rriuXi - ГП21Х2, с = m\2X\ + d2X2 + b2X2 + ГП21Х2. • для изменения концентраций реагентов: xq — [Xi(0), ^2(0), Хз(0)]т - начальное число молекул реагентов Si, S2, и S3, X(t) = X2(t), - число молекул веществ в момент времени £; ль М2- Дз и /i4 - постоянные, W(t) = \W\(t), W2(t), W3(t)]T - винеровский процесс, формальный дифференциал которого dW{t) понимается в форме Ито. v2X3 + &Х$Х3 - \

-щХiX2 + /л2Х3 - [г3Х$Х3 + fnXl ^ХгХ2 - /л2Хз - ц3Х%Х3/2 + IHXI/2, ) ( -(fi1X1X2y/2 {^2Х3)V2 2(№Х|Х3/2)1/2 -2(^/2)V2 \ ОлХЛ)1/* -(/*2*з)1/2 -(^зА^Хз/2)1/2 (д4Х12/2)1/2 ) l = \ В

Частным случаем модели (1) является стохастргческая модель Лотки-Вольтерра, так же описывающая динамику численности конкурирующих видов (колебание концентраций реагирующих веществ) в среде со случайным внешним возмущением t) = (fci + a1x2{t))x1(t) + alXi{t)^{t), | x2(t) = (k2 + a2xi(t))x2(t) + a2x2{t)&(t), где xi(t),x2(t) - численность популяций (концентрации реагирующих веществ), к\,к2 - коэффициенты рождаемости (повышения концентраций реагентов), ai,a2 - коэффициенты гибели (снижения концентрации реагентов), а £1 (t) и - случайные процессы, которые при определенных условиях проживания конкурирующих видов (течения химических реакций) могут считаться независимыми гауссовскими белыми шумами.

Второй класс моделей описывает колебание упругой струны иод действием случайной внешней силы, которое описывает первая краевая задача для волнового уравнения со случайной внешней силой в виде шума с начальными и граничными условиями u"t{t,x) = u"x(t,x) + x{sgW{t) + sinirt) + SfSinx * W'(t), x € [0,1], £ > 0, u( 0, x) = ж(1 — x), = cos(:r), гх(*,0) = 0, u(i,l) = 0. и аналогичная задача колебания прямоугольной мембраны u'lt{t, х, у) = v!'xx{t, х, у) + u%y(t, х, у) + xy{EgW{t) + sinirt)+ +£f Sin7T(.7T + у) * W'(t), x e [0,1], у E [0,1], G = [0,1] x [0,1], t > 0, (3) u(0, x, y) = simvx sin щ|t=0 = 0, 0, а также задача о. колебании бесконечной струны под действием случайной внешней силы в одномерном х) = а:) + g(t, х, W(t)) + /(*, ж, W{t)) * W"(0. и(0, ж) = щ(х), u't(t,x) |t=0 = ж е е [°»г]> и многомерном случае

М) = Au{t, М) + g(t, х, W(t)) + f(t, х, W(t)) * W'(t), u(0, M) = гю(М), t4(t, M) |tM) = v0(M), M(x,y,z) G R3,i € [0,T].

5)

Здесь g(t,x,v), f(t,x,v) - детерминированные функции, гладкие по своим переменным, формальная производная винеровского процесса понимается в смысле Стратоновича, а сами уравнения (2)-(5) - в интегральной форме. Д - оператор Лапласа, £g,£f - константы, характеризующие степень влияния случайного внешнего воздействия на систему.

Глава 2. Разработка аналитического аппарата, необходимого для решения поставленных задач. Данный раздел посвящен аналитическому исследованию СДУ с многомерным винеровским процессом, систем таких СДУ, их детерминированных аналогов, а также СДУ в частных производных гиперболического тина.

В §2.1 приводятся основные определения и понятия стохастического исчисления и теории симметричных интегралов. Пусть W(t) — W(t,uj), W(0) = 0, t G [0, +oo), - стандартный винеровский процесс, заданный на вероятностном пространстве с фильтрацией (Q, F, (Ft), Р). Вводятся в простейшем случае определения стохастических интегралов Ито и Стратоновича и формула Ито связи между ними.

Рассматривается стохастическое дифференциальное уравнение в форме Ито: dy(t) = a(t,y(t))dW(t)-{-b(t,y(t))dt, t > 0, с F0~ измеримым начальным условием у(0) = уо. Приводятся определения решений СДУ, теоремы о существовании и единственности решений, явные формулы решений для некоторых классов СДУ.

Вводятся основные понятия, связанные с симметричным интегралом, который является детерминированным аналогом стохастического интеграла

Стратоновича. Пусть X(s), s £ [0,оо) - произвольная непрерывная функция.

Рассмотрим разбиения Тп, п £ N, отрезка [0, t}: Тп = 0 = t^ <

4П) < •■■ < 4П) < - < tml = t, п е N, такие, что Тп С Тп+и п £ N, и Ап = шах t^j, ^ — ^Jj —* 0 при п —> оо. Через X(n\s),s £ [О,*], обозначим h ломаную, построенную по функции X(s) и отвечающую разбиению Тп. Введем следующие обозначения: л-Л") Лп) Лп) ^к ~Ък Ък-1' д47°

Лп) Лп) Zk-VZk д4"' = Х(4">) - хц^у

Определение. Симметричным интегралом называется

J п i, J

О * [At(»,j если предел в правой части равенства существует и не зависит от выбора последовательности разбиений Тп,п £ N.

Приводятся формулы для вычисления симметричного интеграла. Рассматриваются СДУ с многомерным винеровским процессом и их детерминированные аналоги, построенные на основе симметричного интеграла. Приводится метод, позволяющий свести решение такого уравнения к решению цепочки обыкновенных дифференциальных уравнений первого порядка.

В §2.2 приводятся основные теоретические результаты о решении систем СДУ с многомерным винеровским процессом, с помощью которых описываются исследуемые в работе модели. Выделен класс систем, допускающий полностью явное аналитическое решение. Рассматривается система СДУ в форме Стратоновича вида тп—1 t

ViСО -m(0) = £ /aifc(s,r/i(s),r/2(s),.,r/n(s)) *dWk(s)+ к=1 о t f bi(s, 771(5), 7/2(5),., 7/n(s))d5, о

6) m—1

7/n(£) - 7/n(0) = £ J0 7/1(5), 7/2(5). .,77„(s)) * dWfc(s) + t f bn(s, 7/1 (5), 7/2(5), .,7]n(s))ds, 0 где (Wi(s),., Wm(s)) - многомерный винеровский процесс с независимыми компонентами. Предполагается, что условие Липшица и условие линейного роста, обеспечивающие существование и единственность решения СДУ (см. [25]), выполнены. Пусть существует положительная константа К такая, что для всех 5 € [0, t] и у, у G Rw1 m—1 I ajk(s, у) ~ ajk{s, у) |2 + I bj-(s, y) - bj(s. у) |2 < K\ у - у k=l

Til— 1 I ajk(s, y) |2 + I bjis, y)\2<K[l + \y\2 ], j = 1, n, k=l а коэффициенты системы (6) удовлетворяют условиям n

7^(5,7/1(5), 772(5), 77n(s)) ■ aK(s, 771(5), 7/2(5), .,7/n(s)) =

7) 1 it, E 7/1 (s), 7/2(5),., 77n(s)) ■ a9fc(5,771(5), 772(s), .,r]n(s)).

9=1

II

E 7/l(5), 7/2(s), .,7/n(s)) • (ln(s, 771(5), 7/2(5), ., 7/n(5)) =

8)

1 n E ' 69(5, 77l(5), 772(5), .,77„(5)) +

9=1

77l(5), 7/2(5), •■■, 7/n(s)) где j,l,q= 1,., n; i, k = 1, .,ra - 1.

Теорема. Если система стохастических дифференциальных уравнений (6), удовлетворяет условиям (7) и (8), то ее решение представляется в виде 7]i(s) = ipi(s,Wi(s),.,Wm-i(s)), i = 1,2, .,rc. где (pi(s,v b.,vmi) - гладкие случайные функции, и удовлетворяет системе уравнений в полных дифференциалах тп—1 dipi(s.v) = X) pn(s, v))dvk + bi(s,tpi(s,v), .,ipn(s,v))ds, k=l

Wmi(0)) = 77i(0),

7 = 1, ., П, где v G Rw1.

В условиях этой теоремы стохастические интегралы в уравнениях системы (6) понимались в смысле Стратоновича по винеровскому процессу V^(s), но в ходе доказательства, работали с ними как с симметричными, поскольку в данном случае они совпадают. Кроме того, ни характеристики, ни свойства винеровского процесса нигде не использовались. Поэтому винеровский процесс W(s) можно заменить на произвольную непрерывную функцию неограниченной вариации X(s), утверждение теоремы останется справедливым.

В качестве иллюстративного примера, для системы СДУ

771 (*) -m(0) = -fB(s,r]l(s),r]2(s)) ■ (s2 + r]21(s))*dX(s)+ f A(s,T}i(s),7]2(s))ds о m(t) - %(0) = f A(s, 7/1(5), 7/2(5)) * dX(s)~ 0

-fB(s,m(s),V2(s)) ■ (7/22(5) + X(s)2)ds, 0

X(0) = 1, 77i(0) = l, 7/2(0) = 0,

7/1(5) - mis) - x(s) • s где

A(s,r]i(s),r}2(s)) = 5(5,7/I(S),7/2(S)) = s • 772(5) + X(s) Tji (s)' 1 s • T)2(s) + X(s) ■ 77i(s)' а первый интеграл в правой части уравнений понимается как симметричный по произвольной непрерывной функции неограниченной вариации X(s)] найдено точное решение

7/2 (s) = . v ' 1+л/1-4ХЦз)**

В §2.3 изучаются СДУ в частных производных, с помощью которых описываются исследуемые в работе модели колебания струны и мембраны. Рассматривается уравнение в частных производных следующего вида j%su(t,x) = Fi (t, x,X(t), u(t, x), §-tu(t, x), ■£-u(t, x),., dkfdkn +

F2 (t,x,-^u(t,x)^ *X'(t).

9) где ki + . + kn = к < m, в области (s, x) e R+ x Rn, X'(t) есть формальная производная в смысле симметричного интеграла, а само уравнение (9) понимается в интегральном виде t>:о-!„«).*)=

Г* ( д д дк ^ Fi я, X(s), u(s, ж), —ф, х), х),., ^ ^ u(s, х),. ) ds+ t Xl'

10) где второй интеграл в правой части есть симметричный интеграл по функции Х(з).

Решением уравнения (10) будем называть функцию u(t. х) = Jq (p(s,x,X(s))ds + V(x), имеющую все непрерывные частные производные, содержащиеся в правой части уравнения (10), для которой имеют смысл интегралы в правой части уравнения, обращающая уравнение (10) в тождество.

Теорема. Функция u{t,x) = fg </?(s, х, X(s))ds + V(x) из приведенного выше класса функций является решением уравнения (10) тогда и только тогда, когда ip(s,x,v) удовлетворяет паре соотношений

-^ip(s,x,v) = F2(s,x,ip(s,x,v)), £<p{s,x,v)\v=x(s) =

Опираясь на эту теорему, для решения задачи Коши колебания бесконечной струны под действием случайной внешней силы х) = х) + X, W(t)) + /(t, a-, W(t)) * и(0,ж) = u0(a;), u't(t,x) |*=0 = uo(^), x G R1,£ G [О,Г], получен аналог формулы Даламбера x+t u(t, x) = i(w0(a; + t) + u0{x - t)) + \ f v0(€)d£+ x—t i f X+J T 9(j, e, W{r))didr + f F(s, X, W(s))ds— (12)

0 x-{t-r) 0 x+t t x+{t-r) т

-i f F(CU, + I J f f F^(y,^W(y))dydtdT. x—t 0 x-(t-r) 0

Для решения аналогичной задачи Коши в R3

М) = Au(t, М) + g(t, х, W(t)) + f(t, х, WOO) * ti(0, M) = «о(М), М) 14=0 = vo(M), (13)

M{x,y,z) GR3,tG [0,Т], получен аналог формулы Кирхгофа u(t, М) = Ц(щ(х + У + t7], z + *С)Ж+ s

IIЫ* + , У + + K))ds+

14) j г г г jr г Af(e,M',w(e))de}dx'dy'dz'.

Здесь, как и ранее W(t) - винеровский процесс, g(t,x,v), f(t,x,v) -детерминированные функции, гладкие по своим переменным, формальная производная винеровского процесса W'{t) понимается в смысле Стратоновича, а сами уравнения (11), (13) - в интегральной форме.

При f(x,W(t)) = 0 задачи (11), (13) превращаются в классические, и формулы (12), (14) совпадают с классической формулой Даламбера и Кирхгофа соответственно. Таким образом, аналоги формул Даламбера и Кирхгофа (12), (14) являются ее обобщением и подходят для нахождения решения как классической задачи Коши для волнового уравнения, так и стохастической.

Рассматривается первая краевая задача для стохастического дифференциального уравнения в частных производных гиперболического типа + 2с«4 + (Зи - Аи = g(t, х, W(t)) + /(t, я, W(t)) * W'(t), (15) ж e г с Rn, t > о, u(0, x) = щ(х), ut\t=Q = V0(x), X e Г, где и — u(t, х), а, (3 £ R,

П Q2 п Q

А = + Х' i,j=1 г ^ г=1 1

-эллиптический оператор второго порядка, в котором a,ij(t,x,w) и di(t,x,w) - предсказуемые гладкие функции, матрица {aij(t,x,w)}™J=1 с Р — 1 положительно определена, формальная производная винеровского процесса W'{t) понимается в смысле Стратоновича, а функции g(t,x,v), f(t,x,v) имеют непрерывные частные производные второго порядка по каждому аргументу. Уравнение (15) следует понимать в интегральной форме t t u't(t, х) — г4(0. х) + 2au(t, х) — 2сш(0, х) + /3 f u(s, х) ds — j Au(s, х) ds = t t ° ° = f g(s, x, W{s)) ds + f f(s, я, W(s)) * о 0 где последний интеграл понимается в смысле Стратоновича. Показано, что решение задачи (15) представляется в виде u(t, х) = Jq F(s, х, W(s))ds-hc(t, х), V где F(s,x,v) = J f(s,x,y) dy, a c(t,x) является решением задачи W(0) ctt" + 2act' + (3c — Ac = M(t, x, W(t)), x G Г С Rn, t > 0, c(0, x) = u0(x), ct'\t=0 = c(0, я) = г>0(ж), ж G Г, c(t,®)|seflr = - f F{s,x,W{s))\xedrds + p{t), t> 0, v 7o где M(s, ж, W(s)) = W"(s))-2aF(s,rc, W{s))-[3 f° F(T,x,W(r))dT +

A (/; F(r, ж, W(t)) dr) + g(s, x, W(s)).

Таким образом, решение первой краевой задачи для стохастического дифференциального уравнения в частных производных гиперболического типа (15) сводится к решению классической первой краевой задачи, содержащей в правой части уравнения и в граничных условиях случайные функции.

Глава 3. Численно—аналитическое решение и моделирование поставленных задач.

В §3.1 приведен алгоритм моделирования винеровского процесса.

В §3.2 рассматривается стохастическая модель Лотки-Вольтерр'а, описывающая динамику численности двух конкурирующих видов (концентраций двух реагирующих химических веществ в автоколебательной реакции).

16) dxi(t) = + aix2(t)) xi(t)dt + a-iXi(t)dWi(t), dx2(t) = (k2 + a2xl{t)) x2(t)dt + a2x2(t)dW2(t).

Найден первый интеграл системы (16) b2[ln^ - a^t)} + a2[*i - e^^Wario] = = hiln^ - a2W2{t)) + ax[x2 - e^w^x20], где bi = k\ + b2 = k2 + \a\.

Показано, что решение стохастической системы Лотки-Вольтерра (16) представляется в виде x2(t) = e^w^c2(t), и находится из решения системы обыкновенных дифференциальных уравнений c[(t) = + а^МЮъУ) + ±<т?) c'2{t) = c2(t)(k2 + a2e^w^Cl(t) + У2). Для решения последней системы предлагается следующий алгоритм:

Алгоритм

1. Моделируются две независимые траектории броуновского движения Wi{t) и W2(t).

2. С помощью метода, описанного во второй главе текущей работы, выводится система уравнений (18). В этой системе отсутствуют слагаемые в виде стохастических интегралов, что позволяет применить классические численные методы для построения ее решения.

3. Система уравнений (18) решается классическими численными методами первого порядка, например, методом Эйлера. Последнее связано с тем, что решение этой системы ci(t),C2(t) имеет непрерывную производную только первого порядка.

4. Подставляя найденные значения c\{t),C2(t) в соотношения (17), получим решение исходной задачи (16).

Используя правило Рунге, оценена погрешность полученных численных результатов.

В §3.3 предлагается численно-аналитический метод решения первой краевой задачи для описания колебаний закрепленной упругой струны под действием случайной внешней силы u"t{t,x) = u'£x(t,x) +x(eaW(t) + sinirt) + £fsmx* W'(t), x £ [0,1], t > 0, ,

1 ' J' ' (19) w(0, x) = x(l — ж), ut\t=0 — cos(a;), u(*,0) = 0, u(t, 1) = 0. Ранее было показано, что решение уравнения (19) имеет вид и г t,x) = J £fSmxW(r)dT + c(t,x), (20) где неизвестная функция c(t, х) является решением следующей первой краевой задачи t c"t(t,x) = c'xX(t,x) + х(£gW{t) + sin 7rt) +£f s'mx J W(r)dr, (21) о ar e [0,1], t > 0, c(0, x) = x(l - x), ct|t=0 = cos(ar), c(t70) = 0, c(t, 1) = 0.

Для решения последней начально-краевой задачи предлагается следующий алгоритм:

Алгоритм

1. Моделируется траектория броуновского движения W(t)\

2. С помощью метода, описанного во второй главе текущей работы, выводится уравнение (21). В этом уравнении отсутствуют слагаемые в виде стохастических интегралов, что позволяет применить классические численные методы для построения его решения;

3. Первая краевая задача для уравнения на функцию c(s. х) решается аналитическими или численными методами.

4. С помощью соотношения (20) строится решение исходной первой краевой задачи (19).

В §3.4 предлагается численно-аналитический метод решения первой краевой задачи для описания вибрации прямоугольной мембраны под действием случайной внешней силы я, у) = u'j.x(t, х, у) + u'^y(t, х, у) + xy{egW(t) + sinirt)+ +£f sin 7г(х + у) * W'{t), Х- е [0,1], у е [0,1], G = [0,1] х [0,1], t > 0, w(0, х, у) = sm7nr sin Ut\t=zQ = 0, u(t,x,y)\x,yedG = о.

Стохастическая первая краевая задача (22) сводится к первой краевой задаче для классического (не стохастического) волнового уравнения c'lt{t, х, у) = ж> у) + M{t, х, у, W(t)), х е [0,1], у б [0,1], G = [0,1] х [0,1], t > 0, с(0,х,у) = sin ТЛЕ sin ct\t=Q (t, x, у) = 0, (22) t c(t,x,y)\x,yedG = - J F(s,x, у, W(s))\X;yedGds, о где

F(s,x,y,W(s)) — £/sin7r(a: + y)W(s), s

M(t,x,y, Wit)) = —2-kej sin7r(a; + y) J W(r)dr + xy(sgW(t) + sinwL), о для решения которой предлагается следующий алгоритм

Алгоритм

1. Моделируется траектория броуновского движения W(t);

2. С помощью метода, описанного во второй главе текущей работы, выводится уравнение (22). В этом уравнении отсутствуют слагаемые в виде стохастических интегралов, что позволяет применить классические численные методы для построения его решения;

3. Первая краевая задача для уравнения на функцию c(s, х, у) решается численными методами. В текущем параграфе предложен численный метод для построения решения задачи (22); t

4. С помощью соотношения u(t, х, у) = еf s\mr{x+y) f W(s)ds+c(t,x,y), о строится решение исходной первой краевой задачи (22).

Основные результаты работы

1) Разработан новый способ численного моделирования колебательных процессов в среде со случайными возмущениями, которые описываются системами СДУ, в частности стохастической системы Лотки-Вольтерра динамики численности конкурирующих видов (концентраций реагентов в автоколебательной реакции) под действием случайных возмущений. Метод заключается в том, что, опираясь на аналитические результаты работы, исходная задача сводится к системе обычных дифференциальных уравнений в полных дифференциалах, где в качестве коэффициентов присутствует винеровский процесс, и которая решается классическими численно-аналитическими методами. Используя правило Рунге, оценена погрешность численных результатов;

2) Разработан новый способ численного моделирования колебательных процессов в среде со случайными возмущениями, которые описываются начально-краевой задачей для СДУ в частных производных гиперболического типа, а именно, колебаний упругой струны и мембраны иод действием случайных возмущений. Метод заключается в том, что, опираясь на аналитические результаты работы, исходная стохастическая начально-краевая задача сводится к классической начально-краевой задаче, где в качестве коэффициентов или краевых условий присутствует винеровский процесс, что позволяет воспользоваться классическими численно-аналитическими методами для ее решения;

3) Предложен новый аналитический метод решения широкого класса систем СДУ, включающий в себя, в частности, стохастическую систему Лотки-Вольтерра. Впервые найден первый интеграл последней в виде функции, связывающей численности конкурирующих видов (концентрации реагентов в авто-колебательных реакциях). Предложены аналоги формул Даламбера и Кирхгофа для решения задачи Коши колебаний бесконечной струны под действием случайной внешней силы.

1 Постановка задачи

Библиография Захарова, Ольга Владимировна, диссертация по теме Математическое моделирование, численные методы и комплексы программ

1. Анулова С.В. Стохастическое исчисление / Анулова С.В., Веретенников А.Ю., Крылов Н.В., Липцер Р.Ш., Ширяев А.Н.- ВИНИТИ, 1989. - т. 49.- 260 с.

2. Байков В.А. Уравнения математической физики / Байков В.А., Жибер А.В. Москва-Ижевск: Институт компьютерных исследований, 2003. -256 с.

3. Бахвалов Н. С. Численные методы / Бахвалов Н. С., Жидков Н.П., Кобельков Г.М М.: Наука, 2004. - 636 с.

4. Бернштейн С. Н. Принципы теории стохастических дифференциальных уравнений / Бернштейн С. Н. // Тр. физ. мат. ин-та им. В. А. Стеклова.- 1934. т. 5. - С. 95-124.

5. Ватанабэ С. Стохастические дифференциальные уравнения и диффузионные процессы / Ватанабэ С., Икэда Н. М.: Наука, 1986. -445 с.

6. Гихман И. И. К теории дифференциальных уравнений случайных процессов / Гихман И. И. // Укр. мат. ж. 1950. - т. 2. - №4. - С. 37—63.

7. Гихман И.И. Введение в теорию случайных процессов / Гихман И.И., Скороход А.В. М.: Наука, 1977. - 568 с.

8. Гихман И.И. Стохастические дифференциальные уравнения и их приложения / Гихман И.И., Скороход А.В.- Киев: Наукова. Думка, 1982. -611 с.

9. Гюнтер Н. Интегрирование уравнений первого порядка в частных производных М.: ОНТИ, 1934. - 360с.

10. Дуб Дж.Л. Вероятностные процессы / Дуб Дж.Л. М.: Изд-во иностранной литературы, 1956. - 609 с.

11. Насыров Ф.С. О решении некоторых классов стохастических дифференциальных и интегральных уравнений и их детерминированных аналогов / Насыров Ф.С., Захарова О.В., Крымская М.В. // "Вестник УГАТУ",- Уфа: РИК УГАТУ. 2006. - Т.7 - №1 - С. 137-143.

12. Захарова О.В. Об одном методе решения стохастических дифференциальных уравнений и их детерминированных аналогов / Захарова О.В. // Труды "37-й Региональной молодежной конференции".-Екатеринбург: УрО РАН 2006. - С. 191-194.

13. Захарова О.В. О решении детерминированных аналогов систем стохастических интегральных уравнений / Захарова О.В. // Сборник трудов участников Международной школы-семинара по геометрии и анализу памяти Н.В. Ефимова, Ростов-на-Дону 2006. - С. 230-231.

14. Захарова О.В. О решении одного класса систем стохастических дифференциальных уравнений / Захарова О.В. // "Известия ВУЗов. Математика Казань. 2009. - № 6. - С. 3-9.

15. Звонкин А.К. Преобразование фазового пространства диффузионного процесса, уничтожающее снос / Звонкин А.К. // Мат. сб. 1974. - 93(135). - №3. - С. 129 — 149.

16. Калиткин Н.Н. Численные методы / Под ред. А.А. Самарского — М.: Наука, 1978. 512с.

17. Каллианпур Г. Стохастическая теория фильтрации: Пер. с англ./ Под ред. А.В. Скорохода. М.: Наука, 1987. - 320с.

18. Кляцкин В.И. Стохастические уравнения глазами физика: Основные положения, точные результаты и асимптотические приближения / Кляцкин В.И. М.: Физматлит - 2001. - 528 с.

19. Колмогоров А.Н. Об аналитических методах в теории вероятностей / Колмогоров А.Н. // УМН 1938. - т.5. - С. 10-100.

20. Колмогоров А.Н. Исследование уравнения диффузии, соединенной с возрастанием количества вещества, и его применение к одной биологической проблеме / Колмогоров А. Н., Петровский И. Г., Пискунов Н. С. // Бюлл. МГУ 1937. - №6. - с. 1-26.

21. Крылов Н. В., Розовский Б. JI. Стохастические дифференциальные уравнения в частных производных и диффузионные процессы. // Успехи мат. наук. 1982. - Т. 37, №6, - С. 75-95.

22. Кузнецов Д.Ф. Стохастические дифференциальные уравнения: теория и практика численного решения / Д.Ф. Кузнецов 3-е изд., испр. и доп. -СПб.: Изд-во Политехи, ун-та, 2009. - 800 с.

23. Кушнер Г.Дж. Вероятностные методы аппроксимации в стохастических задачах управления и теории эллиптических уравнений / Кушнер Г.Дж.- ML: Наука 1985. - 222 с.

24. Леви П. Стохастические процессы и броуновское движение. М.: Наука.- 1972.

25. Липцер Р.Ш. Статистика случайных процессов: нелинейная фильтрация и смежные вопросы / Липцер Р.Ш., Ширяев А.Н. М.: Наука, 1974. - 696 с.

26. Милыптейн Г.Н. Численное интегрирование стохастических дифференциальных уравнений / Милыптейн Г.Н. Свердловск.: Изд-во Уральского ун-та, 1988. - 225 с.

27. Насыров Ф.С. О локальных временах для функций и случайных процессов / Насыров Ф.С.// Теория вероятностей и ее применение 1995.- т. 40. Л"- 4. - С. 798-812.

28. Насыров Ф.С. Симметричные интегралы и их применение в финансовой математике / Насыров Ф.С. // Труды МИРАН 2002. - т. 237. - С. 265278.

29. Насыров Ф.С. Симметричные интегралы и стохастический анализ / Насыров Ф.С. // Теория вероятностей и ее применение 2006. - т. 51.- № 3 С. 496-517.

30. Насыров Ф.С. О решении некоторых классов стохастических дифференциальных и интегральных уравнений и их детерминированных аналогов / Насыров Ф.С., Захарова О.В., Крымская М.В. // Вестник УГАТУ 2006. Т.7, №1 с. 137-143

31. Розанов Ю.А. Случайные поля и стохастические уравнения с частными производными. М.: Наука. - 1995. - 256 с.

32. Розовский Б.Л. Эволюционные стохастические системы / Розовский Б.Л.- М.: Наука, 1983. 208 с.

33. Самарский А.А. Численные методы: Учебное пособие для вузов. / Самарский А.А., Гулин А.В. М.: Наука. Гл. ред. физ-мат. лит., 1989- 432 с.

34. Феллер В. К теории стохастических процессов (Теоремы существования и единственности) / Феллер В. // УМН 1938. - т. 5. - С. 57—96.

35. Ширяев А. Н. Вероятность / Ширяев А.Н. М.: МЦНМО, 2004. - т. 2. -405 с.

36. Эллиот Р. Стохастический анализ и его приложения. М.: Мир. - 1986351 с.

37. Allen E.J. Modeling with Ito Stochastic Differential Equations / Allen E.J. -Springer, 2007. 230 p.

38. Allen E.J. Derivation of Stochastic Partial Differential Equations / Allen E.J. // Stochastic Analysis and Applications 2008. - №26. - P. 357-378.

39. Alos E. Stochastic partial differential equations with Dirichlet white-noise boundary conditions / Alos E., Bonnacorsi S. // Ann. Inst. H. Poincare Probab. Statist. 2002. - № 38(2). - P. 125 - 154.

40. Arnold L. On the consistency of the mathematical models of chemical reactions / Arnold L. // Dynamics of synergetic systems, Bielefeld 1980. - P.107 -118.

41. Boyce W.E. Approximate solution of random ordinary differential equations / Boyce W.E. // Adv. in Appl. Probab. 1978. - №10. - P. 172 - 184.

42. Chung K.L., Williams R.J. Introduction to stochastic integration Boston: Birkhauser - 1983. - 191 p.

43. Dalang R. C., Frangos N. E. The stochastic wave equation in two spatial dimensions / Dalang R. C., Frangos N. E. // Annals of Applied Probability.- 1998. 26(1) - P. 187-212.

44. Da Prato G. Evolution equations with white-noise boundary conditions / Da Prato G., Zabczyck J. // Stoch. and Stoch. Reports -1993. v. 42. - P. 167- 182.

45. Da. Prato G., Tubaro L. Stochastic partial differential equations and applications Marcel Dekker, Inc., New York. - 2002.

46. Da Prato G., Zabczyck J. Evolution equations with white-noise boundary conditions / Da Prato G., Zabczyck J. // Stoch. and Stoch. Reports. 1993.- Vol. 42. P. 167-182.

47. Evans L.C. An introduction to stochastic differential equations UC Berkeley, 2002. - 139p.

48. Friedman A. Stochastic Differential Equations and Applications. Vol. 1. -New York: Academic. - 1975.

49. Holden, H., Oksendal, В., Uboe, J., Zhang T. Stochastic partial differential equation A Modeling, White Noise Approach Series / Holden, H., Oksendal, В., Uboe, J., Zhang T. // Birkhauser Boston Inc., 1996, 234 p.

50. Ito K. Differential equations determining Markov processes / Ito-K. // Zenkoku Shijo Sugaku Danwakai 1942. - v. 244. - № 1077 - P. 1352 -1400.

51. Ito K. On stochastic differential equations / Ito K. // Mem. Amer. Math. Soc.- 1951. v. 4 - P. 250-368 1352 -1400.

52. Khoshnevisan D., Rassoul-Agha F. A minicourse on stochastic partial differential equations. / Khoshnevisan D., Rassoul-Agha F. (eds.) Berlin, Heidelberg: Springer-Verlag, 2009, 215p.

53. Kloeden P.E. Numerical solution of stochastic differential equations / Kloeden P.E., Platen E. Berlin.: Springer-Verlag, 1992. - 632 p.

54. Kotelenez P. Stochastic Ordinary and Stochastic Partial Differential Equations: Transition from Microscopic to Macroscopic Equations / Kotelenez P.- Springer Sciens+Business Media LLC, 2008, 458 p.

55. Мао X., Markus L. Wave equation with stochastic boundary values // .J. Math. Anal, and Appl. 1993. - Vol. 177. - P. 315-341.

56. Maruyama G. Continious Markov processes and stochastic equations // Rend. Circolo Math. Palermo. 1955. - Vol. 4. - P. 48-90.

57. Maslowski B. Stability of semilinear equations with boundary and pointwise noise / Maslowski B. // Annali della Scuola Normale Superiore di Pisa 1995.- v. 12. P. 68-136.

58. Oksendal B. Stochastic differential equations / Oksenda.1 B. 5ed. Springer-Veglar Heidelberg New York, 2000, 332 p.

59. Orsingher E. Randomly forced vibrations of a string / Orsingher E. // Annates de l'institut Henri Poincare' (B) Probabilite's et Statistiques 1982. - v. 18. № 4 - P. 367-394.

60. Platen E. A generalized Taylor formula for solutions of stochastic differential equations. Sankhua 44A, 1982(1), pp. 163-172.

61. Sole J.L., Utzet F. Stratonovich integral and trace / Sole J.L., Utzet F. // Stochastics and Stochastics Reports, 1990. - 29 (2). - P. 203-220.

62. Sowers R. Multidimensional reaction-diffusion equations with white noise boundary perturbations / Sowers R. // Ann. of Prob. 1994. - v. 22. - P. 2071 - 2121.

63. Wiener N. Differential space / Wiener N. // J. Math. Phys. 1923. - v.2. -P. 131 - 174.

64. Yamada T. On comparison theorem for solutions of stochastic differential equations and its applications / Yamada T. // J. Math. Kyoto Univ. 1973.- v.3. P. 497 - 512.