автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Математическое моделирование диффузионных и тепловых процессов в бинарных полупроводниках

кандидата физико-математических наук
Фетисов, Сергей Анатольевич
город
Москва
год
1993
специальность ВАК РФ
05.13.18
Автореферат по информатике, вычислительной технике и управлению на тему «Математическое моделирование диффузионных и тепловых процессов в бинарных полупроводниках»

Автореферат диссертации по теме "Математическое моделирование диффузионных и тепловых процессов в бинарных полупроводниках"

п о и^

- 1 ПАЯ 1393

ИНСТИТУТ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ РАН

На правах рукописи

ФЕТИСОВ СЕРГЕИ АНАТОЛЬЕВИЧ

УДК 517.63:548.53

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДИФФУЗИОННЫХ И ТЕПЛОВЫХ ПРОЦЕССОВ В БИНАРНЫХ ПОЛУПРОВОДНИКАХ

05.13.18 - Теоретические основы математического моделирования, численные методы и комплексы программ

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Москва - 1993

Работа выполнена в Институте математического моделирования РАН

Научные руководители - доктор физико-математических наук, профессор Е. И. Леванов, ИММ РАН доктор физико-математических наук, профессор П.П.Волосевич, ИММ РАН

Официальные оппоненты: доктор физико-математических наук, профессор Б.Н.Четверушкин, ИММ РАН кандидат физико-математических наук,

научный сотрудник Н.Г.Белова, Физико-технологический институт РАН.

Ведущая организация: Московский физико-технический институт.

Защита состоится "_"_ 1993г. в _ часов на заседании

Специализированного совета К 003.91.01 Института математического моделирования РАН по адресу 125047, Москва, Миусская площадь, 4.

С диссертацией можно ознакомиться в библиотеке Института математического моделирования РАН.

Автореферат разослан йА£ 1993г.

УЧЕНЫЙ СЕКРЕТАРЬ СПЕЦИАЛИЗИРОВАННОГО СОВЕТА

к. ф.-м. н. С^^ Свирщевский С.!

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ. Актуальность проблемы. Бурное развитие электроники и внедрение ее в современное народное хозяйство требуют большого промышленного производства полупроводниковых материалов. Определяющую роль в формировании объемных монокристаллов и полупроводниковых структур с заданными электрофизическими свойствами играют процессы тепло- и массопереноса. Однако совершенствовать режимы производства на основе изучения только результатов эксперимента- дорого, сложно, трудоемко. Поэтому для изучения процессов получения полупроводниковых материалов в последние годы широко применяются методы математического моделирования. Необходимость использования математических моделей ( и вычислительных экспериментов ) связана с тем, что, как правило, невозможно непосредственно наблюдать за процессами роста кристаллов. В настоящее время получение бинарных соединений с априори заданными свойствами является весьма актуальной задачей, так как эти соединения занимают видное место в современной физике и технике полупроводников, являясь одним из наиболее важных и перспективных материалов для ряда быстро развивающихся областей науки и техники, в особенности фото- и оптоэлектроники, квантовой радиофизики, акустоэлектроники. Это связано главным образом с тем, что соединения этого класса обладают различными значениями ширины запрещенной зоны от нулевых до нескольких электрон- вольт, что позволяет в весьма широких пределах варьировать их электрические, фотоэлектрические и оптические свойства. Значения проводимости веществ такого класса изменяются от проводимости, соответствующей полуметаллу, до проводимости

изолятора. Спектральная область фоточувствительности, люминесценции и-лазерного, излучения бинарных полупроводников может изменяться от инфракрасного до ультрафиолетового участков спектров, а наличие "прямых" зон ' делает возможным получение эффективного лазерного и люминесцентного излучения. Вышеуказанные соединения в последние годы получили широкое применение в качестве основного полупроводникового материала для создания фотоприемников на различные диапазоны длин волн. Одним из перспективных направлений получения монокристаллов, улучшения характеристик материалов является применение лазеров. Изучение воздействия лазерного луча на протекайие тепловых и диффузионных процессов в бинарных соединениях, формирование требуемого профиля концентрации в материале является важной задачей, так как от того, какая в процессе диффузии будет форма профиля концентрации и температуры, зависит качество получаемого материала и его свойства.

Для направленного изменения свойств материалов необходима информация о механизмах миграции компонентов и примесей, структуре точечных дефектов и дислокации, а также о влиянии дефектов и дислокаций на протекание диффузионных процессов. Математическое моделирование диффузионных процессов при наличии градиента упругих напряжений, анализ влияния величины и вида потенциала взаимодействия атомов растворенного Еещества с дислокацией на эти процессы, определение скорости "откачки" растворенного вещества из пресыщенного раствора и т.д., являются актуальной проблемой, так как позволяют объяснить многие физические явления, наблюдающиеся в ' экспериментах.

Один из важнейших вопросов современного материаловедения-это вопрос о механизме диффузии, а также величине и виде 1 коэффициента диффузии при формировании твердых бинарных полупроводниковых сплавов. Обоснование того факта, что основным механизмом диффузии при формировании некоторых типов соединений является механизм взаимной диффузии позволило бы на основании экспериментальных данных численно определить коэффициенты самодиффузии и взаимной диффузии. Кроме того, механизм взаимной диффузии объяснил, бы эффект Киркендалла, который наблюдатся в значительном числе экспериментов, а полученное аналитическое выражение для коэффициента взаимной диффузии позволило бы избежать большого количества дорогостоящих и сложных натурных экспериментов, лучше прогнозировать многие результаты технологов.

Именно с этими вопросами тесно связана настоящая диссертация.

Цель работы состоит в реализации методики численного решения уравнений диффузии (при наличии градиента упругих напряжений и без него), теплопроводности и переноса лазерного излучения с нелинейными коэффициентами поглощения, диффузии и теплопроводности, зависящими от температуры и концентрации, решения обратной задачи определения коэффициентов самодиффузии и взаимной диффузии из экспериментальных профилей концентрации, создание комплекса программ.

В работе приводится:

1. Анализ возможности применения лазеров для формирования полупроводниковых материалов с априори заданньми свойствами в системе- эпитаксиальная пленка узкозонного полупроводника плюс подложка из широкозонного полупроводника.

е>

2. Исследование влияния градиента упругих напряжений, величины и вида потенциала взаимодействия, а также коэффициента диффузии на протекание диффузионных процессов в материале.

3. Определение коэффициентов диффузии, описывающих механизм простой диффузии, а также коэффициентов самодиффузии и взаимной диффузии полупроводниковых бинарных соединений; сравнение результатов моделирования механизмов простой и взаимной диффузии.

Научная новизна. Разработаны и реализованы в виде комплекса программ алгоритмы численного решения вышеуказанных задач материаловедения и микроэлектроники. Изучены тепловые и диффузионные процессы в бинарных полупроводниках, в том числе при наличии градиента упругих напряжений в материале. Исследовано влияние коэффициентов переноса и параметров лазерной установки на возможность получения полупроводникового сплава требуемого состава.

Исследованы диффузионные процессы при наличии дислокаций в материале, возможность выхода на стационарный режим, определена скорость "откачки" растворенного вещества из пресыщенного раствора, проведена оценка области изменения состава полупроводникового соединения.

Разработан и реализован в виде комплекса программ алгоритм, позволяющий свести обратную задачу определения коэффициентов самодиффузии, взаимной диффузии и термодинамического множителя к многократному решению прямой задачи с оптимизацией начального приближения вышеуказанных коэффициентов.

Защищаемые положения.

1. Получены и исследованы автомодельные решения степенного вида и решения типа "бегущей волны", дающие качественное представление о характере протекающих процессов. Предложена и реализована методика численного совместного решения системы дифференциальных уравнений диффузии, теплопроводности и переноса лазерного излучения с нелинейными коэффициентами поглощения, диффузии и теплопроводности, зависящими от температуры и концентрации.

2. Выявлены основные закономерности протекания диффузионных процессов при наличии градиента упругих напряжений в материале. С помощью вычислительных экспериментов подтверждается аналитически полученная возможность выхода на стационарный режим.

3. Реализован комплекс программ, позволяющий свести обратную задачу определения коэффициентов самодиффузии и взаимной диффузии к многократному решению прямой задачи с оптимизацией начального приближения вышеуказанных коэффициентов. Получены диффузионные коэффициенты в некоторых полупроводниковых бинарных соединениях в аналитической форме. Проведено сравнение с результатами различных натурных экспериментов.

Практическая значимость работы.

При численном решении вышеуказанных задач материаловедения и микроэлектроники были определены некоторые закономерности тепловых и диффузионных процессов в бинарных сплавах, относящиеся к важной характеристике качества получающегося монокристалла- форме профилей концентрации одного из компонентов и температуры. В результате анализа

найденных закономерностей даны рекомендации, которые могут быть использованы при создании новых и улучшении существующих установок по производству монокристаллов с требуемыми свойствами.

Полученные результаты позволяют глубже понять диффузионные процессы, которые наблюдаются на границе двух сросшихся монокристальных блоков, разориентированных на малый угол. Комплекс программ по определению коэффициентов самодиффузии и взаимной диффузии из экспериментально известных профилей концентрации позволяет существенно ускорить обработку результатов натурных экспериментов.

Результаты работы были использованы в Научно-исследовательском институте материаловедения, Научно-исследовательском институте особо чистых материалов, Московском Государственном Университете. В Научно-исследовательский институт материаловедения были переданы и используются комплексы программ, расчеты по которым позволяют резко сократить объем экспериментальных исследований по подбору параметров лазерной установки и исходных материалов и определению коэффициентов диффузии бинарных соединений.

Апробация. Основные результаты работы докладывались на 34-ой и 36-ой научных конференциях МФТИ С1989 г. и 1991 г.), на Всесоюзной конференции "Математическое моделирование и вычислительный эксперимент" (Казань, 1991 г.), на научных семинарах : кафедры "Прикладная математика " МФТИ

С 1990 г., 1992 г. 3, ИПМ им. Келдыша РАН С1991 г.), Научно-исследовательского института материаловедения С1991 г.). Научно - исследовательского института особо чистых материалов С 1992 г. ), ИММ РАН С 1992 г. , 1993 г. ), кафедры

" Вычислительная математика " МФТИ (1993 г.)

Структура и объем диссертации. Диссертация состоит из введения, трех глав и заключения. Объем диссертации 138 стр., включая 43 рис., 4 табл. и библиографию из 145 наименований.

СОДЕРЖАНИЕ РАБОТЫ.

Во введении обосновывается актуальность темы диссертации, дается краткий обзор литературы по рассматриваемым вопросам и описывается структура работы.

В первой главе приведена постановка и дан, анализ возможности применения лазеров для формирования полупроводниковых материалов с требуемой шириной запрещенной зоны в системе- эпитаксиальная пленка узкозонного полупроводника.плюс подложка из широкозонного полупроводника. Лазерное излучение с длиной волны, соответствующей требуемой ширине запрещенной зоны получаемого материала, проходит сквозь прозрачный широкозонный полупроводник и поглощается в узкозонном полупроводнике. В результате происходит интенсивный локальный нагрев на границе двух материалов. Нагрев приводит к взаимной диффузии и образовнию полупроводникового сплава, имеющего ширину запрещенной зоны, промежуточную между двумя начальными материалами. Повторные воздействия лазером приводят к движению области локализованного поглощения в направлении границы пленка- воздух и формированию сплава требуемого состава. Процессами взаимной диффузии можно управлять, изменяя характеристики лазерного излучения и исходных материалов. Конкретные расчеты проводились для полупроводниковых материалов, состоящих из сплавов С^Нд^ хТе: освещаемая

подложка - из СсЯе, а осаждаемая на ней пленка - из НдТе. Оценивалась возможность формирования полупроводника, состоящего из сплава Сс1о 2Ндо вТе. В соответствии с шириной запрещенной зоны получаемого материала рассматривался С02 лазер с длиной волны Х=10,6 мкм. Предполагалось, что в процессе взаимной диффузии и теплопереноса температура системы не должна превышать температуру плавления исходных материалов.

Исследуемый процесс описывался системой уравнений диффузии и переноса тепла механизмом теплопроводности и лазерного излучения с теплоемкостью, коэффициентами взаимной диффузии, термодиффузии, теплопроводности и поглощения, зависящими от температуры и концентрации: ах

— = -<йу j Л

ат г а^ ах

рс — = -сиу V/ - СЙУ я + Бт — р _ —

д1 т 1 ах > р-т д1

л = -Б дгас1 X + -т X С 1-Х) дгас! Т Т

V = -X дгас1 Т СИУ я =-к д

Здесь I- время, Х- безразмерная концентрация частиц Сс1 в смеси Сс1хНд1 _хТе (0<Х< 1),р-плотность,Т-температура,У-плотность потока тепла, обусловленного теплопроводностью, С=С(х,Т)-теплоемкость среды, р- химический потенциал среды и 0=0(х,Т), Бт=ОтСх,Т), х=*Сх,Т) и к=кСх,Т) - соответственно коэффициенты взаимной диффузии,термодиффузии, теплопроводности и поглощения излучения, являющиеся в общем случае функциями концентрации и температуры, .1- диффузионный поток частиц Сс1. В данном исследовании не учитываются дополнительные диффузионные

потоки, вызываемые градиентом температуры. Процессы диффузии и теплопереноса рассматриваются в приближении плоской симметрии. Считается, что на левой границе z=0 рассматриваемой системы, заданы поток лазерного излучения с плотностью, зависящей от времени q(0,t)=Q(t).

Считается, что начальная температура исходных материалов постоянна. Как упоминалось выше, в начальные моменты времени в силу прозрачности сплава CdTe излучение QCU поглощается вблизи границы соприкосновения двух материалов. Возникающий в силу этого локальный нагрев приводит к взаимной диффузии частиц и переносу тепла за счет теплопроводности. Процесс продолжается до некоторого момента t=t -момента времени, при котором зона локального нагрева Сзона поглощения лазерного излучения) доходит до правой границы системы z=z(j). Конечной целью исследования является оценка возможностей формирования к моменту времени t=£ полупроводникового сплава Cdo гНдо вТе.

Система уравнений рассматривалась при следующих граничных условиях. На левой границе z=0 заданы условия:

ХСО.О = 1., TCO.tî = Т, qCO.t) = QCt).

10 ) *

на правой границе z=z(i (-

JCza ,.0 = 0, TCz(i ( ,t) = T(i).

Считается, что исследуемые сплавы за все время процесса остаются твердыми, то есть температура не превышает температуру плавления Тж. Указанное ограничение температуры достигается заданием прерывистого изменения со временем потока лазерного излучения на границе z=0.

Зависимость плотности от концентрации X аппроксимировалась линейной функцией, а коэффициент

поглощения- показательной функцией концентрации. Коэффициенты теплопроводности и теплоемкости определялись путем линейной интерполяции по табличным значениям. Коэффициент взаимной диффузии вычислялся по формуле, применяемой для регулярных твердых сплавов в предположении изотермичности и постоянства давления. Для рассматриваемой смеси коэффициент взаимной диффузии считался нелинейной функцией концентрации и температуры.

Указанная система уравнений, записанная для случая плоской симметрии, допускает решения типа "бегущей волны" и при определенных условиях- автомодельные решения степенного типа. Автомодельные решения дают достаточно широкую информацию о процессе и позволяют установить зависимости характерных величин от входных данных задачи, а также учитывают основные особенности нелинейных явлений. Анализ таких решений, проведенный при постоянных значениях соответствующих коэффициентов, позволил установить качественный характер зависимости формы профиля концентрации X от различных параметров задачи. В общем случае исследование проводилось с помощью численных решений соответствующих схем. Для расчетов применялась чисто неявная разностная схема. На каждом временном слое первоначальная система уравнений сводится к системе из двух трехточечных разностных уравнений. Разностные уравнения решаются раздельно методом прогонки до выполнения условий сходимости. Показано, что прогонка является устойчивой. Затем расчет обоих уравнений повторяется до полной сходимости Сдо заданного числа итераций). Вычислительные эксперименты подтвердили упомянутые выше результаты качественного анализа.

Вторая глава посвящена математическому моделированию диффузионных процессов при наличии градиента упругих напряжений. Рассматриваются одномерные и двумерные физико-математические модели, основанные на уравнении диффузии при наличии градиента потенциала протяженного дефекта, зависящего от угла и радиуса. Коэффициент диффузии считался как постоянным, так и зависящим от концентрации и температуры.

Поле напряжений, возникающее вокруг внедренного атома в твердом растворе, способствует притяжению атома к дислокации. Поэтому в пресыщенном сплаве (если содержание элемента в сплаве выше предела растворимости) скорость выделения на дислокациях будет расти благодаря дрейфу в поле напряжений, накладывающемуся на движение под действием градиента концентрации. Взаимодействие между ядром линейной или винтовой дислокации и находящемся на расстоянии г от него внедренным атомом может быть записано в виде: /3

УС г,р) = - С винтовая дислокация ),

г

А

У(г,р) = - з1п <р С линейная дислокация ), г

где р и А - соответствующим образом подобранные константы. Концентрация вблизи дефекта считается равной нулю, а на значительном удалении от дефекта- предполагается постоянной. Задача рассматривается в полярной системе координат. В данной работе используется специальная функциональная замена, позволяющая получить асимптотическое решение для функции концентрации при г-О.

Построение разностной схемы осуществлялось с помощью интегро- интерполяционного метода. Полученное в результате

разностное уравнение решается методом переменных направлений. На каждом слое используется метод простой итерации. Все нелинейные функции считаются, исходя из предыдущей итерации. На каждой итерации значение на полуцелом уровне определяется методом циклической прогонки, а на целом- с помощью обычной прогонки. Построенная таким образом схема имеет порядок аппроксимации 0Ста+|Ь|г) на сетке, где |Ь|г - среднеквадратичный шаг, и сходится в случае достаточно гладких функций к точному решению задачи. В работе показано, что устойчивость обычной и циклической прогонок обеспечивается выбором шага по времени т.

Помимо первоначальной задачи с потенциалом, решалась задача без потенциала, но с граничным условием: ССЮ = 0, где С- концентрация атомов, а И- "радиус захвата", который различен для линейной или винтовой дислокации и может быть получен аналитически. Результаты решения двух задач сравнивались и оценивалась точность приближения цилиндром эффективного "радиуса захвата".

В третьей главе для описания процессов формирования теллуридов кадмия и ртути используется механизм взаимной диффузии. В работе применяется алгоритм, позволяющий свести обратную задачу определения коэффициентов самодиффузии, взаимной диффузии и термодинамического множителя по экспериментально известным профилям концентраций в известные моменты времени к многократному решению прямой задачи с оптимизацией начального приближения вышеуказанных коэффициентов. Оптимизация квадратичного отклонения во всех точках сетки, полученного в результате решения прямой задачи, профиля концентраций от экспериментального осуществляется

методом Флетчера-Пауэлла. В качестве функции минимизации используется квадратичное отклонение теоретического профиля концентраций от экспериментального. Для коэффициента взаимной диффузии используется формула, применяемая для регулярных твердых сплавов в предположении изотермичности и постоянства давления. Отметим, что механизм взаимной диффузии объясняет эффект Киркендалла, который наблюдается в значительном числе экспериментов. Кроме того, моделировался механизм простой диффузии и определялся коэффициент диффузии по тем же экспериментальным данным. Далее определялась сумма квадратов отклонений во всех точках сетки оптимального теоретического профиля, полученного в предположении простой дифузии и сравнивалась с аналогичной суммой в предположении механизма взаимной диффузии. Также сравнивались численные выражения, даваемые полученной формулой для коэффициента взаимной диффузии с ранее известными коэффициентами диффузии, которые зависят от температуры и концентрации степенным и экспоненциальным образом. Из проведенных расчетов можно сделать следующие

ВЫВОДЫ Исследована возможность использования лазера для формирования полупроводниковых соединений тёллурида кадмия и ртути с априори заданными свойствами. Показано, что оптимальный состав сплава можно получить при определенных требованиях к коэффициентам переноса и параметрам лазерной установки. При этом рассматривались коэффициенты взаимной диффузии с учетом существенного отклонения от условий идеальности сплавов. Исследовано влияние термодинамического множителя на возможность получения полупроводникового сплава

заданного состава. Показано, что при существенном увеличении термодинамического множителя возможно получение требуемого профиля концентрации. Кроме того, было получено, что увеличение мощности лазера приводит лишь к уменьшению промежутка времени, за который зона поглощения лазерного излучения Сзона локального нагрева) доходит до внешней границы системы. С ростом мощности лазера увеличивается также число "отключений" лазерного импульса в моменты, когда максимум температуры • достигает значения, близкого к температуре плавления сплава.

Исследовано влияние градиента упругих напряжений на протекание диффузионных процессов в материале. Выявлена зависимость концентрации растворенного вещества от времени, угла и радиуса, определена скорость "откачки" растворенного вещества из пресыщенного раствора, проведена оценка пространственного размера, в пределах которого потенциал оказывает "заметное действие" на растворенные атомы, исследовано влияние величины потенциала линейной и винтовой дислокации, величины и вида коэффициента диффузии на эти процессы. Выявленное в ходе вычислительных экспериментов стационарное распределение концентрации подтверждает аналитически полученную возможность выхода на стационарный режим. Проведенные вычисления показали, что приближение цилиндром эффективного "радиуса захвата" является достаточно точным для длительно протекающих диффузионных процессов. Определены коэффициенты самодиффузии и взаимной диффузии для твердых бинарных сплавов из экспериментальных данных. Показано, что результаты натурного эксперимента точнее описываются механизмом взаимной диффузии, чем простой.

Основные результаты исследований, проведенных в диссертации, отражены в следующих публикациях:

1. Фетисов С. А. "Численное моделирование процессов лазерно- стимулированной диффузии". Сборник научных трудов: "Моделирование процессов управления и обработки информации", М. : МФТИ, 1991 г., стр. 94-100.

2. Фетисов С.А. "К вопросу об устойчивости полупроводниковых соединений". Сборник тезисов докладов Всесоюзной конференции "Математическое моделирование .и вычислительный эксперимент^ г. Казань), Изд-во: ИММ РАН,1991 г., стр.46-47.

3. Фетисов С.А. "Математическое моделирование технологических процессов в материаловедении". Сборник тезисов докладов Всесоюзной конференции "Математическое

моделирование и вычислительный эксперимент"., (г.Казань), Изд-во: ИММ РАН, 1991 г: , стр. 47-48.

4. Фетисов С.А. "Об определении коэффициентов диффузии по экспериментально известным профилям концентраций". Сборник тезисов докладов Всесоюзной конференции "Математическое моделирование и вычислительный эксперимент"., Сг.Казань), Изд-во: ИММ РАН, 1991 г. , стр. 48-49.

5. Фетисов С. А. "Математическое моделирование процессов формирования полупроводниковых сплавов при наличии вакансий в материале". Сборник тезисов докладов Всесоюзной конференции "Математическое моделирование и вычислительный эксперимент"., Сг.Казань), Изд-во: ИММ РАН, 1991 г., стр.49-50.

6. Фетисов С. А. "Математическое моделирование диффузионных процессов при наличии градиента, упругих напряжений". Препринт ИММ РАН N 15, 1992 г.

7. Фетисов С.А. "Ой определении коэффициентов диффузии в некоторых типах полупроводников".Препринт ИММ РАН N 18,1992 г.

8. П. П. Волосевич, Е. И. Леванов, В. А. Потешнов, С.А.Фетисов, "Математическое моделирование диффузионных процессов,вызванных лазерным излучением" Препринт ИММ РАН N 22,1992г.