автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Изучение влияния гравитационного воздействия на функционирование сердечно-сосудистой системы
Автореферат диссертации по теме "Изучение влияния гравитационного воздействия на функционирование сердечно-сосудистой системы"
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ
на правах рукописи
00504
Меняйлова Мария Анатольевна
ИЗУЧЕНИЕ ВЛИЯНИЯ ГРАВИТАЦИОННОГО ВОЗДЕЙСТВИЯ НА ФУНКЦИОНИРОВАНИЕ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ
05.13.18 - Математическое моделирование, численные методы и комплексы программ
Автореферат диссертации на соискание ученой степени кандидата физико-математических наук
2 О СЕН 2012
Москва - 2012
005047227
Работа выполнена на кафедре вычислительных методов факультета вычислительной математики и кибернетики Московского государственного университета имени М.В. Ломоносова.
Научный руководитель:
кандидат физико-математических наук, ассистент Буничева Анна Яковлевна
Официальные оппоненты:
доктор физико-математических наук, профессор Крылов Андрей Серджевич
доктор физико-математических наук, заведующий отделом Жуков Виктор Тимофеевич
Ведущая организация:
Институт автоматизации проектирования РАН
Защита состоится 2012 г. в мин. на заедании
диссертационного совета Д 501.001.43 при Московском государственном университете имени М.В. Ломоносова по адресу: 119991, Москва, Ленинские горы, МГУ, 2-й учебны корпус, факультет ВМиК, ауд. 685.
С диссертацией можно ознакомиться в научной библиотеке факультета ВМи Московского государственного университета имени М.В. Ломоносова.
Автореферат разослан 2012 г.
Ученый секретарь
диссертационного совета Д 501.001.43, доктор физико-математических наук, профессор
Захаров Е.В.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность работы. Математическое моделирование кровообращения привлекает внимание многих исследователей. Это связано с тем, что роль сердечно-сосудистой системы первостепенна в жизни человека. Кроме того, экспериментальные исследования процессов гемодинамики достаточно трудоемки и дорогостоящи. В этих условиях вычислительный эксперимент становится важным и необходимым инструментом исследования сложных и разнообразных гемодинамических процессов.
Основы физиологии течения крови в сердечно-сосудистой системе и ее математического описания связаны с именами У. Гарвея, JI. Эйлера, Д. Бернулли, Ж. Пуазейля. К середине XX века были сформулированы основные принципы функционирования и регуляции кровообращения, систематизированы сведения о физиологических закономерностях. В этой связи следует отметить работы авторов A.C. Guyton, C.G. Саго, T.J. Pedley. Развитие вычислительной техники обусловило новый этап в математическом моделировании системы кровообращения человека. Систематическое изложение актуальных проблем и методов математического моделирования гемодинамики содержится, в частности, в работах таких ученых, как С.А. Регирер, В.А. Лищук, A.C. Холодов1, M.S. Leaning, L. Formaggia2, S.J. Sherwin и др. Математические методы описания течения крови с точки зрения классической гидродинамики и теории упругости, аналитические методы их исследования и основные направления математических исследований в гемодинамике можно найти в сборниках3,1.
К настоящему моменту разработано значительное количество математических моделей системы кровообращения. Моделируется как сердечно-сосудистая система в целом, так и ее отдельные участки. В основу любой модели положены физические законы, описывающие течение крови по сосудам. Одним из способов классификации математических моделей системы кровообращения является пространственная размерность
'Холодов A.C. Некоторые динамические модели внешнего дыхания и кровообращения с учетом их связности и переноса веществ // Компьютерные модели и прогресс медицины. - М.: Наука, 2001. - с. 127-163.
2Formaggia L., Quarteroni A., Veneziani A. The circulatory system: from case studies to mathematical modeling // Complex Systems in Biomedicine. - Milan: Springer Verlag, 2006. - P. 243-287.
3Гидродинамика кровообращения / ред. Регирер С.А. - М.: Мир, 1971. - 270 с.
задачи. Существуют подробно описанные двух4- и трехмерные5 модели отдельных участков системы кровообращения. Недостатком большинства многомерных моделей является большой объем вычислений и сложность применения модели ко всей системе в целом. Для конструктивного описания сердечно-сосудистой системы необходимы упрощения физической модели, основанные на выделении основных свойств и закономерностей кровотока. Иными словами, модель должна быть достаточно простой в применении и, в то же время, передавать первостепенные свойства и закономерности реального объекта. Ввиду этого, большое распространение получили модели с одномерной пространственной координатой (M. Zacek, S.A. Berger, S.J. Sherwin и др.).
Большое место в математических моделях гемодинамики занимает математическое описание работы сердца как значимого элемента сердечно-сосудистой системы. Построено и используется большое количество моделей сердца - от имитационных и простейших одномерных до подробных трехмерных. Проблема построения таких полноразмерных моделей состоит как в трудности расчета трехмерных гидродинамических процессов в сложной области, так и в необходимости учитывать и воспроизводить разнообразные факторы, влияющие на работу сердца: нервные, гуморальные, рефлекторные и другие механизмы (C.G. Саго, В.А. Лищук, С.А. Регирер, Y.-C. Fung, С.S. Peskin, M.S. Leaning и др.).
На факультете вычислительной математики и кибернетики МГУ имени М.В. Ломоносова под руководством профессора А.П. Фаворского сформировалось научное направление по математическому моделированию гемодинамики. В течение ряда лет в тесном сотрудничестве с факультетом фундаментальной медицины МГУ ведутся работы по математическому моделированию кровеносной системы человека. В результате этих исследований предложена достаточно эффективная комплексная математическая модель, на базе которой создан программный комплекс CVSS (Cardiovascular System Simulation). С помощью этой системы программ решаются актуальные задачи гемодинамики: математическое моделирование гемодинамики замкнутой системы кровообращения с уче-
4Chakravarty S., Mandai Р.Н. A nonlinear two-dimensional model of blood flow in an overlapping arterial stenosisn subjected to body acceleration // Math. Comput. Modelling. - 1996. Vol. 24. No. 1. - P. 43-58.
5Perktold K., Resell M., Peter R.O. Three-Dimensional Numerical Analysis of pulsatile Flow and Wall Shear Stress in Carotid Artery Bifurcation // J. Biomechanics. - 1991. Vol. 24. No. 6. - P. 409-420.
том влияния резистивных сосудов, моделирование регуляционной функции почки, церебрального кровообращения и др.6
Новой и актуальной проблемой математического моделирования гемодинамики является получение достоверной физиологической, картины функционирования системы кровообращения в условиях гравитационных перегрузок. Этой задаче и посвящена данная диссертация. Для описания всей сердечно-сосудистой системы с учетом гравитационного воздействия формулируется нелокальная математическая квазиодномерная модель гемодинамики7 на графе эластичных сосудов с дополнительными соотношениями в вершинах графа. В работе для воспроизведения реакции сердца на гравитационную нагрузку модифицирована согласованная модель работы сердца8. Работа сердца моделируется заданием краевых условий, например, на входе потока крови в сердце может задаваться давление как функция гравитационной нагрузки, а на выходе потока крови из сердца - периодическая функция, представляющая собой зависимость потока крови от времени. Рассмотрено девять пространственных положений тела человека относительно гравитационного поля. Для этих положений получены распределения основных параметров кровотока. Результаты численного моделирования кровотока в условиях гравитационного воздействия могут найти широкое применение в различных областях. Например, при моделировании любого ускоренного перемещения тела человека, в том числе, для оценки порогов выносливости летчиков-испытателей. Это означает, что выбранная тема является актуальной и практически важной.
Цель и задачи работы. В работе рассматриваются задачи, подчиненные главной цели: развитию методов математического моделирования и программ для компьютерного моделирования сердечно-сосудистой системы человека.
6Кошелев В.Б., Мухин С.И., Соснин Н.В., Фаворский А.П. Математические модели квази-одномерной гемодинамики. Методическое пособие. - М.: МАКС Пресс, 2010. - 116 с.
7Абакумов М.В., Гаврилюк К.В., Есикова Н.В., Кошелев В.В., Лукшин A.B., Мухин С.И., Соснин Н.В., Тишкин В.Ф., Фаворский А.П. Математическая модель гемодинамики сердечно-сосудистой системы. Препринт - М.: ИПМ им. М.В. Келдыша, № 104, 1996. - 25 с.
8Лукшин В.А., Мухин С.И., Соколова Т.В., Соснин Н.В., Фаворский А.П. Математическое моделирование церебральной гемодинамики в квазипериодическом режиме. Препринт - М.: МАКС Пресс, 2003. - 20 с.
При этом были поставлены следующие задачи:
1. Построение комплексной модели большого круга кровообращения в условиях гравитационных перегрузок. Изучение уравнения состояния, соответствующего свойству сосудов поддерживать дозвуковой характер течения крови в системе. Численное моделирование нагнетательной функции сердца для учета его реакции на гравитационные перегрузки.
2. Разработка и построение серии пространственно-согласованных графов большого круга кровообращения, соответствующих различным положениям тела человека относительно гравитационного поля. Проведение численных экспериментов на графах с учетом механизмов компенсации гравитационной нагрузки.
Научные цели диссертации включают разработку методов решения нелинейных дифференциальных уравнений гемодинамики, пополнение компьютерного кода СУББ новыми функциональными возможностями, проведение расчетных исследований системы кровообращения с моделями-имитаторами работы сердца человека под воздействием гравитации.
Методика исследований. В задаче численного моделирования сердечно-сосудистой системы используется значительный арсенал методов вычислительной математики. Применяются математические методы на основе численного решения нелинейной системы нестационарных дифференциальных уравнений в частных производных. Используются неявные разностные схемы, численно решаются дискретные уравнения.
Научная новизна работы. Диссертационная работа содержит решение актуальной научной проблемы создания средств математического моделирования движения крови с имитацией работы сердца и компенсирующих элементов в условиях гравитационных перегрузок. В диссертации развита вычислительная модель, алгоритмы и программы для исследования гемодинамики, протестированы средства математического моделирования в широком диапазоне параметров. С помощью расчетных исследований показано, что комплексная модель сердечно-сосудистой системы с имитацией работы сердца правильно отражает основные гемо-динамические процессы в условиях гравитационных перегрузок.
Основными новыми элементами в диссертации являются следующие.
1. Рассмотрено и исследовано семейство уравнений состояния, отвечающих свойству сосудов поддерживать дозвуковой характер течения крови с учетом гравитационного воздействия.
2. Предложена и исследована модель работы сердца с гравитационной регуляцией, поддерживающая кровенаполнение сердца в условиях гравитационных перегрузок.
3. Разработана и построена серия пространственно-согласованных графов большого круга кровообращения, соответствующих различным положениям тела относительно гравитационного поля.
4. На основе построенной модели работы сердца с гравитационной регуляцией проведены расчетные исследования в зависимости от положения человека при различных значениях гравитационной нагрузки. Установлено существенное влияние положения человека на нормальное функционирование сердечно-сосудистой системы.
Значимость работы. Показана возможность моделирования упруго-механических свойств сосудов с помощью выбора уравнения состояния. Предложена модель работы сердца с гравитационной регуляцией, которая может быть использована для построения модели полнофункциональной сердечно-сосудистой системы. Проведенные расчетные исследования на серии пространственно-согласованных графов подтверждают существенное влияние положения человека на нормальное функционирование сердечно-сосудистой системы. Практическая ценность работы обусловлена возможностью использовать разработанный математический аппарат для исследования особенностей кровотока в условиях многократных гравитационных перегрузок.
Апробация работы. Результаты работы докладывались на различных конференциях и семинарах, в том числе на:
- VI Научной конференции «Тихоновские чтения», 24-27 октября 2006 г., Москва, МГУ имени М.В. Ломоносова;
- International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2006), Crete, Greece, 15-19 September, 2006;
- International Conference on Advanced Computational Methods in Engineering, Liege, Belgium, 2008.
Публикации. По теме диссертации опубликовано 5 печатных работ.
Структура и объем диссертации. Диссертация состоит из введения, трех глав и заключения. Объем диссертации составляет 122 страницы, включая 38 рисунков, 7 таблиц и список литературы, содержащий 75 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Во введении приводится обзор литературы по теме диссертации, обосновывается актуальность и практическая значимость работы, излагается краткое содержание работы, формулируются результаты, которые выносятся на защиту.
Первая глава диссертации посвящена формулировке физико-математической модели кровообращения с учетом гравитации.
В первом параграфе формулируется математическая модель гемодинамики для одного сосуда с учетом описанных в данном параграфе упрощений физической модели.
В основу математического описания движения крови положены законы сохранения массы и импульса. Сосуды считаются достаточно протяженными по сравнению с их поперечными размерами, что позволяет использовать квазиодномерное приближение.
Движение крови в изолированном сосуде в квазиодномерном приближении описывается системой двух дифференциальных уравнений гемодинамики, которая замыкается алгебраическим соотношением:
а* ® = о,
от ах
8U д (U2\ , 1 дР 0 £/ , , ,0Л
W+ Ш Ы + = — "5 +к°'90 ■ "»*> (2)
S = S(P). (3)
Здесь х - локальная пространственная координата, в качестве которой выбрана длина дуги вдоль оси сосуда: 0 < х < L, где L - длина сосуда; t - время, S(x, t) - площадь поперечного сечения сосуда, U(х, t) - скорость движения крови вдоль оси сосуда, Р{х, t) - давление крови в кровеносном сосуде, р - плотность крови (р = const), и - кинематическая вязкость
крови, кд - коэффициент гравитационной нагрузки (0 < кд < 1) или перегрузки (кд > 1), до - ускорение свободного падения, ф - угол между осью сосуда и направлением вектора ускорения свободного падения.
Уравнения (1), (2) представляют собой законы сохранения массы и количества движения. Третье уравнение системы (3) (уравнение состояния) выражает зависимость площади поперечного сечения Б от давления Р и отражает упруго-механические свойства сосудов. Важным условием, которое обеспечивает гиперболичность системы, является монотонность функции 5(Р): йБ^Р > 0.
Во втором параграфе выписывается характеристическая форма уравнений гемодинамики в инвариантах Римана и показывается, что исходная система (1)-(3) имеет гиперболический тип и два семейства характеристик9.
В третьем параграфе проводится подробное обсуждение модельных уравнений состояния с точки зрения их возможности соответствия свойству сосудов поддерживать дозвуковой характер течения крови в системе при увеличении гравитационной нагрузки. Предлагаются три различные формы уравнений состояния.
Первая форма уравнения состояния имеет вид:
• Р < Р •
^тгп) 1 — 1 тгп7
Ртт <р< Ртахч (4)
^тахч Р ^ Ртах-
5(Р) =
Здесь Smi„ и Smax - минимальное и максимальное значение площади поперечного сечения, [Pmin, Ртах] ~ характерный промежуток изменения давления, х — const.
Вторая форма уравнения состояния имеет вид:
уЧгп + аАе^-Р.), Р<Р„
S(P) = { __(5)
'Абакумов М.В., Ашметков И.В., Есикова Н.Б., Кошелев В.В., Мухин С.И., Сос-нин Н.В., Тишкин В.Ф., Фаворский А.П., Хруленко A.B. Методика математического моделирования сердечно-сосудистой системы // Математическое моделирование. -2000. Т. 12. Л'« 2. - с. 106-117.
Параметры а, Ь, А, ш находятся исходя из требования непрерывности функции 5(Р) и производной йБ/йР при Р = Р*. Третья форма уравнения состояния имеет вид:
Здесь числа а, (3> 0 - входные параметры программы. Параметры А и В находятся исходя из требования непрерывности функции 5(Р) и производной ¿Б/йР при Р = Р*.
Проведенный в работе анализ позволяет заключить, что из предложенных уравнений состояния третья форма (6) является оптимальной при численном моделировании гемодинамики в условиях гравитации.
В четвертом параграфе обсуждается переход от модели гемодинамики для одного сосуда к модели большого круга кровообращения. Система уравнений гемодинамики (1) - (3) дополняется при этом условиями сопряжения и краевыми условиями, имитирующими работу сердца.
В параграфе рассматриваются и кратко описываются два модельных графа сосудов. Первый модельный граф10 в самых общих чертах отражает строение системы кровообращения. Для первого модельного графа в случае стационарного течения выписывается точное решение, которое.используется для верификации численного решения. Второй модельный граф11 (см. рис. 1) более подробно описывает большой круг кровообращения. Для моделирования гравитационного воздействия на графах выделено несколько уровней в качестве опорных: А - уровень виллизиева круга, В - уровень сердца, С - абдоминальный уровень, Ю -уровень таза. Предполагается, что каждая вершина имеет свой уровень по высоте, и эта высота не зависит от пути, по которому можно дойти от вершины с номером 0 (уровень сердца) до рассматриваемой вершины. В работе проводится построение соответствующего графа.
10Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П. Исследование эволюции параметров течения в системе кровообращения под воздействием гравитационных нагрузок. Препринт - М.: МАКС Пресс, 2003. - 18 с.
"Буничева А.Я., Лукшин В.А., Мухин С.И., Соснин Н.В., Фаворский А.П. Численное исследование гемодинамики большого круга кровообращения. Препринт - М.: МАКС Пресс, 2001. - 21 с.
(6)
Рис.1. Второй модельный граф кровеносной системы.
В параграфе также обсуждаются краевые условия, моделирующие работу сердца и необходимые для связанности задачи на модельном графе сосудов. За основу берется модель двухкамерного сердца, перекачивающего фиксированный объем крови, заключенный в большом круге кровообращения. В диссертации рассматриваются две модификации модели работы сердца: модель с гравитационной регуляцией и модель без гравитационной регуляции. Модели различаются постановкой граничных условий на входе потока крови в сердце. В обеих моделях на выходе потока крови из сердца задается периодическая функция сердечного выброса:
Г Ясв • (4* - 30 < I < т3,
9(т„т*4)= < (V
[ ЧтЫ, Т„<г< Т4-
Здесь т5 - время систолы, т^ - время сердечного цикла (в большинстве проводимых расчетов т, = 0.25 с, т<г = 0.8 с), <2св ~ ударный объем (в расчетах брался равным 80 мл).
В модели без гравитационной регуляции на входе потока крови в сердце задается постоянное давление, а в модели с гравитационной регуляцией - давление, понижающееся до некоторой величины РспЫ при повышении гравитационной нагрузки до величины дтах (при дальнейшем увеличении нагрузки давление держится на уровне Рст4„):
Вторая глава диссертации посвящена обсуждению численной реализации модели и ее исследованию.
В первом параграфе для решения системы нестационарных уравнений гемодинамики на одном сосуде строится и исследуется семейство разностных схем с весовым множителем сг: <т £ [0,1], с использованием набора осредненных элементов12. Проводится исследование порядка аппроксимации данной схемы по пространству и по времени. Показывается, что при обычных предположениях о гладкости решений симметричная разностная схема имеет второй порядок по пространству и времени, остальные схемы этого семейства имеют первый порядок по времени и второй по пространству. Методом гармоник исследуется устойчивость соответствующей линейной неявной разностной схемы: схема абсолютно устойчива при а £ [0.5,1] и неустойчива при остальных значениях а. Исследуется также практическая точность нелинейной разностной схемы с помощью расчетов на измельчающихся сетках. Обосновывается консервативность построенной нелинейной неявной схемы.
Во втором параграфе приводится алгоритм численного решения, основанный на интегрировании системы уравнений по времени с помощью неявной однопараметрической схемы и решении нелинейных уравнений двумя методами: простых итераций и методом поправок. Сравнивается эффективность этих методов. Полученные системы линейных уравнений решаются прямым методом.
12Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П. Осредненная нелинейная модель гемодинамики в одном сосуде. Препринт - М.: МАКС Пресс, 2000. -
<тах;
(В)
21 с.
В третьем параграфе рассматривается семейство разностных схем с искусственной вязкостью13, которое в дальнейшем используется в численных экспериментах с модельными графами сосудов. Схема, записанная в безындексной форме в каждом внутреннем узле сосуда, имеет вид:
St + iSU^^iasS;)^,
X
/Г/2\ fo) 1 /7Т\ ^
Ut+{YJo +-Р^ = Ыи^+дсозф- Stt^IJ , (9) S = S(P).
Здесь введены следующие обозначения:
(/# = • + (1 _а.) . f
где (7j - весовые множители, <7j € [0,1], j = 1,2,3,4; as,ajj - коэффициенты искусственной вязкости, используемой для расчета быстроменяющихся решений. Для исследования свойств разностной схемы (9) используется метод дифференциальных приближений14. Приводится алгоритм численного решения, основанный на интегрировании системы уравнений по времени с помощью неявной разностной схемы и решении полученных нелинейных уравнений методом Ньютона. Проведены численные эксперименты, показывающие преимущество схемы с искусственной вязкостью перед схемой с набором осредненных элементов при моделировании гравитационного воздействия.
Третья глава диссертации посвящена изучению системы кровообращения в условиях гравитационных перегрузок.
В первом параграфе напоминается постановка задачи гемодинамики на одном сосуде.
"Абакумов М.В., Есикова Н.Б., Мухин С.И., Соснин Н.В., Тишкин В.Ф., Фаворский А.П. Разностная схема решения задач гемодинамики на графе. Препринт - М.: Диалог-МГУ, 1998. - 17 с.
14Самарский A.A., Попов Ю.П. Разностные методы решения задач газовой динамики. - М.: Наука, 1992. - 382 с.
Во втором параграфе дается подробное описание первого модельного графа большого круга кровообращения, помещенного в поле силы тяжести. Проведены две серии численных экспериментов на графе сосудов с учетом гравитационного воздействия. В первой серии расчетов задействована модель работы сердца с гравитационной регуляцией, во второй серии - модель работы сердца без гравитационной регуляции. Показано, что первая модель работы сердца, в отличие от второй, обеспечивает кровенаполнение сердца и головного мозга даже двукратных гравитационных перегрузках.
В третьем параграфе подробно описывается второй модельный граф (см. рис. 1), формально сопоставленный большому кругу кровообращения человека и находящийся в поле силы тяжести.
Показано, что математическое моделирование гравитационной нагрузки невозможно без корректного учета положения вершин относительно вертикальной оси. Построено девять пространственно-согласованных графов, вертикальные координаты вершин которых приведены в соответствие уровням А, В, С, Б. Длины сосудов и углы, которые сосуды составляют с вертикальной осью, соответствуют анатомическим данным.
Для моделирования гравитационного воздействия на сердечно-сосудистую систему рассмотрен ряд характерных положений тела человека относительно гравитационного поля. Каждое из приведенных на рис. 2 положений получено путем изменения углов между ребрами и вертикальной осыо с сохранением пространственных соотношений.
На основе модели работы сердца с гравитационной регуляцией проведены расчетные исследования на пространственно-согласованных графах при различных значениях гравитационной нагрузки. С помощью численных экспериментов показано, что положение моделируемого объекта в пространстве вместе с моделью сердца влияет на картину кровенаполнения сердца и головного мозга при больших гравитационных нагрузках. Так, например, в горизонтальном положении (модификация Л^) параметры кровотока не меняются при увеличении гравитации (см. рис. 3). В других положениях (Л^, N4) при увеличении гравитационной нагрузки происходит понижение давления в сосудах, расположенных выше уровня сердца (см. рис. 4а, 5а), и повышение давления в сосудах ниже уровня сердца (см. рис. 46, 56).
а) б)
Рис.3. Модификация графа Л^. Зависимость давления Р от коэффициента гравитационной нагрузки кд в сосуде: а) 45 (головной мозг); б) 63 (бедренная
артерия).
к„=1
к„=2
к =3
а) 6)
Рис.4. Модификация графа Л^. Зависимость давления Р от коэффициента гравитационной нагрузки кд в сосуде: а) 45 (головной мозг); б) 63 (бедренная
артерия),
к =1
к„=2
а)
б)
Рис.5. Модификация графа N4. Зависимость давления Р от коэффициента гравитационной нагрузки кд в сосуде: а) 45 (головной мозг); б) 63 (бедренная
артерия).
Приведенные результаты расчетов показывают, что модель сердца с гравитационной регуляцией, то есть модель, в которой на входе в сердце задано давление, линейно зависящее от гравитационной нагрузки и убывающее с ее ростом, позволяет поддерживать давление в сосудах головного мозга в рамках физиологической нормы даже при больших гравитационных перегрузках д = Здо.
В заключении сформулированы основные результаты диссертации.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ
1. Выделено и изучено семейство уравнений состояния, способствующих поддержанию дозвукового характера течения крови в сосуде в условиях гравитационных перегрузок.
2. Предложена и исследована модель сердца с гравитационной регуляцией, дополненная механизмами компенсации гравитационной нагрузки в форме введения нагнетательной функции сердца.
3. Разработана и построена серия пространственно-согласованных графов большого круга кровообращения, соответствующих различным положениям тела относительно гравитационного поля.
4. Проведены расчетные исследования на основе модели сердца с гравитационной регуляцией на пространственно-согласованных графах при различных значениях гравитационной нагрузки.
Список основных публикаций автора по теме диссертации
Статьи в рецензируемых журналах, рекомендованных ВАК
1. Мухин С.И., Меняйлова М.А., Соснин Н.В., Фаворский А.П. Аналитическое исследование стационарных гемодинамических течений в эластичной трубке с учетом трения // Дифференциальные уравнения. -2007. Т. 43. № 7. - с. 987-991.
2. Буничева А.Я., Меняйлова М.А., Мухин С.И., Соснин Н.В., Фаворский А.П. Исследование влияния гравитационных перегрузок на параметры кровотока в сосудах большого круга кровообращения // Математическое моделирование. - 2012. Т. 24. № 7. - с. 67-82.
Статьи в трудах российских и зарубежных конференций
1. Favorskii А.Р., Menyailova М.А. Construction of Conservative Discrete Scheme for Hemodynamic Equations // Extended Abstracts of International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2006)
- Weinheim, Germany: WILEY-VCH Verlag, 2006. - P. 121-124.
2. Меняйлова M.A., Фаворский А.П. Построение консервативной разностной схемы для уравнений гемодинамики // Тихоновские чтения: Научная конференция, МГУ имени М.В. Ломоносова, 24-27 октября 2006 г. Тезисы докладов. - М: МАКС Пресс, 2006.
3. Favorskii А.Р., Menyailova М.А. Investigation of Gravity Overloads Effect on Hemodynamic Flows in Vessels of Model Graph // Proceedings of Fourth International Conference on Advanced Computational Methods in Engineering.
- Liege, Belgium, 2008.
Напечатано с готового оригинал-макета
Издательство ООО "МАКС Пресс" Лицензия ИД N 00510 от 01.12.99г. Подписано к печати 20.08.2012 г. Формат 60x90 1/16. Усл.печ.л. 1.0. Тираж 100 экз. Заказ 313. Тел. 939-3890. Тел./факс 939-3891. 119992, ГСП-2, Москва, Ленинские горы, МГУ им. М.В. Ломоносова, 2-й учебный корпус, 527 к.
Оглавление автор диссертации — кандидата физико-математических наук Меняйлова, Мария Анатольевна
ВВЕДЕНИЕ
ГЛАВА 1. ФИЗИКО-МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ГЕМОДИНАМИКИ С УЧЕТОМ ГРАВИТАЦИИ
1.1. Формулировка математической модели для одного сосуда в гравитационном поле.
1.2. Характеристическая форма уравнений гемодинамики в инвариантах Римана.
1.3. Уравнение состояния
1.3.1. Первая форма уравнения состояния.
1.3.2. Вторая форма уравнения состояния.
1.3.3. Третья форма уравнения состояния.
1.4. Уравнения гемодинамики на графе сосудов.
1.4.1. Задание граничных условий, имитирующих работу сердца.
1.4.2. Первый модельный граф большого круга кровообращения.
1.4.3. Аналитическое решение в стационарном случае для первого модельного графа сосудов постоянного сечения.
1.4.4. Второй модельный граф большого круга кровообращения.
1.4.5. Пространственные модификации второго модельного графа.
ГЛАВА 2. ЧИСЛЕННАЯ РЕАЛИЗАЦИЯ МОДЕЛИ И ЕЕ ИССЛЕДОВАНИЕ 57 2.1. Разностная аппроксимация с использованием набора осредненных элементов.
2.1.1. Построение разностной схемы.
2.1.2. Консервативность.
2.1.3. Устойчивость.
2.1.4. Порядок аппроксимации разностной схемы.
2.1.5. Теоретическая точность разностной схемы.
2.1.6. Практическая точность разностной схемы.
2.2. Численные алгоритмы решения разностных уравнений.
2.2.1. Итерационный метод 1.
2.2.2. Итерационный метод 2.
2.3. Схема с искусственной вязкостью.
2.3.1. Дифференциальное приближение и свойства разностной схемы.
ГЛАВА 3. ИЗУЧЕНИЕ СИСТЕМЫ КРОВООБРАЩЕНИЯ В УСЛОВИЯХ ГРАВИТАЦИОННЫХ ПЕРЕГРУЗОК
3.1. Постановка задачи.
3.2. Исследование влияния гравитационных перегрузок на течение крови в сосудах первого модельного графа.
3.2.1. Первый модельный граф.
3.2.2. Начальные данные.
3.2.3. Исследование влияния гравитационных перегрузок на течение крови в сосудах первого модельного графа при использовании модели работы сердца без гравитационной регуляции.
3.2.4. Исследование влияния гравитационных перегрузок на течение крови в сосудах первого модельного графа при использовании модели работы сердца с гравитационной регуляцией.
3.2.5. Сравнение расчетов с моделью работы сердца без гравитационной регуляции и моделью работы сердца с гравитационной регуляцией для первого модельного графа.
3.3. Исследование влияния гравитационных перегрузок на течение крови в сосудах второго модельного графа.
3.3.1. Второй модельный граф.
3.3.2. Начальные данные.
3.4. Исследование влияния гравитационных перегрузок на течение крови в сосудах большого круга кровообращения при различных положениях тела.
3.4.1. Пространственные модификации второго модельного графа.
3.4.2. Начальные данные.
3.4.3. Результаты численных экспериментов.
Введение 2012 год, диссертация по информатике, вычислительной технике и управлению, Меняйлова, Мария Анатольевна
Объект исследования и актуальность темы. Диссертация посвящена численному моделированию течения крови в сердечно-сосудистой системе человека при внешних воздействиях, связанных с гравитационными перегрузками. Математическое моделирование системы кровообращения привлекает внимание многих исследователей. Это связано с первостепенностью роли сердечно-сосудистой системы в жизни человека. Кроме того, экспериментальные исследования процессов гемодинамики достаточно трудоемки и дорогостоящи. В этих условиях вычислительный эксперимент становится важным и необходимым инструментом исследования сложных и разнообразных гемо-динамических процессов. Успех численных экспериментов зависит от соответствия математической и вычислительной моделей реальным физическим процессам, протекающим в системе кровообращения человека.
Современное состояние исследований. Начало современным представлениям о сердечно-сосудистой системе человека было положено английским естествоиспытателем и врачом У. Гарвеем [1], открывшим в XVII веке наличие замкнутой системы кровообращения и изложившим это в труде "Анатомическое исследование о движении сердца и крови у животных". В XVIII веке швейцарский математик и физик Д. Бернулли опубликовал работу "Гидродинамика, или Записки о силах и движениях жидкостей", в которой сформулировал основы механики жидкости. Позднее Л. Эйлер в статье "Открытие нового принципа механики" сформулировал в общем виде ньютоновы уравнения движения в неподвижной системе координат и вывел классические уравнения гидродинамики идеальной жидкости. В XIX веке французский физиолог и физик Ж. Пуазейль открыл закон истечения жидкости, устанавливающий, что объем протекающей по трубке жидкости прямо пропорционален давлению и четвертой степени диаметра трубки и обратно пропорционален ее длине. Эти представления характеризуют начальный этап математического описания движения крови.
К середине XX века были сформулированы основные принципы функционирования и регуляции кровообращения, накоплены значительные сведения о физиологических закономерностях течения крови. В этой связи следует отметить работы [2] - [6]. Развитие вычислительной техники обусловило новый этап в математическом моделировании системы кровообращения человека. Систематическое изложение актуальных на тот период проблем и методов математического моделирования гемодинамики содержится, в частности, в работах [7] - [12].
Математическое моделирование сердечно-сосудистой системы является одной из актуальных и значимых проблем. Количество работ в этой области постоянно растет (см., например, работы [17]- [28] и [44]- [47]). К настоящему времени создано большое количество математических моделей системы кровообращения. Моделируются как сердечно-сосудистая система в целом, так и ее отдельные участки. В частности, в работе [10], исследована нелинейная модель гемодинамики, полезная при изучении кровообращения в сложных кровеносных системах, состоящих из большого количества сосудов, тканей, органов и т.д., поскольку одновременное детальное рассмотрение течения в каждом из элементов системы представляется крайне сложным. Следует отметить, что задача построения общей математической модели сердечнососудистой системы на данный момент не решена ввиду чрезвычайной сложности биологической системы, зависящей от большого числа факторов.
Одним из способов классификации математических моделей системы кровообращения является пространственная размерность задачи. Существуют детально проработанные двух- [28] и трехмерные [29] модели отдельных участков системы кровообращения. Недостатком большинства многомерных моделей является большой объем вычислений и сложность применения модели к системе в целом. Для конструктивного описания сердечно-сосудистой системы необходимы упрощения физической модели, основанные на выделении свойств и закономерностей течения крови. Иными словами, модель должна быть достаточно простой в применении, и, в то же время, передавать основные свойства и закономерности реального объекта. Ввиду этого, большое распространение получили модели с одномерной пространственной координатой [19,23,26].
При математическом моделировании системы кровообращения необходимо корректно описать работу сердца как важного ее элемента. Построено и используется большое количество моделей - от имитационных и простейших одномерных до сложнейших трехмерных. Проблема построения таких полноразмерных моделей состоит как в трудности расчета трехмерных гидродинамических процессов в сложной области, так и в необходимости учитывать и воспроизводить разнообразные факторы, влияющие на работу сердца: нервные, гуморальные, рефлекторные и другие механизмы (см. [4,9,12], [14] - [16]). При построении многомерных моделей сердца большую роль играет моделирование сократительной деятельности мышцы сердца. Во многих работах в основу моделей сердца положен закон Старлинга [12,35,37,38], описывающий одну из многих регуляторных особенностей работы сердечной мышцы. Позднее во многих работах сердце представлялось переменными электрическими емкостями. Затем появились работы, в которых учитывались биофизические экспериментальные данные [13].
Отдельно необходимо отметить работу [39], в которой строится модель кровоснабжения миокарда. В ней рассматривается разветвленная сеть артериальных сосудов сердечной мышцы, и течение крови по этим сосудам полагается течением вязкой несжимаемой жидкости по системе гидравлических сопротивлений, причем топология системы, длины и диаметры сосудов соответствуют анатомическим данным.
В настоящее время работы по моделированию сердечно-сосудистой системы проводятся во многих странах мира, идет накопление информации для построения математической модели, отражающей основные физиологические и механические свойства реальной сердечно-сосудистой системы человека. На факультете вычислительной математики и кибернетики МГУ имени М.В. Ломоносова под руководством профессора А.П. Фаворского сформировалось научное направление по математическому моделированию гемодинамики. В течение ряда лет в тесном сотрудничестве с факультетом фундаментальной медицины МГУ ведутся работы по математическому моделированию кровеносной системы человека. В результате этих исследований предложена достаточно эффективная комплексная математическая модель, на базе которой создан программный комплекс CVSS (Cardiovascular System Simulation). С помощью этой системы программ решаются актуальные задачи гемодинамики: математическое моделирование гемодинамики замкнутой системы кровообращения с учетом влияния резистивных сосудов, моделирование регуляционной функции почки, церебрального кровообращения и др. [74].
Новой и актуальной проблемой математического моделирования гемодинамики является получение достоверной физиологической картины функционирования системы кровообращения в условиях гравитационных перегрузок. Этой проблеме и посвящена данная диссертация. Отметим, что математическое моделирование глобального кровотока проведено, в частности, в работе [45], но без специального исследования гравитационных перегрузок. В отсутствие гравитации математическое моделирование сердечно-сосудистой системы уже выходит на стадию верификации с помощью клинических наблюдений [46]. В диссертации, следуя работам [59]- [63] и [68]- [75], для описания всего большого круга кровообращения формулируется нелокальная математическая модель на графе эластичных сосудов с алгебраическими соотношениями в вершинах графа, полученными на основе законов сохранения в квазиодномерном приближении. Сердечно-сосудистой системе ставится в соответствие граф, состоящий из ребер и вершин, и передающий топологию строения системы кровообращения [69,71]. Ребра графа представляют собой магистральные сосуды или совокупность однородных более мелких сосудов. Вершины графа разделяются на внутренние и граничные. Внутренние вершины могут быть двух типов: участки фильтрации крови через ткани или отдельные органы и участки соединения двух и более сосудов. Граничные вершины связаны только с одним ребром и могут использоваться для имитации работы сердца. Работа сердца моделируется заданием краевых условий, например, на входе потока крови в сердце может задаваться давление как функция гравитационной нагрузки, а на выходе потока крови из сердца - периодическая функция, представляющая собой зависимость потока крови от времени. В диссертации для воспроизведения реакции сердца на гравитационную нагрузку модифицирована согласованная модель работы сердца [61]. Здесь рассмотрена замкнутая система кровообращения, что позволяет говорить о физиологически верном перераспределении кровотоков. Для моделирования гравитационного воздействия рассмотрено девять пространственных положений тела человека относительно гравитационного поля. Для этих положений получены распределения основных параметров кровотока. Результаты численного моделирования кровотока в условиях гравитационного воздействия могут найти широкое применение в различных областях. Например, при моделировании любого ускоренного перемещения тела человека, в том числе, для оценки порогов выносливости летчиков-испытателей. Это означает, что выбранная тема является актуальной и практически важной.
Цель и задачи работы. В работе рассматриваются задачи, подчиненные главной цели: развитию методов математического моделирования и программ для компьютерного моделирования сердечно-сосудистой системы человека.
При этом были поставлены следующие задачи:
1. Построение комплексной модели большого круга кровообращения в условиях гравитационных перегрузок. Изучение уравнения состояния, соответствующего свойству сосудов поддерживать дозвуковой характер течения крови в системе. Численное моделирование нагнетательной функции сердца для учета его реакции на гравитационные перегрузки.
2. Разработка и построение серии пространственно-согласованных графов большого круга кровообращения, соответствующих различным положениям тела человека относительно гравитационного поля. Проведение численных экспериментов на графах с учетом механизмов компенсации гравитационной нагрузки.
Научные цели диссертации включают разработку методов решения нелинейных дифференциальных уравнений гемодинамики, пополнение компьютерного кода СУБЭ новыми функциональными возможностями, проведение расчетных исследований системы кровообращения с моделями-имитаторами работы сердца человека под воздействием гравитации.
Методика исследований. В задаче численного моделирования сердечно-сосудистой системы используется значительный арсенал методов вычислительной математики. Применяются математические методы на основе численного решения нелинейной системы нестационарных дифференциальных уравнений в частных производных. Используются неявные разностные схемы, численно решаются дискретные уравнения. Сходимость и порядок погрешности разностных аппроксимаций исследуются с помощью разложения в ряд Тейлора, устойчивость - с помощью метода гармоник.
Научная новизна работы. Диссертационная работа содержит решение актуальной научной проблемы создания средств математического моделирования движения крови с имитацией работы сердца и компенсирующих элементов в условиях гравитационных перегрузок. В диссертации развита вычислительная модель, алгоритмы и программы для исследования гемодинамики, протестированы средства математического моделирования в широком диапазоне параметров. С помощью расчетных исследований показано, что комплексная модель сердечно-сосудистой системы с имитацией работы сердца правильно отражает основные гемодинамические процессы в условиях гравитационных перегрузок.
Основными новыми элементами в диссертации являются следующие.
1. Рассмотрено и исследовано семейство уравнений состояния, отвечающих свойству сосудов поддерживать дозвуковой характер течения крови с учетом гравитационного воздействия.
2. Предложена и исследована модель работы сердца с гравитационной регуляцией, поддерживающая кровенаполнение сердца в условиях гравитационных перегрузок.
3. Разработана и построена серия пространственно-согласованных графов большого круга кровообращения, соответствующих различным положениям тела относительно гравитационного поля.
4. На основе построенной модели работы сердца с гравитационной регуляцией проведены расчетные исследования в зависимости от положения человека при различных значениях гравитационной нагрузки. Установлено существенное влияние положения человека на нормальное функционирование сердечно-сосудистой системы.
Значимость работы. Показана возможность моделирования упруго-механических свойств сосудов с помощью выбора уравнения состояния. Предложена модель работы сердца с гравитационной регуляцией, которая может быть использована для построения модели полнофункциональной сердечно-сосудистой системы. Проведенные расчетные исследования на серии пространственно-согласованных графов подтверждают существенное влияние положения человека на нормальное функционирование сердечнососудистой системы. Практическая ценность работы обусловлена возможностью использовать разработанный математический аппарат для исследования особенностей кровотока в условиях многократных гравитационных перегрузок.
Обоснованность и достоверность результатов основаны на применении хорошо зарекомендовавших себя вычислительных методов и известной методики гемодинамического моделирования. Точность разработанных методов проверялась на решении задач-тестов с известными решениями, а также средствами внутреннего контроля. Достоверность принципиальных результатов контролировалась обсуждениями с учеными-физиологами, решения подвергались тщательному качественному анализу. Многовариантные расчеты подтверждают работоспособность данной численной модели и ее возможность служить инструментом исследования сложных гемодинамических процессов.
Апробация работы. Результаты работы докладывались на различных конференциях и семинарах, в том числе на:
- VI Научной конференции «Тихоновские чтения», 24-27 октября 2006 г., Москва, МГУ имени М.В. Ломоносова;
- International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2006), Crete, Greece, 15-19 September, 2006;
- International Conference on Advanced Computational Methods in Engineering, Liege, Belgium, 2008.
Реализация и внедрение результатов работы. Работа выполнялась в рамках научных планов МГУ имени М.В. Ломоносова, поддерживалась грантами Российского фонда фундаментальных исследований. Результаты использовались для развития модели сердечно-сосудистой системы в сотрудничестве с факультетом фундаментальной медицины МГУ.
Публикации. По теме диссертации опубликованы 3 работы, из них одна статья в журнале, рекомендованном ВАК РФ для опубликования научных результатов диссертаций.
Список основных публикаций автора по теме диссертации
Статьи в рецензируемых журналах, рекомендованных ВАК.
1. Мухин С.И., Меняйлова М.А., Соснин Н.В., Фаворский А.П. Аналитическое исследование стационарных гемодинамических течений в эластичной трубке с учетом трения // Дифференциальные уравнения. - 2007. Т. 43. № 7.
- с. 987-991.
2. Буничева А.Я., Меняйлова М.А., Мухин С.И., Соснин Н.В., Фаворский А.П. Исследование влияния гравитационных перегрузок на параметры кровотока в сосудах большого круга кровообращения // Математическое моделирование. - 2012. Т. 24. № 7. - с. 67-82.
Статьи в трудах российских и зарубежных конференций.
1. Favorskii А.P., Menyailova М.А. Construction of Conservative Discrete Scheme for Hemodynamic Equations // Extended Abstracts of International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2006) - Weinheim, Germany: WILEY-VCH Verlag, 2006. - P. 121-124.
2. Меняйлова M.A., Фаворский А.П. Построение консервативной разностной схемы для уравнений гемодинамики // Тихоновские чтения: Научная конференция, МГУ имени М.В. Ломоносова, 24-27 октября 2006 г. Тезисы докладов.
- М: МАКС Пресс, 2006.
3. Favorskii А.P., Menyailova М.А. Investigation of Gravity Overloads Effect on Hemodynamic Flows in Vessels of Model Graph // Proceedings of Fourth International Conference on Advanced Computational Methods in Engineering. -Liege, Belgium, 2008.
Структура и объем работы. Диссертация состоит из введения, 3 глав, заключения и списка цитируемой литературы. Диссертация содержит 122 страницы, в общей сложности 38 рисунков и 7 таблиц. Список цитируемой литературы содержит 75 наименований.
Заключение диссертация на тему "Изучение влияния гравитационного воздействия на функционирование сердечно-сосудистой системы"
ЗАКЛЮЧЕНИЕ
В данной работе представлены математическая модель и вычислительная технология для моделирования сердечно-сосудистой системы в условиях гравитационных перегрузок. В качестве основных результатов можно указать следующие.
1. Рассмотрено и исследовано семейство уравнений состояния, отвечающих свойству сосудов поддерживать дозвуковой характер течения крови в сосуде с учетом гравитационного воздействия.
2. Предложена и исследована модель работы сердца с гравитационной регуляцией, поддерживающая кровенаполнение сердца в условиях гравитационных перегрузок.
3. Разработана и построена серия пространственно-согласованных графов большого круга кровообращения, соответствующих различным положениям тела относительно гравитационного поля.
4. На основе построенной усовершенствованной модели работы сердца проведены расчетные исследования и составлена таблица физиологических параметров в зависимости от положения человека при различных значениях гравитационной нагрузки. Установлено существенное влияние положения человека на нормальное функционирование сердечнососудистой системы.
Средствами внутреннего контроля показана работоспособность численной модели системы кровообращения в условиях гравитационных перегрузок и ее возможность служить инструментом исследования кровенаполнения сердца и головного мозга. Обоснованность и достоверность результатов основаны на применении хорошо зарекомендовавшей себя иерархической нелокальной модели течения крови в сети сосудов, образующих замкнутую сердечнососудистую систему.
Библиография Меняйлова, Мария Анатольевна, диссертация по теме Математическое моделирование, численные методы и комплексы программ
1. Гарвей В. Анатомическое исследование о движении сердца и крови у животных. - M.-JL: Госиздат, 1927. - 113 с.
2. Coleman T.G., Granger Н. J., Guyton А.С. Whole-Body Circulatory Autoregulation and Hypertension // Circulation Research, 1971. Vol. 28, № 5. P. 76-87.
3. Guyton A.C., Coleman T.G., Grander H.J. Circulation: overall regulation // Ann. Rev Physiol. 1972. Vol. 34. - P. 13-44.
4. Caro C.G., Pedley T.J., Schroter R.S., Seed W.A. The mechanics of the circulation. New-York - Toronto: Oxford University Press, 1978. - 527 p.
5. Cancelli C., Pedley T.J. A separated-flow model for collapsible-tube oscillation // J. Fluid Mech. 1985. Vol. 157. - P. 375-404.
6. Педли Т. Гидродинамика крупных кровеносных сосудов. М.: Мир, 1983.- 400 с.
7. Noordergraaf A. Development of an analog computer for the human systemic circulatory system // Circulatory Analog Computers. Amsterdam, Holland: North Holland. 1963. - P. 29-44.
8. Womersly J.R. Oscillatory motion of a viscous liquid in thin-walled elastic tube. 1. The linear approximation for long waves // Phil. Mag. 1955. Vol. 46. No. 373. - P. 199-221.
9. Гидродинамика кровообращения / ред. Регирер С.А. М.: Мир, 1971. -270 с.
10. Регирер С.А. Лекции по биологической механике. М.: Изд-во МГУ, 1980.- 144 с.
11. Левтов В.А., Регирер С.А., Шадрина Н.Х. Реология крови. М.: Медицина, 1982, 270 с.
12. Л ищу к В. А. Математическая теория кровообращения. М.: Медицина, 1991, 128 с.
13. Лищук В.А. Математические модели сердечно-сосудистой системы // Итоги науки и техники. Бионика, биокибернетика, биоинженерия. М.: ВИНИТИ, 1990. Т. 7.
14. Yuan-Cheng Fung. Mathematical representation of the mechanical properties of the heart muscle // Journal of Biomechanics. 1970. Vol. 3. No. 4. - P. 381-404.
15. Peskin C. S., McQueen D. M. A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid // Journal of Computational Physics. 1989. Vol. 81. No. 2. - P. 372-405.
16. McQueen D. M., Peskin C. S. A three-dimensional computational method for blood flow in the heart. II. Contractile fibers // Journal of Computational Physics. 1989. Vol. 82. No. 2. - P. 289-297.
17. Leaning M.S., Pullen H.E., Carson E.R., Finkelshtein L. Modelling a complex biological system: the human cardiovascular system. 1. Methodology and model description // Trans, of the Inst, of M. and C. 1993. Vol. 5. No. 2. -P. 71-86.
18. Formaggia L., Quarteroni A., Veneziani A. The circulatory system: from case studies to mathematical modeling // Complex Systems in Biomedicine.- Milan: Springer Verlag, 2006. P. 243-287.
19. Formaggia L., Lamponi D. and Quarteroni A. One dimensional models for blood flow in arteries // Journal of Engineering Mathematics. 2003. No. 47.- P. 251-276.
20. Canic S. Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties // Comput. Visual. Sci. 2002. No. 4. - P. 147-155.
21. Taylor C.A., Hughes T.J.R., Zarins C.K. Finite Element Modelling of Blood Flow in Arteries // Comput. Methods Appl. Mech. Engrg. 1998. Vol. 158. P. 155-196.
22. Zacek M., Krauset E. Numerical simulation of blood flow in human cardiovascular system //J. Biomechanics. 1996. Vol. 29. No. 1. - P. 1320.
23. De Parter L., Van den Berg J.M. An electrical analogue of the entire human circulation system // Med. Electronics and Biol. Eng. 1964. No. 2. - P. 161-166.
24. Beneken I.E.W., De Wit B. A physical approach to hemodynamic aspects of the human cardiovascular system // Physical bases of circulatory transport: Regulation and exchange. Philadelphia, 1967. p. 46-67.
25. Berger S.A. Flow in large blood vessel. Fluid dynamics in biology // Proc. of AMS-IMS-SIAM summer research Conf. Contemporary Math. 1991. Vol. 141. - P. 479-518.
26. Olsen J.H., Shapiro A.N. Large amplitude unsteady flow in liquid-filled elastic tubes // J. Fluid Mech. 1967. Vol. 29. No. 3. - P. 513-538.
27. Chakravarty S., Mandal P.H. A nonlinear two-dimensional model of blood flow in an overlapping arterial stenosisn subjected to body acceleration // Math. Comput. Modelling. 1996. Vol. 24. No. 1. - P. 43-58.
28. Perktold K., Resell M., Peter R.O. Three-Dimensional Numerical Analysis of pulsatile Flow and Wall Shear Stress in Carotid Artery Bifurcation //J. Biomechanics. 1991. Vol. 24. No 6. - P. 409-420.
29. Tichner E.G., Sacks A.H. A theory for the static elastic behavior of blood vessels // Biorheology. 1967. Vol. 4. No. 4. - P. 151-168.
30. Greenfield J.C., Patel D.J. Relation between pressure and diameter in ascending aorta of man // Circulation Res. 1962. Vol. 10. No. 5. - P. 778-781.
31. Гродинз Ф. Теория регулирования и биологические системы. М.: Мир, 1966. - 254 с.
32. Конради Г.П. Регуляция сосудистого тонуса. J1.: Наука, 1973. - 328 с.
33. Рашмер Р. Динамика сердечно-сосудистой системы. М.: Медицина, 1982. - 440 с.
34. Шмидт Р., Тевс Г. Физиология человека. Т.2. М.: Мир, 2005. - 314 с.
35. Шмидт Р., Тевс Г. Физиология человека. Т.З. М.: Мир, 2005. - 228 с.
36. Фолков В., Нил Э. Кровообращение. М.: Медицина, 1981. - 600 с.
37. Ткаченко Б.И. Физиология кровообращения: Регуляция кровообращения. JL: Медицина, 1986. 640 с.
38. Савенков И.В. О нестационарных осесимметричных течениях в трубках с упругими стенками // ЖВМиМФ. 1996. Т. 36. № 2. с. 147-164.
39. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М., Наука, 1988. - 733 с.
40. Рождественский Б.Л., Яненко H.H. Системы квазилинейных уравнений и их приложения к газовой динамике. М.: Наука, 1968. - 592 с.
41. Шокин Ю.М., Яненко H.H. Метод дифференциального приближения. Применение в газовой динамике. Нов.: Изд-во СО РАН, 1985. - 364 с.
42. Холодов A.C. Некоторые динамические модели внешнего дыхания и кровообращения с учетом их связности и переноса веществ // Компьютерные модели и прогресс медицины. М.: Наука, 2001. - с. 127-163.
43. Симаков С.С., Холодов A.C., Евдокимов A.B. Методы расчета глобального кровотока в организме человека с использованием гетерогенных вычислительных моделей // Медицина в зеркале информатики. М.: Наука, 2008. - с. 145-170.
44. Фролов C.B., Маковеев С.H., Газизова Д.Ш., Лищук В.А. Модель сердечно-сосудистой системы, ориентированная на современную интенсивную терапию // Вестник ТГТУ. 2008. Т. 14. № 4. - с. 892-902.
45. Розанов В.В., Руденко О.В., Сысоев H.H. Нелинейнык пульсовые волны в эластичных трубках с переменным сечением и изменяющимися упругими свойствами. Физическая гидродинамика. Препринт физического факультета МГУ, выпуск 9. 1998. № 12. - 22 с.
46. Ткаченко Б.И. Венозное кровообращение. Л.: Медицина, 1979. - 224 с.
47. Сапин М.Р., Билич Г.Л. Анатомия человека, кн. 2. М.: Оникс: Альянс - В, 1999. - 432 с.
48. Дородницын A.A. Об одном методе численного решения некоторых нелинейных задач аэрогидродинамики // Тр. III Всесоюз. Матем. Съезда, 1956. Т. 3, М.: изд-во АН СССР. с. 447-453.
49. Тихонов А.Н., Самарский A.A. Уравнения математической физики. М.: Наука, 1977. - 735 с.
50. Самарский A.A. Теория разностных схем. М.: Наука, 1977. - 616 с.
51. Самарский A.A., Попов Ю.П. Разностные методы решения задач газовой динамики. М.: Наука, 1992. - 382 с.
52. Самарский A.A., Гулин A.B. Численные методы. М.: Наука, 1989. - 432 с.
53. Лелюк В.Г., Лелюк С.Э. Ультразвуковая ангиология. М.: Реальное Время, 2003. - 324 с.
54. Пуриня Б. А., Касьянов В.А. Биомеханика крупных кровеносных сосудов человека. Рига: Зинатне, 1980. - 260 с.
55. Чиркин A.A., Окороков А.Н., Гончарик И.И. Диагностический справочник терапевта. Минск: Беларусь, 1992, 688 с.
56. Кровообращение мозга и свойства крупных артерий в норме и патологии / ред. Блюгер А.Ф., Валтнерис А.Д. Рига, 1976. - 138 с.
57. Абакумов М.В., Гаврилюк К.В., Есикова Н.В., Кошелев В.В., Лукшин A.B., Мухин С.И., Соснин Н.В., Тишкин В.Ф., Фаворский А.П. Математическая модель гемодинамики сердечно-сосудистой системы // Дифференциальные уравнения. 1997. Т. 33. № 7. - с. 892-898.
58. Лукшин В.А., Мухин С.И., Соколова Т.В., Соснин Н.В., Фаворский А.П. Математическое моделирование церебральной гемодинамики в квазипериодическом режиме. Препринт М.: МАКС Пресс, 2003. - 20 с.
59. Кошелев В.В., Мухин С.И., Соколова Т.В., Соснин Н.В., Фаворский А.П. Математическое моделирование гемодинамики сердечно-сосудистой системы с учетом влияния нейрорегуляции // Математическое моделирование. 2007. Т. 19. № 3. - с. 15-28.
60. Абакумов М.В., Есикова Н.Б., Мухин С.И., Соснин Н.В., Тишкин В.Ф., Фаворский А.П. Разностная схема решения задач гемодинамики на графе. Препринт М.: Диалог-МГУ, 1998. - 17 с.
61. Ашметков И.В., Мухин С.И., Соснин Н.В., Фаворский А.П., Хруленко A.B. Частные решения уравнений гемодинамики. Препринт М.: Диалог-МГУ, 1999. - 43 с.
62. Ашметков И.В., Мухин С.И., Соснин Н.В., Фаворский А.П. Решение общей задачи для ЛГД уравнений на одном сосуде. Препринт М.: МАКС Пресс, 2001. - 22 с.
63. Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П. Осредненная нелинейная модель гемодинамики в одном сосуде. Препринт М.: МАКС Пресс, 2000. - 21 с.
64. Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П. Осредненная нелинейная модель гемодинамики на графе сосудов // Дифференциальные уравнения. 2001. Т. 37. № 7. - с. 905-912.
65. Буничева А.Я., Лукшин В.А., Мухин С.И., Соснин Н.В., Фаворский А.П. Численное исследование гемодинамики большого круга кровообращения. Препринт М.: МАКС Пресс, 2001. - 21 с.
66. Буничева А.Я., Лукшин В.А., Мухин С.И., Соснин Н.В., Фаворский А.П. Квазистационарная модель кровообращения при гравитационных перегрузках. Препринт М.: МАКС Пресс, 2002. - 19 с.
67. Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П. Исследование эволюции параметров течения в системе кровообращения под воздействием гравитационных нагрузок. Препринт М.: МАКС Пресс, 2003. -18 с.
68. Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П. Численное исследование гемодинамики замкнутой системы кровообращения. Препринт М.: МАКС Пресс, 2007. - 18 с.
69. Буничева А.Я., Мухин С.И., Соснин Н.В., Фаворский А.П., Хруленко А.Б. Математическое моделирование некоторых прикладных задач гемодинамики // Прикладная математика и информатика. М.: МАКС Пресс. 2001. №9. - с. 91-132.
70. Кошелев В.В., Мухин С.И., Соснин Н.В., Фаворский А.П. Математические модели квази-одномерной гемодинамики. Методическое пособие. -М.: МАКС Пресс, 2010. 116 с.
71. Мухин С.И., Соснин Н.В., Фаворский А.П., Хруленко A.B. Линейный анализ волн давления и скорости в системе эластичных сосудов. Препринт М.: МАКС Пресс, 2001. - 40 с.
-
Похожие работы
- Комплексные методы и аппаратно-программные средства для исследований гемодинамических процессов в сосудистой системе организма
- Математическое моделирование управления сердечным ритмом
- Особенности формирования сердечной недостаточности у ликвидаторов последствий аварии на Чернобыльской атомной электростанции
- Измерение параметров и численное моделирование гравитирующих систем
- Анализ и синтез систем медицинского назначения с управляемой искусственной силой тяжести
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность