автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Гибридные нечетко-временные модели прогнозирования информационных потоков в системах телекоммуникаций и компьютерных сетях
Автореферат диссертации по теме "Гибридные нечетко-временные модели прогнозирования информационных потоков в системах телекоммуникаций и компьютерных сетях"
На правах рукописи
Новоковский Сергей Станиславович
ГИБРИДНЫЕ НЕЧЕТКО-ВРЕМЕННЫЕ МОДЕЛИ ПРОГНОЗИРОВАНИЯ ИНФОРМАЦИОННЫХ ПОТОКОВ В СИСТЕМАХ ТЕЛЕКОММУНИКАЦИЙ И КОМПЬЮТЕРНЫХ СЕТЯХ
Специальность 05.13 18-Математическоемоделирование,численные методы и комплексы программ
Автореферат диссертации на соискание ученой степени кандидата технических наук
Ростов-на-Дону 2007
003162642
Работа выполнена в государственном образовательном учреждении высшего профессионального образования «Ростовский государственный университет путей сообщения» (РГУПС)
Научный руководитель доктор технических наук, профессор
Ковалев Сергей Михайлович
Официальные оппоненты доктор технических наук, профессор
Белявский Григорий Исаакович
Кандидат технических наук, доцент Тарасов Валерий Борисович
Ведущая организация: Кубанский государственный университет
г Краснодар
Защита диссертации состоится 14 ноября 2007 г в 13 30 на заседании диссертационного совета К 218.010.01 при Ростовском государственном университете путей сообщения по адресу 344038, г Ростов-на-Дону, пл Ростовского Стрелкового полка Народного Ополчения, 2.
С диссертацией можно ознакомиться в библиотеке Ростовского государственного университета путей сообщения по адресу. 344038, г Ростов-на-Дону, пл Ростовского Стрелкового полка Народного Ополчения, 2
Автореферат разослан «-<#» октября 2007 г
Ученый секретарь диссертационного совета К 218 010 01 доктор технических наук, доцент
БутаковаМ А
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность проблемы. Достижение высоких социальных и экономических результатов в развитии современного информационного общества невозможно без развития его инфраструктуры, ключевую роль в которой играют вычислительная техника, компьютерные сети и средства телекоммуникации Развитие информационной инфраструктуры предполагает активизацию работ, как в области модернизации старой техники, так и в области создания новых поколений телекоммуникационных (ТКС) и компьютерных систем Решение обеих задач невозможно без разработки соответствующих математических моделей, на основе которых осуществляется исследование информационных процессов и систем, их проектирование, а также разработка алгоритмов управления информационными системами и процессами
Одним из известных подходов к моделированию информационных временных процессов (ИВП) и режимов функционирования ТКС является имитационное моделирование, осуществляемое с использованием средств генерации случайных процессов, обладающих заданными свойствами. Однако, методы генерации потоков обеспечивают возможность воспроизведения ИВП с точностью до реализации в нем заданных средне статистических характеристик, не гарантируя яри этом точного воспроизведения самого процесса, как временной функции (шейпа) на заданном конкретном временном интервале Тем не менее, в ряде задач, связанных с упреждающим контролем и управлением телекоммуникационными и компьютерными системами, требуется как можно более точное прогнозирование развития самого процесса, что требует разработки специального класса прогнозирующих моделей.
Разработка адекватных прогнозирующих моделей информационных процессов, протекающих в распределенных системах и компьютерных сетях, относится к классу слабо формализованных задач и является сложной проблемой Это объясняется наличием множества случайных и нечетко-определенных факторов, влияющих на характер поведения ИВП, а также сложным характером временного взаимодействия определяющих факторов в структуре ИВП, что приводит к появлению различного рода нестационарностей, сложных корреляционных зависимостей и временных сдвигов в потоках данных Вышесказанное обуславливает необходимость разработки новых подходов к исследованию ИВП, способных преодолевать указанные выше трудности
Перспективным подходом к моделированию слабо структурированных процессов является подход, основанный на использовании принципа гибридизации, заключающегося в комбинировании традиционных методов моделирования ИВП с интеллектуальными технологиями, опирающимися на модели знаний и парадигмы "мягких" вычислений Причем, в рамках гибридизации именно интеллектуальные модели и мягкие вычисления, как
инструмент моделирования ИБП, играют важнейшую роль, поскольку они позволяют восполнить дефицит информации об исследуемом процессе за счет привлечения дополнительных экспертных знаний.
Для решения слабо формализованных задач, связанных с интеллектуальным моделированием поведения сложных динамических процессов и систем, в настоящее время активно разрабатываются интеллектуальные технологии Большой вклад в становление и развитие данных теорий внесли российские ученые: Батырпшн, Вагин В Н, Журавлев Ю.И, Кузнецов О.П., Нариньяни А С , Осипов Г С , Поспелов Д А, Попов Э В , Стефанюк В Л, Тарасов В Б, Финн В.К. и др. Большой вклад в развитие теории мягких вычислений и методов гибридизации внесли российские ученые. Аверкин А.Н, Берштейн Л С., Вагин В Н., Емельянов В В., Еремеев А.П., Ковалев С М., Мелихов А Н, Потапова Р К., Цемель Г И, Ярушкина НГ идр
Развитие гибридных технологий в области моделирования ИВП требует решения комплекса задач, начиная с анализа существующих технологий управления с целью выявления характерных особенностей возникающих здесь задач и разработки общей структуры гибридной прогнозирующей системы, завершая разработкой частных прогнозирующих моделей, методов их обучения и адаптации.
Объект исследования Исходя из сказанного, в качестве основного объекта исследования диссертации выбран новый класс гибридных прогнозирующих моделей, основанных на объединении традиционных вычислительных: технологий моделирования ИВП с интеллектуальными технологиями В соответствии с выбранным направлением исследования сформулирована основная цель работы.
Цель исследования Целью исследования является развитие гибридных технологий моделирования слабо структурированных временных процессов на основе комбинированного использования методов численного анализа и методологий мягких вычислений
Задачи исследования В соответствии с поставленной целью в диссертации решаются следующие задачи
1 Анализ существующих технологий управления в системах коммутации и компьютерных сетях с целью выявления наиболее характерных возникающих здесь проблем и задач.
2. Разработка архитектуры гибридной прогнозирующей системы, приспособленной для работы как с четко определенными данными о состоянии моделируемого процесса, так и с нечетко-определенными данными, описывающими экспертные знания о поведении ИВП
3 Разработка частных моделей для гибридной прогнозирующей системы, способных оперировать динамической информацией о моделируемом ИВП
4. Разработка методов моделирования ИВП, мало чувствительных к шумам и случайным выбросам в данных, с целью получения на их основе устойчивых краткосрочных и долгосрочных прогнозов
5. Разработка методов обучения и адаптации гибридных прогнозирующих моделей, обеспечивающих оптимальный баланс между интерпретационной пригодностью модели и точностью реализуемых на ее основе прогнозов
6. Разработка алгоритмов и программ, имитирующих функционирование гибридной прогнозирующей системы, с целью экспериментальной проверки эффективности предложенных, моделей.
Методы исследования В диссертационной работе использованы методы теории искусственного интеллекта, включая методы мягких вычислений, системного анализа и теории массового обслуживания
Методологическую основу работы составляет концепция гибридизации, заключающаяся в объединении традиционных методов моделирования СВП, основанных на идеях нейросетевого анализа и локального сглаживания, с интеллектуальными методами, основанными на моделях знаний.
Научная новизна исследования Научная новизна исследования заключается в решении важной научно-технической задачи моделирования и прогнозирования поведения слабо структурированных информационных процессов в системах коммутации и компьютерных сетях, имеющей существенное значение для развития методов математического моделирования сложных динамических процессов и систем.
К наиболее существенным научным результатам работы относятся следующие:
1 На основе анализа существующих технологий управления в системах коммутации и компьютерных сетях обоснована необходимость использования гибридных технологий при построении прогнозирующих моделей. В соответствии с этим разработана новая архитектура темпоральной нейро-нечеткой прогнозирующей системы, предназначенной для обработки как четких числовых данных, поступающих в систему с информационных датчиков, так и нечетко-определенной информации, поступающей от экспертов.
2 Для гибридной прогнозирующей системы разработан новый класс нечетко-логических моделей, способных оперировать динамической информацией о качественных временных и нечетко-временных зависимостях между определяющими признаками ИВГ1 Для данных моделей разработаны методы вывода, мало чувствительные к шумам и случайным выбросам в данных, благодаря чему достигается возможность получения на их основе устойчивых краткосрочных и долгосрочных прогнозов
3 Разработан комплекс методов структурно-параметрической адаптации прогнозирующих моделей на основе принципов, обеспечивающих оптимальный баланса между интерпретационной пригодностью модели и ее аппроксимирующей точностью. Предложенные методы позволяют выявлять в исследуемом ИВП наиболее существенную информацию о его внутренней структуре, что способствует повышению качества принимаемых решений, связанных с долгосрочными прогнозами и прогнозами в условиях помех.
Практическая значимость работы Практические эксперименты, проведенные с разработанными в диссертации гибридными моделями,
подтвердили практическую эффективность использования этих моделей с целью идентификации ИБП, а также подтвердили возможность получения долгосрочных прогнозов с точностью в 10-15%
Практическая ценность работы состоит в применении полученных результатов на предприятиях связи для решения задач, связанных с прогнозированием телетрафика Практическая ценность работы также определяется возможностью использования предложенных моделей в интегрированных системах управления информационными процессами в действующих системах коммуникации и компьютерных сетях.
Достоверность и обоснованность результатов Достоверность и обоснованность результатов подтверждается логическим выводом, результатами вычислительных экспериментов, публикациями и апробацией работы на региональных, отраслевых и Всероссийских научно-технических конференциях, а также актами внедрения результатов работы
Реализация и внедрение результатов работы Работа выполнялась в рамках госбюджетных и хоздоговорных НИР, проводимых на кафедре «Автоматики и телемеханика на железнодорожном транспорте» Ростовского государственного университета путей сообщения (РГУПС), а также в рамках НИР, поддержанной Российским фондом фундаментальных исследований проект №04-01-00277. Практические результаты диссертационной работы внедрены на кафедре «Автоматики и телемеханики на железнодорожном транспорте» РГУПСа, в Ростовском филиале ВНИИАС МПС России, в Краснодарском филиале ОАО «Южная телекоммуникационная компания» (г Краснодар)
Апробация результатов работы. Основные результаты докладывались и обсуждались на VII Всероссийской научной конференции студентов и аспирантов «Техническая кибернетика, радиоэлектроника и системы управления" (г Таганрог, 2004 г), Международной конференции «Интеллектуальные системы (IEEE AIS'06)» (с. Дивноморское, 2006 г), X Национальной конференции по искусственному интеллекту с международным участием «КИИ - 2006» (г. Обнинск, 2006 г.).
Публикации Основные положения диссертации опубликованы в 9 печатных работах
Структура и объем диссертационной работы. Диссертационная работа состоит из введения, трех разделов, заключения, списка литературы из 89 наименований, и содержит 160 страниц, включая 41 рисунок, 2 таблицы и 3 страницы приложений
СОДЕРЖАНИЕ РАБОТЫ
Во введении дается обоснование актуальности темы диссертационной работы, описаны цель и основные научные положения, выносимые на защиту, определены круг задач, объект и предмет исследования, указаны методы
исследования, показаны научная новизна и практическая значимость, дано общее описание выполненной работы.
В первой главе дается обзор известных методов проектирования телекоммуникационных систем и технологий, приводится анализ существующих технологий управления в системах коммутации и компьютерных сетях, ставятся задачи прогнозирования ИВП и обосновывается необходимость использования гибридных технологий при построении прогнозирующих моделей
Ключевую роль в современных телекоммуникационных технологиях играют методы обработки и управления информационными потоками. Наиболее динамичным фактором, влияющим на алгоритмы управления информационными потоками, является нагрузка на линии связи, изменяющаяся довольно быстро в трудно прогнозируемых направлениях, поэтому актуальными становятся исследования, связанные с разработкой эффективных методов анализа и прогнозирования поведения ИВП.
Наиболее общим представлением модели ТКС является теоретико-множественное представление в виде системы, на вход которой подается вектор входных параметров X, а на выходе появляется выходной вектор ¥ Состояние ТКС определятся вектором внутренних параметров 2 Основным
элементом вектора X является матрица интенсивностей Д =11/^11» элементы которой М,ухарактеризуют интенсивность адресации сообщений от 1-го узла ТКС к ]-му Во множество X входят также параметры абонентов сети, параметры каналов связи и параметры коммутационного оборудования, которые вместе образуют вектор X'. Множество выходных параметров сети У определяется как Г=Кх№хЯ, где К - критерии эффективности функционирования, IV - параметры структуры сети, К - множество реакций внешней среды С учетом принятых обозначений модель ТКС в теоретико-множественном представлении определяется в виде функционального отображения, устанавливающего связь между элементами множества Г и элементами множества X:
Р ДхХ* -^КхЖхЯ. (1)
Выражение (1) является обобщенным представлением модели ТКС, используемым при решении многих задач, связанных с проектированием сетей связи и разработкой стратегий управления потоками данных в сетях связи
Для эффективного решения задач упреждающего потокораспределения, включая задачи маршрутизации и коммутации, необходимо в модели (1) видоизменить матрицу интенсивностей Д, включив в нее вместо элементов характеризующие усредненные значения интенсивностей потоков, вычисленные на основе знаний о поведении процесса в прошлом, элементы , характеризующие прогнозируемые значения интенсивностей в будущем
Во второй главе на основе анализа известных подходов к моделированию временных процессов и рядов, разрабатывается новый класс гибридных моделей, предназначенных для кратко- и долгосрочного прогнозирования информационных процессов в ТКС, представимых временными рядами (ВР). Предлагаемая методология основана на интеграции традиционных методов исследования ВР с интеллектуальными методами, использующими средства нечеткой логики и аппарат искусственных нейронных сетей
Теоретическим основанием для использования нейросетевых и нечетко-логических моделей в области анализа ВР служит фундаментальная теорема Такенса, позволяющая использовать в качестве прогнозирующей математической модели авторегрессионную модель общего вида, представленную в форме нелинейной авторегрессии'
х(/ + йО = ^[х(0,х(/-1), >%Ь (2)
где (Л - лаг прогнозирования, I - ширина окна погружения, к - количество независимых переменных
Формула (2) позволяет прогнозирование ВР свести к типовой задаче нейроанализа - аппроксимации функции нескольких переменных по заданному набору примеров путем погружения ряда в многомерное пространство
Нечетко-логические системы (НЛС), как средство моделирования ВР, по аналогии с ИНС опираются на идею трансформации динамики процесса в статику методом погружения. С этой целью типовая НЛС дополняется входами обратной связи, на которые подаются задержанные во времени сигналы Полученная таким образом нечеткая система реализует нелинейное отображение предшествующих значений ВР в последующие:
Х(Г-1)хХ(Г-2)х .хХ(1-к)-±Х0+1) (3)
Реализация выражения (3) в нечетко-логической модели осуществляется на основе нечетких правил "ЕСЛИ «УСЛОВИЕ», ТО «Действие»", предусловия и заключения которых содержат соответственно предшествующие и последующие значения ВР, представленные в виде лингвистических термов
Важнейшей задачей в рамках реализации гибридного подхода к построению прогнозирующих моделей является построение архитектуры модели. На рис 1 приводится предложенная автором архитектура гибридной прогнозирующей системы
Она реализует идею комбинирования индивидуальных прогнозов, полученных на основе частных моделей, функционирующих в рамках двухуровневой иерархической системы Нижний уровень системы представлен двумя разнотипными базовыми моделями, одна из которых реализована в классе динамических нейросетевых моделей, а другая в классе гибридных нечетко-темпоральных моделей. Верхний уровень прогнозирующей системы представлен в виде логистической схемы, объединяющей результаты частных прогнозов под управлением нечеткой
системы, обеспечивающей динамическую адаптацию балансного коэффициента с целью оптимального перераспределения долей участия каждой из базовых моделей в общем прогнозе.
Рис 1. Блок-схема гибридной прошозирующей системы
Нечетко-темпоральная модель (HTM), входящая в качестве базовой прогнозирующей модели в рассматриваемую структуру, относится к классу гибридных гранулярных моделей, оперирующих отдельными фрагментами ВР, представленными в виде нечетких 1ранул-признаков, связанных временными отношениями Правила HTM устанавливает причинную связь между нечетко-темпоральными структурами, а именно, между структурами признаков, характеризующих поведение ВР в прошлом и структурами признаков, описывающих его поведение в будущем
Структура HTM, также как и структура гибридной прошозирующей система, реализована в виде двухуровневой иерархической подсистемы Нижней уровень выполняет функции идентификатора нечетких интегральных признаков ИВП и реализован на основе статической ИНС. Верхний уровень HTM представлен в виде нейро-нечеткой системы, аналогичной нечеткой
ÄNFIS-сети, оперирующей гранулированными значениями признаков, выявленными на нижнем уровне Принципиальным отличием предлагаемой гибридной сети от известных является то, что в качестве заключений правил выступают не линейные комбинации числовых значений, характеризующих "прошлые" отсчеты ВР, а комбинации параметров шейпов интегральных признаков, из которых формируется прогнозируемый шейп ВР
Ниже на рис 2 в качестве примера дана структура гибридной HTM, база знаний (БЗ) которой включает два следующих простых правила П' "Если в течение г - At = т1 наблюдается Q = сЛ, то в течение г + Л/ = п\ наблюдается q = ml"
П2 "Если в течение t-At = т2 наблюдается Q = а2, то в течение t + Дг = и2 наблюдается q = ml"
Рис 2. Пример структуры гибридной HTM на основе двух правил
В качестве второй базовой модели, входящей в состав гибридной прогнозирующей системы, используется динамическая ИНС (ДИНС) -многоуровневая нейросеть прямого распространения с обратными связями, чьи скрытые и выходные нейроны копируются во времени в модули задержки сигналов.
Результирующий прогноз гибридной системы получается путем комбинирования двух частных прогнозов с использования логистической схемы
X(t + AT) = fi> XX + (1 - а) Х2, (5)
где XI - прогноз на основе ДИНС, Х2 - прогноз на основе HTM, со -балансный коэффициент (0 < а> < 1)
Использование логистической схемы (5) позволяет при прогнозировании значений ВР гибко учитывать влияние на общий результат прогноза двух частных результатов, полученных на основе выше описанных моделей Для регулирования балансного коэффициента предлагается нечеткий регулятор, основанный на ряде простых и достаточно очевидных правил, позволяющих динамически корректировать значение балансного коэффициента в зависимости от ошибок прогнозирования базовых моделей Ниже в качестве примера приведены три нечетких правила, входящих в БЗ нечеткой системы
Бели е\ - МАЛАЯ и б2 . БОЛЬШАЯ, то СО УВЕЛИЧИТЬ
Если е\ - БОЛЬШАЯ и е2 - МАЛАЯ, то 03 УМЕНИШИТЬ
Если ¿"1 и е2 -МАЛЫЕ, то СО СОХРАНИТЬ
В данном разделе также предлагается новый подход к построению моделей ИВП на основе нечетких регрессионных динамических систем (НДС), мало чувствительных к случайным выбросам в данных, основанный на идеи "не-синглетного" вывода в нечетких системах
НДС реализует отображение ХхГх х 2 Е/, в котором X х у х х2-Семерное пространство входных переменных, характеризующих к "прошлых" значений ИВП, и и - выходная переменная НДС, характеризующая прошозируемое значение ИВП Каждое из нечетких правил Я, а, &Д & & у, => <я, ( а,,Д, ~ нечеткие входные термы, т, - нечеткий выходной терм), входящих в БЗ НДС, рассматривается как нечеткое отношение К,, действующее из ХхУх хб в (/ с функцией принадлежности (ФП)
= (й)&/"„(«) (х,у, (1)
При подаче на вход НДС, содержащей т нечетких правил {К„Х2, ,£„,}, числового вектора V* = (х',у',, g,) нечеткий выход определяется формулой нечеткого вывода
Мп(х,У, ,Ш,и) = V (х>У> .г.ие!) (2)
К«5ЙЗ
Особенностью регрессионной НДС является наличие обратной связи, через которую на вход НДС подаются задержанные во времени выходные значения. Однако, в процессе моделирования регрессионного уравнения на каждой ¡-й итерации на выходе НДС получается не единственное прошозируемое значение + 1 ) = м, а нечеткое множество таких значений и Следовательно, представляется естественным на последующих итерациях моделирования (проецирования) в качестве входных данных использовать не дефаззифицированные значения нечеткой прогнозируемой величины, а непосредственно нечеткие входные значения ¡7, полученные в качестве выходных на предыдущих итерациях Это приводит к необходимости реализации НДС с «не-синглетным» выводом Такой тип НДС за счет способности обрабатывать «размытую» входную информацию обладает меньшей чувствительностью как к «выбросам» в данных, получаемых в ходе моделирования, так и к «выбросам», содержащихся в экспериментальных
(5)
данных, в ходе обучения НДС. Однако, НДС с «не-синглетным» выводом имеет повышенную вычислительную сложность. Тем не менее, применительно к рассматриваемому классу авторегрессионных НДС процедура «не-синглетного2" вывода существенно упрощается.
Пусть входные данные представлены в виде вектора нечетких множеств V = [А(х), В(у), ,G(g)]. Нечеткое множество выходных значений О вычисляется путем композиции нечеткого отношения V=AxBx xG, ФП которого определяется выражением (х,у, ,z) = (х)&ps(y)& . &ц5(g), и нечеткого отношения R, определяемого выражением
Мц(х,У, ,g,u)= V «) (Х>У>- ,g,ueX) (3)
!>ie/3
В базисе Заде ФП выходного нечеткого множества имеет вид.
/"б(м) = Шах М2(х)&Мв(У)& ■ &Мс(-8)&Мп(х'У' 'Я,и). (4)
Подставляя в (4) ФП нечеткого отношения R приходим к формуле
<ММ)= max lMj(x)&Mn(y)& .&juö(g)&
(х v z)>sV
На основании свойств дистрибутивности и коммутативности выражение (5) преобразуется в формулу:
ма(«)= v max l^ix)&ßaXx)&.^(y)&fißt(y)&
Учитывая свойство монотонности нечеткой конъюнкции, максимум операции достигается при достижении максимума каждым из операндов, следовательно, выражение (6) приобретает вид:
Мо(М)= v maxOj(*)&ма,(*))&тах(^г(у)&ßp,(у))&
RisB3 хеХ убх
тах(/^ (g) & (g)) & ßm. («))] (7)
Поскольку входящие в схему операторы взятия максимума определены на одном и том же домене X, их вычисление может быть реализовано в едином цикле по элементам х g X, что приводит к алгоритмической сложности схемы «несинглетного» вывода, линейной относительно размерности множества X
В третьем разделе рассматриваются методы построения и структурной оптимизации НДС на основе принципов, обеспечивающих оптимальный баланс между интерпретационной пригодностью модели и ее аппроксимирующей точностью.
Предлагается подход к обучению НДС в основе которого лежит идея формирования такой нечеткой системы, которая при некотором допустимом уровне точности преобразования в наибольшей мере соответствовала бы современным представлениям об организации человеческого мышления и
человеческой системы обработки информации Эти представления сформулированы в следующих принципах
1. Принцип рациональности человеческого мышления, согласно которому НЛС, как средство моделирования человеческих рассуждений, должна содержать минимальное число достаточно простых по своей структуре, легко интерпретируемых решающих правил
2 Принцип иерархичности человеческого мышления, заключающейся в рациональном комбинировании сильно обобщенных значений признаков, используемых для аппроксимации данных «по крупному» с целью выявления в них наиболее характерных качественных закономерностей и тенденций, и детализированных значений признаков, играющих роль уточняющих нечетких термов.
3 Принцип нелинейности мышления, согласно которому при формировании сложных понятий эксперт оперирует не только прямыми, но и исключающими значениями признаков, что диктует необходимость использования в описаниях нечетких правил, входящих в БЗ НЛС, как прямых, так и инверсных нечетких переменных
На основе этих принципов предлагается сценарий структурного обучения, заключающийся в выборе терм множеств для всех системных переменных, определении границ размещения термов на числовой. шкале значений ВР и формировании структур решающих правил в классе нечетко-логических формул.
Общий сценарий сводится к разбиению признаковой шкалы X на минимальной число к интервалов, соответствующих будущим интервалам локализации нечетких термов, на основании которого строится разбиение Ш
л
признакового пространства V =ХхХх х! = Пх на минимальное число ш
и
областей прямоугольной формы, однозначно порождающих структуру будущей НДС
Для построения разбиений предлагается подход, основанный на использовании специального вида гибридных сетевых моделей (гиперпрямоугольных композитных нейросетей (ГТЖНС)), узлы которой соответствуют нечетким правилам БЗ НДС и формируются в процессе обучения Отличием предлагаемой сетевой модели (СМ) от известных ГПКНС являв!ся введение в нее дополнительной группы термов, используемых в качестве уточняющих для основных термов с целью формирования исключающих признаков, а на их основе более выразительных и гибких классификационных правил Символическое представление двух уровневой СМ приведено на рис 3.
Огаг(х)
Рис. 3. Структура СМ с ] скрытыми нейронами
Математическое описание дано ниже:
ОЦТ(х) = /(£1ОШ1 <*)-?), (8)
1
Ош,(х) = /(пе1^х))- (9)
= (10)
1-1
при /(я) = 1 при 2 > 0, /(г) = 0 при 2 < 0
Здесь тп^М^Ж - настраиваемые синаптические связи у-го скрытого нейрона, х = 0(0,х(/-1), ,х(1-п)) = (хихг, ,х„) - входной образ, 77 -положительная константа меньше 1, Ош]{х) - выходная функция /-го скрытого нейрона, Ога(х) К" -> {од} - выходной сигнал СМ с 3 скрытыми нейронами
В экспериментальной части диссертации были проведены эксперименты по оценке практической полезности предложенных автором прогнозирующих моделей. Первая серия экспериментов исследовала возможность использования гибридной прогнозирующей системы для имитации процесса нелинейного авторегрессионного скользящего среднего, представленного зависимостью, приведенной на рис. 4.
х(0 = у(0+1.2- х{! -1) ехр( - *2<-' "А).) + 0.8-у(Г-1)-схр< -
б 3
Тестовая модель (АКМА-модель)
Количество входных переменных 2 х^-^-внешний вход, вход обратной связи
Количество параметров 2 параметра авторегресии, 1 параметр разности; 2 параметра скользящего среднего
Нечетко-темпоральная модель
Количество входных переменных 2 х(1-1)-ъвет1та вход, х(1-1)- вход обратной связи Тип функций принадлежности- Гауссиая База знании- 21 нечетких правил
Рис. 4 Эксперименты по имитации процесса авторегрессионного скользящего среднего
Участвующие в эксперименте модели, тестовая АРИМА-модель и гибридная прогнозирующая система, имели по два входа (внешний вход х(1:-1) и вход обратной связи /„,.(/-1) = х(/-1)) и были обучены на имитацию авторехрессионного процесса по части ВР Далее, по другой части ВР модели функционировали в качестве предсказателей на три шага вперед Результаты прогноза (сплошные линии) приведены на рис 4 Здесь же приведены некоторые данные по участвующим в эксперименте моделям На рисунке отчетливо видно преимущество предлагаемой гибридной модели по сравнению с тестовой моделью
Второй эксперимент, касающийся проблемы системной идентификации нечетких динамических процессов, подтвердил высокую практическую эффективность использования для этих целей предложенной автором гибридной модели Данная модель оказалась способной с приемлемой точностью 10-15 % прогнозировать поведение моделируемого процесса на три шага вперед, в то время как, участвующая в эксперименте тестовая нечеткая система, оказалась не в состоянии прогнозировать поведение процесса на те же три шага вперед с приемлемой точностью
ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ
В ходе выполнения диссертационной работы получены следующие результаты:
1 Установлено, что для решения задач, связанных с моделированием информационных процессов и потоков данных в ТКС и компьютерных сетях представляются перспективными идеи гибридизации, основанные на совместном использовании традиционных вычислительных технологий и интеллектуальных технологий
2 Предложена новая архитектура гибридной прогнозирующей модели, основанная на объединение методологий нечеткой логики и нейронных сетей, позволяющая осуществлять прогнозирование на несколько шагов и обеспечивающая возможность работы с нечеткими исходными данными.
3. Для гибридной прогнозирующей системы разработан новый класс нечетко-логических моделей, способных оперировать динамической информацией о качественных временных и нечетко-временных зависимостях между определяющими признаками ИВП.
4 Исследован новый подход к построению нечетких моделей анализа ВР, мало чувствительных к случайным выбросам в данных, основанных на идеи несинглетного вывода Эти модели, опираясь на возможность обрабатывать «размытую» входную информацию, позволяют повысить эффективность обучения нечетких систем на неточных или частично искаженных данных.
5 Предложен новый подход к формированию динамических НЛС с использованием исключающих признаков и детализирующих правил, расширяющий общие возможности методов нечетко-логического анализа по моделированию сложных динамических процессов
6. Разработан новый подход к формированию БЗ динамических НЛС на основе использования специального класса сетевых моделей, обеспечивающих возможность формирования более выразительных и гибких классификационных правил за счет использования в них как прямых, так и инверсных признаков
ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИОННОЙ РАБОТЫ
1. Ковалев СМ., Новоковский С.С Интеллектуальные модели анализа нечетко-временной информации в телекоммуникационных системах //
Актуальные проблемы развития технических средств и технологий железнодорожной автоматики и телемеханики Междунар. межвуз сб науч тр Ростов н/Д РГУПС, 2004. С - 122-129
2. Ковалев СМ., Новоковский С С Нечетко-логическое моделирование информационных потоков в телекоммуникационных системах // Тр Ростовского государственного университета путей сообщения,- Ростов н/Д РГУПС, 2005 - №1 С.27-32.
3 Ковалев С М, Новоковский С. С. Регрессионная модель телетрафика на основе нечеткой динамической системы // Известия ТРТУ Тематический выпуск «Актуальные проблемы производства и потребления энергии» -Таганрог- Изд-во ТРТУ, 2005,- №11(55) С.109-113
4 Ковалев С М., Ковалев В С, Новоковский С С. Нечетко-динамические модели в задачах моделирования информационных потоков // Вестник Ростовского государственного университета путей сообщения, 2006 - №2 (22) С 55-58
5 СМ. Ковалев, С С Новоковский Модели представления и обработки нечеко-временной информации, отражающей динамику процессов в слабо формализованных задачах принятия решений // Вестник Ростовского государственного университета путей сообщения, 2006 - №3 (23) — Ростов н/Д С 43-49
6 Новоковский С С Идентификация лингвистической модели источника ошибок // Обозрение прикладной и промышленной математики - М, 2006 -Т 13 Вып. 4 С 690.
7. Новоковский С.С Лингвистическая модель канала // Обозрение прикладной и промышленной математики - М., 2006 - Т 13. Вып. 3 8 Ковалев С М, Новоковский С.С Архитектура гибридной системы прогнозирования временных процессов // Вестник Ростовского государственного университета путей сообщения, 2007 - №2 (26) С 57-65. 9. С С. Новоковский Методы структурно-параметрической идентификации нечетких систем на основе принципов интеллектуализации и гибридизации // Труды Ростовского государственного университета путей сообщения, -Ростов н/Д, 2007.-№1(4), С 153-160.
В работах [1, 2, 3], опубликованных в соавторстве, лично автору принадлежат разработка интеллектуальной модели анализа нечетко-динамической информации и алгоритм вывода на регрессионной модели, в работах [4, 5] лично автору принадлежит регрессионная модель телетрафика и алгоритм моделирования информационного потока, в работе 8 лично автору принадлежит гибридная архитектура прогнозирующей системы
Новоковский Сергей Станиславович
ГИБРИДНЬШ НЕЧБТКО-ВРЕМЕННЬШ МОДЕЛИ ПРОГНОЗИРОВАНИЯ ИНФОРМАЦИОННЫХ ПОТОКОВ В СИСТЕМАХ ТЕЛЕКОММУНИКАЦИЙ И КОМПЬЮТЕРНЫХ СЕТЯХ
Автореферат диссертации на соискание ученой степени кандидата технических наук
Подписано к печати Формат 60x84/1б
Бумага офсетная. Печать офсетная. Уел печ л 1,4
Уч -изд. Л. 1 Тираж 100 Заказ № 3532
Ростовский государственный университет путей сообщения _Ризография РГУПС_
Адрес университета- 344038, г Ростов-на-Дону, пл. им. Ростовского стрелкового полка
народного ополчения, 2
Оглавление автор диссертации — кандидата технических наук Новоковский, Сергей Станиславович
ВВЕДЕНИЕ.
1. АНАЛИЗ ПОДХОДОВ К МОДЕЛИРОВАНИЮ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ В СИСТЕМАХ КОММУНИКАЦИИ И КОМПЬЮТЕРНЫХ СЕТЯХ
1.1. Элементы телекоммуникационных технологий и методы управления информационными потоками в сетях связи.
1.2. Моделирование информационных потоков в сиситемах коммуникации и компьютерных сетях
1.3. Проблема управляемости и системно-интегрированный подход к управлению информационными процессами в ТКС.
1.4. Выводы.
2. РАЗРАБОТКА ГИБРИДНЫХ МОДЕЛЕЙ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ С ИСПОЛЬЗОВАНИЕМ МЕТОДОЛОГИЙ МЯГКИХ ВЫЧИСЛЕНИЙ.
2.1. Интеллектуальные технологии анализа слабо структурированных временных процессов и рядов
2.2. Архитектура гибридной пронозирующей системы
2.3. Разработка гибридной нечетко-темпоральной модели временного процесса.
2.4. Разработка динамической нечетко-логической модели с "несинглетным" выводом.
2.5. Экспериментальное исследование нечетко-динамических гибридных моделей.
2.6. Выводы.
3. МЕТОДЫ АВТОМАТИЧЕСКОГО ФОРМИРОВАНИЯ, ОБУЧЕНИЯ И АДАПТАЦИИ НЕЧЕТКО-ДИНАМИЧЕСКИХ МОДЕЛЕЙ
3.1. Анализ подъходов к обучению и адаптации нечетко-динамических моделей на основе парадигм эволюционного моделирования и гибридизации.
3.2. Разработка общего подхода к обучению нечетко-динамических моделей на основе принципов интеллекутализации и гибридизации.
3.3. Гибридная сетевая модель для извлечения нечетких правил в базах данных нечетко-динамических моделей.
3.4. Выводы.
Введение 2007 год, диссертация по информатике, вычислительной технике и управлению, Новоковский, Сергей Станиславович
Достижение высоких социальных и экономических результатов в развитии современного информационного общества невозможно без развития его инфраструктуры, ключевую роль в которой играют вычислительная техника, компьютерные сети и средства телекоммуникации. Развитие информационной инфраструктуры предполагает активизацию работ, как в области модернизации старой техники, так и в области создания новых поколений телекоммуникационных и компьютерных систем. Решение обеих задач невозможно без разработки соответствующих математических моделей, на основе которых осуществляется исследование информационных процессов и систем, их проектирование, а также разработка алгоритмов управления информационными системами и процессами.
Одним из известных подходов к моделированию информационных временных процессов (ИВП) является имитационное моделирование, осуществляемое с использованием средств генерации случайных процессов/' обладающих заданными свойствами [12, 13, 71, 68]. В частности, сюда можно отнести методы генерации самоподобных процессов, являющихся адекватными моделями многих ИВП, например, таких как телетрафик в сетях связи. Однако, существующие средства генерации потоков обеспечивают возможность воспроизведения ИВП с точностью до реализации в нем заданных средне статистических характеристик, не гарантируя при этом точного воспроизведения самого ИВП, как временной функции, описывающей динамику изменения того или иного контролируемого числового параметра, например, функции телетрафика. Тем не менее, в ряде задач требуется не просто верное воспроизведение в информационном процессе его1 статистических характеристик, но также и как можно более точное воспроизведение самого ИВП на известном интервале времени в виде конкретной временной зависимости. В, частности, это требуется при решении широкого круга задач, связанных с прогнозированием поведения информационных систем и процессов с целью более надежного и управления этими системами и процессами. Для решения таких задач необходима разработка специального класса математических моделей, называемых прогнозирующими моделями [51], способных предсказывать поведение процессов в будущем на основе информации об их прошлом поведении и ряда внешних параметров информационной среды или предметной области.
Прогнозирующие модели, как самостоятельный класс математических моделей, играют важную роль во многих практических задачах, связанных с управлением информационными системами и процессами. В частности, они используются при решении таких важнейших задач, как расчет телетрафика телекоммуникационной сети (ТКС), управление потоками сообщений в ТКС, установление временной периодичности в перегрузках ТКС, кратко- и долгосрочное прогнозирование пиковых нагрузок. Кроме того, прогнозирующие модели имеют первостепенное значение для эффективного управления различного рода распределенными системами и сетями, включая глобальные, локальные и корпоративные сети. В круг задач, требующих разработки прогнозирующих моделей, следует также включить задачи, связанные с проектированием информационных систем, адаптацией их параметров и структур с учетом прогнозирования развития реальных информационных потоков, протекающих в информационных системах.
Разработка адекватных прогнозирующих моделей информационных процессов, протекающих в распределенных системах и компьютерных сетях, относится к классу слабо формализованных задач и является сложной проблемой [43, 49]. Это объясняется, во-первых, наличием множества случайных и нечетко-определенных факторов, влияющих на характер протекания процессов, а, во-вторых, сложным характером взаимодействия определяющих факторов во времени, что приводит в конечном итоге к появлению различного рода нестационарностей, сложных корреляционных зависимостей и временных сдвигов в потоках данных. Поэтому проблема разработки математических моделей, способных адекватно описывать динамику развития ИВП в реальных условиях функционирования информационных систем и прогнозировать их поведение, является актуальной научно-технической задачей.
Основная проблема, возникающая при разработке прогнозирующих моделей ИВП, заключается в том, что в реалии ИВП относятся к классу слабо формализованных процессов (СВП), структура которых и функциональные соотношения между определяющими признаками которых априори не известны [28, 35]. Для таких процессов шансов построить точные математические модели на основе традиционных методов, например, путем "угадывания" подходящей структуры Фурье-модели, регрессионной модели либо АРИМА-модели с последующей "подгонкой" их параметров под реальные данные, не много в силу большого многообразия возможных вариантов таких структур и их комбинаций. Другая проблема связана с тем, что арсенал существующих практически эффективных методов исследования СВП на сегодня не велик и базируется в основном на процедурах спектрального, корреляционного и регрессионного анализа с привлечением некоторых методов сглаживания, в частности, методов экспоненциального сглаживания. Однако, эти методы не всегда в состоянии учесть сложные нелинейные зависимости в данных, нестационарность в их корреляциях, неоднозначность и нечеткость представлений о взаимодействующих в ИВП факторах и причинно-следственных связях между ними. Проблема моделирования ИВП существенно усложняется также наличием в реальных информационных процессах "выбросов", характеризуемых сильно отличающимися друг от друга значениями, которые могут иметь как случайный, так и закономерный характер, что существенно усложняет процедуры прогнозирования и требует разработки специальных методов, способных учитывать подобного рода искажения в данных.
Все выше сказанное обуславливает необходимость в разработке новых подходов к исследованию ИВП, способных преодолеть указанные выше проблемы.
Перспективным подходом к решению названных проблем является подход, основанный на использовании принципов гибридизации [65, 70], заключающейся в комбинировании традиционных методов моделирования СВП, опирающихся на идеи регрессионного анализа и локального сглаживания, с интеллектуальными методами, опирающимися на модели знаний и парадигмы "мягких" вычислений [23, 24, 84]. Причем, в рамках гибридизации нескольких методологий именно интеллектуальные модели и мягкие вычисления играют важнейшую роль, поскольку традиционные методы анализа ИБП в случае слабо формализованных процессов оказываются малоэффективными из-за отсутствия каких-либо точных аналитических зависимостей между информационными признаками в СВП, неполнотой описания признаков, нечеткостью представлений об их взаимодействии в структуре СВП. В этих условиях интеллектуальные модели и мягкие вычисления, как инструмент работы с такого рода моделями, позволяют восполнить дефицит информации об исследуемом процессе за счет привлечения экспертных знаний, представленных в форме правил, использование которых позволяет усилить известные методологии эффективными приемами по выявлению в исходных данных долговременных зависимостей, сложных временных сдвигов и нелинейностей.
Для решения слабо формализованных задач, связанных с моделированием и прогнозированием поведения сложных динамических процессов и систем, в настоящее время активно разрабатываются интеллектуальные технологии, основанные на моделях представления и обработки знаний [61, 62]. Большой вклад в становление и развитие данных теорий внесли российские ученые Батыршин, Вагин В.Н., Журавлев Ю.И., Кузнецов О.П., Нариньяни А.С., Осипов Г.С., Поспелов Д.А., Попов Э.В., Стефанюк B.JL, Тарасов, Финн В.К. и др. Большой вклад в развитие теории мягких вычислений и методов гибридизации внесли российские ученые Аверкин А.Н., Берштейн JT.C., Вагин В.Н., Емельянов В.В., Еремеев А.П., Ковалев С.М., Мелихов А.Н., Потапова Р.К., Цемель Г.И., Ярушкина Н.Г. и др.
Развитие гибридных технологий в области моделирования информационных процессов, протекающих в системах коммутации и компьютерных сетях, основанных на объединении традиционных вычислительных технологий с интеллектуальными технологиями требует решения комплекса задач. Во-первых, требуется провести анализ существующих технологий управления в реальных системах коммутации и компьютерных сетях с целью выявления характерных особенностей возникающих здесь задач, установления требований к качеству и уровню автоматизации решения этих задач, а также определения базовых принципов построения прогнозирующих моделей и систем. Во-вторых, требуется разработка архитектуры гибридной прогнозирующей системы, отвечающей современным требованиям, предъявляемым к подобного рода системам, и приспособленной для работы как с точными, четко определенными данными о состоянии объекта или процесса прогнозирования, так и с нечетко-определенными данными, описывающими экспертные знания о поведении моделируемого объекта или процесса на тех или иных интервалах времени. В-третьих, требуется разработка специального класса частных моделей, используемых в качестве базовых для гибридной прогнозирующей системы и способных оперировать информацией, имеющей динамическую природу и характеризующую качественные временные и нечетко-временные зависимости между определяющими признаками СВП, как наиболее устойчивые к различного рода искажениям, а, следовательно, наиболее полезные для целей прогнозирования. В-четвертых, требуется разработка специальных методов моделирования СВП, мало чувствительных к шумам и случайным "выбросам" в данных, с целью получения на их основе устойчивых краткосрочных и долгосрочных прогнозов, необходимых для качественной реализации стратегий управления информационными потоками в реальных ТКС и компьютерных сетях. В-пятых, для гибридных прогнозирующих моделей требуется разработка специальных методов обучения и адаптации, основанных на новых принципах, обеспечивающих оптимальный баланс между интерпретационной пригодностью модели и ее "аппроксимирующей точностью" с целью выявления в исследуемых СВП лишь наиболее существенных тенденций, фильтруя шумы и повышения тем самым устойчивость и надежность прогнозирования на длительные интервалы времени.
Исходя из сказанного, и с учетом выше перечисленных задач, возникающих при разработке методов представления и прогнозирования информационных процессов, протекающих в системах коммутации и компьютерных сетях, в качестве объекта исследования диссертации выбран новый класс гибридных прогнозирующих моделей, основанных на объединении традиционных вычислительных технологий моделирования ИВП с интеллектуальными технологиями. В соответствии с выбранным направлением исследования сформулирована основная цель работы.
Целью исследования является развитие методов моделирования слабо формализованных динамических процессов на основе гибридизации методов численного анализа и мягких вычислений на примере прогнозирования ' информационных процессов, протекающих в ТКС и компьютерных сетях.
В соответствии с поставленной целью в диссертации решаются I следующие задачи.
1. Анализ существующих технологий управления в ТКС и компьютерных сетях с целью выявления возникающих здесь характерных задач, а также определения базовых принципов построения прогнозирующих моделей и систем.
2. Разработка архитектуры гибридной прогнозирующей системы, приспособленной для работы с двумя типами данных, как с четко определенными данными о состоянии моделируемого процесса, так и с нечетко-определенными данными, описывающими экспертные знания о поведении моделируемого процесса на определенных интервалах времени в прошлом или будущем.
3. Разработка частных моделей для гибридной прогнозирующей системы, способных оперировать динамической информацией о качественных временных и нечетко-временных зависимостях между определяющими признаками СВП, как наиболее устойчивых к различного рода искажениям и полезных для целей прогнозирования.
4. Разработка методов моделирования СВП, мало чувствительных к шумам и случайным выбросам в данных, с целью получения на их основе устойчивых краткосрочных и долгосрочных прогнозов.
5. Разработка методов обучения и адаптации гибридных прогнозирующих моделей на основе принципов, обеспечивающих оптимальный баланса между интерпретационной пригодностью прогнозирующей модели и ее точностью, с целью выявления лишь наиболее существенных тенденций в СВП, повышая тем самым устойчивость прогнозирования на длительные горизонты планирования.
6. Разработка алгоритмов и программ, имитирующих функционирование гибридной прогнозирующей системы, с целью экспериментальной проверки практической эффективности предложенных моделей путем их сравнительного анализа с известными типами прогнозирующих моделей.
Диссертационная работа состоит из введения, ' трех разделов, заключения, списка литературы из 89 наименований и содержит 160 страниц, включая 41 рисунок, 2 таблицы.
Заключение диссертация на тему "Гибридные нечетко-временные модели прогнозирования информационных потоков в системах телекоммуникаций и компьютерных сетях"
3.4. Выводы
Сформулирует основные научные результаты, полученные в настоящем разделе.
1. На основе анализа современных подходов к обучению интеллектуальных систем, включая НДС, установлено, что в этом плане весьма перспективными представляются подходы, основанные на объединении методов нечеткой логики и эволюционных вычислений. При этом существует ряд открытых научных проблемы, остро требующих решений. Во-первых, это касается проблемы установления оптимального баланса между интерпретационной пригодностью и точностью моделирования, требующей в первую очередь, разработки новых принципов обучения НДС. Во-вторых, это касается проблем структурного обучения динамических НДС и, в частности, разработки эффективных методов извлечения нечетких правил из экспериментальных данных при формировании БЗ динамических НДС.
2. Предложен новый подход к формированию динамических НДС с использованием исключающих признаков и детализирующих правил, расширяющий общие возможности методов нечетко-логического анализа по моделированию сложных процессов и систем и, в частности, возможности моделирования при неполных или сильно искаженных данных. Использование детализирующих правил и исключающих признаков в структуре правил привносит в НДС ряд принципиально новых качеств, повышающих выразительные возможности НДС и их адаптационные свойства.
3. Предложенный поход к формированию НЛС на основе обобщенного критерия адекватности, позволяет при его использовании применительно к темпоральным системам получать модели прогнозирования поведения BP и процессов, отражающие лишь наиболее существенные тенденции в исследуемых процессах, фильтруя случайные выбросы в данных, и, тем самым, повышая надежность и устойчивость предсказаний.
4. Рассмотрен подход к формированию БЗ динамических НЛС на основе использования специального класса сетевых моделей. Для этих целей была предложена новая сетевая модель, организованная по аналогии с ИНС, структура которой формируется в процессе обучения и непосредственно из которой в конце обучения извлекаются нечеткие правила для БЗ НЛС.
5. Предложенная в разделе сетевая модель обладает двумя преимуществами перед известными типами сетевых моделей, используемых для генерации правил НЛС. Во-первых, предлагаемая сеть содержит в несколько раз меньше внутренних нейронов, чем известные модели, что упрощает процедуры построения и обучения сети. Во-вторых, она обеспечивает возможность формирования более выразительных и гибких классификационных правил за счет комбинированного использования в них как прямых, так и инверсных признаков, что в конечном итоге приводит к сокращению числа правил в БЗ динамических НЛС.
148
ЗАКЛЮЧЕНИЕ
Выполненная диссертационная работа содержит исследования, направленные на решение поставленных во введении научно-практических задач. В ходе исследований получены следующие результаты
1. Анализ рассмотренных технологий управления ТКС и протекающими в них процессами позволяет сделать вывод о чрезвычайно сложности проблемы моделирования ТКС и протекающих в них процессов. Одной из основных проблем является построение адекватных прогнозирующих моделей и, в частности, построение динамических ИВП, функционирующих в системе и имеющих характер сложных взаимосвязанных последовательностей событий с краткосрочными и долгосрочными зависимостями.
2. Установлено, что для решения задач, связанных с моделированием информационных процессов и потоков данных в ТКС и компьютерных полезными оказываются идеи гибридизации, основанные на совместном использовании традиционных вычислительных технологий и интеллектуальных технологий, позволяющих восполнить дефицит информации об исследуемых процессах за счет привлечения и формализации экспертных знаний, а также за счет возможности обучения и адаптации моделей по экспериментальным данным.
3. Предложена новая архитектура гибридной прогнозирующей модели, основанная на объединение методологий нечеткой логики и нейронных сетей, позволяющая осуществлять прогнозирование в отличие от известных моделей не на один шаг вперед, а на несколько шагов, а также обеспечивающая возможность работы с нечёткими и неполными исходными данными о состоянии объекта прогнозирования за счет возможности настройки модели под реальные данные путем адаптации параметров входящих в нее нейросетевой и нечетко-логической компонент.
4. Предложен новый тип гибридной модели, основанной на интеграции традиционной нечетко-логической модели и нечетко-темпоральной модели, оперирующей обобщенными темпоральными параметрами BP, предназначенной для решения широкого круга задач в области интеллектуального анализа данных, представленных BP. Интеграция НДМ с традиционными моделями анализа BP, расширяет возможности последних за счет использования в них системы эвристических правил, позволяющих усилить известные методологии эффективными приемами по выявлению в исходных данных долговременных зависимостей, сложных временных сдвигов и нелинейностей.
5. Исследован новый подход к построению нечетких моделей анализа BP, мало чувствительных к случайным выбросам в данных, основанных на идеи несинглетного вывода. Эти модели, опираясь на возможность обрабатывать искусственно "размытую" входную информацию, позволяют повысить эффективность обучения нечетких систем на неточных или частично искаженных данных.
6. Предложен новый подход к формированию динамических НЛС с использованием исключающих признаков и детализирующих правил, расширяющий общие возможности методов нечетко-логического анализа по моделированию сложных процессов и систем и, в частности, возможности моделирования при неполных или сильно искаженных данных.
7. Разработан новый подход к формированию БЗ динамических НЛС на основе использования специального класса сетевых моделей, для целей чего предложена новая сетевая модель, организованная по аналогии с ИНС и обладающая по сравнению с известными типами сетевых моделей двумя преимуществами. Во-первых, предлагаемая сеть содержит в несколько раз меньше внутренних нейронов, чем известные модели, что упрощает процедуры построения и обучения сети, а, во-вторых, она обеспечивает возможность формирования более выразительных и гибких классификационных правил за счет комбинированного использования в них как прямых, так и инверсных признаков.
8. Проведены эксперименты по оценке практической полезности предложенных нечетко-динамических моделей. Первый эксперимент, касающийся проблемы системной идентификации нечетких динамических процессов, подтвердил высокую практическую эффективность использования для этих целей предложеной автором НТМ. Данная модель оказалась способной с приемлемой точностью 10% прогнозировать поведение моделируемого процесса на три шага вперед, в то время как, тестовая НДС, участвующая в эксперименте в качестве тестовой модели, оказалась не в состоянии прогнозировать поведение процесса на те же три шага вперед с приемлемой точностью. Второй эксперимент, касающийся исследования предсказывающих возможностей предложенной автором НДМН, подтвердил более высокую точность предсказания поведения авторегрессионного процесса на основе НДМН по сравнению с участвующей в эксперименте статической НДС.
151
Библиография Новоковский, Сергей Станиславович, диссертация по теме Математическое моделирование, численные методы и комплексы программ
1. Аверкин А.Н. Костерев В.В. Триангулярные нормы в системах искусственного интеллекта. // Известия Академии наук. ТиСУ, 2000. №5.с. 107-119.
2. Аверкин А.Н. и др. Нечеткие множества в моделях управления и искусственного интеллекта// Под ред. Д.А.Поспелова. М.: Наука. - Гл. ред. физ.-мат. лит., 1986.
3. Азов М.С. Система моделирования вычислительной сети на основе нечеткого трафика // Труды 8-й национальной конференции по искусственному интеллекту с международным участием. Научное издание. М: Изд-во Физ.-мат. лит., (Том 1), 2002. С. 275 278.
4. Батыршин И.З. Перцептивные функции и гранулярные производные в вычислении со словами // Интегрированные модели и мягкие вычисления в искусственном интеллекте. Сб. научн. тр. II Международного научно-практического семинара. М.: Физматлит, 2003. С. 12-19.
5. Башарин Г.П., Харкевич А. Д., Шнепс М.А. Массовое обслуживание в телефонии. М.: Наука, 1969. - 246 с.
6. Белявский Г.И., и др. Распознавание образов. Теория и приложения. Ростов-на-Дону: Изд-во Рост, ун-та, 1993. - 123с.
7. Берштейн JI.C. и др. Модели и методы принятия решений в интегрированных интеллектуальных системах. Ростов-на-Дону: изд-во РГУ. 1999. -278с.
8. Борисов А.Н. и др. Принятие решений на основе нечетких моделей : Примеры использования. Рига : Зинатне, 1990. - 184с.
9. В.В. Борисов, В.В. Круглов, А.С. Федулов. Нечеткие модели и сети . М.: Горячая линия - Телеком, 2007. - 284 с.
10. Бусленко Н.П. Моделирование систем. М.: Наука, 1978.
11. Вагин В.Н. Дедукция и обобщение в системах принятия решений. М.: Наука. - Гл. ред. физ.-мат. лит., 1988. - 384с.
12. Вентцель Е.С. Теория вероятностей. Издание седьмое, стереотипное. -М.: Высшая школа, 2001.
13. Высоцкий Г.Я., Рудный Б.Н., Трунин-Донской В.П., Цемель Г.И. Алгоритм опознования 40 слов на ЦВМ БЭСМ -3/ Работы по техн. кибернетике/ ВЦ АН СССР, М., 1968.-Вып.2.-с,3-33.
14. Гаврилова и др., 2000. Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем. Учебник. -СПб: Питер. 2000.
15. Голоборцев Н.И. Адаптивные алгоритмы управления коммутационными системами. В сб. Сети связи и дискретные устройства управления. М.: Наука, 1976. С. 40-49.
16. Емельянов В.В. и др. Введение в интеллектуальное имитационное моделирование сложных дискретных систем и процессов. -М.: АНВИК. 1998.
17. Жак С.В. Математические модели менеджмента и маркетинга. Ростов-на-Дону: ЛиПО, 1997. - 320с.
18. А.А. Жданов. Метод автономного адаптивного управления, его свойства и приложения // Новости искусственного интеллекта, №5, 2003. С.28-33.
19. Заде JI. Понятие лингвистической переменной и его применение к принятию приближенных решений. -М.: Мир. 1976.
20. Захаров Г.П. Методы исследования сетей передачи данных. М.: Радио и связь, 1982.-680 с.
21. Захаров В.В., Кантор П.С., Ткаченко Д.Г. Синтез логических контроллеров с использованием механизма обработки нечеткой информации. // Известия РАН. Теория и системы управления, М.: "Наука", 2000, №4.
22. Кандрашина Е.Ю. Средства представления информации о времени в базах знаний. Последовательности событий // Изв. АН СССР. Техн. киберн. 1986ю - №5. - С.211 - 232.
23. Ковалев С.М. Модели анализа слабо формализованных динамических процессов на основе нечетко-темпоральных систем. // Изв. вузов. Сев.-Кав. регион. Естественные науки, 2002. № 2. С. 10-13.
24. Ковалев С.М. Нейро-нечеткие темпоральные модели анализа речевых сигналов в интегрированных системах дикторонезависимого распознавания речи // Изв. вузов. Сев.-Кав. регион. Технические науки, 2002. № 2. С.43-47.
25. С.М. Ковалев. Структурно-параметрическая идентификация нечетких систем с использованием обобщенного критерия адекватности // Интеллектуальные САПР: Известия ТРТУ, 2005. №3, С. 10-17.
26. Ковалев С.М., Новоковский С.С. Нечетко-логическое моделирование информационных потоков в телекоммуникационных системах // Труды Ростовского государственного университета путей сообщения, Ростов-на-Дону, 2005. №1. С.27-32;
27. С.М. Ковалев, С.С. Новоковский. Регрессионная модель телетрафика на основе нечеткой динамической системы // Известия ТРТУ. Тематический выпуск "Актуальные проблемы производства и потребления энергии". -Таганрог: Изд-во ТРТУ, 2005. №11(55). С. 109-113.
28. Ковалев С.М., Ковалев B.C., Новоковский С.С. Нечетко-динамические модели в задачах моделирования информационных потоков // Вестник РГУ ПС, 2006, №2 (22) С. 55-58.
29. С.М. Ковалев, С.С. Новоковский. Модели представления и обработки нечеко-временной информации, отражающей динамику процессов в слабо формализованных задачах принятия решений // Вестник РГУ ПС, 2006, №3 (23) С. 43-49
30. Ковалев С.М., Новоковский С.С. Архитектура гибридной системы прогнозирования временных процессов // Вестник РГУ ПС, 2007, №2 (26) С. 57-65.
31. Комарцова Л.Г. Вопросы гибридизации методов представления данных и знаний // Интегрированные модели и мягкие вычисления в искусственном интеллекте. Сб. научн. тр. III Международного научно-практического семинара. -М.: Физматлит, 2005. С. 185-191.
32. Кофман А., Крюон Р. Массовое обслуживание. Теория и приложение. -М.: «Мир», 1966.
33. Куо Ф.Ф. Протоколы и методы управления в сетях передачи данных. М.: Радио и связь, 1985.
34. Курейчик В.М. Генетические алгоритмы. Обзор и состояние // Новости искусственного интеллекта. 1998. №3.
35. Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика. М.: Горячая линия. - Телеком 2001. - 382с.
36. Лазарев В.Г. Эффективность применения динамического управления потоками вызовов на ГТС. В сб. Построение устройств управления сетями связи. М.: Наука, 1977. С. 27-31.
37. Лазарев В.Г., Саввин Г.Г. Сети связи, управление и коммутация. М.: Связь, 1973 - 264 с.
38. Ларичев О.И. и др. Выявление экспертных знаний. М.: Наука. 1998.
39. Мальков С.Б., Пушнин А.В. Оптимизация загрузки арендуемых каналов связи//Тезисы докладов Международной научно-практической конференции «Оптимальные методы решения научных и практических задач». Таганрог: ТРТУ, 2005.
40. Мелихов А.Н., Берштейн Л.С. Конечные четкие и расплывчатые множества: 4.11. Расплывчатые множества. Таганрог: ТРТИ, 1981
41. Минаев Ю.Н., Филимонова О.Ю., Бенамеур Лиес. Методы и алгоритмы решения задач идентификации и прогнозирования в условиях неопределенности в нейросетевом логическом базисе. М.: Горячая линия - Телеком, 2003. - 205 с.
42. Нариньяни А.С. НЕ-факторы: неточность и недоопределенность -различие и взаимосвязь// Известия РАН. Теория и системы управления. 2000. №5.
43. Новоковский С.С. Методы структурно-параметрической идентификация нечетких систем на основе принципов интеллектуализации и гибридизации // Вестник РГУ ПС, 2007, №3 (27) С. 31-37
44. С.С. Новоковский Идентификация лингвистической модели источника ошибок // Обозрение прикладной и промышленной математики. Москва, 2006. Т. 13. Вып. 4. С. 690.
45. Новоковский С.С. Лингвистическая модель канала // Обозрение прикладной и промышленной математики. Москва, 2006. Т. 13. Вып. 3.
46. С.С. Новоковский. Методы структурно-параметрической идентификации нечетких систем на основе принципов интеллектуализации и гибридизации // Труды РГУ ПС, 2007, №1(4), С. 153-160.
47. Осипов Г.С. Динамика в системах, основанных на знаниях. //Известия Академии Наук. Теория и системы управления, 1998, №5, с.24-28.
48. Поваров Г.Н. Краткий очерк теории куммулятивных сетей//«Проблемы передачи информации». Вып. 1. -М.: Изд-во АН СССР, 1960.
49. Поваров Г.Н. О структурной теории сетей связи//«Проблемы передачи информации». Вып. 1. М.: Изд-во АН СССР, 1959.
50. Попов Э.В. Экспертные системы. Решение неформализованных задач в диалоге с ЭВМ. М.: Наука, 1987
51. Поспелов Д.А. Логико-лингвистические модели в системах управления. -М.: Энергоиздат. 1981. -231с.
52. Поспелов Д.А. Моделирование рассуждений. ' Опыт анализа мыслительных актов. -М.: Радио и связь. 1989.
53. Пушнин А.В. Разработка аналитико-эвристических системных методов синтеза структур и управления потокораспределением в сетях связи/Диссертация на соискание ученой степени кандидата технических наук. Таганрог: библиотека ТРТУ, 2000.
54. Рыбина Г.В. Интегрированные экспертные системы современное состояние / проблемы и тенденции Изв. РАН. ТиСУ. 2002, №3, с. 111124
55. Сопожников В.В. и др., Станционные системы автоматики и телемеханики: Учеб. для вузов ж-д тр-та. М.: Транспорт, 1997, ю 432 с.
56. Светлицкий A.M., Сагач В.В., Тавужнянский Г.Д. Децентрализованное управление распределением информации в сети с коммутацией сообщений. В сб. Построение устройств управления сетями связи. М.: Наука, 1977. С. 13-16.
57. Спиридонов В. П. Самоподобие, всплески и квазикристаллы // Компью Терра, №8, 1998 с.1-11.
58. Танака X., Цукиямо Т. Асаи К. Модель нечеткой системы, основанная на логической структуре.// Нечеткие множества и теорця возможностей. Последние достижения: Пер. с англ. -М.: Радио и связь. 1986, с.186-199.
59. Тарасов В.Б. Системно-организационный подход в искусственном интеллекте // Программные продукты и системы. 1997. № 3. -С. 6-13.
60. Теория телетрафика. Пер. с нем./Под ред. Башарина Г. П. М.: Связь, 1971.
61. Финаев В.И., Мальков С.Б. Аналитико-эвристические методы моделирования и синтеза вторичных сетей передачи дискретной информации. Таганрог: Изд-во ТРТУ, 2005.
62. Фоминых И.Б. Принципы построения гибридных интеллектуальных систем реального времени// Труды международного конгресса ICAI'2001 «Искусственный интеллект в XXI веке» М.: Физматлит. 2001. Т.2. -С.570-583.
63. Ярушкина Н.Г. Нечеткие нейронные сети когнитивный и прикладной потенциал // Интегрированные модели и мягкие вычисления в искусственном интеллекте. Сб. научн. тр. III Международного научно-практического семинара. -М.: Физматлит, 2005. С. 57-62.
64. Ярушкина Н.Г. Основы теории нечетких и гибридных систем: Учеб. пособие. М.: Финансы и статистика, 2004. - 320 е.: ил. .
65. Allen J.F. Towards a General Theory of Action and Time// Artificial Intelligence. 1984. 23(2).
66. G. Zahng, B.E. Patuwo and M.J. Hu. Forecasting with artificial networks: The state of the art, International Journal of Forecasting, 14, 35-62,1998.
67. D.V. Prokhorov E.W. Saad and D.C. Wunsch. Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks, 6(9), pp. 1456-1470, (1998).
68. B. Q. Huang, Tank Rashid and M-T. Kechadi. Multi-Context Recurrent Neural Network for Time Series Applications // INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE. VOLUME 3, NUMBER 1, 2006. p.p. 1304-2386.
69. J.G. Gooijr, R.J. Hyndman. 25 Years of IIF Time Series Forecasting: A Selective Review. Tinbergen Institute Discussion Paper. 2005, v 068 (4).
70. Craig Hunt. TCP/IP Network Administration. Nutshell Handbook. O'Reilly and Associates, 1992
71. J. Mendel, G. Mouzouris. Non-Singleton fuzzy logic systems: Theory and application", IEEE Trans. Fuzzy Syst., vol. 5. pp. 56-71, Feb. 1997.
72. George C. Mouzouris and Jerry M. Mendel. Dynamic Non-Singleton Fuzzy Logic Systems for Nonlinear Modeling // IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 2, MAY 1997
73. Zadeh L.A. From computing with numbers to computing with words from manipulation of measurements to manipulation of perceptions. IEEE Trans. Circuits and Systems - 1: Fundamental Theory and Applications 45, 1999, pp.105-119.
74. Clemen R.T. Combining forecasts: A review and annotated biography (with discussion) International Journal of Forecasting. 1989, v. 5 p.p. 559-583.
75. J.V. Taylor and D.W. Bunn. Investigating improvements in the accuracy of prediction intervals for combinations of forecasts: A simulations study. International Journal of Forecasting. 1999, v. 15 p.p. 325-339.
76. C.W. Granger and R. Ramanathan. Improved methods of combining forecasts. Journal of Forecasting. 1984, v. 3 p.p. 197-204.
77. A. Fiordaliso. A nonlinear forecasts combination method based on Takagi-Sugeno fuzzy Systems. International Journal of Forecasting. 1998, v. 14 p.p. 367-379.
78. E.X. Diebold and P. Pauly. The use of prior information in forecast combination. International Journal of Forecasting. 1990, v. 6, p.p. 503-508.
-
Похожие работы
- Адаптивные модели нечеткого вывода для идентификации нелинейных зависимостей в сложных системах
- Модели прогнозирования процессов, представленных временными рядами с короткой актуальной частью
- Модель разграничения прав доступа и программная реализация модели для компьютерных сетей
- Методология, модели и комплексы программ анализа временных рядов на основе нечетких тенденций
- Алгоритмы и системы нечеткого вывода в задачах диагностики городских инженерных коммуникаций
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность