автореферат диссертации по авиационной и ракетно-космической технике, 05.07.01, диссертация на тему:Численное моделирование обтекания моделей пассажирских самолетов в условиях ограниченного пространства и влияния элементов конструкции аэродинамической трубы
Автореферат диссертации по теме "Численное моделирование обтекания моделей пассажирских самолетов в условиях ограниченного пространства и влияния элементов конструкции аэродинамической трубы"
ЦЕНТРАЛЬНЫЙ АЭРОГИДРОДИНАМИЧЕСК" имени профессора Н.Е. Жуковскс
484ЭЧЧЧ
УДК 533.6.071.4, 533.695 На правах рукописи
Курсаков Иннокентий Александрович
Численное моделирование обтекания моделей пассажирских самолетов в условиях ограниченного пространства и влияния элементов конструкции аэродинамической трубы
05.07.01 - Аэродинамика и процессы теплообмена летательных аппаратов
Автореферат диссертации на соискание ученой степени кандидата технических наук
1 2 МАЙ 2011
Жуковский, 2011г.
4845444
Работа выполнена в Центральном Аэрогидродинамическом Институте им. Н.Е. Жуковского.
Научный руководитель: доктор технических наук, доцент Босняков Сергей Михайлович (ЦАГИ, Жуковский)
Официальные оппоненты:
д.т.н., профессор Судаков Георгий Григорьевич (ЦАГИ, Жуковский),
к.т.н. Шевяков Владимир Иванович (ЗАО "Гражданские самолеты Сухого", Москва).
Ведущая организация: Институт Теоретической и Прикладной Механики им. С.А. Христиановича СО РАН (Новосибирск).
Защита состоится /7 _2011 года в /У^часов на
заседании диссертационного совета Д 403.004.01 при Центральном Аэрогидродинамическом Институте по адресу 140180, Московская обл., г. Жуковский, ул. Жуковского, д.1, ЦАГИ, конференц - зал инженерного корпуса.
С диссертацией можно ознакомиться в библиотеке Центрального Аэрогидродинамического Института.
Автореферат разослан 22 ¿^гч^-й/иЯ 2011 года.
Ученый секретарь диссертационного совета ЦАГИ Д 403.004.01, доктор технических наук, профессор
В.М.Чижов
Актуальность темы. В настоящее время возрастают требования к точности экспериментальных данных, получаемых в аэродинамических трубах. Известно, что элементы экспериментальной установки обтекаются потоком наряду с моделью, что приводит к эффектам интерференции. Предварительное численное моделирование увеличивает эффективность экспериментальных исследований и позволяет вычесть погрешности, обусловленные интерференцией из окончательных результатов эксперимента. Актуальность данных работ подтверждена их востребованностью, как в Российской Федерации, так и за рубежом.
Цель диссертации состоит в разработке вычислительной методологии и ее внедрении в технологический цикл ведущих аэродинамических труб ЦАГИ.
Научная новизна работы состоит в том, что на основе осредненных по Рейнольдсу уравнений Навье-Стокса впервые в Российской Федерации разработаны элементы методологии расчета обтекания моделей пассажирских самолетов в условиях промышленных АДТ с учетом влияния поддерживающих устройств. Впервые проведено численное исследование физических особенностей обтекания модели самолета с работающим на режиме реверса тяги двигателем в условиях АДТ открытого типа в присутствии «бегущей дорожки», являющейся аналогом взлётно-посадочной полосы.
Практическая значимость работы состоит в том, что методология внедрена в технологический цикл двух промышленных АДТ ЦАГИ и применена при испытаниях моделей современных пассажирских самолетов 881-100 и МС-21.
На защиту выносятся следующие результаты:
1) Модификация метода, использованного в пакете прикладных программ ЕиТ-ЦАГИ путем внедрения в алгоритм многосеточного алгоритма ускорения процесса сходимости задачи;
2) Вычислительная методология определения скорости выключения реверса двигателя в условиях АДТ ЦАГИ Т-104 с учетом влияния подвижности пола и пилона, подводящего воздух к имитатору двигателя;
3) Вычислительная методология учета влияния поддерживающего устройства модели на ее аэродинамические характеристики;
4) Физические особенности обтекания штыря державки, закрепленного в полости задней части модели.
Следующие результаты получены автором лично:
1) Модификация численного метода с использованием многосеточного алгоритма ускорения процесса сходимости задачи;
2) Расчеты обтекания модели самолета 881-100 в условиях АДТ Т-104 ЦАГИ;
3) Расчеты обтекания моделей самолетов, включая модель МС21, с учетом влияния различных поддерживающих устройств;
4) Расчеты обтекания калибровочной модели Европейской Аэродинамической Трубы (ЕТ\\?).
Результаты работы опубликованы:
1. Курсаков И.А. Опыт практического применения Е\\Т к решению задачи
расчета параметров потока на входе в силовую установку, установленную на подветренной стороне фюзеляжа ЛА. «Труды ЦАГИ» Выпуск 2671 2007.
2. Bosnyakov S., KursakovI., LysenkovA., MatyashS., MikhailovS., Quest J., Vlasenko V. Method for calculation of the flow around a transport aircraft at transonic speeds by simulating the model plus the surrounding slotted test section, Progress in Aerospace Sciences, 44 (2008), 67-120pp.
3. Kursakov I., Quest I. Using CFD for a better understanding of model-support interference in windtunnel tests // Proceedinngs of KATNETII, Bremen, Germany, 2008.
4. Курсаков И.А. Интерференция аэродинамической модели сложной формы с двумя типами поддерживающих устройств. // Техника Воздушного Флота, №3(700) 2010.
5. Босняков С.М., ВласенкоВ.В., Курсаков И.А., Михайлов C.B., КвестЮ. Задача интерференции оживального тела вращения с державкой аэродинамической трубы и особенности ее решения с использованием ЭВМ // Ученые записки ЦАГИ, № 3, 2011 г.
Результаты работы прошли апробацию:
доложены лично соискателем на 2-х международных и 4-х отраслевых конференциях.
Структура и объём диссертации
Диссертация состоит из введения, трёх глав, заключения и списка литературы. Содержание работы изложено на 136 страницах. Список литературы содержит 83 наименований. В работе содержится 79 иллюстраций.
Содержание работы
Во введении обоснована актуальность диссертационной работы, сформулированы цели и задачи, аргументирована научная новизна исследований, показана практическая значимость полученных результатов.
Глава 1 «Описание численного метода. Тестовые расчеты» посвящена описанию используемого в работе численного метода и его модификации при помощи реализации многосеточного алгоритма.
В пункте 1.1 дана общая формулировка законов сохранения и описаны принципы построения численной схемы в рамках конечно-объёмного подхода. Описанные принципы применены для аппроксимации системы уравнений Рейнольдса, замкнутой двухпараметрической моделью турбулентности q-co.
В пункте 1.2 описываются методы, применяемые в работе для описания различных членов построенной численной схемы. Для аппроксимации конвективных членов используется схема Годунова-Колгана-Родионова, диффузионных - схема центральных разностей, источниковые члены, связанные с моделью турбулентности описываются при помощи локально-неявной схемы.
Пункт 1.3 посвящен описанию реализации многосеточного алгоритма ускорения стационарного расчета. Этот подход базируется на свойстве волн (возникающих при несоответствии текущих полей течения заданным
граничным условиям)
распространяться со скоростью, зависящей от размеров ячеек. Длинные волны быстро продвигаются по крупной сетке, а мелкие ячейки отвечают за коротковолновую часть спектра. Построение серии вложенных сеток и продвижение возмущений по «крупной» сетке дает многократный выигрыш во времени при решении стационарной задачи.
Эффективность указанного
О 10000 20000 30000 40000
iter алгоритма продемонстрирована
на примере трансзвукового Рис. 1. Сопоставление двух методов обтекания профиля NACA0012.
расчета Расчет проведен двумя
вариантами предложенного метода: с использованием многосеточного подхода и без такового. Многосеточный подход реализован на трех "вложенных" сетках. Мелкая сетка содержит 52244 ячеек, первый уровень крупной сетки - 13056, второй — 3264. Число Маха набегающего потокам = 0,78, угол атаки а = 1,4°, число Рейнольдса Re = 8- 10б, характерная скорость турбулентных пульсацийq = 8 м/с, характерная частота со = 800 Гц.
Решение получено с точностью <4К=1СГ5, что обеспечивает точность определения коэффициента подъемной силы профиля с точностью не хуже, чем АСуа ~ 10"4. Сопоставление (Рис. 1) показывает, что применение многосеточного подхода ускоряет процесс сходимости решения в 5 раз.
В пункте 1.4 рассмотрена процедура распределения блоков по узлам (рэнкам) расчетного кластера при организации параллельных вычислений. Показано, что используя простой критерий - характерное время вычислений на
рэнке («quasitime») Qt~—, где N - число ячеек в блоках рэнка, a R - тактовая К
частота рэнка, можно проводить балансировку нагрузки кластера.
о.з
0.2 -
0,1
/
-0,1 I
Суа
-Многое сточный елгоркш
2 f -----Локальный шаг Tío времени
-0,3
Пункт 1.5 посвящен верификации используемого численного метода. Особое внимание уделено сопоставлению расчетных и экспериментальных данных на задачах, близких к теме диссертации. На примере расчета обтекания тела вращения, установленного на хвостовой державке, показано, что выбор топологии расчетной сетки играет важную роль при описании течения, возникающего в области сочленения модели с державкой. Рассмотрено два
Рис. 2. Два варианта расчетной сетки варианта топологии (Рис. 2)
Использование первого варианта сетки (пунктирная линия на Рис. 3) не позволяет получить качественного решения в области каверны (3,9<х<4,2) Второй вариант не имеет указанного недостатка (сплошная линия на Рис. 3). В целом, расчетные данные хорошо соответствуют результатам эксперимента, максимальное расхождение не превышает величины АСр = 0,005.
Ср
0,02
х Im) 5
<
у=0
Рис. 3 Статическое давление по боковой поверхности модели
В качестве примера расчета обтекания компоновки крыло-пилон-мотогондола используется математическая модель самолета SSJ-100, содержащая фюзеляж с хвостовым вертикальным и горизонтальным оперениями, крылом, пилоном и мотогондолой, работающей в режиме «проток». При построении расчетной сетки использовалась технология стыковки блоков с несовпадающими сеточными линиями «Connect». Это позволяет создать разреженную сетку в буферной области вблизи границ расчётной области и максимально подробную в окрестности узла пилон-крыло-мотогондола. Расчетная сетка содержит 886 блоков, 3,5 млн. ячеек, при этом имеет тонкий пристеночный слой блоков, размеры которого по нормали к поверхности сопоставимы с толщиной пограничного слоя в конце модели ЛА. В этих блоках сетка сгущается к поверхности таким образом, чтобы размер первой ячейки у поверхности имеет размер порядка 1(Г8 - Ю 'л/, что соответствует величине у ~1.
Сопоставление расчетных и экспериментальных данных проведено для режима обтекания М=0,7795, а=2,2942°, Re=2744000 на рисунке 4. Экспериментальные данные получены в АДТ Т-128 ЦАГИ. Анализ показывает, что расчетные и экспериментальные данные в целом находятся в хорошем соответствии друг с другом. Необходимо отметить, что крутка крыла в расчете отличалась от реальной крутки экспериментальной модели под нагрузкой, что дало отличия в пиках давления на верхней поверхности в концевом сечении z=6,75.
Рис. 4. Сопоставление расчетных и экспериментальных данных на режиме М=0,7795, а=2,2942° Глава 2 «Особенности моделирования нестандартных режимов работы силовой установки самолета в аэродинамической трубе с открытой рабочей частью» посвящена применению разработанной методологии к численному моделированию экспериментальной установки АДТ-104 ЦАГИ, предназначенной для исследования распространения реверсных струй при торможении самолета на взлетно-посадочной полосе.
В пункте 2.1 дано описание экспериментальной установки. Для
экспериментальных исследований в АДТ Т-104 ЦАГИ разработан специальный стенд, состоящий из экрана-имитатора взлетно-посадочной полосы и моделей препарированных гондол с имитаторами реверсивного устройства (Рис. 5). К этому устройству по системе трубопроводов подается подогретый до 100 градусов высоконапорный воздух, который выдувается в окружающее пространство, имитируя реверсивную струю двигателя. В воздухозаборнике двигателя установлены термопары для регистрации попадания выдуваемого горячего воздуха. Скорость потока в АДТ, при которой начинается рост температуры в воздухозаборнике, называется скоростью «отсечки» реверса двигателя. Проблема моделирования естественного движения самолета над неподвижным экраном решается путём принудительного слива пограничного слоя с поверхности экрана. Слив пограничного слоя осуществляется через щель в экране между верхней и нижней поверхностями. Стенд снабжен эжекторной системой, предназначенной для моделирования режимов работы двигателя, обеспечивающей заданный расход воздуха. Модель самолета установлена на хвостовой державке с внутримодельными тензометрическими весами
параметров и позволяют
достаточно надежно
определить искомую скорость.
Несмотря на
которые преодолеть рамках
BIB подхода без существенных
финансовых затрат.
Отсутствие «Бегущей
Н дорожки» вызывает
Н недоверие заказчиков к
Щ полученным результатам,
Н так как система отсоса не
может быть полноценной
Ц заменой этого устройства.
„ „ Кроме того, подвод воздуха
Рис. 5 Модель для исследовании реверса и осуществляется по пилону>
ее положение в АДТ Т-104 расположенному недалеко
от входа в двигатель. Как видно из рисунка 5 пилон имеет большой размер и может искажать поле потока перед моделью. Совокупность этих и других факторов делают актуальной задачу создания математической модели АДТ Т-104 для преодоления указанных трудностей.
Пункт 2.2 посвящен особенностям построения математической модели для
данной задачи. В математическую модель стенда в АДТ Т-104 входят (Рис 6) все основные компоненты, присутствующие в основной экспериментальной установке:
1) модель самолета с реверсивным устройством и пилоном;
2) экспериментальный «стол» (имитатор ВПП);
3) сопло АДТ;
4) коллектор АДТ с эжекторам;
5) кабина персонала;
6) державка;
7) труба для отвода выхлопа.
• При построении
математической модели Т-104 сделано несколько упрощений, направленных на уменьшение размерности итоговой расчетной сетки. В экспериментальной установке стол имеет
полукруглую форму, но в данном расчете моделировался стол , « прямоугольной формы. Это
: ifa сделано для последующего
моделирования «бегущей
дорожки». Кроме того, в экспериментальной установке ^¡щ*?^^ \ «стол» оборудован устройствами
для отбора пограничного слоя. В
моделируется при помощи комбинации граничных условий: Рис. 6. Математическая модель и неПрогекания и прилипания.
поверхностная расчетная сетка При построшии расчетной
экспериментального стенда АДТ-104 сетки ИСПОЛьзована технология «по частям». Суть этой технологии в том, что сетки для отдельных элементов строятся независимо. Окончательная сборка проводится на последнем этапе, когда все элементы уже готовы. Технически, это осуществляется при помощи граничного условия типа «Connect». Такой подход позволяет избежать сложных вопросов стыковки различных блоков друг с другом, кроме того, появляется возможность распределить работу по построению сетки между несколькими работниками, что ускоряет процесс подготовки расчета в разы. Сгущения сетки выполнены таким образом, что течение в окрестности модели описывается максимально подробно.
В пункте 2.3 приведены результаты моделирования течения в рабочей части трубы Т-104.
м V Ро То
0,163 55,47 103222 Па 289,681 К
Поле чисел Маха и реконструкция линий тока в рабочей части АДТ Т-104 для режима, указанного в таблице 1 приведены на рисунке 7.
Таблица 1 Параметры потока в АДТ Т-104, использовавшиеся в расчете
Видно, что за кабиной персонала образуется устойчивый вихрь, который попадает в основной поток. При этом эжектор на выходе не позволяет этому вихрю попасть в Рис. 7. Схема течения в АДТ Т-104. область установки модели и
вытягивает его наружу. Наряду с указанным вихрем существует область слабого возвратного течения в помещении, где располагается АДТ В пункте 2.4 исследовано влияние пилона для подвода сжатого воздуха на
эффект попадания реверсных
Ш струй в двигатель самолёта.
тт
Дополнительный пилон является частью экспериментальной
установки и отсутствует на реальном самолете. Оценка влияния пилона на результаты эксперимента осуществляется путем прямого сопоставления данных, полученных как при наличии пилона, так и при его отсутствии. Из сопоставления линий тока в окрестности двигателя, полученных в обоих случаях (Рис. 8), видно, что в случае отсутствия пилона линии тока попадают на вход двигателя, в то время как при его наличии -проходят мимо.
Причина различия в поведении линий тока состоит в том, что Рис. 8. Сопоставление полей с пилон создает 30Ну повышенного
линиями тока с пилоном и без пилона давлшиЯ' котоРая не позволяет
струйке тока попадать на вход
двигателя. В горизонтальной плоскости, проходящей через двигатель,
сопоставляются поперечные распределения статического давления, полученные
Распределение Ср С пилоном Без пилона
—I—
0.05
—Г"
0.1
—Г-
0.2
с пилоном и без него. Сплошная
Рис. 9. Распределение статического давления в горизонтальной плоскости, проходящей через середину двигателя
линия соответствует случаю с пилоном, пунктирная - без пилона. Анализ показывает, что пилон создает повышенное
противодавление со стороны фюзеляжа, которое оценивается величинами порядка Ср = 0,2, (Рис. 9). Этого противодавления достаточно, чтобы
воспрепятствовать попаданию возвратных струй в
воздухозаборник, Таким образом подтверждается факт влияния пилона на эффект засоса возвратных струй в двигатель. В пункте 2.5 исследуется влияние «бегущей дорожки» на эффект попадания реверсных струй в двигатель самолета. Несмотря на наличие щели слива, пограничный слой все же образуется на столе под самолетом. Под фюзеляжем реверсная струя достигает поверхности, что приводит к образованию отрывного течения. На стола образуется вихрь и фактически всю картину течения (Рис. 10). Во втором случае при включении «бегущей дорожки» картина течения принципиально меняется. Вследствие вязкости потока, вихрь «прилипает» к поверхности и сносится назад. Это приводит к тому, что реверсные струи перестают попадать на вход двигателя при данных параметрах течения
В процессе изучения влияния двух важных элементов экспериментальной установки (бегущая дорожка и пилон) на стенде в АДТ Т-104 выяснилось, что они дают разнознаковые поправки. Так, пренебрежение учетом бегущей дорожки приводит к завышению числа Маха «отсечки» двигателя, а наличие пилона, соответственно, к занижению. В условиях АДТ Т-104 обе поправки имеют один порядок величины и взаимокомпенсируют друг друга. Таким образом, результаты эксперимента по определению числа Маха, при котором
а) неподвижный стол
поверхности интенсивный определяет
б) бегущая дорожка Рис. 10. Сопоставление полей течения в случае подвижного и неподвижного экранов
реверсные струи попадают в двигатель, абсолютно корректны, несмотря на такие существенные факторы, как отсутствие моделирования ВПП и использование имитатора двигателя с внешней подпиткой. Вышеизложенные выводы справедливы для рассмотренной модели, при испытаниях других моделей необходимо проводить весь цикл подобных испытаний.
Глава 3 «Влияние поддерживающих устройств различных типов на результаты испытаний моделей в аэродинамических трубах» посвящена комплексному исследованию задачи учета влияния державок различного типа (килевая и хвостовая) на результаты эксперимента.
Одной из центральных технически-сложных задач, стоящих перед проектантами АДТ, является задача создания державки с минимальным влиянием «вперед». Кроме того, чрезвычайно важно разработать алгоритмы введения поправок к экспериментальным данным, полученным в процессе испытаний, чтобы учесть влияние существующих в настоящее время державок.
В пункте 3.1 изложено описание экспериментального подхода к учету влияния поддерживающих устройств (ПУ) в рамках «метода удвоения», согласно которому модель самолета устанавливается на некотором ПУ (отличном от основного), а роль исследуемой державки выполняет имитатор. Такая методология имеет ряд существенных ограничений. Во-первых, при испытаниях используется укороченный имитатор, без конических элементов державки и узла крепления к серповидной стойке. Кроме того, остается открытым вопрос о взаимной интерференции самой державки с имитатором. Вследствие указанных причин, для более полного понимания особенностей течения в области стыковки модели с державкой необходимо использовать численные методы.
В пункте 3.2 приведены результаты исследования физических особенностей течения в каверне, возникающей в месте крепления модели (используется калибровочное тело вращения ЕТХУ) на хвостовой державке. Исследование структуры течения в области сочленения модели с ПУ проведено при М = 0,85,ог = 0°. Проведены расчеты обтекания трех конфигураций, отличающихся углом 5 заклинки стержня ПУ.
В силу условия симметрии модели, течение в области 2,054 < х < 3,6 слабо отличается от «цилиндрического» (Рис 11). Угол заклинки ПУ мало влияет на распределение параметров течения. Далее вниз по потоку симметрия модели нарушается. В области подсечки модели происходит разворот потока, при этом на поверхности образуется область разрежения (3,6 < х < 4,4). При дальнейшем увеличении продольной координаты поток начинает взаимодействовать с ПУ, что приводит к образованию области сжатия.
Х[ш)
Рис. 11 Распределение Ср вдоль строительной оси модели для различных углов заклинки державки
При увеличении угла заклинки стержня ПУ асимметрия возрастает. Стержень выступает за пределы «габаритов» модели. Это приводит к дополнительному торможению потока, и в распределении Ср по поверхности модели возникает положительный сдвиг (давление
возрастает). Можно ожидать, что при дальнейшем увеличении угла заклинения, эффект
будет усиливаться. В случае <5 = 5° давление возрастает в области разрежения и уменьшается - в области сжатия. Это происходит из-за того, что при таком угле отклонения стержня увеличивается расстояние между моделью и ПУ. В образовавшейся щели возникает интенсивное втекание потока. Таким образом, эффект разрежения от втекания потока компенсирует дополнительное сжатие из-за отклонения державки.
В полости между моделью и ПУ формируется вихревое течение, причем его характер сильно зависит от угла заклинения стержня (Рис. 12). В
возникает «продольный» вихрь. Такое течение вызвано взаимодействием потока, натекающего с внешней поверхности модели, с заторможенным газом в полости. В случае же отклоненной державки, на ее подветренной стороне возникает отрыв. Из-за этого образуется поперечный вихрь. Интенсивность вихрей растет с увеличением угла заклинения.
Таким образом, показано, что в полости возникает сложное течение, структура которого определяется геометрическими параметрами узла сочленения модели и державки. Остается открытым вопрос о необходимости моделирования этого узла в расчетах. На Рис. 13 изображена схема приложения сил давления действующих на фюзеляж,
установленный на хвостовую державку.
осесимметричном случае в полости
6=0
5=5
Рис. 12 Схема течения в полости
Согласно схеме, весы воспринимают суммарную нагрузку Рмсы = Р^ + Р*оя + Р^Г]. Результат, выдаваемый при испытании на хвостовой
державке, согласно традиционной методике - Рт = Рхсы - Р*т = Р*р + .
Таким образом, существующий подход не учитывает нагрузки, действующие на внутреннюю полость модели. Отсутствующие данные можно восполнить посредством численного моделирования с учётом полости между моделью и штырём хвостовой державки.
Силы давления, действуйте на внешнюю поверхность корпуса модели
тттотщ77ТГТПтт1та
Силы давления, действующие на Силы давления, действующие цилиндрическую поверхность внутренней
на торец внутренней полости полости
Рис. 13 Силы давления, действующие на различные поверхности модели Для конфигурации фюзеляж+хвостовая державка коэффициенты аэродинамических сил ДСхаПШ1, АСуаПОл, действующих на поверхность внутренней полости фюзеляжа (за вычетом торца), приведены в таблице 2. Основная нагрузка сосредоточена в области нависания фюзеляжа над державкой, поэтому наибольший вклад от неучтенных нагрузок присутствует в коэффициенте подъёмной силы.
Таблица 2 Коэффициенты аэродинамических сил, действующих на внутреннюю полость
м а[°] СРдоН Сх ДСхаП1)Л ДСуапол
0,70 -1,25 0,100 0,00233 0,00009 0,0091
0,70 2,50 0,098 0,00228 0,00067 0,0089
0,80 -1,25 0,105 0,00245 0,00009 0,0096
0,80 2,50 0,103 0,00240 0,00070 0,0094
0,88 -1,25 0,109 0,00253 0,00009 0,0099
0,88 2,50 0,105 0,00244 0,00071 0,0095
В пункте 3.3 описано применение разрабатываемой методологии к задаче определения поправок к результатам испытания компоновки крыло-фюзеляж, установленной на килевой державке, спроектированной в АДТ-128 ЦАГИ.
Расчеты обтекания конфигураций фюзеляж и фюзеляж+крыло, установленных на хвостовую державку и в свободном потоке, проведены для Мт = 0,7,0,8; 0,88 и а = -1°; 0°; 1,25°; 2,5° при уровне турбулентности ~ 0,4% непосредственно перед моделью. Характерная частота турбулентных пульсаций составляет 500 Гц.
Согласно схеме вычисления поправок, принятой в АДТ Т-128 ЦАГИ, необходимо провести две серии расчетов:
1. Расчет обтекания модели на державке при набегающем потоке М„ и а„. Для этой конфигурации вычисляются коэффициенты нагрузок Сха^рж,
Суас*Рж ■
2. Расчет обтекания изолированной модели (без державки) выполняется при набегающем потоке Мхи а„. Коэффициенты нагрузок в этом случае:
Суас,о5.
По результатам расчетов обтекания двух конфигураций (фюзеляж и фюзеляж+килевая державка) определяются искажения течения от поддерживающего устройства в области расположения виртуальных несущих поверхностей, и вычисляются осредненные параметры блокировки {AM) и скоса потока (Аа). Из сравнения аэродинамических нагрузок (АДН) двух конфигураций определяются АС.хафю1СЖЖ, АСуафюзеллж\
лСхафюжчлх = Схаао6 -Сха^ж;
АСу%^ = Суве* - Суа^
Поправки к параметрам набегающего потока AM и Аа для килевой державки рассчитываются следующим образом: 1)блокировка-
AM = — ^AM(x,y,z)ds, 2) скос потока - Аа =-- \Aa(x,y,z)ds. Осреднение
S s S s
проводится по площади «виртуальной поверхностю), расположенной в области крыла.
Проведено сравнение двух способов определения поправок для конфигурации фюзеляж-крыло. Согласно первому, расчеты проводятся по программе, реализующей «панельный» метод (PANEL), второй способ предполагает проведение расчетов по программе, реализующей метод решения системы уравнений Рейнольдса (EWT).
Результаты вычисления поправок к параметрам набегающего потока представлены в Таблице 3. Сравнение показывает, что различие в величине поправок оценивается величинами:
- 5[Да]<0,006° - с увеличением числа Маха набегающего потока заметно уменьшается;
- §[ДМ]<0,0004 - слабо зависит от числа Маха набегающего потока.
Тот факт, что поправки, полученные в «вязкой постановке» по
абсолютной величине превосходят аналогичные величины, полученные при расчете панельным методом, объясняется вытесняющим действием пограничного слоя, которое не учитывается в рамках линейной аэродинамики.
Таблица 3 Поправки к параметрам набегающего потока
М=0,7 PANEL EWT
аИ AM AM
-1,25 -0,0008 -0,0205 -0,0011 -0,0285
2,5 -0,0009 -0,0186 -0,0011 -0,0228
М=0,8
-1,25 -0,0011 -0,0171 -0,0015 -0,0214
2,5 -0,0011 -0,0102 -0,0014 -0,0168
М=0,88
-1,25 -0,0013 -0,0121 -0,0019 -0,0138
2,5 -0,0014 -0,0052 -0,0018 -0,0096
На Рис. 14 приведены эпюры давления в сечении г=0,8 на крыле исследуемой модели. Сравниваются три картины обтекания на режиме близком к крейсерскому режиму полета (расчеты Е\УТ):
1) обтекание конфигурации фюзеляж+крыло+килевая державка при скорректированных параметрах набегающего потока Л/га№=0,8014 и огсот=1,52°, коэффициент давления Ср также скорректирован.
2) обтекание конфигурации фюзеляж+крыло при Мт~0,8 и ах,=1,5° -свободное от державки;
3) обтекание конфигурации фюзеляж+крыло+килевая державка при М»=0,8 и 000=1,5°.
Влияние державки наиболее четко проявляется в эффекте торможения течения в области расположения крыла. В результате этого, скачок смещается вперед по потоку, величина этого смещения составляет ~2% хорды. После коррекции параметров потока и самих коэффициентов давления (зелёная кривая) - обтекание крыла в присутствии державки становится практически идентично обтеканию без поддерживающего устройства. Различие по коэффициенту давления не превышает А Ср < 0,003 .
-0,8-
0,4-
0
•0.9-1
-0.8-
-0,7 —
-0,5-
1=0,8
- Модель ЛА«державка без коррекции
- Модель ЛА
- Модель ЛА*державка с коррекцией
0,2
"Г"
0,4
I
0,6
0,8
Поправки к параметрам набегающего потока позволяют нивелировать возмущения вызванные наличием килевой державки в заранее выбранной области в окрестности фюзеляжа (вокруг крыла). Однако, в остальном поле
возмущения присутствуют. Это подтверждается серией
контрольных расчетов обтекания конфигураций фюзеляж+крыло на килевой державке при скорректированных параметрах набегающего потока MQOrx=M^bM и и невозмущенных
параметрах и ах. Разность полученных в расчетах коэффициентов аэродинамических характеристик АСха и Д Суа представлена на Рис. 15 сплошной линией. Некомпенсированная разница для коэффициентов оценивается величинами -0,00050,001 для коэффициента лобового сопротивления и ~0,003 для коэффициента подъёмной силы. На этапе обработки эксперимента эта разница должна быть учтена путем добавления поправок к АДН.
Для того чтобы оценить эффективность поправок к аэродинамическим коэффициентам, проведено сравнение величин ЛСхафкоеляж, ЛСуаф
полученных двумя способами: 1 способ - PANEL (штрихпунктарная линия) Поправки вычисляются по результатам расчетов в рамках линейной
аэродинамики панельным методом;
2 способ - EWT (пунктирная линия). Поправки вычисляются по результатам расчетов в рамках уравнений Рейнольдса. Сравнение показывает (Рис. 15), что поправки АСхафте_иЖ1 АСуафЮ:,еляю посчитанные в рамках линейной аэродинамики, не позволяют компенсировать расхождение в значениях коэффициентов аэродинамических нагрузок, полученных в контрольных расчетах. В то время как, разница между поправками EWT и контрольным расчетом для чисел Маха 0,7 и 0,8 не превышает величин |ЛСто| < 0,0001 и |ЛС>'о| <0,001, что сопоставимо с
-0,4-
г=0,8
- Модель ЛА+держаэка без коррекции • Модель ЛА
- Модель ЛА»держаека с коррекцией
1
0.2
—Г"
0,6
X.
1
0,8
Рис, 14 Влияние поправок к параметрам набегающего потока на распределение давления на крыле
точностью определения этих величин в эксперименте. Отличие поправки коэффициента подъёмной силы для режима Мт - 0,88 превосходит указанный доверительный интервал. Это связано с образованием отрывных зон на крыле на этих режимах, вследствие чего исключение моделирования обтекания крыла при расчете поправок к аэродинамическим коэффициентам становится неправомерным. Таким образом, схема вычисления поправок в рамках подхода Е\УТ позволяет, получить весь необходимый набор корректирующих поправок при условии его применения только к безотрывным режимам.
Рис. 15 Сравнение поправок аэродинамических характеристик, вычисленных
разными методами В пункте 3.4 изложены результаты применения разрабатываемой методологии к задаче выбора формы килевой державки. Рассматривается (Рис. 16) два варианта: а) - базовая килевая державкой (БКД), б) - новая килевой державкой (НКД).
Рис. 16 Два варианта килевой державки Для оценки возмущений вызванных наличием державок в окрестности крыла сравним эпюры давления на крыле в сечениях г=сош/ для трех конфигураций (Рис. 17) при одинаковых значениях параметров набегающего потока. Следует отметить, что присутствие державки приводит к смещению положения скачка уплотнения к передней кромке крыла. При некорректированных параметрах набегающего потока присутствие державки НКД приводит к смещению скачка вперед на величину »10+11%, в то время как присутствие базовой державки БКД смещает скачок на «12+13%. Причем смещение скачка в области законцовки крыла больше.
N
—
-Изолированная модель -Базовая килевая державка Новая «илевая державка 1 > Г 1 II
— —
0.2 0.4 ¿с 0.6 0,0
Сечение 2 Изолированная модель - Базовая шзевая держмка Новая килевая державла
"М ■ I-
1 V ' \
"•ч N
Г"
—— -и» -6» -Но — Сеч злир< ква» вая — еияе 3 »энная м кил« мм; ипееая дв удепь ер*ввка лкавка
0.2 0.4 кус 0Л
Рис. 17 Распределение давления по поверхности крыла модели
Базовая державка производит большие возмущения по сравнению с оптимальной, что приводит к дополнительному смещению скачка вперед на ~2%. Сравнение влияния базовой и новой килевых державок в виде разности поправок к АДН представлено для числа Маха Мт = 0,8 и Мю = 0,85 на Рис. 18 Абсолютная величина поправок, как к коэффициенту сопротивления, так и к коэффициенту подъёмной силы для БКД больше, чем для НКД. Значение разности поправок к коэффициенту сопротивления на этих режимах потока составляет ~ 0,0003. Для коэффициента подъёмной силы — 0,0035 при числе Маха Мк = 0,8 и ~ 0,005 для Мт = 0,85. Таким образом, использование новой килевой державки является предпочтительным, так как она вносит меньшие
возмущения в поток в окрестности модели.
alpha
-2-1012
б -0,0008 ■
-0,002-
-0.006-
alpha о
-Нов. М*0,6 ая килевая державка >вая килевая державка -
■ —1 Базе
М»0,85
- Базовая кипев» дерновка
- Новая килевая державка
б -0.0008
alpha
о
-0,002
-0,004
М=0,8
- Новая килевая державка
- Базовая килевая державка
М'0,85
- Базовая килевая державка
- Новая килевая державка
Рис. 18 Поправки к значениям коэффициентов аэродинамических нагрузок для двух вариантов килевой державки
Выводы
Решена важная для практики экспериментальных исследований моделей ЛА задача, которая заключается в разработке вычислительной методологии учета влияния элементов конструкции и поддерживающих устройств АДТ, основанной на решении нелинейных уравнений Рейнольдса. На основании проделанной работы можно сделать следующие выводы:
1. Предложена модификация вычислительной программы Е\УТ-ЦАГИ путем внедрения в алгоритм расчета многосеточного алгоритма. Показано, что такая модификация позволяет ускорить время получения результата от двух до пяти раз.
2. Показано, что применение блочной структуры расчетной сетки позволяет ускорить время подготовки задачи к расчету от семи до десяти раз за счет одновременной работы группы специалистов, и в настоящее время новая задача формируется за срок не более десяти дней.
3. Разработанная методология применена для моделирования работы экспериментальной установки «Реверсный стенд» в аэродинамической трубе Т-104 ЦАГИ. Полученный опыт позволяет заключить, что:
3.1.Наличие «бегущей дорожки», являющейся аналогом взлётно-посадочной полосы, приводит к сносу вниз по потоку вихря, возникающего при взаимодействии реверсных струй с пограничным слоем, что противодействует попаданию реверсных струй в двигатель;
3.2.Пилон для подвода воздуха к имитатору двигателя создает повышенное противодавление со стороны фюзеляжа, что препятствует образованию вихря;
3.3.Такие элементы экспериментальной установки как пилон для подвода воздуха к имитатору двигателя и неподвижный имитатор взлетно-посадочной полосы дают поправки разного знака к величине скорости «отсечки» реверсных струй, что позволяет применять результаты экспериментальных исследований с использованием указанного стенда без «бегущей дорожки» на практике.
4. Разработанная методология применена к расчету обтекания модели перспективного пассажирского самолета, установленной на килевой державке. Показано, что применение указанной методологии при обработке экспериментальных данных по влиянию килевой державки в АДТ Т-128 позволяет увеличить точность вычисления поправок к аэродинамическим коэффициентам до величин <5\АСха\< 0,0001; <5|ЛСуа|<0,001 на безотрывных режимах обтекания крыла модели по сравнению с методикой, основанной на линейных подходах.
5. Путём численного моделирования потока в области стыковки хвостовой державки с моделью показано, что течение в полости крепления державки создает нагрузки на модель, которые воспринимаются тензометрическими весами, но не имеют отношения к аэродинамическим нагрузкам при свободном обтекании. Дополнительные поправки к показаниям весов,
обусловленные указанным влиянием, в рассматриваемом случае оцениваются величинами порядка АСха = 0,0007, Л Суя = 0,01. 6. Разработанная методология внедрена в технологический цикл АДТ Т-104 и Т-128 ЦАГИ.
Подписано в печать 21 марта 2011 г. Объем 1,2 п.л. Тираж 75 экз. Заказ № 289 Отпечатано в Центре оперативной полиграфии ООО «Ол Би Принт» Москва, Ленинский пр-т, д.37
Оглавление автор диссертации — кандидата технических наук Курсаков, Иннокентий Александрович
Введение.
Глава 1. Описание численного метода. Тестовые расчеты.
1.1 Базовые уравнения.
1.1.1 Общая формулировка законов сохранения и численной схемы.
1.1.2. Система уравнений Рейнольдса и ее замыкание.
1.2 Аппроксимация системы уравнений Рейнольдса.
1.2.1 Конвективные члены схемы.
1.2.2 Диффузионные потоки схемы.
1.2.3 Источниковые члены схемы.
1.3 Реализация многосеточного подхода.
1.4 Особенности организации параллельных вычислений.
1.5 Валидация численного метода.
1.5.1 Тело вращения на хвостовой державке.
1.5.2 Обтекание компоновки крыло-фюзеляж-мотогондола.
1.5.3 Сверхзвуковое обтекание оживального тела под углом атаки.
Глава 2 Особенности моделирования нестандартных режимов работы силовой установки самолета в аэродинамической трубе с открытой рабочей частью
2.1 Особенности испытаний «реверсной» модели в АДТ Т-104 ЦАГИ.
2.2 Математическая модель аэродинамической трубы с открытой рабочей частью и стендом для исследования реверса тяги двигателя самолета.
2.3 Моделирование течения в рабочей части АДТ Т-104.
2.4 Влияние пилона на эффект попадания реверсных струй в двигатель самолета.
2.5 Влияние «бегущей дорожки» на эффект попадания реверсных струй в двигатель самолета.
Глава 3 Влияние поддерживающих устройств различных типов на результаты испытаний моделей в аэродинамических трубах.
3.1 Экспериментальная методика определения влияния поддерживающих устройств.
3.2 Особенности построения математической модели для задачи учета влияния поддерживающих устройств.'.
3.2.1 Выбор оптимальной топологии расчетной сетки.
3.2.2 Физические особенности течения в узле стыковки модели и хвостовой державки.
3.3 Определение влияния килевой державки.
3.4 Выбор формы килевой державки.
Выводы.
Введение 2011 год, диссертация по авиационной и ракетно-космической технике, Курсаков, Иннокентий Александрович
В настоящее время во всех областях деятельности человека активно применяются быстродействующие вычислительные машины. Как отмечает академик A.A. Самарский в одной из своих работ: «Широкое применение математических методов позволяет поднять общий уровень теоретических исследований, дает возможность проводить их в более тесной связи с экспериментальными исследованиями» [1] С 1970-х годов роль вычислительных технологий постоянно возрастала, что обусловлено как совершенствованием численных методов, так и уменьшением стоимости вычислительных мощностей. Это хорошо заметно в ЦАГИ, где взаимосвязь теоретических, экспериментальных и расчетных исследований положена в «фундамент института». Наиболее полный анализ успехов того времени проведен в монографиях, подготовленных под редакцией академика РАН Г.С. Бюшгенса [2], член-корреспондента РАН В.Я. Нейланда [3], член-корреспондента РАН В.Г. Дмитриева. Следует отметить, что именно в ЦАГИ в 1972 году разработан метод MUSCL [4], который определил «лицо» вычислительной аэродинамики в мире на много лет вперед. Это признал в своей работе [5] один из наиболее известных ученых США Van Leer. Другая фундаментальная работа сотрудника ЦАГИ А.Н. Минайлоса [6] остановила «бесполезный» в то время поиск эффективных методов высокого порядка и позволила сконцентрироваться ученым на доступных схемах второго порядка аппроксимации, уделив особое внимание свойству монотонности. Более тридцати лет развитие вычислительной аэродинамики шло по этому пути. И только в последние годы композиция двух методов известных российских ученых (академиков РАН Б.Г. Галеркина и С.К. Годунова) позволила сделать следующий шаг. Найден путь к созданию эффективного метода высокого порядка точности - метода Галеркина с разрывными базисными функциями [7]. Особый вклад в разработку этого метода внесли ученые ЦАГИ C.B. Ляпунов [8] и A.B. Волков [9].
Естественно, что вычислительные технологии, прежде всего, востребованы в аэрокосмической отрасли. Это обусловлено чрезвычайной сложностью решаемых задач. Прежде всего, это многодисциплинарные задачи, объединяющие аэродинамику, прочность, динамику полета и другие отрасли знания. Подробный анализ современного состояния многодисциплинарных подходов проведен в работе Н.Г Бунькова [10]. Показано, что реальная потребность в вычислительных мощностях на два порядка превышает имеющиеся ресурсы. Другой класс решаемых задач произрастает из особой роли ЦАГИ, как крупнейшего экспериментального центра. В настоящее время появилась возможность осуществить численное моделирование течения в Аэродинамической Трубе (АДТ). При этом учитывается обтекание, как экспериментальной модели, так и элементов упомянутой АДТ. Можно указать, по крайней мере, два основных направления развития указанной технологии:
1. Исследование особенностей течения в АДТ и использование полученных результатов для совершенствования экспериментальной методологии, а, возможно, и для модернизации трубы, например [11, 12]
2. Учет влияния элементов конструкции АДТ, таких как перфорированные стенки, поддерживающие устройства различных типов, технологические полости и т.д. на результаты испытаний, проводимых в этой АДТ.
В ЦАГИ по инициативе и под научным руководством В .Я. Нейланда [13] разработана концепция «Электронной Аэродинамической Трубы (ЭАДТ)», которая объединяет оба указанных направления. Первые публикации в России [14] и за рубежом [15] имели положительный отклик. Особенно следует отметить, что ЭАДТ ни в коем случае не подразумевает отказа от экспериментальных исследований. Применение расчетных методов в качестве инструмента для восполнения экспериментальных данных оправдано с экономической и практической точек зрения [16]. Современные экспериментальные методики в сочетании с подходами ЭАДТ дополняют друг друга. Так, эксперимент позволяет получить результаты высокого уровня 8 точности, а расчеты восполнить их недостающими материалами. Например, ЭАДТ дает возможность осуществить корректный пересчет результатов эксперимента в АДТ на условия натурного полета. В настоящее время [17] можно указать четыре области успешного применения концепции ЭАДТ в технологическом цикле реального эксперимента. Это - 1) стадия подготовки модели; 2) стадия проведения испытаний; 3) стадия обработки экспериментальных данных; 4) стадия вторичной обработки экспериментальных данных (на этой стадии возможно восполнение экспериментальных данных в тех случаях, когда это необходимо). Так на этапе подготовки эксперимента обычно исследуется масштабный эффект и выбирается модель максимально большого размера для условий в данной АДТ. Кроме того, определяются критические зоны, в которых располагаются датчики повышенной точности, например, вакуумметры для измерения статического давления. В процессе проведения испытаний часто проводится адаптация проницаемости перфорации АДТ (A.B. Семенов в Т-128 [18]) с использованием предварительно рассчитанных полей течения в окрестности изолированной модели. При этом устраняется влияние стенок на результаты указанных испытаний (С.А. Глазков в Т-128 [19]). Наконец, проводится сопоставление расчетных результатов, полученных с учетом и без учета стенок АДТ, и вносятся необходимые коррекции в результаты эксперимента. Попутно, экспериментальные распределения давлений по поверхностям модели восполняются расчетными значениями давления в возмущенном поле. Очевидно, что реализация концепции ЭАДТ требует исключительно больших ресурсов ЭВМ. Кроме этого необходимо приложить усилия к созданию эффективной расчетной технологии. Эффективность технологии - понятие неоднозначное. Прежде всего, это удобство использования вычислительной техники и программного обеспечения. Но главным вопросом является скорость, другими словами, получение результатов в ограниченные сроки. Можно выделить основные группы факторов, ведущих к ускорению скорости счета: 9
Выбор оптимального алгоритма расчета;
Оптимизация кода;
Организация параллельных вычислений.
В данной работе основное внимание уделено первому пункту как наиболее трудоемкому и перспективному. Автор использует много сеточный подход, как наиболее подходящий для идеологии ЭАДТ. Кроме того, важно отметить, что существенный ресурс заложен в создании параллельного процесса. Параллельное программирование представляет собой отдельную задачу высокой степени сложности. Для того чтобы решить задачу на параллельном компьютере, необходимо распределить вычисления между процессорами системы, так чтобы каждый процессор был занят решением своей части. Кроме того, желательно оптимизировать межпроцессорные коммуникации, которые существенно тормозят передачу данных от одного процессора к другому. Часто возникают парадоксальные ситуации, когда с увеличением числа процессоров скорость расчета не увеличивается, а замедляется. Из-за сложности параллельных вычислительных систем и их существенного отличия от традиционных однопроцессорных компьютеров нельзя напрямую воспользоваться традиционными языками программирования. С точки зрения разработчика математического обеспечения, можно выделить несколько моделей параллельных вычислений: процесс/канал (Process/Channel), обмен сообщениями (Message Passing), параллелизм данных (Data Parallel), общей памяти (Shared Memory).
В данной работе используется кластер. В этой модели все процессы имеют независимые адресные пространства. Другими словами, каждый процессор в любой момент времени может иметь доступ к любой ячейке своей памяти. Для межпроцессорного общения используется сеть. Существует и другой тип ЭВМ, использующих общее адресное пространство. Это создает проблемы синхронизации операций записи и удаления данных. Для управления доступом к общей памяти используются стандартные механизмы
10 синхронизации - семафоры и блокировки процессов. Такая модель параллельных вычислений носит название PRAM (Parallel Random Access Machine, или абстрактная модель вычислений с параллельным случайным доступом). На практике время доступа к памяти на реальных машинах неоднородно из-за возможной иерархической организацией модулей памяти. Частота обращений к этой памяти может быть уменьшена за счет сохранения копий используемых данных в кэш-памяти, связанной с каждым процессором. Доступ к кэш-памяти намного быстрее, чем непосредственный доступ к общей памяти.
Используемая в работе модель параллельных вычислений накладывает ограничения на выбор архитектуры параллельных компьютеров. Это мультипроцессорные системы (Multiprocessing Systems) с общей или разделяемой памятью (Shared Memory). Естественно, наиболее оптимальным выбором являются системы, поддерживающие идеальную PRAM модель. Все процессоры в таких системах являются абсолютно одинаковыми, кроме того, имеется общая адресация оперативной памяти. Все процессоры также имеют одинаковое время доступа к оперативной памяти. Поэтому такие системы еще называют SMP (Symmetric Multiprocessing System) или UMA (Uniform Memory Access). SMP системы являются наиболее простыми, с точки зрения создания параллельных программ путем разбиения задачи на нити (Threads). При этом система автоматически распределяет нити по процессорам. Пользователь заботится лишь об оптимальном распределении узлов расчетной сетки по блокам, приписываемым соответствующим нитям. В рамках объектного подхода эта проблема решается достаточно просто путем описания блоков в виде классов. Узкое место таких систем - проблема согласования кэш-памяти. Действительно, в кэш-памяти двух процессоров может быть одновременно считано и модифицировано содержимое одной и той же ячейки общей памяти. Однако такая архитектура является очень сложной и дорогостоящей, с технологической точки зрения, и фактически ограничивается двух- и
11 четырехпроцессорными системами. Сходные возможности организации параллельных вычислений предоставляют компьютеры с виртуальной общей (разделяемой) памятью (Virtual sliared memory). У таких компьютеров общая память как таковая отсутствует. Каждый процессор имеет собственную локальную память и может обращаться к локальной памяти других процессоров, используя "глобальный адрес". Если "глобальный адрес" указывает на область за пределами локальной памяти, то доступ к памяти реализуется с помощью сообщений, пересылаемых по коммуникационной сети.
В данной работе многоблочный подход к построению расчетной сетки позволяет организовать эффективный процесс параллельных вычислений. Для этого расчетный шаг по времени разбивается на локальные шаги (связанные с конкретными блоками сетки), которые выполняются независимо в памяти многопроцессорного компьютера. Обеспечение обмена между блоками осуществляется путем копирования параметров из «приграничных» ячеек соседних блоков. При хорошей организации расчетной области, объем информации при обмене является незначительным. Конкретная реализация модифицированной автором программы заключается в том, что для равномерной загрузки процессоров осуществляется сортировки блоков по величине. Блоки одинаковой величины обрабатываются одновременно. Проблема оптимизации обменов между блоками практически не существует, т.к. в этом случае обмены производятся практически одновременно.
За рубежом существует успешный опыт реализации указанной концепции [20]-[26]. Первое упоминание об ЭАДТ появилось в литературе в 1981 году в статье [20], где появился термин Electronics Wind Tunnel. К сожалению, это статья не содержала серьезной проработки деталей алгоритмов и рекомендаций по практической реализации всей концепции. Настоящий прорыв произошел в 1997 году на конференции STAI (Supersonic Tunnels Association International). В процессе доклада ЦАГИ [27] было задано множество уточняющих вопросов, а на следующий день была организована специальная сессия для обсуждения
12 практических аспектов реализации концепции Е\¥Т.На этой сессии выступили такие ученые, как Э. АевсЬИшап (США) и Б. 81апш1апс1 (Великобритания). Это дало старт к развитию технологии моделирования испытаний в АДТ во многих странах мира. В настоящее время уже разработаны несколько компьютерных программ, при этом, особенно выделяются работы [21],[22], в которых описаны работающие прототипы систем, объединяющих экспериментальный и вычислительный подходы в условиях конкретных АДТ. Кроме этого существуют исследования, продвигающие отдельные направления и посвященные разработке сопутствующих алгоритмов и методов [18],[19],[28]. Например, важную роль имеет адаптация закона фильтрации Дарси [29], который используется для моделирования перфорации стенок АДТ.
В настоящее время существуют примеры успешного применения концепции ЭАДТ для решения практических задач. В работе [23] приведены результаты исследования модели перспективного высокоскоростного ЛА с выпущенной механизацией крыла. Расчеты проведены как для изолированной модели, так и для модели с поддерживающим устройством с учетом и без учета стенок трубы. Выполнена коррекция результатов эксперимента. Получено хорошее соответствие расчетных и экспериментальных характеристик модели во всем диапазоне чисел Мах и углов полета. Отмечено, что расчетные исследования дают хорошее представление о том, какое влияние на поток оказывают поддерживающие устройства. Работа [24] — это другой пример удачного синтеза экспериментального и численного подходов. Основная цель представленной работы заключается в создании методологии проектирования хвостового оперения модели. Экспериментально исследован широкий спектр интерференционных явлений, таких как отрыв на хвосте, падение эффективности руля направления и т.д. В рамках численного исследования обтекания модели ИЕМР1 [25] в конфигурациях «свободный поток» и модель на ножевой державке были определены зоны наибольшего влияния Поддерживающих Устройств (ПУ), что позволило дополнить, а впоследствии и
13 скорректировать экспериментальные данные. В работе [26] выполнен вязкий расчет и проведено исследование интерференции ПУ и моделей JIA при испытаниях в АДТ. Поля возмущенного течения и поправки к интегральным характеристикам были получены при помощи сравнения расчетов с ПУ и без него. Рассмотрено два типа конфигураций ПУ В первой конфигурации моделируются низкоскоростные испытания модели транспортного самолета, установленной на цилиндрической опоре. Во второй — трансзвуковое обтекание модели административного самолета на Z-образной державке. Влияние державок исследуется для нескольких чисел М и углов атаки. Особое внимание уделено методике получения поправок к параметрам набегающего потока.
Для решения задачи моделирования потока в АДТ наряду с коммерческими программными продуктами широкого профиля (такими как ANSYS Fluent [30], ANSYS CFX [31], Numeca [32]), используются специализированные пакеты программ, разрабатываемые в крупных мировых центрах авиационной науки (in-house codes). Примерами таких продуктов являются elsA (Onera, Франция) [33], TAU [34], FLO Wer [35] (DLR, Германия). Использование собственных программных продуктов в этих центрах считается предпочтительным, поскольку в этом случае имеется полное представление об алгоритмах и способах получения числениого решения. Несмотря на существенные особенности указанных програмных продуктов, можно выделить общие подходы к построению численной методологии. В настоящее время вследствие ограниченности ресурсов решается математическая задача (задача Коши), сформулированная для осредненной по Рейнольдсу системы уравнений Навье-Стокса [36]. Для аппроксимации конвективных потоков используется метод Джеймсона [37] второго порядка точности с искусственной вязкостью, для диффузионных - центрально-разностная схема. Указанная система уравнений замкнута одной из известных дифференциальных моделей турбулентности: 1) #-со [38]; 2) SST [39]; 3) Спаларта-Алмараса [40],[41]. При
14 этом есть полное понимание ограниченности пределов применимости указанных моделей, но использование более строгих подходов является делом ближайшего будущего.
Ключевым вопросом при построении численной методологии является выбор способа интегрирования по времени. На сегодняшний день существует два принципиально разных подхода: явный и неявный [42]. Основным преимуществом неявных численных схем является их абсолютная устойчивость, это позволяет, в принципе, двигаться сколь угодно быстро по времени. Однако при моделировании нестационарных процессов большие шаги по времени должны приводить к большим погрешностям аппроксимации. Главным же недостатком явных численных схем является сильное ограничение на шаг по времени, что приводит к огромным временам счета при решении задач с отличающимися характерными линейными масштабами. Однако скорость получения решения может быть увеличена, например, за счет применения многошаговых процедур Рунге-Кутта [37], технологии «локального шага» по времени [43]. Значительное ускорение расчета обеспечивается применением многосеточных методов (МиШ§пс1). Впервые метод был описан в работе [44]. В задачах вычислительной аэродинамики многосеточный подход последовательно применялся в рамках уравнений полного потенциала [45],[46], Эйлера [37],[47-49] и в дальнейшем получил своё развитие применительно к системе уравнений Навье-Стокса [50],[51]. Этот подход базируется на свойстве волн (возникающих при несоответствии текущих полей течения заданным граничным условиям) распространяться со скоростью, зависящей от размеров ячеек. Длинные волны быстро продвигаются по крупной сетке, а мелкие ячейки отвечают за коротковолновую часть спектра. Построение серии вложенных сеток и продвижение возмущений по «крупной» сетке дает десятикратный выигрыш во времени при решении стационарной задачи. Особое внимание следует уделять «угловым» точкам. Желательно, чтобы все вложенные сетки выделяли эти точки своими узлами. При разработке
15 указанного метода открытым остался вопрос о сопряжении процедуры Рунге-Кутта с процедурой расчета источниковых членов системы уравнений. Возникающая при этом немонотонность, существенно ухудшала свойства сошедшегося решения. Автор решил эту проблему путем отказа от классической схемы Рунге-Кутта и переходом к многошаговой схемы Годунова первого порядка аппроксимации.
Численное моделирование обтекания модели самолета в условиях АДТ имеет ряд специфических особенностей. Для расчета течения газа в условиях АДТ разработаны специальные граничные условия [17]. Например, запуск «Электронной Аэродинамической Трубы» и выход на режим осуществляется итерационно. При этом контролируется величина скорости потока не на внешней границе расчетной области, а в специально обозначенной точке канала АДТ, называемой «Контрольной точкой». Именно в этой точке в процессе реального эксперимента измеряется скорость потока в АДТ. Аналогичным образом в этой точке задаются амплитуда и масштаб турбулентных пульсаций. При изменении угла атаки или скольжения модели невозможно применять простую процедуру, используемую для случая невозмущенного потока, а приходится перестраивать расчетную сетку, так как стенки АДТ при этом остаются неподвижными. Отметим, что на стенках нужно выполнять условие частичного протекания потока и обмена газа между рабочей частью АДТ и ее камерой давления. Отдельное внимание уделяется донным областям модели, в которых осуществляется стыковка с державкой. Как правило, здесь появляется нестационарное течение, которое требует реализации специальных расчетных процедур, таких как «Дробный шаг по времени» [52] или «Дуальный шаг по времени» [53]. Удобнее всего эти процедуры используются в рамках зонального подхода [54], который позволяет локализовать нестационарную часть задачи и существенно сократить время расчета.
Важной особенностью, которую необходимо учитывать при построении численной методологии, является выбор типа расчетной сетки. Блочная
16 структурированная сетка, адаптированная к особенностям геометрии. Применение структурированной сетки позволяет обеспечить максимальную точность результатов. Неструктурированная сетка обладает несомненным преимуществом удобства построения, но для достижения сопоставимой точности результатов расчета она требует существенно больше узлов. Следует отметить, что в настоящее время в ЦАГИ ведутся работы по развитию алгоритмов построения неструктурированных сеток на основе многогранников (polyhedral) с призматическим пограничным слоем. По утверждению авторов новой технологии [55], объем массивов памяти, необходимых для реализации указанных сеток, существенно меньше, чем в упомянутом выше случае. При этом время расчета приближается к соответствующему времени с использованием структурированных сеток (при сопоставимой точности). Для упрощения процесса построения структурированной сетки широко используется технология «Химера» [56]-[58], которая позволяет создавать независимые сетки для каждой части летательного аппарата и элементов экспериментальной установки.
Наиболее ответственный этап технологии - выбор расчетного метода. Существуют различные направления и школы. Как уже упоминалось ранее, в ЦАГИ ведутся работы [59] по развитию метода Галеркина применительно к неструктурированным адаптивным сеткам. В данной работе применяется классический подход, основанный на модификации метода Годунова-Колгана [4],[60],[61]. Он наиболее полно удовлетворяет требованиям, предъявляемым к решению сложных задач аэродинамики, включая задачи интерференции газовых струй с элементами планера и частями АДТ. Одна из задач посвящена исследованию распространения реверсных струй при торможении самолета на взлетно-посадочной полосе. Реверсирование тяги двигателя является одним из эффективных способов торможения самолета при послепосадочном пробеге. Однако при включении реверсивного устройства может возникнуть ряд проблем, обусловленных действием реверсивных потоков. Попадание
17 реверсных струй во входные устройства двигателей становится причиной искажения полей скоростей и температур на входе в двигатели, что является предпосылкой к возникновению помпажного режима работы компрессора и выключению двигателя [62]. Моделированию течения в реверсных устройствах посвящены работы [63-65]. При проведении экспериментальных исследований работы реверса тяги необходимо вносить ряд существенных ограничений. Например, при моделировании работы двигателя необходим подвод сжатого воздуха, который выдувается через сопло. Такой подвод осуществляется посредством специального пилона, который служит дополнительным ПУ и располагается в непосредственной близости от объекта исследования. Кроме того, моделирование в эксперименте движения самолета по взлётно-посадочной полосе чрезвычайно сложно с технической точки зрения.
Второй пример применения разрабатываемой методологии связан с вопросом корректного учета влияния державок на результаты эксперимента. Хвостовая державка рассмотрена более подробно. Это связано с ее большим распространением и интересными эффектами, возникающими в местах интерференции этой державки с фюзеляжем. Рассмотрена упрощенная модель цилиндрического тела с косым срезом, установленного на хвостовой державке. Особое внимание уделено структуре течения в зоне сочленения модели с державкой. В этой зоне из-за конструктивных особенностей крепления модели образуется полость, в которую попадает поток с внешней поверхности модели. Экспериментальное исследование течения в данной области затруднено [66]. Расчеты обтекания указанной конфигурации проведены в некоторых работах, например, [67,68]. При этом течение в полости узла стыковки ПУ и модели не учитывалось. Однако, как отмечено в [66],[68] наличие полости приводит к искажению, как интегральных характеристик, так и локальных полей течения в окрестности модели. В данной работе указанный недостаток устранен, расчеты выполнены с учетом каверны.
Диссертационная работа состоит из введения, трех глав, заключения и списка литературы. Она содержит 136 страниц текста и 79 иллюстраций.
Заключение диссертация на тему "Численное моделирование обтекания моделей пассажирских самолетов в условиях ограниченного пространства и влияния элементов конструкции аэродинамической трубы"
Выводы
Решена важная для практики экспериментальных исследований моделей ЛА задача, которая заключается в разработке вычислительной методологии учета влияния элементов конструкции и поддерживающих устройств АДТ, основанной на решении нелинейных уравнений Рейнольдса. На основании проделанной работы можно сделать следующие выводы:
1. Предложена модификация вычислительной программы EWT-LIAГИ путем внедрения в алгоритм расчета многосеточного алгоритма. Показано, что такая модификация позволяет ускорить время получения результата от двух до пяти раз.
2. Показано, что применение блочной структуры расчетной сетки позволяет ускорить время подготовки задачи к расчету от семи до десяти раз за счет одновременной работы группы специалистов, и в настоящее время новая задача формируется за срок не более чем за десять дней календарного времени.
3. Разработанная методология применена для моделирования работы экспериментальной установки «Реверсный стенд» в аэродинамической трубе Т-104 ЦАРИ. Полученный опыт позволяет заключить, что:
3.1.Наличие «бегущей дорожки», являющейся аналогом взлётно-посадочной полосы, приводит к сносу вихря, возникающего при взаимодействии реверсных струй с пограничным слоем, вниз по потоку;
3.2.Пилона для подвода воздуха к имитатору двигателя создает повышенное противодавление со стороны фюзеляжа, что препятствует образованию вихря;
3.3.Такие элементы экспериментальной установки как пилон для подвода воздуха к имитатору двигателя и неподвижный имитатор взлетно-посадочной полосы дают поправки разного знака к величине скорости «отсечки» реверсных струй, что позволяет применять результаты экспериментальных исследований с использованием указанного стенда без «бегущей дорожки» на практике.
4. Разработанная методология применена к расчету обтекания модели перспективного пассажирского самолета, установленной на килевой державке. Показано, что применение указанной методологии при обработке экспериментальных данных по влиянию килевой державки в АДТ Т-128 позволяет увеличить точность вычисления поправок к аэродинамическим коэффициентам до величин д \ АСха \ < 0,0001 ; 81А Су а \ < 0,001 на безотрывных режимах обтекания крыла модели по сравнению с методикой, основанной на линейных подходах.
5. Путём численного моделирования потока в области стыковки хвостовой державки с моделью показано, что течение в полости крепления державки создает нагрузки на модель, которые воспринимаются тензометрическими весами, но не имеют отношения к аэродинамическим нагрузкам при свободном обтекании. Дополнительные поправки к показаниям весов, обусловленные указанным влиянием, в рассматриваемом случае оцениваются величинами порядка АСха= 0,0007, АСуа = 0,01.
6. Разработанная методология внедрена в технологический цикл АДТ Т-104 и Т-128 ЦАГИ.
Библиография Курсаков, Иннокентий Александрович, диссертация по теме Аэродинамика и процессы теплообмена летательных аппаратов
1. Самарский А.А., Вабищевич П.Н. Математическое моделирование и вычислительный эксперимент, «Математическое моделирование», 2000 г
2. Бюшгенс Г.С., Берджицкий E.JT. «ЦАГИ центр авиационной науки» // Москва, Наука 1993.
3. Под редакцией Нейланда В.Я. ЦАГИ основные этапы научной деятельности 1968-1993. М. Физматлит, 1996.
4. Колган В.П. Применение принципа минимальных значений производной к построению конечно-разностных схем для расчета разрывных решений газовой динамики // Ученые записки ЦАГИ. 1972. Т. 3, № 6, с. 68-77.
5. В. van Leer. Upwind and High-Resolution Methods for Compressible Flow: from Donor Cell to Residual Distrubution Schemes. Review Article. Commun. Comput. Phys., 1(2): 192-206, 2006.
6. Минайлос A.H. О значении монотонности конечно-разностных схем в методах сквозного счета. «ЖВМ и МФ», т. 17, №4, 1977, стр. 1058-1063.
7. Волков A.B., Ляпунов C.B., Исследование эффективности использования численных схем высокого порядка точности для решения уравнений Навье-Стокса и Рейнольдса на неструктурированных адаптивных сетках // ЖВМ и МФ, 2006, Том 46, №10, стр. 1894-1907
8. Волков А.В. Особенности применения метода Галеркина к решению пространственных уравнений Навье-Стокса на неструктурированных гексаэдральных сетках // Ученые записки ЦАГИ Том XLI, №3, 2010
9. Ю.Дмитриев В.Г., Белоцерковский С.М., Буньков Н.Г. Системная роль математической компьютерной модели самолета в его жизненном цикле. «Техника воздушного флота», №4-5, 1998, стр. 7-17.127
10. Zhigang Yang, Qing Jia Assessment of Wind Tunnel Test Section Dimensions Using CFD I I 46th AIAA Aerospace Sciences Meeting and Exhibit 7-10 January 2008, Reno, Nevada
11. Joao B.P. Falcao Filho , Marcos A. Ortega Numerical study of the injection process in a transonic wind tunnel: The numerical details // Computers & Fluids 37 (2008) 1276-1308
12. Neyland V., Bosniakov S., Glazkov S., IvanovA., Matyah S., Mikhailov S., Vlasenko V. Conception of electronic wind tunnel and first results of its implementation // Progress in Aerospace Sciences. 2001. V. 37, Issue 2, p. 121-145.
13. Daniel Reckzeh and Heinz Hansen. High Reynolds-number windtunnel testing for the design of airbus high-lift wings. In New Results in Numerical and Experimental Fluid Mechanics V, pages 1-8. Springer, 2006.
14. Практические аспекты решения задач внешней аэродинамики двигателей летательных аппаратов в рамках осредненных по времени уравнений Навье-Стокса // Сборник статей, Труды ЦАГИ. 2007, вып. 2671
15. Neyland V.M., IvanovA.I., SemenovA.V., Semenova O.K., Amirjanz G.A. Adaptive-wall perforated test section for transonic wind tunnels // AGARD CP-585. June 1997. P. 16.1-16.16.
16. Glazkov S.A., Gorbushin A.R., IvanovA.I., SemenovA.V. Recent experience in improving the accuracy of wall interference corrections in TsAGI T-128 wind tunnel //Progress in Aerospace Sciences 37 (2001) 263-298
17. Baals D.D., Corliss W.R. "Wind Tunnels of NASA" Scientific and Technical Information Branch NASA, 1981.
18. Schwartz R.J., Fleming G.A. "Virtual Diagnostics Interface: Real Time Comparison of Experimental Data and CFD Predictions for a NASA Ares I-Like Vehicle," // Proceedings of ICIASF 07, R56, 2007
19. Shigeya Watanabe, Shigeru Kuchi-ishi, Takashi Aoyama "A Prototype System towards EFD/CFD Integration: Digital/Analog-Hybrid Wind Tunnel" // ICAS 2010
20. Wendy B. Lessard. Analysis of post-support and wind-tunnel wall interference on flow field about subsonic high-lift high-speed research configuration. Technical Report TP-2000-210555, NASA, November 2000.
21. Karl Pettersson and Arthur Rizzi. Estimating reynolds number scaling and windtunnel boom effects with the help of CFD methods. AIAA 2006-3162, 2006.
22. European Comission, editor. Aeronautics Research 2003-2006 projects, volume Project synopses volume 1 Research Projects from the first and second calls. Office for Official Publications of the European Communities, 2006
23. S. Mouton, Numerical investigations of model support interference in subsonic and transonic wind tunnels // 44ème Colloque d'aérodynamique appliquée AAAF,Nantes, March 23-25, 2009
24. Bosniakov S., Fonov S., Matyash S., Mikhailov S., Neyland V., Remeev N., Vlasenko V., Yatskevich N. CFD as a part of experimental technology in a Wind Tunnel // Proceedings of STAI meeting, Nashville, USA, 1997.
25. Collercandy R., Marques B, Lory J., Dbjay S., Espiau L. Application of CFD for wall and sting effects. HiReTT report HIRETTTNAFRCoWP2.2311002003, Airbus France, October 2003
26. Anderson D., TannehilJ., Fletcher R. Computational Fluid Mechanics and Heat transfer book. Washington DC: Hemisphere, 1984.
27. Jameson A,, Schmidt W., Turkel E. Numerical Solution of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes // AIAA-81-1259 (1981).
28. Wilcox D.C, Turbulence modeling for CFD. 2nd edition. DCW Industries, 1998.
29. Menter F.R. Improved two-equation (k--^) turbulence models for aerodynamic flows // NASA TM-103975. 1992.
30. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows //AIAA Paper 92-439. Reno, NV. 1992.
31. Edwards J.R., Chandra S. Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields. // Journal of Aircraft, Vol. 34, No. 4, pp. 756-763, 1996.
32. BlazekJ. Computational Fluid Dynamics: Principles and Applications. Elsevier, 2001.
33. Jameson A. A perspective on computational algorithms for aerodynamic analysis and design // Progress in Aerospace Sciences. 2001. V. 37 N2
34. Федоренко Р.П. «Многосеточный метод для схем конечного элемента» // ЖВМ и МФ 1961 - Т1 N5
35. Jameson A. Acceleration of Transonic Potential Flow Calculations on Arbitrary Meshes by the MultiGrid Method // AIAA-79-1458-CP (1979).
36. Jameson A., CaugheyD. A Finite Volume Method for Transonic Potential Flow Calculations // pp. 35-54 in Proc. AIAA 3rd CFD Conf., Albuquerque, NM (1977).
37. Jameson A.,Yoon S. Multigrid Solution of the Euler Equations Using Implicit Schemes //AIAA-85-0293 (1985).
38. Mavriplis D.J. Three-Dimensional Unstructured Multigrid for the Euler Equations // AIAA-91-1549-CP (1991).
39. Brandt A. Multilevel adaptive computations in fluid dynamics// AIAA Journal, V.18,N 10, October 1980
40. Jameson. A., Martinelli L. Validation of a Multigrid Method for the Reynolds Averaged Equations // AIAA-88-0414 (1988).
41. Mavriplis D., Aftosmis M. Berger M. High Resolution Aerospace Applications Using the NASA Columbia Supercomputer // Proc. Supercomputing'05, Seattle, WA, November 12-18 (2005).
42. Pervaiz M., Baron J.R. Spatiotemporal adaptation algorithm for two dimensional reacting flows // AIAA Journal. 1989. V. 27, №10.
43. Jameson A. Time dependent calculations using multigrid, with application to unsteady flows past airfoils and wings // AIAA 91-1596. 1991.
44. КажанЕ.В. О возможностях использования неявной схемы в рамках пакета EWT-ЦАГИ // Труды ЦАГИ. 2007, вып. 2671.
45. Peric М. Flow simulation using control volumes of arbitrary polyhedral shape // ERCOFTAC Bulletin. September 2004. No. 62
46. Benek, J.A., P.G. Buning and J.L. Steger. A 3-D Chimera Grid Embedding Technique; AIAA-85-1523 (1985)
47. Meakin, R.L. and N. Suhs. Unsteady Aerodynamic Simulations of Multiple Bodies in Relative Motion; AIAA-89-1996 (1989).
48. Dougherty, F.C. and J. Kuan. Transonic Store Separation Using a Three-Dimensional Chimera Grid Scheme; AIAA-89-0637 (1989).
49. Годунов C.K., Забродин A.B., Иванов М.Я., Крайко А.Н., Прокопов Г.П. Численное решение многомерных задач газовой динамики. М.: Наука, 1976.
50. Родионов А.В. Повышение порядка аппроксимации схемы С.К. Годунова. «ЖВМ и МФ», т.27, №12, 1987, стр. 1853-1860.
51. Акимов В.М., Бакулев В.И., Курзинер Р.И., Поляков В.В., Сосунов В.А., Шляхтенко С.М. Теория и расчет воздушно-реактивных двигателей. М.: Машиностроение, 1987.
52. J. Butterfield, Н. Yao, М. Price, С. Armstrong, S. Raghunathan,E. Benard, R. Cooper, D. Monaghan Enhancement of thrust reverser cascade performance using aerodynamic and structural integration // The Aeronautical Journal, December 2004
53. К.Вескег, J.Vassberg Numerical Aerodynamics in Transport Aircraft Design, Notes on Num. Fluid Mechanics, vol 100, pp 209-220
54. Keizo Takenaka, Kazuomi Yamamoto, Ryoji Takaki CFD validation study of NEXST-1 near Mach 1, ICAS 2004
55. Aurélia Cartieri, S. Mouton, G. Boyet Syudy of Support Iinterference Effects at S IMA Wind Tunnel within the "SAO" Project // ICAS 2010
56. Власенко В.В. О математическом подходе и принципах построения численных методологий для пакета прикладных программ EWT-ЦАГИ // Сборник статей. Труды ЦАГИ. 2007. Вып.2671. - С. 20-85.
57. Михайлов C.B. Объектно-ориентированный подход к созданию эффективных программ, реализующих параллельные алгоритмы расчета // Сборник статей. Труды ЦАГИ. 2007. Вып.2671. - С. 86-108.
58. С.М. Босняков, В.В. Власенко, И.А. Курсаков, C.B. Михайлов, Ю. Квест Задача интерференции оживального тела вращения с державкой аэродинамической трубы и особенности ее решения с использованием ЭВМ // Ученые записки ЦАГИ № 3 2011 г.
59. Dash S., Weilersteen G., Vaglio-Laurin R. Compressibility effects in free turbulent shear flows // TR-75-1436. AFOSR. 1975
60. Coakley T.J. Turbulence modeling methods for the compressible Navier-Stockes equations // AIAA-83-1693. 1983
61. Coakley T.J., Hsieh T. Comparison between implicit and hybrid methodsfor the calculation of steady and unsteady inlet flows // AIAA-85-1125. 1985
62. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974
63. Коваленко В.В, Кравченко А.И, Старухин В.П, Щенников С.А. Применимость модели невязкого газа к описанию обтекания сверхзвуковым потоком тел большого удлинения. // Ученые записки ЦАГИ 1987, т. 17, №6 стр.23-29.
64. Под ред. Хемша М. и Нилсена Дж. Аэродинамика ракет. М.: Мир 1989.
65. Курсаков И.А. Опыт практического применения EWT к решению задачи расчета параметров потока на входе в силовую установку, установленную на подветренной стороне фюзеляжа JIA. «Труды ЦАГИ» Выпуск 2671 2007
66. Петров К.П. Аэродинамика тел простейших форм. Научное издание -М.: Факториал, 1998
67. Воеводин A.B., Прысев Б.Ф. Использование панельного метода расчета для исследования сходимости результатов испытаний в АДТ на ленточной подвеске и хвостовой державке. // Ученые записки ЦАГИ т. 39 №1-2 2008
-
Похожие работы
- Исследование интерференции двигателя и планера пассажирского самолета интегральной схемы
- Разработка нейросетевых моделей нестационарных аэродинамических характеристик на больших углах атаки по результатам экспериментов в аэродинамической трубе
- Управление отрывно-вихревой структурой обтекания маневренного самолета на больших углах атаки для улучшения его аэродинамических характеристик
- Теоретические и экспериментальные исследования влияния теплообмена на аэродинамические характеристики крыла
- Численное моделирование задач обтекания сечений крыла несжимаемым потоком на основе метода Галеркина
-
- Аэродинамика и процессы теплообмена летательных аппаратов
- Проектирование, конструкция и производство летательных аппаратов
- Прочность и тепловые режимы летательных аппаратов
- Технология производства летательных аппаратов
- Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов
- Наземные комплексы, стартовое оборудование, эксплуатация летательных аппаратов
- Контроль и испытание летательных аппаратов и их систем
- Динамика, баллистика, дистанционное управление движением летательных аппаратов
- Электроракетные двигатели и энергоустановки летательных аппаратов
- Тепловые режимы летательных аппаратов
- Дистанционные аэрокосмические исследования
- Акустика летательных аппаратов
- Авиационно-космические тренажеры и пилотажные стенды