автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.01, диссертация на тему:Анализ и моделирование параметров иммунной системы как прогностического фактора при заболеваниях кожи

кандидата медицинских наук
Маланчук, Андрей Валентинович
город
Воронеж
год
2009
специальность ВАК РФ
05.13.01
Диссертация по информатике, вычислительной технике и управлению на тему «Анализ и моделирование параметров иммунной системы как прогностического фактора при заболеваниях кожи»

Автореферат диссертации по теме "Анализ и моделирование параметров иммунной системы как прогностического фактора при заболеваниях кожи"

На правах рукописи

2 0АВГ 2009

МАЛАНЧУК Андрей Валентинович

АНАЛИЗ И МОДЕЛИРОВАНИЕ ПАРАМЕТРОВ ИММУННОЙ СИСТЕМЫ КАК ПРОГНОСТИЧЕСКОГО ФАКТОРА ПРИ ЗАБОЛЕВАНИЯХ КОЖИ

05.13.01 — системный анализ, управление и обработка информации (медицинские науки)

АВТОРЕФЕРАТ

диссертации на соискание учёной степени кандидата медицинских наук

003475418

Воронеж - 2009

003475418

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Воронежская государственная медицинская академия имени H.H. Бурденко Федерального агентства по здравоохранению и социальному развитию» (ГОУ ВПО «ВГМА им. H.H. Бурденко Росздрава»)

Научный руководитель: доктор медицинских наук, доцент

Семенов Сергей Николаевич

Официальные оппоненты: доктор медицинских наук, профессор

Сафонов Михаил Юрьевич

кандидат медицинских наук Подоскин Андрей Анатольевич

Ведущая организация: ГОУ ВПО «Московский государст-

венный медико-стоматологический университет Федерального агентства по здравоохранению и социальному развитию»

Защита состоится «_»_ 2009 года в_часов, на заседании

диссертационного совета Д.208.009.03 при Государственном образовательном учреждении высшего профессионального образования «Воронежская государственная медицинская академия им. H.H. Бурденко Федерального агентства по здравоохранению й социальному развитию» по адресу: 394000, г. Воронеж, ул. Студенческая, 10.

С диссертацией можно ознакомиться в библиотеке ГОУ ВПО «Воронежская государственная медицинская академия им. H.H. Бурденко Федерального агентства по здравоохранению и социальному развитию», по адресу: 394000, г. Воронеж, ул. Студенческая, 10.

Автореферат разослан "_

2009 г.

Ученый секретарь диссертационного совета

В.Т. Бурлачук

Общая характеристика работы

Актуальность проблемы. Кожа является органом, постоянно контактирующим с агрессивными факторами внешней среды и активно реагирующим на наличие внутренних патологических процессов (Кубанова A.A., 1998, 2005; Иванов O.JI. 1998). Особенности строения, разнообразие функций и большое число внешних и внутренних факторов, воздействующих на кожу, обусловливают многообразие заболеваний кожи, требующих своевременной, точной диагностики и лечения (Ситкевич А.Е., 1997; Гандарова З.Б., 2000).

В частности, одной из распространенных инфекционных болезней человека является рожа, заболеваемость которой в России на протяжении многих десятилетий не имеет тенденции к снижению, составляя в среднем 15-20 на 10 тысяч населения (Черкасов B.JL, 1986, Ратникова Л.И., 2007, Бурданова Т.М., 2007). К числу неблагоприятных последствий перенесенного рожистого воспаления относится развитие хронических рецидивирующих форм этого заболевания. Ранний и точный прогноз течения рожи представляет на сегодняшний день весьма актуальную задачу (Амбалов Ю.М. с соавт., 1998, Ковтун Э.А., 2008).

Большую проблему представляют и канцерогенные заболевания кожи. В 2000 году в мире по данным Международного агентства по исследованию рака (МАИР) (Лион) было зарегистрировано более 10 млн. случаев заболевания злокачественными опухолями, среди которых 132000 случаев заболеваний составляет меланома, самая опасная форма рака кожи с высокой летальностью, составляющей около 50% от общего числа заболевших (Макин И.Л., Пшенис-нов К. П., 1999; Барминова И.В., 2003).

Заболевание рожей и меланомой с одинаковой частотой встречается в разных возрастных группах у мужчин и женщин, причем чаще страдают лица активного в трудовом и социальном плане возраста - от 30 до 50 лет.

По современным представлениям формирование рожистого воспаления происходит на фоне снижения факторов неспецифической резистентности организма, а также комплексной недостаточности клеточного и гуморального звеньев иммунитета (Краснова Е.И., 1997; Амбалов Ю.М. и соавт., 2005; Васильева Н.Г., 2006 и др.). Так же активно обсуждаются вопросы взаимоотношения компонентов иммунной системы и меланомы на клеточном уровне. В частности, с помощью моноклональных антител и техники клонирования ци-тотоксических Т-лимфоцитов удалось идентифицировать большое число опу-холеассоциированных антигенов, экспрессируемых на клетках меланомы (Кравец Б.Б. с соавт., 1999; Монахов A.C. с соавт, 2005).

В связи с вышеизложенным актуальным является изучение диагностической значимости взаимоотношений компонентов иммунной системы с выяв-

лением особенностей этих реакций при неканцерогенных и канцерогенных заболеваниях кожи.

Целью диссертационного исследования явилась разработка моделей определения иммунологической специфичности и индивидуального прогнозирования неканцерогенных, на примере рожи, и канцерогенных, на примере меланомы, заболеваний кожи на основе анализа параметров иммунологического статуса. В соответствии с целью работы были определены следующие задачи: -оценить статистические показатели, корреляционные связи и достоверность их динамики для компонентов иммунограмм при роже, как модели неканцерогенного, и меланоме, как модели канцерогенного заболевания кожи;

-разработать методику комплексного анализа показателей иммунного статуса для выявления взаимоотношений клеточных субпопуляций и показателей гуморального иммунитета, наиболее характерных для изученных заболеваний кожи;

-построить регрессионные модели, позволяющие определять иммунологическую специфичность изменений при изученных заболеваниях кожи, используя в качестве компонентов показатели иммунной системы, отобранные с использованием различных методик;

-рассчитать параметры модели, уточняющие прогноз течения меланомы с использованием клинических характеристик пациентов. Научная новизна исследования:

Разработана методика статистического анализа компонентов иммунного статуса, обеспечивающая формирование адекватного представления о комплексе иммунологических нарушений, специфичных для рожи, как модели инфекционного, и меланомы, как модели канцерогенного, заболеваний кожи.

На основе использования совокупности статистических методов определен набор диагностически значимых показателей иммунологического статуса, характеризующий такие заболевания кожи как меланома и рожа. Установлено, что при оценке иммунологического статуса соотношения его компонентов представляют более значимую диагностическую и прогностическую информацию, чем оценка динамики абсолютных значений отдельно взятых показателей.

С использованием регрессионного моделирования показана принципиальная возможность вычислительной диагностики и прогнозирования течения неканцерогенных, на примере рожи, и канцерогенных, на примере меланомы, заболеваний кожи, базирующихся на показателях иммунологического статуса пациентов в остром периоде заболевания.

Практическая значимость и реализация результатов работы: Сформирована регрессионная модель, обеспечивающая индивидуальную диагностику у пациента канцерогенных (меланома) или неканцерогенных (рожа)

заболеваний кожи при первичном обращении, которая может быть использована в качестве дополнительного эффективного инструмента диагностики (заявка на патент № 2008136304 от 08.09.2008 RU).

Создана оригинальная модель прогнозирования тяжести течения меланомы, учитывающая клинические показатели пациента, позволяющая непосредственно после оперативного удаления опухоли выявить пациентов с неблагоприятным прогнозом, предусматривающим развитие рецидивов и метастазов, для назначения адекватного лечения (заявка на патент № 2008137191 от 16.09.2008 RU; решение о выдаче патента от 04.08.2009 г.).

Разработанные модели обеспечивают минимизацию затрат на процесс дополнительной диагностики, исключение субъективного компонента трактовки результатов, сохранение принципа индивидуального подхода, точность оценки текущего статуса пациента и прогноза развития заболевания.

Результаты диссертации внедрены в практическую деятельность и учебный процесс кафедры онкологии с лучевой терапией и лучевой диагностикой с онкологией ИПМО ГОУ ВПО «ВГМА им. H.H. Бурденко Росздрава»; ГУЗ «Воронежский областной клинический онкологический диспансер»; ГУЗ «Воронежский областной центр по профилактике и борьбе со СПИД и инфекционными заболеваниями».

Достоверность полученных результатов обеспечена достаточным объемом клинических наблюдений, стандартностью сроков обследования и проводимого лечения, адекватностью методов математической обработки данных и проверкой полученных результатов с помощью нескольких методов статистической обработки.

Апробация работы. Основные положения диссертации обсуждены на I Всероссийской конференции молодых ученых, организованной Воронежской государственной медицинской академией им. H.H. Бурденко и Курским государственным медицинским университетом, Воронеж, 2007г; I Всероссийской конференции молодых ученых Курского государственного медицинского университета, 2007 г.; заседаниях онкологического общества г. Воронежа, 2007-2008 гг.

Публикации. Основные результаты диссертационной работы изложены в 10 публикациях, в том числе 1- в журнале, рекомендованном «Перечнем ВАК».

Структура и объем диссертации Текст диссертации изложен на 112 страницах, работа иллюстрирована 17 рисунками и 25 таблицами, включая таблицы приложения. Список литературы содержит 108 источников, из них, 62 отечественных и 46 зарубежных.

Основные положения диссертации, выносимые на защиту.

Для выбора компонентов для построения модели влияния показателей иммунной системы на вид и тяжесть заболеваний кожи на примере рожи и мелано-

мы из наиболее часто используемых методов статистического анализа наиболее целесообразно выбирать регрессионный анализ полной матрицы исследуемого набора.

Построение окончательной, уточняющей, модели инфекционного или канцерогенного заболевания кожи следует использовать метод множественной линейной регрессии и доступные на текущий момент времени лабораторные и клинические показатели, имевшие на предварительном этапе моделирования высокий уровень значимого влияния на вид заболевания кожи.

Уточняющую диагностику тяжести течения меланомы кожи с высокой степенью достоверности позволяет провести модель индивидуального расчета, использующая в качестве компонентов клинические характеристики пациентов, такие, как стадия заболевания, наличие изъязвлений, митозов, лимфоидной инфильтрации, гистологический тип и толщину опухоли.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Работа выполнена на базе ГОУ ВПО ВГМА им. H.H. Бурденко Росздрава (ректор д.м.н., проф. Есауленко И.Э.), ГУЗ «Воронежской областной клинический онкологический диспансер» (главный врач к.м.н. Чевардов Н.И.) и ГУЗ "Воронежский областной центр по профилактике и борьбе со СПИД и инфекционными заболеваниями» (главный врач д.м.н. Мамчик Т.А.).

Во введении обоснована актуальности темы исследования, сформулирована его цель, поставлены задачи. Приведены научная новизна и практическая значимость, сведения об апробации и внедрении результатов исследования.

В первой главе рассмотрены известные на сегодняшний день способы диагностики и прогнозирования заболеваний кожи на примере рожистого воспаления и меланомы кожи. Показано, что существующие модели имеют логический, описательный характер. Зачастую предлагаемые варианты моделирования и прогнозирования в качестве критериев, определяющих прогноз, имеют очень общие, скорее социально-гигиенические, чем медицинские характеристики состояния пациента. Собственную реакцию организма и возможности коррекции её за счет влияния на иммунный статус пациента либо не учитывают вообще, либо ограничиваются одним-двумя иммунными показателями, спонтанно подобранными и не дающими полного представления о реальных взаимоотношениях в системе организм-болезнь.

Собраны и классифицированы сведения о состоянии иммунологической реактивности организма человека при меланоме кожи. За последнее время удалось выявить значительное число факторов, влияние которых статистически достоверно повышает вероятность заболевания меланомой кожи. Однако сегодня ни один из них не может быть признан главным, абсолютным или обязательным для возникновения заболевания. Таким образом, построение моделей зависимости

исхода консервативного или хирургического лечения меланомы является серьёзной исследовательской задачей.

Установлено, что в патогенезе неканцерогенных заболеваний кожи, например, рожистого воспаления, вызванного стафилококковой инфекцией, существенное значение принадлежит нарушениям в системе клеточного иммунитета, которые можно охарактеризовать как вторичный иммунодефицит. У значительной части больных рожей в остром периоде наблюдается как относительный, так и абсолютный В-лимфоцитоз. При выздоровлении эти показатели имеют тенденцию к нормализации. У больных рецидивирующей формой рожи абсолютный лимфоцитоз отмечается у 31% случаев в остром периоде и в 62% случаев в периоде выздоровления.

Приведенные данные подтверждают, что состояние иммунной системы пациентов с заболеваниями кожи различного генеза имеет первостепенное значение в прогнозе его течения. Это в свою очередь требует обязательно учета соотношения параметров иммунного статуса при построении моделей диагностики этих патологий.

На основании проведенного анализа литературы определены цель и задачи исследования.

Во второй главе приведены характеристики исследованных групп пациентов, изученных параметров иммунной системы, средств и методов исследования, использованных в работе.

Материалом для работы послужили данные иммунологических исследований 17 здоровых добровольцев, 167 пациентов с меланомой кожи и 59 пациентов с рецидивирующей рожей. Все пациенты с меланомой были прослежены нами в период с 1998 по 2006 год, через 5 лет после проведения первичной операции по удалению меланомы фиксировалось к какой клинической группе отнесен пациент по результатам текущего обследования. 3-4-я клиническая группа расценивались как благоприятный прогноз, таких пациентов оказалось 112, 2-я клиническая группа или смерть как неблагоприятный прогноз, таких пациентов оказалось 55.

Средний возраст обследованных составлял 48±12 лет. По показателям распределения возраста и пола обследованных, группы статистически достоверно не различались.

Всем пациентам, после установления клинического диагноза проводили исследование крови иммуно-лабораторными тестами 1-Н уровней по Р.В. Петрову с идентификацией с помощью моноклональных антител дифференцировочных маркеров основных популяций и субпопуляций лимфоцитов, фагоцитарного показателя и числа, поглотительной и метаболической способности фагоцитов, определением уровня иммунных глобулинов классов в, А, М.

Здоровым добровольцам исследование проводили однократно. Пациентов с рожистым воспалением обследовали дважды - в остром периоде заболевания при поступлении в стационар и через три месяца после начала курса терапии. Пациентам с меланомой кожи обследование проводили перед оперативным удалением опухоли, что соответствовало началу лечения после установления клинического диагноза, и через три месяца после оперативного вмешательства. Далее диспансерное наблюдение и исследование иммунной системы вели с кратностью, предусмотренной протоколом наблюдения за пациентами с диагнозом «меланома кожи». В рамках настоящей работы результаты последующих наблюдений не учитывались за исключением отметки о годичной выживаемости и состоянии пациента по истечении года после удаления опухоли.

С целью стандартизации протоколов исследования пациентов с меланомой была создана специальная программа «Динамическое наблюдение клинических и иммунологических параметров пациентов с меланомой кожи» Свидетельство о гос. регистрации программы ЭВМ №2008611509 от 25.03.2008.

Программа предназначена для сбора, хранения и систематизации данных о динамике клинических и иммунологических показателей пациентов с меланомой кожи; включает функции пополнения картотеки пациентов: паспортной части и данных о клинической динамике заболевания. На каждого пациента ведется протокол с внесением текущих сведений по иммунологическому статусу. Программа написана на языке Visual Basic (как инструменте MS Excel), разработана для операционной среды Windows NT/XP, имеет объем 6 180 Кб.

Расчеты параметров иммунологического статуса в группах исследования проводили с помощью специально созданного с этой целью инструмента - базы данных, выполненных как СУБД линейного типа на базе Microsoft Excel. «Анализ реакций субпопуляций иммунокомпетентных клеток в процессе лечения» Свидетельство о гос. регистрации базы данных № 2008620136 от 25.03.2008г.

База содержит данные о клинических, иммунологических и лабораторных показателях пациентов с заболеваниями кожи канцерогенного (меланома кожи) и неканцерогенного (рецидивирующая рожа) генеза, а также группы сравнения -практических здоровых однократных донорах.

В общем виде структура построения доказательной базы и расчета параметров моделей для диагностики изучаемых заболеваний приведена на рис. 1.

Приведены и обоснованы методики расчета параметров иммунной системы, сведения об использовании основных методов математической статистики, моделирования и анализа данных для оценки результатов и прогнозирования биологической и медицинской информации.

Группа исследования

Здоровые добровольцы (п=17)

Кратность исследования

Регистрируемые параметры

Пошаговый

алгоритм исследования

Пациенты с меланомой кожи (п=167)

Пациенты с первичной рожей (п=59)

однократно

благоприятный неблагоприятный

прогноз прогноз

(п®131) (п*36)

- при первичном обращении; - через три месяца после оперативного лечения

-до начала лечения (острый период заболевания); - через три месяца после начала терапии

сведения о клинических параметрах пациентов; лабораторные показатели: Лимф, абс.; СРЗ+; СР4+; С08+; СР11в+; СШ6; С020+; С025+; С095+; ФП; ФЧ; ИАН НСТ; НСТсп; НСТак; |дО; 1дА; 1дМ; Лейк.; НейтрПЯ; НейтрСЯ; Эоз.; Мои.; Лимф.

1 - определение изменений иммунологических показателей при повторном обследовании пациентов;

2 - выявление параметров с наиболее существенной динамикой от уровня до начала лечения с использованием описательной статистики, корреляционного анализа, специальных методов анализа иммунограмм (Земсков A.M., 1994);

3 - создание регрессионных моделей дифференциальной диагностики и интенсивности прогрессирования заболеваний изучаемых кожи на основе полной матрицы и с использованием параметров, выявленных на предыдущем этапе;

4 - проверка работы моделей на обучающих выборках; выбор наиболее адекватной модели на основании чувствительности, специфичности, точности;

5 - вычисление диапазона коэффициентов для индивидуального прогнозирования вида и тяжести заболеваний кожи.

Рис. 1. Общая схема структуры исследования.

В третьей главе с использованием ряда общепринятых статистических методов изучена реакция компонентов иммунной системы на проводимое лечение в группах исследования, проведено ранжирование этих изменений и выявлены показатели, имеющие наибольшую динамику в ответ на проведенное лечение.

Общепринятой на сегодняшний день схемой анализа является отслеживание динамики средних значений относительно нормы (группы практически здоровых доноров) или относительно уровня острого периода заболевания в процессе лечения. Под средними значениями, как правило, в медицине подразумевают среднее арифметическое выборки.

Однако наиболее полное представление о различиях выборок можно получить при исследовании параметров функционала, включающих несколько компонентов статистических параметров, характеризующих определенную выборку.

Анализ полученных результатов показал, что оценка относительных изменений отдельных показателей иммунного статуса, независимо от того, какая группа обследованных используется в качестве группы сравнения, не обеспечи-

вает существенных диагностических отличий или выраженных особенностей тяжести процесса или их динамики в процессе лечения (рис. 2А, 2Б, 3).

Следующий шаг в алгоритме выявления значимых параметров, позволяющих четко и однозначно различать нозологические классы и степень тяжести заболеваний заключался в ранговой оценке статистически значимого «отклика» отдельных иммунных параметров на лечебное воздействие.

Рис. 2. Относительные изменения иммунологических показателей в %% от уровня показателей здоровых лиц у пациентов до начала лечения (А) и через 3 месяца от начала лечения (Б).

Обозначения: -уровень контроля (100%); ~ рецидивирующая рожа;

~°~меланома с благоприятным прогнозом, - - * - - меланома с неблагоприятным прогнозом; статистически достоверные отличия (Ро<0,05) показателя при роже (*), при меланоме с благоприятным прогнозом (#), при меланоме с неблагоприятным прогнозом (@).

Ранговая оценка позволила выделить несколько показателей, изменения которых в ответ на лечебное воздействие имеют высокий рейтинг, независимо от выбора точки отсчета - норма, острый период заболевания при исследуемых видах заболевания и тяжести их течения. Так, общее количество лимфоцитов, СЭЗ+, С025+, ^А, 1§М по динамике изменений находятся в первой половине рейтингового списка, располагаются на местах выше 12 из 23 изученных параметров. Для таких параметров, как С08+, С011в+, НСТсп значимость динамики имеет более высокий рейтинг при одной из изученных нами нозологических форм и низкий при другой. Тем не менее, оценка значимости динамики параметров описательной статистики с помощью 1>критерия Стыодента позволяет сформулировать некоторый алгоритм отбора показателей иммунной системы для включения в модель определения вида и тяжести заболевания.

Рис. 3. Относительные изменения иммунологических показателей в %% от уровня показателей до начала лечения ^ пациентов через 3 месяца от начала

лечения.

Обозначениям— уровень контроля (100%); ~ —О— рецидивирующая рожа; ~~меланома с благоприятным прогнозом, - -* --меланома с неблагоприятным прогнозом; статистически достоверные отличия (Ро<0,05) показателя при роже (*), при меланоме с благоприятным прогнозом (#), при меланоме с неблагоприятным прогнозом (@).

С использованием следующего статистического метода - корреляционного анализа удалось установить, что некоторые из изученных параметров иммунной системы образуют достоверно большее количество корреляций. Набор показателей иммунной системы, образующий наибольшее количество корреляций во многом совпадал с набором показателей, отобранных с сравнительной оценки математических ожиданий выборок исследованных групп.

Таким образом, изучение динамики количества корреляций для изученных показателей иммунной системы подтверждает отсутствие четких однонаправленных тенденций и наличие значительных изменений взаимосвязей компонентов иммунитета при изученных заболеваниях. При этом выраженные изменения характерны для ограниченного и конкретного набора показателей. В связи с этим можно предложить следующую пошаговую схему отбора компонентов для дальнейшего моделирования, основываясь на результатах корреляционного анализа (рис. 4, 5).

Рис. 4. Алгоритм отбора показателей иммунной системы для включения в модель оценки вида и тяжести заболевания кожи.

Следующим методом статистического моделирования, который мы использовали для выявления наиболее релевантных показателей иммунной системы среди изученных был расчет степени иммунологических расстройств (А.М.Земсков, 1999) по формуле:

(показатель-больного Л jqq^ показатель• здорового )

Изменения каждого расчетного параметра пациента менее чем на 33% от уровня математического ожидания в группе здоровых доноров определялось как I степень расстройств иммунной системы, от 34 до 66% — II степень, выше 66% — III степень иммунных расстройств. При получении знака «-» изменения характеризовались как иммунологическая недостаточность (СИН), при получении знака «+» как гиперфункция иммунной системы (ГИС).

Исследование динамики устранения выявленного иммунодефицита в группах исследования после проведенного лечения также не позволяет сделать однозначных заключений, претендующих на использование в качестве клинической модели вида и тяжести заболеваний кожи (рис. 6).

Оценка динамики количества значимых корреляций относительно уровня практически здоровых доноров (нормы)

Г

Оценка динамики количества значимых корреляций относительно уровня острого периода заболевания

показатель подлежит включению в модель оценки вида и тяжести заболевания

показатель исключается из списка учитываемых

Рис. 5. Алгоритмическая схема отбора показателей иммунной системы для включения в модель оценки вида и тяжести заболевания кожи,

Лимф. абс. СОЗ+ С04+ СБ8+ С011в+ СЮ16 СП20+ СБ25+ СХ>95+ ФП ФЧ ИАН НСТ НСТсп КСТак

1«А 1вМ ЛеНк. СОЭ НейтрПЯ НейтрСЯ Эоз

Лимф.

-40,0%

Рис. 7, Динамика количества пациентов, имеющих 2-3 степень иммунологической недостаточности в группе пациентов с рожистым воспалением после курса лечения.

Из общих закономерностей, подмеченных нами в процессе расчетов по этой методике, можно отметить лишь одно - набор компонентов иммунной системы в наибольшей степени измененный в остром периоде заболевания или показывающий наиболее значительную динамику в процессе лечения практически тот же, что и отобранный нами в качестве компонентов построения модели вида и тяжести заболеваний кожи на предыдущих этапах исследования.

В четвертой главе отмечено, что одним из основных средств моделирования и анализа эффективности функциональной взаимосвязи клинических и иммунологических параметров, влияющих на динамику и прогноз тяжести заболевания является требование строгого математического описания структуры объекта моделирования, в частности показателей иммунной системы. Это позволяет найти аналитические зависимости между входными параметрами анализируемой системы и показателями функционирования в случае, если искомая модель является достаточно простой. Наиболее приемлемым методом имитационного моделирования, являющимися эффективным средством при анализе объектов, таких, как иммунная система, с иерархической или стохастической системой связей между элементами модели является регрессионный анализ.

Мы использовали наиболее простой и доступный метод линейной множественной регрессии со следующим обоснованием.

Заданное пространство признаков X' представляет собой абсолютные значения изученных компонентов иммунной системы в остром периоде заболевания. Их размерность р>1, состоит из величин конкретных измерений х = {х1, ..., х], ..., хр}, где х] - значение ]-го компонента иммунной системы, в остром периоде заболевания. В матрице X' столбец, в который внесены коды групп наблюдения, а именно 0 - здоровые добровольцы, 1 - пациенты с рецидивирующей рожей, 2 -пациенты с меланомой кожи благоприятного прогноза, 3 - пациенты с мелано-мой кожи неблагоприятного прогноза, считали зависимой переменной или откликом у, а остальные признаки т, т < р, т > 1, определены нами как объясняющие или варьируемые переменные. Поскольку на предварительных этапах исследования установлено, что массив наблюдений статистически репрезентативен, то можно сформировать обучающую выборку в виде матрицы независимых переменных X хц , ] = 1,2,.. ,,т, и сопряженного с ней вектора-столбца У у 1, где 1 = 1,2,...,п - количество строк измерений (п > ш), для которых все значения численно определены.

Необходимо сконструировать уравнение, выражающее закон изменения отклика У в зависимости от конкретных значений независимых переменных X ху.

Модель наблюдений имеет вид:

Л = в 1*11 + - + дт хвп » *=!,•■■,«> п>т,

где № - значение объясняемой переменной в i-м наблюдении; - из-

6

вестное значение j-ой объясняющей переменной в i-м наблюдении; J - неизвестный коэффициент при j-ой объясняющей переменной.

Использование множественного регрессионного анализа имеет чрезвычайно широкие возможности для построения моделей взаимовлияния переменных в медицинских исследованиях, содержащих, как правило, десятки потенциальных переменных (Шитиков В.К. с соавт., 2003; Шитиков В.К. с соавт., 2008, Розен-берг Г.С. с соавт., 2008,).

Поставив задачу оценки влияния комбинации компонентов иммунной системы на фактор отклика, в качестве которого мы использовали вид и тяжесть заболеваний кожи, можно построить несколько вариантов регрессионных моделей, позволяющих прогнозировать вид и динамику развития патологического процесса на примере заболеваний кожи.

Первый вариант построенной модели в качестве расчетного метода использовал множественную линейную регрессию и включал весь набор исследуемых показателей.

Результаты работы полученной модели проверяли на обучающей выборке, в качестве которой использовали исходные данные всех пациентов изучаемых групп. Чувствительность, специфичность и точность работы модели при проверке её на обучающей выборке показали 100% результат.

Однако расчет индивидуального прогноза для пациентов, обратившихся с кожными заболеваниями, для практического врача представляется достаточно затруднительным как раз в силу своей многокомпонентности, требует значительных затрат времени и большой сосредоточенности внимания. Поэтому мы использовали различные алгоритмы минимизации набора компонентов для построения аналогичной модели, учитывая необходимость сохранения высокого уровня её чувствительности, специфичности и точности.

В качестве компонентов следующего варианта модели мы использовали метод предварительного отбора при помощи традиционных способов анализа исходного состояния и динамики показателей иммунной системы на лечебные воздействия. В качестве критерия отбора выбрана наибольшая динамика показателя в ответ на лечебные воздействия.

Получены следующие показатели работы модели на обучающей выборке: чувствительность = 95,7%; специфичность = 89,6%; точность = 92,6 %.

Результаты приведенных расчетов свидетельствуют, что модель прогноза вида и тяжести заболеваний кожи, включающая отобранные с помощью традиционных методов анализа компоненты, значительно уступает модели, построенной с учетом всех исследованных компонентов. Кроме того, коэффициент детер-

минации такой модели ниже в сравнении с коэффициентом детерминации модели учитывающей максимальный набор компонентов - 76,27 % против 88,83%.

Альтернативным методом минимизации набора компонентов для построения модели прогнозирования является использование тех компонентов, которые показали наибольшую значимость при построении регрессионной модели с использованием всех изученных компонентов. Поскольку компонентов, влияющих на прогноз заболеваний кожи, с принятой в медицине достоверностью не менее 90-95%, оказалось лишь два, мы приняли решение включить в набор и те компоненты, значимость влияния которых составляла около 80%.

Прогноз = 1,74624 - 0,373825* Лимф - 0,00289553* СОЗ+ - 0,0674485* С011в+ +1,04409* СШ6+ + 2,08387* С020+ - 1,71682* С025+ + 0,736794* СЭ95+ +0,00532813* ФП + 0,059057* ^А.

Результаты проверки модели: чувствительность = 95,1%; специфичность = 97,9%; точность = 96,5%.

Результаты приведенных расчетов свидетельствуют, что модель прогноза вида и тяжести заболеваний кожи, включающая отобранные с помощью регрессионного анализа компоненты несколько уступает модели, построенной с учетом всех исследованных компонентов, однако превосходит модель, построенную с учетом отбора методами традиционного анализа. Коэффициент детерминации такой модели незначительно ниже, чем аналогичный показатель модели, учитывающей максимальный набор компонентов - 82,73% против 88,83%.

Таким образом, модель прогноза вида и тяжести заболеваний кожи, построенная с учетом предварительно отобранных по результатам регрессионного анализа полной матрицы компонентов, показывает достаточную чувствительность специфичность и точность, содержит небольшое количество компонентов, что не затрудняет расчеты индивидуальных коэффициентов прогнозирования для практического врача. Обобщая результаты построения моделей вида и тяжести заболеваний кожи, приведенные в этой главе, можно сделать некоторые заключения, позволяющие выработать общий подход к процессу моделирования и прогнозирования с использованием в качестве базового регрессионный анализ показателей иммунной системы (рис. 8, 9).

Однако дифференциальная диагностика благоприятного или неблагоприятного прогноза меланомы с помощью этой модели представляется затруднительной, поскольку полученные на обучающей выборке диапазоны коэффициентов оказались перекрывающимися (см. табл. 1).

Постоянно меняющиеся методы оценки показателей иммунной системы, появление новых и уточнение существующих сведений о маркерах дифференци-ровки лимфоцитов, расширение возможностей оценки функционирования имму-нокомпетентных клеток и продуцируемых ими белков не позволяют создать уни-

версальную модель прогнозирования вида и тяжести заболеваний. Однако результаты нашего диссертационного исследования позволяют дать достаточно универсальные рекомендации построения алгоритмов отбора компонентов, моделирования и индивидуального прогнозирования интересующих исследователя состояний.

Шаг 1.

Шаг 2.

Шаг 3.

Расчет влияния всех изучаемых компонентов на вид и тяжесть заболеваний кожи с использованием множественного линейного регрессионного анализа

Расчет значений индивидуальных коэффициентов на обучающей выборке, включающей всех исследованных

пациентов; определение математического ожидания и его ошибки для выделенных групп исследования.

Расчет системы уравнений, позволяющих оценить чувствительность, специфичность и точность построенной модели:

Чувстоительиость -

Ш1+1Ю+Л1ШК)

где: ИП (истинные положительные результаты) число обследованных, у которых прогноз совпал с предсказанным; ЛО (ложные отрицательные результаты) число обследованных, у которых прогноз оказался хуже предсказанного; где ИО (истинные отрицательные результаты) число обследованных, прогноз которых совпал с предсказанным; ЛИ (ложно положительные результаты) - число обследованных, у которых прогноз оказался лучше предсказанного

Заключение о чувствительности, специфичности, точности модели.

можно использовать для индивидуального прогнозирования вида и тяжести заболеваний кожи.

необходимо ужесточение требований к отбору компонентов модели

Рис. 8. Пошаговый алгоритм отбора компонентов для построения модели вида заболеваний кожи.

Построение регрессионной модели, включающей в качестве компонентов показатели иммунной системы, определяемые в остром периоде заболевания, позволяет четко и однозначно дифференцировать вид заболеваний кожи и с достаточной долей точности определять прогноз тяжести течения заболевания.

Рис. 9. Структурная схема алгоритма формирования модели вида заболеваний кожи.

С использованием построенной модели для каждого из пациентов рассчитан индивидуальный коэффициент прогноза, затем рассчитано математическое ожидание и его ошибка для групп исследования (см. табл. 1).

Таблица 1.

Средние значения коэффициентов регрессионной модели для отобранных методами регрессионного анализа показателей иммунной системы, влияющих на тяжесть заболеваний коэ/си

Группа исследования М ш

доноры 0,109 0,062

рецидивирующая рожа 1,002713 0,31

меланома кожи благоприятного прогноза 2,223542 0,254

меланома кожи неблагоприятного прогноза 2,623147 0,187

Из таблицы следует, что существует принцип линейности возрастания коэффициентов прогноза с увеличением клинической тяжести заболевания. Перекрывания диапазонов индивидуальных коэффициентов для каждой из групп исследования нет, изученные заболевания кожи можно легко дифференцировать по значению полученного коэффициента для индивидуального прогнозирования вида и тяжести заболеваний кожи. Если коэффициент меньше единицы, то пациент не имеет заболеваний кожи, если коэффициент лежит в диапазоне от 1 до 2 баллов - у пациента рожистое воспаление; если диапазон коэффициента от 2,3 до 2,5 (данные приведены с учетом максимального разброса величины коэффициента, полученного на обучающей выборке) то у пациента меланома кожи, имеющая благоприятный прогноз, если коэффициент превышает 2,5 единицы у пациента меланома кожи неблагоприятного прогноза.

Для пациентов с установленным диагнозом «меланома кожи» была рассчитана следующая модель, учитывающая индивидуальные клинические особенности пациента.

Для построения модели использованы результаты, полученные при пред- и послеоперационном клиническом обследовании 167 пациентов с установленным диагнозом «меланома кожи».

У пациентов во время подготовки к операции по удалению меланомы и по результатам анализа полученных в ходе операции материалов гистологического исследования иссеченной опухоли фиксируют следующие показатели: пол, возраст, стадию меланомы, группу крови, резус-фактор, наличие изъязвлений, митозов, лимфоидной инфильтрации, гистологического типа опухоли, её толщину в мм, уровень инвазии. Для показателей, носящих качественный характер, мы присваивали признакам следующие значения: пол - женщины (0), мужчины (1); стадия меланомы в соответствии с общепринятыми римскими обозначениями; резус-фактор (0) отсутствует, (1) присутствует; для изъязвлений, митозов, лимфоидной инфильтрации (0) признак отсутствует, (1) признак присутствует; гистологический тип опухоли — узловая (1), лентигомеланома (2), поверхностно распространяющаяся (3), эпителиоидноклеточная (4), безпигментная (5), сочетание нескольких (6).

С использованием множественного регрессионного анализа получена следующая модель, описывающая прогноз развития меланомы. Тяжесть течения = 4,74472 + 0,311714*пол+ 0,0920974*возраст - 1,22181*стадия заболевания - 0,232456*группа крови - 2,77509*резус-фактор + 0,597768* наличие изъязвлений + 1,27497*наличие митозов-1,11004*наличие лимфоидной инфильтрации- 1,31926* гистологический тип опухоли + 0,0719651*толщина опухоли - 0,562743* инвазии.

Все 167 пациентов были прослежены нами в период с 1998 по 2006 год, через 5 лет после проведения первичной операции по удалению меланомы фиксировалось к какой клинической группе отнесен пациент по результатам обследования через 5 лет. 2-3-я клиническая группа расценивались как благоприятный прогноз, 4-я клиническая группа или смерть как неблагоприятный прогноз.

С помощью полученной модели на обучающей выборке из 167 пациентов рассчитали следующие значения (см. табл. 2) коэффициентов прогноза.

Таблица 2.

Средние значения коэффициентов регрессионной модели

влияющих на тяжесть течения меланомы кожи

Группа исследования М ш

меланома кожи благоприятного прогноза 0,132 0,033

меланома кожи неблагоприятного прогноза 2,850 0,115

Максимальное значение коэффициента, полученное в группе неблагоприятного прогноза, составило 1,15; минимальное значение в группе благоприятного прогноза - 2,2. Для повышения надежности прогнозирования, по нашему мнению, следует использовать именно нижнюю границу показателя, полученного на обучающей выборке, а не средние значения для исследованных групп пациентов.

Таким образом, используя предложенную модель можно осуществлять индивидуальное прогнозирование наличия тяжести течения меланомы практически сразу после выполнения первичной операции, что позволит принимать превентивные меры у пациентов с неблагоприятным прогнозом, и продлевать таким образом длительность периода выживания для этой категории больных. Выводы.

1. Расчет статистической значимости динамики параметров иммунной системы на основе математического ожидания выборок для исследованных в работе групп пациентов с рецидивирующей рожей и меланомой кожи позволил установить, что к числу наиболее значимо меняющихся параметров относятся абсолютное количество лейкоцитов, носители маркеров дифференцировки С011в+, СЭ16+, С020+, С025+, С095+, фагоцитарный показатель, иммуноглобулины класса А.

2. Модели выявления наиболее значимо меняющихся показателей иммунной системы при заболеваниях кожи меланомой и рожей, рассчитанные с использованием коэффициента диагностической ценности и определения степени иммунологических расстройств, в качестве значимых показателей выявили тот же набор, что и модели с использованием динамики средних значений и корреляционного анализа.

3. Регрессионная модель позволяет с наибольшей точностью, в сравнении с классическими методами анализа иммунной системы, дифференцировать канцерогенные (меланома) и неканцерогенные (рожа) заболевания кожи при первичном обращении пациента.

4. Для уточнения тяжести течения меланомы необходимо использовать дополнительные инструменты в виде регрессионной модели, включающей в качестве компонентов клинического и гистологического анализа опухоли.

5. Для построения индивидуальной модели вида и тяжести заболеваний кожи, обладающей достаточной точностью при минимальном наборе компонентов, наиболее целесообразно проводить отбор компонентов в два этапа: формирование регрессионной модели, включающей все исследуемые показатели иммунной системы и создание регрессионной модели, включающей лишь те показатели, значимость влияния которых на прогноз заболевания превышает 80%.

Практические рекомендации

Для прогнозирования вида заболеваний кожи целесообразно использовать следующую прогностическую модель, построенную с использованием линейной регрессии: Прогноз = 1,74624 - 0,373825* Лимф - 0,00289553* CD3+ - 0,0674485* CD11в+ +1,04409* CD16+ + 2,08387* CD20+ - 1,71682* CD25+ + 0,736794* CD95+ +0,00532813* ФП + 0,059057* IgA; при индивидуальном расчете для каждого пациента в случае, если полученный коэффициент: не превышает 1 - у пациента нет заболеваний кожи; лежит в диапазоне 1,1-2 -заболевание кожи носит неканцерогенный характер, при значении коэффициента более 2 - канцерогенное заболевание кожи.

Тяжесть течения меланомы с высокой степенью достоверности определяет модель индивидуального расчета, позволяющую оценить дальнейшее течение заболевания сразу после оперативного удаления опухоли. Рассчитывается при помощи модели: тяжесть течения = 4,74472 + 0,311714*пол + 0,0920974*возраст - 1,22181*стадия заболевания - 0,232456*группа крови -2,77509*резус-фактор + 0,597768* наличие изъязвлений + 1,27497*наличие митозов-1,11004*наличие лимфоидной инфильтрации- 1,31926* гистологический тип опухоли + 0,0719651*толщина опухоли - 0,562743* инвазии; если рассчитанное значение не превышает 2,2 - прогноз течения меланомы благоприятный, если коэффициент больше 2,2 - прогноз неблагоприятный.

Список работ, опубликованных по теме диссертации: Публикация в журнале «Перечня ..» ВАК Минобрнауки:

1. Костенко С.М. Прогнозирование заболеваний кожи с учетом взаимоотношений показателей иммунитета / С.М. Костенко, A.B. Маланчук, С.Н. Семенов // Вестник новых медицинских технологий. - 2008, Т., XV, № 4, - С. 117-118.

Публикации в других изданиях:

2. Мамчик Т.А. Важность цитологического метода в диагностике меланомы кожи / Т.А. Мамчик, С.М. Костенко, A.B. Маланчук // Научно-медицинский вестник Центрального Черноземья. - 2006. - № 22. - С. 53-56.

3. Маланчук A.B. Особенности восстановительного периода у пациентов, оперированных по поводу меланомы кожи / A.B. Маланчук // Научно-медицинский вестник Центрального Черноземья. - 2007. - № 30. - С. 236-238.

4. Черкашин H.H. Изменения иммунного статуса у пациентов со злокачественными новообразованиями и динамика иммунокомпетентных клеточных субпопуляций в процессе традиционного предоперационного лечения (на примере рака молочных желез) / И.Н. Черкашин, A.B. Маланчук // Научно-медицинский вестник Центрального Черноземья. - 2007. - № 28. - С. 236-238.

5. Маланчук A.B. Взаимосвязь клинических проявления меланомы кожи с субпопуляциями иммунокомпетентных клеток / A.B. Маланчук, С.М. Костенко, НЛО. Константинова // Материалы I Всероссийской конференции молодых ученых, организованной Воронежской государственной медицинской академией им. H.H. Бурденко и Курским государственным медицинским университетом, 16-17 февр. - Воронеж, 2007.

6. Зависимость характера иммунопатологии и её фармакологической коррекции от патогенеза, стадии, локализации заболеваний / Е.В. Бабурина, М.А. Земсков, Л.Г. Гертнер, В.А. Земскова, Ю.А. Деева, Р.В. Тонких, О.Н. Петренко, A.B. Маланчук // Материалы I Всероссийской конференции молодых ученых, Курского государственного медицинского университета, 29 нояб. - Воронеж, 2007.

7. Анализ реакций субпопуляций иммунокомпетентных клеток в процессе лечения : свидетельство о гос. регистрации базы данных № 2008620136 / Маланчук A.B., Костенко С.М., Пелешенко E.H., Воронцова З.А., Иванова Г.А. ; опубл. 25.03.2008.

8. Динамическое наблюдение клинических и иммунологичческих параметров пациентов с меланомой кожи : свидетельство о гос. регистрации программы ЭВМ № 2008611509 / Маланчук A.B., Костенко С.М., Пелешенко Е.И., Воронцова З.А. ; опубл. 25.03.2008.

9. Закономерности формирования и направленной коррекции иммунопатологии при гнойно-воспалительных заболеваниях / М.А. Земсков, C.B. Старцева, А.И. Токмаков, Е.В. Бабурина, A.B. Маланчук, Т.Д. Новосельцева // Научно-медицинский вестник Центрального Черноземья. - 2007. - № 31. - С. 38-43.

10. Прогнозирование тяжести и течения заболеваний кожи канцерогенного и неканцерогенного генеза / Н.И.Чевардов, Н.В.Урлапова, A.B.Маланчук, Ю.Н.Ряховский // Журнал теоретической и практической медицины. - 2008. - № 3. -С. 332-336.

© Воронежская государственная медицинская академия им. H.H. Бурденко, 2009 г

Формат 60х84'/]б Бумага офсетная Подписано в печать 03.07.2009 г Объем 1,0 усл.печ.листов - Тираж 100 экз, Заказ №

Отпечатано с готового оригинал-макета 394000, г. Воронеж, ул. ул. Студенческая, 10

Оглавление автор диссертации — кандидата медицинских наук Маланчук, Андрей Валентинович

ВВЕДЕНИЕ.

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Прогнозирование и моделирование заболеваний кожи неканцерогенного и канцерогенного генеза.

1.2. Этиология и состояние иммунологической реактивности при меланоме кожи.

1.3. Особенности иммунологических реакций при заболеваниях кожи не канцерогенного генеза.

ГЛАВА 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1. Объем материала и основные принципы построения алгоритма исследования.

2.2. Методы иммунологического анализа.

2.3. Методы моделирования параметров иммунной системы с использованием описательной статистики.

2.4. Методы моделирования с использованием корреляционного анализа

2.5. Проверка адекватности построенной модели.

ГЛАВА 3. АЛГОРИТМИЗАЦИЯ ОТБОРА КОМПОНЕНТОВ ИММУННОЙ СИСТЕМЫ ДЛЯ ВКЛЮЧЕНИЯ В МОДЕЛЬ ОПРЕДЕЛЕНИЯ ВИДА И ТЯЖЕСТИ ЗАБОЛЕВАНИЙ КОЖИ

3.1. Моделирование вклада показателей иммунной системы в динамику заболеваний кожи на основе параметров описательной статистики.

3.2. Моделирование значимости вклада показателей иммунной системы в динамику заболеваний кожи на основе корреляционного анализа.

3.3. Отбор компонентов для построения модели прогнозирования вида и тяжести заболеваний кожи на основе использования степени иммунологических расстройств и формулы расстройств иммунной системы.

ГЛАВА 4-ОЦЕНКА ТОЧНОСТИ И СПЕЦИФИЧНОСТИ МОДЕЛЕЙ ПРОГНОЗИРОВАНИЕ ВИДА И СТЕПЕНЬ ТЯЖЕСТИ ЗАБОЛЕВАНИЙ КОЖИ ПОСТРОЕННЫХ С ИСПОЛЬЗОВАНИЕМ РАЗЛИЧНЫХ АЛГОРИТМОВ ОТБОРА ЗНАЧИМЫХ КОМПОНЕНТОВ.

4.1. Построение модели на основе полной матрицы.

4.2. Минимизация компонентов для построения модели с учетом результатов предварительного отбора методами традиционного анализа.

4.3. Минимизация компонентов для построения модели с учетом результатов предварительного отбора по результатам регрессионного анализа.

ВЫВОДЫ.

Введение 2009 год, диссертация по информатике, вычислительной технике и управлению, Маланчук, Андрей Валентинович

Актуальность.

Кожа является органом, постоянно контактирующим с агрессивными факторами внешней среды, кроме того, этот орган активно реагирует на наличие внутренних патологических процессов (Кубанова А.А., 1998, 2005). Особенности строения, разнообразие функций и большое число внешних и внутренних факторов, воздействующих на кожу, обусловливают многообразие её заболеваний, требующих своевременной, точной диагностики и лечения (Ситкевич А.Е., 1997; Гандарова З.Б., 2000).

В частности, одним из наиболее распространенных инфекционных болезней человека является рожа — заболевание кожи не канцерогенного генеза (Черкасов B.JL, 1986; Бурданова Т.М., 2007). К числу неблагоприятных последствий перенесенного рожистого воспаления относится развитие хронических рецидивирующих форм этого заболевания. Ранний и точный прогноз течения рожи представляет на сегодняшний день весьма актуальную задачу (Панютич А.В. с соавт, 1995; Амбалов Ю.М. с соавт, 1998, Ковтун Э.А., 2008). Регистрируемая в России заболеваемость рожей на протяжении многих десятилетий не имеет тенденции к снижению, составляя в среднем 15-20 на 10 тысяч населения (Ратникова Л.И., с соавт. 2006, 2007, Бурданова Т.М., 2007).

Большую проблему представляют и заболевания кожи канцерогенного генеза. В 2000 году в мире, по данным Международного агентства по исследованию рака (МАИР) (Лион), было зарегистрировано более 10 млн. случаев заболевания злокачественными опухолями (ЗО), а в 2020 году число вновь выявленных случаев ЗО достигнет 16 млн. (Тымчишина М.В., 1999; Мерабишвили В.М., Чепик О.Ф., 2006, Haenssle Н.А. et al., 2009; Staudt M.R. et al., 2009). Среди злокачественных новообразований 132000 случаев заболевания составляет меланома, самая опасная форма рака кожи, при которой чрезвычайно высок процент смертельных исходов — по оценкам экспертов 66000 случаев ежегодно в результате этого заболевания

Макин И.Л., Пшениснов К. П. , 1999; Барминова И.В., 2003, Cho Е. et al., 2005; Maat W. et al, 2009).

Заболевание и рожей и меланомой с одинаковой частотой встречается как в молодом, так и в пожилом возрасте, у мужчин и женщин, причем чаще страдают лица активного в трудовом и социальном плане возраста от 30 до 50 лет (Вагнер Р.И., Анисимов В.В., Барчук А.С., 1996; Кубанов А.А. 1998).

По современным представлениям формирование рожистого воспаления происходит на фоне снижения факторов неспецифической резистентности организма, а также комплексной недостаточности клеточного и гуморального звеньев иммунитета (Черкасов В.Л., 1986; Амбалов Ю.М. и соавт., 1998; Gumy A. et al., 2004; Ferrone C.R. et al., 2005; Hsu J.Y. et al., 2009).

Взаимоотношения компонентов иммунной системы и меланомы на клеточном уровне так же активно обсуждаются в последние годы в научной литературе. В частности, с помощью моноклональных антител и техники клонирования цитотоксических Т-лимфоцитов удалось идентифицировать большое число опухолеассоциированных антигенов, экспрессируемых на клетках меланомы (Кравец Б.Б. с соавт. 1999; Костенко С.М., 2003; Монахов А.С., Анисимов В.В., Барчук А.С., 2005; Ayyoub М, et al., 1999; Zaritskaya L. et al., 2009; Agius E. et al., 2009; Margaryan N.V. et al., 2009).

В связи с вышеизложенным представляется актуальным изучение параллелей реакций компонентов иммунной системы, выявление особенностей алгоритмов их реакции при заболеваниях кожи различного генеза.

В работе были сформулированы следующая цель и задачи.

Целью диссертационного исследования явилась разработка моделей определения иммунологической специфичности и индивидуального прогнозирования неканцерогенных, на примере рожи, и канцерогенных, на примере мелаиомы, заболеваний кожи на основе анализа параметров иммунологического статуса.

В соответствии с целью работы были определены следующие задачи: -оценить статистические показатели, корреляционные связи и достоверность их динамики для компонентов иммунограмм при роже, как модели неканцерогенного, и меланоме, как модели канцерогенного заболевания кожи;

-разработать методику комплексного анализа показателей иммунного статуса для выявления взаимоотношений клеточных субпопуляций и показателей гуморального иммунитета, наиболее характерных для изученных заболеваний кожи;

-построить регрессионные модели, позволяющие определять иммунологическую специфичность изменений при. изученных заболеваниях кожи, используя в качестве компонентов показатели иммунной системы, отобранные с использованием различных методик;

-рассчитать параметры модели, уточняющие прогноз течения меланомы с использованием клинических характеристик пациентов. Научная новизна исследования:

Разработана методика статистического анализа компонентов иммунного статуса,, обеспечивающая формирование адекватного представления о комплексе иммунологических нарушений, специфичных для рожи, как модели инфекционного, и меланомы, как модели канцерогенного, заболеваний кожи.

На' основе использования совокупности статистических методов определен набор диагностически значимых показателей иммунологического статуса, характеризующий такие заболевания кожи как меланома и рожа. Установлено, что при оценке иммунологического статуса соотношения его компонентов представляют более значимую диагностическую и прогностическую информацию, чем оценка динамики абсолютных значений отдельно взятых показателей.

С использованием регрессионного моделирования показана принципиальная возможность вычислительной диагностики и прогнозирования течения неканцерогенных, на примере рожи, и канцерогенных, на примере меланомы, заболеваний кожи, базирующихся на показателях иммунологического статуса пациентов в остром периоде заболевания.

Практическая значимость и реализация результатов работы:

Сформирована регрессионная модель, обеспечивающая индивидуальную диагностику у пациента канцерогенных (меланома) или неканцерогенных (рожа) заболеваний кожи при первичном обращении, которая может быть использована в качестве дополнительного эффективного инструмента диагностики (заявка на патент № 2008136304 от 08.09.2008 RU).

Создана оригинальная модель прогнозирования тяжести течения меланомы, учитывающая клинические показатели пациента, позволяющая непосредственно после оперативного удаления опухоли выявить пациентов с неблагоприятным прогнозом, предусматривающим развитие рецидивов и метастазов, для назначения адекватного лечения (заявка на патент № 2008137191 от 16.09.2008 RU; решение о выдаче патента от 04.08.2009 г.).

Разработанные модели обеспечивают минимизацию затрат на процесс дополнительной диагностики, исключение субъективного компонента трактовки результатов, сохранение принципа индивидуального подхода, точность оценки текущего статуса пациента и прогноза развития заболевания.

Результаты диссертации внедрены в практическую деятельность и учебный процесс кафедры онкологии с лучевой терапией и лучевой диагностикой с онкологией ИПМО ГОУ ВПО «ВГМА им. Н.Н. Бурденко Росздрава»; ГУЗ «Воронежский областной клинический онкологический диспансер»; ГУЗ «Воронежский областной центр по профилактике и борьбе со СПИД и инфекционными заболеваниями».

Достоверность полученных результатов обеспечена достаточным объемом клинических наблюдений, стандартностью сроков обследования и проводимого лечения, адекватностью методов математической обработки данных и проверкой полученных результатов с помощью нескольких методов статистической обработки.

Апробация работы. Основные положения диссертации обсуждены на

I Всероссийской конференции молодых ученых, организованной Воронежской государственной медицинской академией им. Н.Н. Бурденко и Курским государственным медицинским университетом, Воронеж, 2007г; I Всероссийской конференции молодых ученых Курского государственного медицинского университета, 2007 г.; заседаниях онкологического общества г. Воронежа, 2007-2008 гг.

Публикации. Основные результаты диссертационной работы изложены в 10 публикациях, в том числе 1- в журнале, рекомендованном «Перечнем ВАК».

Структура и объем диссертации

Текст диссертации изложен на 112 страницах, работа иллюстрирована 17 рисунками и 25 таблицами, включая таблицы приложения. Список литературы содержит 108 источников, из них, 62 отечественных и 46 зарубежных.

Основные положения диссертации, выносимые на защиту.

Для выбора компонентов для построения модели влияния показателей иммунной системы на вид и тяжесть заболеваний кожи на примере рожи и меланомы из наиболее часто используемых методов статистического анализа наиболее целесообразно выбирать регрессионный анализ полной матрицы исследуемого набора.

Построение окончательной, уточняющей, модели инфекционного или канцерогенного заболевания кожи следует использовать метод множественной линейной регрессии и доступные на текущий момент времени лабораторные и клинические показатели, имевшие на предварительном этапе моделирования высокий уровень значимого влияния на вид заболевания кожи.

Уточняющую диагностику тяжести течения меланомы кожи с высокой степенью достоверности позволяет провести модель индивидуального расчета, использующая в качестве компонентов клинические характеристики пациентов, такие, как стадия заболевания, наличие изъязвлений, митозов, лимфоидной инфильтрации, гистологический тип и толщину опухоли.

Заключение диссертация на тему "Анализ и моделирование параметров иммунной системы как прогностического фактора при заболеваниях кожи"

Выводы.

1. Расчет статистической значимости динамики параметров иммунной системы на основе математического ожидания выборок для исследованных в работе групп пациентов с рецидивирующей рожей и меланомой кожи позволил установить, что к числу наиболее значимо меняющихся параметров относятся абсолютное количество лейкоцитов, носители маркеров дифференцировки CD11b+, CD 16+, CD20+, CD25+, CD95+, фагоцитарный показатель, иммуноглобулины класса А.

2. Модели выявления наиболее значимо меняющихся показателей иммунной системы при заболеваниях кожи меланомой и рожей, рассчитанные с использованием коэффициента диагностической ценности и определения степени иммунологических расстройств, в качестве значимых показателей выявили тот же набор, что и модели с использованием динамики средних значений и корреляционного анализа.

3. Регрессионная модель позволяет с наибольшей точностью, в сравнении с классическими методами анализа иммунной системы, дифференцировать канцерогенные (меланома) и неканцерогенные (рожа) заболевания кожи при первичном обращении пациента.

4. Для уточнения тяжести течения меланомы необходимо использовать дополнительные инструменты в виде регрессионной модели, включающей в качестве компонентов клинического и гистологического анализа опухоли.

5. Для построения индивидуальной модели вида и тяжести заболеваний кожи, обладающей достаточной точностью при минимальном наборе компонентов, наиболее целесообразно проводить отбор компонентов в два этапа: формирование регрессионной модели, включающей все исследуемые показатели иммунной системы и создание регрессионной модели, включающей лишь те показатели, значимость влияния которых на прогноз заболевания превышает 80%.

Практические рекомендации

Для прогнозирования вида заболеваний кожи целесообразно использовать следующую прогностическую модель, построенную с использованием линейной регрессии: Прогноз = 1,74624 - 0,373825* Лимф -0,00289553* CD3+ - 0,0674485* CD11b+ +1,04409* CD16+ + 2,08387* CD20+ - 1,71682* CD25+ + 0,736794* CD95+ +0,00532813* ФП + 0,059057* IgA; при индивидуальном расчете для каждого пациента в случае, если полученный коэффициент: не превышает 1 - у пациента нет заболеваний кожи; лежит в диапазоне 1,1-2 - заболевание кожи носит неканцерогенный характер, при значении коэффициента более 2 — канцерогенное заболевание кожи.

Тяжесть течения меланомы с высокой степенью достоверности определяет модель индивидуального расчета, позволяющую оценить дальнейшее течение заболевания сразу после оперативного удаления опухоли. Рассчитывается при помощи модели: тяжесть течения = 4,74472 + 0,311714*пол + 0,0920974*возраст -1,22181 *стадия заболевания - 0,232456*группа крови - 2,77509*резус-фактор + 0,597768* наличие изъязвлений + 1,27497*наличие митозов-1,11004*наличие лимфоидной инфильтрации- 1,31926* гистологический тип опухоли + 0,0719651*толщина опухоли - 0,562743* инвазии; если рассчитанное значение не превышает 2,2 — прогноз течения меланомы благоприятный, если коэффициент больше 2,2 - прогноз неблагоприятный.

Библиография Маланчук, Андрей Валентинович, диссертация по теме Системный анализ, управление и обработка информации (по отраслям)

1. Антоньев А.А. Об общепатологических закономерностях патогенеза аллергических дерматозов / А.А. Антоньев, В.И. Прохоренков // Вестник дерматологии и венерологии. - 1995. - № 2. - С. 20-22.

2. Барминова И.В. "Пульсирующая" дермотензия как способпластического закрытия дефекта в хирургическом лечении меланомы кожи: Автореф.дис.канд.мед.наук: 14.00.14 / И. В. Барминова; Рост.науч.-иссл.онколог.ин-т. Ростов н/Д, 2003. - 25с.

3. Бурданова Т.М. Эпидемиологические и клинико-патогенетические аспекты рецидивирующей рожи : автореф. дис. . канд. мед. наук / Т.М. Бурданова. Иркутск, 2007. - 20 с.

4. Вагнер Р.И. Меланома кожи. Ч. 2. : Диагностика, клиника, прогноз заболевания / Р.И. Вагнер, В.В. Анисимов, А.С. Барчук. СПб. : Наука, 1996.-280 с.

5. Влияние морфологических характеристик опухоли на прогноз у больных с меланомой кожи после комплексной терапии / Д.В. Кудрявцев и др. // Российский-онкологический журнал. 2006. - N 1. -С. 10-13.

6. Гаврилова Г.А. Клиническое и патогенетическое значение форм гемолитического стрептококка группы А у больных рожей г автореф. дис. . канд. мед. наук/Г.А.Гаврилова. М., 1987. — 21 с.

7. Гандарова З.Б. Социально-гигиенические аспекты заболеваемости болезнями кожи населения Республики Ингушетия : автореф. дис. . канд. мед. наук / З.Б. Гандарова. СПб., 2000.

8. Егоров М. В. Прогностическое значение структурно-функциональной характеристики меланомы кожи / М.В. Егоров, Е.А. Конкина, Р.С. Полищук // Архив патологии. 2005. - Т. 67, N 1. - С. 36-39.

9. Иммунокорригирующее действие лазерной терапии при рецидивирующей роже / Ю.Г. Притулина и др. // Актуальные проблемы медицины : юбил. сб. науч. тр. Воронеж,1998. - С. 269.

10. Иммунокорригирующие нуклеиновые препараты и их применение в медицине / A.M. Земсков и др.. Киев, 1994.

11. П.Ковтун Э.А. Иммунные и нейрорегуляторные нарушения и их коррекция у больных рожей : автореферат дис. . канд. мед. наук / Э.А. Ковтун. Краснодар, 2008. - 22 с.

12. Кожные болезни / под ред. Кубанова А.А. М. : ГЭОТАР Медицина, 1998.- 179 с.

13. Комбинированная иммунотерапия в лечении меланомы кожи / Б.Б. Кравец и др. // Прикладные информационные аспекты медицины. -1998.- Т. 1, № 1.-С. 51-58.

14. Компьютерный мониторинг заболеваемости меланомой кожи в Воронежской области /Б.Б. Кравец и др. // Современные проблемы информатизации в непромышленной сфере и экономике : сб. тр. — Воронеж, 2003. Вып. 8. - С. 49-50.

15. Костенко С.М. Прогнозирование заболеваемости и управление процессом лечения больных меланомой кожи на; основе информационного мониторинга и логического моделирования : автореф. дис. канд. мед. наук/С.М. Костенко. Воронеж, 2003. - 17с.

16. Крамаренко С.С. Дисперсионный анализ качественных признаков

17. ANOQVA) в популяционно-фенетических исследованиях электр.рес. http://www.ievbran.ru/kinl/Article/A23/Voll/KTD A0.htm.

18. Кубанова А. А. Клинико-экономический анализ как новая парадигма дерматовенерологии / А.А. Кубанова, А.А. Мартынов // Вестник, дерматологии и венерологии. 2005. - N 3. - С. 25-28.

19. Кудрявцев Д.В. Пол, локализация и региональные метастазы как прогностические факторы при комбинированном и комплексном лечении меланомы кожи / Д.В.'Кудрявцев, Ю.С. Мардынский, Г.Т. Кудрявцева// Вопросы онкологии. 2007. - Т. 53, N 2. - С. 170-174.

20. Кульберг А .Я. Молекулярная иммунология / А.Я. Кульберг. М. : Высшая школа, 1985. — 55 с.

21. Кунгуров Н.В. Особенности пролиферативных процессов в эпидермисе больных с различными типами течения атопического дерматита / Н.В. Кунгуров, С.В. Сазонов, М.М. Кохан // Вестник дерматологии и венерологии. 2000. - № 4. - С. 24-27.

22. Кунгуров Н.В. Особенности типов течения атопического дерматита / Н.В. Кунгуров // Вестник дерматологии. 2000. - № 1. - С. 19-21.

23. Лебедев K.A. Иммунограмма в клинической практике / К.А. Лебедев, И.Д. Понякина. М. : Наука, 1990. - 71 с.

24. Лазутина Т.Н. Выбор объема лимфаденэктомии в хирургическом лечении больных меланомой кожи : автореф. дис. . канд. мед. наук / Т.Н. Лазутина. Москва, 2007.

25. Мерабишвили В.М. Анализ выживаемости и погодичной летальности больных злокачественной меланомой кожи на популяционном уровне: обзор. / В.М. Мерабишвили, О.Ф. Чепик // Вопросы онкологии. 2006. -Т. 52, N4.-С. 385-391.

26. Милер И. Иммунитет человеческого плода и новорожденного / И. Мил ер. Прага : Авиценум, 1983. — 228 с.

27. Михнин А.Е. Кинетика роста метастазов меланомы кожи в регионарных лимфатических узлах и выживаемость больных / А.Е. Михнин, А.С. Барчук // Российский онкологический журнал. 2005. - N 4. - С. 14-18.

28. Монахов А.С. Определение клинической и цитогенетической эффективности иммунотерапии полиоксидонием у больных с меланомой кожи / А.С. Монахов, В.В. Анисимов, А.С. Барчук // Иммунология. 2005. - Т. 26, N 4. - С. 231-236.

29. Мониторинг некоторых показателей системы крови и иммунитета при различных комбинациях методов лечения у больных с меланомой кожи /А.И. Глотов и др. // Прикладные информационные аспекты медицины. 1998. - Т. 1, № 1. - С. 34-41.

30. Новик А.В. Значение плоидности ДНК в определении прогноза диссеминированной меланомы кожи и оценке эффективности лечения интерлейкином-2 / А.В. Новик, В.И. Новик, В.М. Моисеенко // Вопросы онкологии. 2007. - Т. 53, N 2. - С. 164-169.

31. Пат. 2120286. Российская Федерация, А61К31/71, А61К35/14. Способ лечения рожи / Амбалов Ю.М., Пшеничеая Н.Ю., Коваленко А.П., Усаткин А.В. 95108745/14. - заявл. 19.05.1995; опубл. 20.10.1998.

32. Пат. 5012787/14. Российская Федерация, 6 G01N33/52. Способ прогнозирования течения рожи / Панютич А.В., Панютич Е.А., Крапивин В.А., Зубрицкий П.К., Давыдов P.P., Чилингиров Р.Х. — заявл. 1991.11.28 опубл. 1995.01.20.

33. Пат. № 1458826 (RU) /Левина Л.Д. Амбалов Ю.М. Малышева Л.И.

34. Коваленко А.П. Способ прогноза рецидивирующего течения //Бюлл. изобр. 1989,6.

35. Потуданский Н.Ю. Медико-социальные аспекты меланомы кожи (распространенность, факторы риска, организация медицинской помощи) : автореф. дис. . канд. мед.наук / Н.Ю. Потуданский. -:14.00.33 / Н.Ю. Потуданский. Рязань, 2002. - 27 с.

36. Пустовой Ю.Г. Клинико-иммунологические особенности и лечениерожи у рабочих машиностроительной промышленности //Автореф. дис.к.м.н.-Киев, 1990,15с.

37. Ратникова Л. И. Современная клинико-эпидемиологическая характеристика рожи / Л.И. Ратникова, А.Н. Жамбурчинова, Н.Н. Лаврентьева // Эпидемиология и инфекционные болезни №1 2007

38. Ратникова Л.И. Клинико-эпидемиологическая характеристика рожи на современном этапе/ Л.И. Ратникова, А.Н. Жамбурчинова, Н.Н. Лаврентьева // Инфекционные болезни. 2006. - № 4. -С. 74-77.

39. Рожа: клиника, диагностика, лечение / В.Л. Черкасов и др. // Русский медицинский журнал. 1999. - Т. 7, № 8. - С. 359-362.

40. Ситкевич А.Е. Профилактика и лечение аллергических заболеваний кожи : справ, пособие / А.Е. Ситкевич, А.Г. Казеко. — Минск : Галаксиас, 1997.-208 с.

41. Соколов Е.И. Клиническая иммунология / Е.И. Соколов, П.В. Глан, Т.П. Гришина. М. : Медицина, 1998.-241 с.

42. Состояние иммунитета у больных меланомой кожи в зависимости от исхода лечения и вида лечения / Б.Б. Кравец и др. // Паллиативная медицина и реабилитация. 1999. - № 2. - С. 61.

43. Состояние иммунитета у больных с меланомой кожи в зависимости от исхода и вида лечения / Б.Б. Кравец и др. // Проблемы паллиативной помощи в онкологии. Антология научных публикаций. М., 2002. - Т. I-II. - С. 526.

44. Стефани Д.В. Иммунология и иммунопатология детского возраста / Д.В. Стефани, Ю.Е. Вельтищев. М. : Медицина, 1996. - 327 с.

45. Суровцева М.А. Клинико-иммунологическое исследование эффективности клеточной вакцины при меланоме кожи : автореф. дис. . канд. мед. наук / М.А. Суровцева. Новосибирск, 2006. - 19 с.

46. Тымчишина М.В. Ранняя диагностика злокачественных новообразований кожи в условиях диспансеризации : автореф. дис. . канд. мед. наук / М.В.Тымчишина. М., 1999. - 22 с.

47. Фаза клинических испытаний высоких доз рекомбинантного интерлейкина-2 (ронколейкина) у больных диссеминированной меланомой кожи / В.М. Моисеенко и др. // Вопросы онкологии. -2005. Т. 51, N 5. - С. 546-549.

48. Фрадкин С.З. Меланома кожи / С.З. Фрадкин, И.В. Залуцкий. Минск : ' Беларусь, 2000. — 221 с.

49. Фролов В.М. Рычнев В.Е. Журавлева Н. В. Пересадин Н.А.

50. Диагностическое и прогностическое значение уровня ЦИК у больных рецидивирующей рожей // Врач дело. 1990,6, с. 116-118.

51. Фролов В.М. Рычнев В.Е. Журавлева Н.В. Пересадин Н.А. Использование реакции ингибрования активности антител дляпрогнозирования рецидивов рожи // Лабораторное дело. -1984,7, с.414-416.

52. Хлыстова З.С. Становление системы иммуногенеза плода человека /

53. З.С. Хлыстова. М. : Медицина, 1987. - 256 с. 58.Черкасов В.Л. Белецкая Л.В. Анохина Г.И. Самотолкин К. Н. Болдырев

54. Н.В. Иммунопатологические механизмы поражения кожи у больныхрожей // Ж.Микробиол. 1989, 11,с.64-67.

55. Шитиков В.К. Интеллектуальные технологии структурного анализаэкологических систем. Диссертация в форме научного доклада на соискание ученой степени доктора ' биологических наук по специальности 03.00.16 экология, октябрь 2006 г.

56. A case report of malignant melanoma of the great toe / C. Ramanujam et al. // J. Foot Ankle Surg. 2009. - Vol. 48, N 2. - P. 225-229.

57. A pilot study on acute inflammation and cancer: a new balance between IFN-gamma and TGF-beta in melanoma / Y. Ma et al. // J. Exp. Clin. Cancer Res. 2009. - Vol. 19. - P. 23-28

58. A structure-based approach to designing non-natural peptides that can activate anti-melanoma cytotoxic T cells. / Ayyoub M, Mazarguil H, Monsarrat B, Van den Eynde B, Gairin JE. // J Biol Chem. 1999 Apr 9;274(15): 10227-34.

59. Allergic diseases from infancy to adulthood / ed. W.C. Bierman, D.S. Pearlman. Philadelphia : Saunders, 1988. - 824 p.

60. Application of a flow cytometric cytotoxicity assay for monitoring cancer vaccine trials / L. Zaritskaya et al. // J. Immunother. — 2009. — Vol. 32, N 2.-P. 186-194.

61. CD7 negative helper T-cell accu-mulate in inflammatory skin lesion / M. Moll et al. // J. Invest Dermatol. - 1994. - Vol. 102, N 3. - P. 328-332.

62. Clinicopathological features of and risk factors for multiple primary melanomas / C.R. Ferrone et al. // JAMA. 2005. - Vol. 294, N 13. - P. 1647-1654.

63. Cohabitation with a B16F10 melanoma-bearer cage mate influences behavior and dendritic cell phenotype in mice / M.Y. Tomiyoshi et al. // Brain Behav. Immun. 2009. - Vol. 19.

64. Comparative study of serologic tests for the diagnosis of asymptomatic visceral leishmaniasis in an endemic area / H.D. Romero et al. // Am. J. Trop. Med. Hyg. -2009. Vol. 81, N 1. - P. 27-33.

65. Concatenated multitype L2 fusion proteins as candidate prophylactic pan-human papillomavirus vaccines / S. Jagu et al. // J. Natl. Cancer Inst. -2009. Vol. 101, N 11. - P. 782-792.

66. Decreased TNF-alpha synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+ T cells during aging / E. Agius et al. // J. Exp. Med. 2009. - Vol. 206, N 9. - P. 1929-1940.

67. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dentric cells / K. Bennaceur et al. // Glycobiology. 2009. - Vol. 24.

68. Efficient cross-presentation depends on autophagy in tumor cells / Y. Li etal. // Cancer Res. 2008. - Vol. 68, N 17. - P.6889-6895.

69. Elemental bio-imaging of melanoma in lymph node biopsies / D. Hare et al. // Analyst. 2009. - Vol. 134, N 3. - P. 450-453.

70. EphA2 as a promoter of melanoma tumorigenicity / N.V. Margaryan et al. // Cancer Biol. Ther. 2009. - Vol. 21, N 8. - P. 3.

71. Evaluation of survival in Japanese stage IV melanoma patients treated with melanoma antigen-pulsed mature monocyte-derived dendritic cells / N. Nakai et al. // J. Dermatol. 2008. - Vol. 35, N 1. - P. 801-803.

72. Evidence for Natural Killer cell mediated protection from metastasis formation in uveal melanoma patients / W. Maat et al. // J. Invest. Ophthalmol. Vis. Sci. 2009. - Vol. 21.

73. Evidence of Systemic Th2-Driven Chronic Inflammation in Patients with Metastatic Melanoma / W.K. Nevala et al. // Clin. Cancer Res. 2009. -Vol. 24.

74. Expression and BRAF Mutation in Circulating Melanoma Cells Isolated from Peripheral Blood with High Molecular Weight Melanoma-Associated Antigen-Specific Monoclonal Antibody Beads / M. Kitago et al. // Clin. Chem.-2009.-Vol. 20.

75. GMP production of pDERMATT for vaccination against melanoma in aphase I clinical trial / S.G. Quaak et al. // Eur. J. Pharm. Biopharm. 2008. -Vol. 70, N2.-P. 429-438.

76. Grichnik J.M. Melanoma, nevogenesis, and stem cell biology / J.M. Grichnik // J. Invest. Dermatol. 2008. - Vol. 128, N 10. - P. 2365-2380.

77. Histological basis of MR/optical imaging of human melanoma mouse xenografts spanning a range of metastatic potentials.Xu HN, Zhou R, Nioka S, Chance B, Glickson JD, Li LZ.Adv Exp Med Biol. 2009;645:247-53.

78. IL-17 Secreted by Tumor Reactive T Cells Induces IL-8 Release by Human Renal Cancer Cells / T. Inozume et al. // J. Immunother. 2009. - Vol. 32, N2.-P. 109-117.

79. Inoculation of killed Leishmania major into immune mice rapidly disrupts immunity to a secondary challenge via IL-10-mediated process / I. Okwor et al. // Proc. Natl. Acad. Sci USA. 2009. - Vol. 106, N 33. - P. 1395113956.

80. Integrative analysis of epigenetic modulation in melanoma cell response to decitabine: clinical implications / R. Halaban et al. // Plos. one. 2009. -Vol. 4, N2.-P. 4563.

81. Investigation of the delayed type hypersensitivity reaction in atopic patients /

82. Z. Csoma et al. // Orv. Hetil. 2002. - Vol. 143, N 39. - P. 2235-2239.

83. Isolated cutaneous ciyptococcosis in an immunocompromised patient cured without antifungals / A.C. Datsis et al. // J. Int. J. Dermatol. 2009. - Vol. 48, N4.-P. 440-441.

84. Leishmania infantum sterol 24-c-methyltransferase formulated with MPL-SE induces cross-protection against L. major infection / Y. Goto et al. // Vaccine. 2009. - Vol. 27, N 21. - P. 2884-2890.

85. Mechanism of regulation and suppression of melanoma invasiveness by novel retinoic acid receptor-gamma target gene carbohydrate sulfotransferase / X. Zhao et al. // Cancer Res. 2009. - Vol. 69, N 12. -P. 5218-5225.

86. Melanoma arising in segmental nevus spilus: Detection by sequential digital dermatoscopy / H.A. Haenssle et al. // J. Am. Acad. Dermatol. 2009. -Vol.21.

87. Melanoma Progression Despite Infiltration by In Vivo-primed •-TRP-2-specific T Cells / V. Singh et al. // J. Immunother. 2009. - Vol. 32, N-2. -P. 129-139.

88. Model cell culture system for defining the molecular and biochemical events mediating terminal differentiation of human melanoma cells / M.R. Staudt et al. // J. Cell Physiol. 2009. - Vol. 218, N 2. - P. 304-314.

89. Mowa S. The monoclonal antibody to cytotoxic T lymphocyte antigen 4, ipilimumab (MDX-010), a novel treatment strategy in cancer management / S. Mowa, C. Verschraegen // Expert Opin. Biol. Ther. 2009. - Vol. 9, N 2.-P. 231-241.

90. Mucous membrane ulcers in an immunocompromised patient. Cutaneous cytomegalovirus infection / L. Leal et al. // Arch. Dermatol. 2009. - Vol. 145, N8.-P. 931-936.

91. Olivier C. Severe Streptococcus pyogenes cutaneous infections / C. Olivier // Arch. Pediatr. 2001. - Vol. 8, Suppl. 4. - P. 757-761.

92. Pleiotropic function of ezrin in human metastatic melanomas / C. Federici et al. // Int. J. Cancer. 2009. - Vol. 12.

93. Resolution of warts in association with subcutaneous immunoglobulinin immune deficiency / J.H. Lin et al. // Pediatr. Dermatol. 2009. - Vol. 26, N2.-P. 155-158.

94. Risk factors for melanoma by body site / E.Cho et al. // Epidemiol. Biomarkers Prev. 2005. - Vol. 14, N 5. - P. 1241-1244.

95. The carboxyl terminal trimer of procollagen I induces pro-metastatic changes and vascularization in breast cancer cells xenografts / D. Visigalli et al. // Cancer. 2009. - Vol. 18, N 9. - P. 59.

96. Treatment of inflammatory dermatoses by tumour necrosis factorantagonists / A. Jacobi et al. // J. Eur. Acad. Dermatol. Venereol. 2006. -Vol. 20, N 10.-P. 1171-1187.

97. Why cancer at the primary site and in the lymph nodes contributes to the risk of cancer death / J.S. Michaelson et al. // Cancer. 2009. Vol. 37, N5.-P. 1621-1627.