автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Моделирование движений токопроводящих тел в быстропеременном и постоянном магнитных полях
Оглавление автор диссертации — кандидата физико-математических наук Артемьева, Мария Станиславовна
ВВЕДЕНИЕ
ГЛАВА 1. ДИНАМИКА ПРОВОДЯЩИХ ТЕЛ МАЯТНИКОВОГО ТИПА В ВЫСОКОЧАСТОТНОМ МАГНИТНОМ ПОЛЕ И
1.1 Движения маятника с одним контуром тока.
1.2 Маятник с двумя проводящими контурами.
1.3 Плоские колебания проводящего шара.
1.4 Движения маятника в неоднородном магнитном поле.
ГЛАВА 2. МАГНИТНЫЙ ПОДВЕС В ПОЛЕ ПЕРЕМЕННЫХ ТОКОВ
2.1 Подвес с одной степенью свободы
2.2 Свободная левитация кольца с током высокой частоты
2.3 Подвес с кольцами разного радиуса
2.4 Модель подвеса с заданными напряжениями
ГЛАВА 3. УСТОЙЧИВОСТЬ КРУГОВОЙ ФОРМЫ РАВНОВЕСИЯ
КОЛЬЦА С ТОКОМ В ОСЕСИММЕТРИЧНОМ МАГНИТНОМ
3.1 Проводник с постоянным током
3.2 Устойчивость сверхпроводящего кольца
3.3 Учет изгибной жесткости 73 ЗАКЛЮЧЕНИЕ 75 СПИСОК ЛИТЕРАТУРЫ
Введение 2002 год, диссертация по информатике, вычислительной технике и управлению, Артемьева, Мария Станиславовна
Преодоление земного притяжения многие века было мечтой человечества. Вопрос о возможности свободного парения в воздухе за счет сил магнитного или электрического происхождения возник еще в глубокой древности. Исторические данные указывают на то, что в I-II в.н.э. совершались попытки с помощью магнитов подвесить в воздухе статуи храмов. Уже пятьсот лет легенде, согласно которой саркофаг Магомета, притягиваясь к магнитному своду, висит в воздухе, не касаясь каких-либо опор. Именно к моменту возникновения этой легенды относят происхождение термина "левитация", которым называется свободное парение твердых тел без механического контакта с окружающими телами.
В настоящее время интерес к свободному подвешиванию твердых тел не только не ослаб, но даже усилился. В определенной степени мечта о свободной левитации тел в магнитном поле нашла свое техническое воплощение. Поскольку исключение механического контакта в опоре полностью устраняет потери на трение, это открывает возможности использования магнитного подвеса в самых разнообразных областях науки и техники.
Применение магнитного подвеса существенно снижает трение и, следовательно, повышает постоянство вектора угловой скорости гироскопов и длительность их работы, что дает возможность разработки принципиально новых, намного более точных навигационных приборов, в частности, в системах стабилизации космических аппаратов, где требования, предъявляемые к точности, надежности и долговечности особенно высоки.
Магнитный подвес может быть использован и для исследования тех процессов, где механические связи искажают природу явления. Примером служит подвеска моделей самолетов и ракет в аэродинамических трубах.
Широкие возможности открывает применение магнитных подвесов при балансировке роторов и узлов машин.
Магнитная подвеска поезда позволяет преодолеть существующий для колесного транспорта барьер по скорости, а также уменьшить шум и повысить экономичность транспорта.
Магнитные опоры также находят применение в металлургии, где позволяют исключить нежелательные взаимодействия выплавляемых металлов с материалом тигля.
Для получения левитации недостаточно одной лишь компенсации силы тяжести и других сил, действующих на тело. Достигаемое при этом положение равновесия, должно быть устойчивым. Начало исследованию проблемы устойчивости системы свободных тел положил в 1842 г. Ирн-шоу, доказавший теорему о невозможности устойчивого равновесия в силовом поле, сила взаимодействия в котором обратно пропорциональна квадрату расстояния. В частности, устойчивое равновесие невозможно в постоянном магнитном поле. Теорему Ирншоу уточнил в 1940 г. Браун-бек, показав, что равновесие в магнитном поле может быть устойчивым при наличии в системе диамагнитных или сверхпроводящих тел. Свои теоретические выводы Браунбек подтвердил экспериментально. В 1939г. ему удалось осуществить устойчивый подвес 8мг висмута и 75мг графита в постоянном магнитном поле напряженностью 23000Э [31]. Однако в связи со слабым проявлением диамагнитных свойств у известных материалов результаты Браунбека не получили широкого практического применения.
Благодаря развитию криогенных технологий в настоящее время появилась возможности разработки и создания неуправляемых сверхпроводящих систем левитации, так как сверхпроводник, по существу, является идеальным диамагнетиком. Первые опыты в этом направлении были проведены еще в 1945г. В.К. Аркадьевым. Они доказали идеальный диамагнетизм сверхпроводника, приведя к идее создания сверхпроводящих магнитных опор [1]. Эта идея была воплощена в жизнь В.В. Козорезом [10], который при исследовании магнитной потенциальной энергии систем сверхпроводящих контуров аналитически получил условия их устойчивости и продемонстрировал эффект левитации сверхпроводника в эксперименте.
Устойчивости магнитного подвеса также можно достичь, если ввести автоматическое регулирование напряженности магнитного поля так, чтобы при изменениях положения тела, обеспечивалась компенсация действующих на это тело сил. Наиболее распространенными системами такого типа являются, так называемые, активные магнитные подвесы и подшипники, в которых используется система автоматического управления током силовых электромагнитов [8, 21]. Широкое применение также получили магниторезонансные подвесы, в которых устойчивость подвешиваемого в переменном магнитном поле тела достигается путем специальной настройки резонансных контуров, частоты которых изменяются при смещении тела из положения равновесия [21].
Важную роль в понимании особенностей поведения электромеханической системы, находящейся в быстропеременном магнитном поле, играет эффект стабилизации за счет знакопеременных сил. Стабилизация такого типа имеет место не только в магнитной системе, но и в системах другой природы. Например, в механических системах с высокочастотной вибрацией [4], которая, по сути, приводит к изменению средней потенциальной энергии. Как показано в настоящей работе этот эффект
AyfAWDT ТТГ*Т7/Л 7ТТ ОГМЭ Q "LJ ТТ ТТ СТ п г\г> тто TJTX ГГ Т77-»п-1/-чттттттт>т tv тлтттггпттт гглттт>ллап х»^ W-* X vv/ х v^v^^/^tAr J. J. Jfl УХ j U J. nUlJiA J.VACt>J- XI JTJ. i 11ША 1x ±jksks\j lj кондукционного типа. Принцип их действия базируется на использовании силы, действующей на проводник с переменным током, помещенный в быстропеременное магнитное поле. Несмотря на то, что в литературных источниках упоминается возможность создания таких подвесов, они остаются наименее изученными.
Кроме прикладного значения, задачи о движении твердого тела в магнитном поле имеют и принципиальный теоретический интерес.
При движении проводящего тела в магнитном поле в нем наводятся электрические токи. Эти токи, с одной стороны, взаимодействуя с магнитным полем, вызывают появление электромагнитных сил, изменяющих динамику тела. С другой стороны, из-за возникновения наведенных токов меняется и электромагнитное поле. Таким образом, для исследования электромеханических систем требуется решать совместно уравнения электродинамики и уравнения движения твердого тела. Эта задача в общей постановке является чрезвычайно сложной для аналитического анализа. Численный же подход к ее решению зачастую не может обеспечить полную картину воздействия магнитного поля на динамику проводящего тела. Такой подход связан с необходимостью интегрирования уравнений движения твердого тела одновременно с решением краевой задачи для уравнений Максвелла, описывающих электромагнитное поле. Кроме того, если в системе имеется несколько параметров и надо определить их влияние на ее движение, то процедура интегрирования должна быть повторена многократно. При анализе системы путем численного интегрирования может также возникнуть проблема устойчивости численных методов, поскольку в электромеханических системах часто наличествуют процессы либо протекающие с сильно различающимися скоростями, либо описываемые быстро осциллирующими функциями. Однако, иментхо о о гтлглтлг\ ттгпа ttt^tj-vtvotttt ст тэ тот/т тлг nnnoim/rov гтг\Аппггог) тт стт/^т г>гчг>гчту\гтт iJL Vy гю ОСА/ 1W1 V. X X ^UnyiVjiiJГА УХ AJ XCAlXVXl^V V/ xi Ч/ X V/AVX tAU'Y XI J^/ Ч/^Ч^ X. lAlXJt/ ХХЧУ X W/UU1VJ 11 ность медленных и быстрых процессов, открывается возможность исследования электромеханических систем такого типа асимптотическими методами разделения движений. Они позволяют значительно упростить исходные математические модели и выделить существенные комбинации параметров. Такое упрощение во многих случаях дает возможность проведения качественного анализа, благодаря которому можно предсказать поведение электромеханической системы при различных сочетаниях исходных параметров.
Изучению влияния магнитного поля на проводящие тела посвящена обширная литература. Одной из основополагающих книг по этому направлению следует назвать книгу Ю.И. Неймарка и Н.А. Фуфаева [20], в которой на основе дискретного описания электромеханических процессов в квазистационарном приближении выведены уравнения Лагранжа-Максвелла для электромеханических систем с замкнутыми и незамкнутыми токами.
В работах М.М. Ветюкова, К.Ш. Ходжаева и С.Д. Шаталова [5, 30] для определения медленных движений в быстро осциллирующем магнитном поле проводящего твердого тела также используется дискретное описание электромагнитного поля, задаваемого бесконечномерной системой контуров вихревых токов. Для упрощения полученных систем уравнений Лагранжа-Максвелла применяется асимптотический метод.
В монографии Ю.Г. Мартыненко [15] предложен иной подход к исследованию электромеханических систем. В книге рассматриваются такие системы, для которых возможно применение асимптотического расщепления задачи движения твердого проводящего тела и краевой задачи электродинамики. Такое расщепление может быть достигнуто в случаях высокочастотного и квазистационарного внешних электрических или
T\/r<aT-itrTjTiTTTT-v тт/лттотт
1ЩЛЛ lljtx i. I^IJIJV 11 VCiV/A .
Значительную роль в развитии теории электромеханических систем сыграли работы В.В. Белецкого [3], по изучению движения спутника в магнитном поле Земли, а также применению оскулирующих элементов при разделении медленных и быстрых движений в задачах динамики гироскопов с неконтактными подвесами.
Большинство работ по проблеме устойчивости электромеханических систем, посвящено анализу неконтактных подвесов, в состав которых входит следящая система, изменяющая силовое поле в зависимости от положения тела [8]. Также их обширная библиография приведена в [7, 21]. Кроме того, достаточно подробно изучены пассивные неконтактные подвесы, в которых устойчивость положения равновесия проводящего тела обеспечивается выбором параметров резонансных колебательных контуров [7, 21].
Наименее исследованной остается проблема устойчивости упругих проводящих тел в магнитном поле. Среди работ этого направления можно указать на статьи К.Ш. Ходжаева [29], посвященные исследованию поведения токонесущих струн и мембран в магнитном поле, и В.М. Сорина [26] по исследованию устойчивости соленоида под действием сжимающих магнитных сил, возникающих между его витками.
Диссертационная работа состоит из трех глав, в каждой из которых рассматривается и исследуется определенный класс электромеханических систем. Связаны эти главы между собой тем, что в каждой из них для выявления физического эффекта используется влияние на электромеханическую систему постоянного или быстропеременного внешнего магнитного поля.
Первая глава посвящена изучению динамики маятниковых систем в быстропеременном магнитном поле. Эта задача возникла как попытка объяснения экспериментов Бетено и Дубошинского, описанных в [12], которые наблюдали стационарные колебания железного шарика, подвешенного на нити над торцом соленоида с переменным током. В литературе приводятся различные математические модели исследования этого эффекта, но все они основаны на введении эвристических формул либо для силы взаимодействия, либо для взаимной индукции шарика и соленоида. В настоящей работе проводится исследование некоторых задач о движении проводящего тела с закрепленной точкой в быстроперемен-ном магнитном поле. Рассматриваются маятники, содержащие один или два ортогональных проводящих контура, а также маятник, включающий в себя проводящую сферу в однородном быстропеременном магнитном поле. Используя метод усреднения, для этих систем удалось построить существенно более простые модели, допускающие полное качественное исследование движений. В частности, было получено, что в быстропеременном магнитном поле верхнее положение проводящего маятника может оказаться устойчивым. Т.е. такой маятник ведет себя подобно маятнику с вибрирующей точкой подвеса. Также была рассмотрена электромеханическая маятниковая система, находящаяся в осесимметричном переменном магнитном поле, ось которого проходит через точку подвеса и нижнее положение равновесия маятника. Было обнаружено, что для сферического маятника количество положений равновесия и существование автоколебательных режимов определяется исключительно функцией распределения внешнего магнитного поля.
Вторая глава диссертационной работы посвящена изучению нового типа неуправляемого магнитного подвеса. В отличие от первой части работы, где основной интерес представляло дестабилизирующее действие электромагнитных сил, здесь, наоборот, изучается эффект стабилизации при помощи переменных электромагнитных воздействий. В качестве f-1" ■»"> лтлтттттл тт > */чтгл тгтг -гг/-чттт-»/-ч/->гч т-> т~» т тлл т//мт п лггАттт ли л » f О лттитгтли /Г ТТЛТГЛ ПОГЛИ/ГОФ При 1Л1 /1 iVlW/J^WlJri llV/fMvLJV-/'OGt i-> l> L>1 V^U IVU ^ СЛО 1 U JL H Ч/iVl 1V1 <Jj± JJLJTX J. XX v/ivi liu^iV ривается система, состоящая из двух проводящих колец в поле силы тяжести, одно из которых закреплено, а другое свободно. В закрепленном кольце задан переменный ток, а в свободном - напряжение той же частоты. Исследуются случаи одной, вертикальной, степени свободы и шести степеней свободы, т.е. свободной левитации. Найдены параметрические условия устойчивости равновесных положений подвеса, а также рассмотрены возможности для увеличения полученной зоны устойчивости.
Третья глава диссертации посвящена исследованию устойчивости круговой формы равновесия замкнутого тонкого провода с током. Эта задача актуальна для магнитных подвесов, когда свободное кольцо находится над источником поля и магнитная сила выталкивает его наверх против силы тяжести. В этом случае, в плоскости кольца создается сжимающее электромагнитное воздействие. Оно может привести к потере устойчивости круговой конфигурации и, следовательно, к изменению свойств системы. В качестве модели проводящего кольца рассматривалась тонкая нерастяжимая замкнутая нить с током в неоднородном осесимметричном магнитном поле, которая может деформироваться только в плоскости. Исследовались два случая: кольцо, имеющее электрическое сопротивление, запитанное постоянным током, и сверхпроводящее кольцо. Были найдены параметрические границы потери устойчивости по различным формам свободных колебаний, а также зависимость изменения конфигурации кольца от изменения параметров. Кроме того, рассматривалось влияние на потерю устойчивости учета изгибной жесткости кольца.
Заключение диссертация на тему "Моделирование движений токопроводящих тел в быстропеременном и постоянном магнитных полях"
ЗАКЛЮЧЕНИЕ
В результате проведенного в работе исследования, на основе изучения асимптотически упрощенных моделей некоторых видов электромеханических систем, проведен полный качественный анализ их динамики и устойчивости.
При изучении маятниковых систем в быстропеременном магнитном поле была доказана устойчивость неустойчивого в поле силы тяжести верхнего положения равновесия.
Исследование вращательных движений такого типа систем показало, что угловая скорость стационарного вращения не может превышать частоты изменения внешнего магнитного поля.
Показано, что учет в системе вязкого трения приводит при потере устойчивости верхнего и нижнего положений равновесия к мягкому зарождению предельных циклов, что соответствует возникновению автоколебаний.
Показано, что стационарные колебания маятников, включающих в качестве подвеса симметричные (сферические) проводящие тела, реализуются только в неоднородных магнитных полях, причем возможность их возникновения определяется исключительно функцией изменения поля. Таким образом, впервые на основе асимптотических методов нелинейной механики было дано математическое обоснование экспериментов М. Бетено и Я.Б.Дубошинского [12], в которых наблюдались плоские стационарные колебания проводящего маятника над торцом соленоида переменного тока.
На основе асимптотических методов была доказана возможность создания пассивного электромагнитного подвеса, состоящего из двух проводящих колец в поле силы тяжести, запитанных током высокой частоты.
Была математически продемонстрирована устойчивость подвеса с одной (вертикальной) степенью свободы в случае, когда подвижное кольцо находится под закрепленным. В случае, когда свободное кольцо находится над закрепленным, его положение равновесия устойчиво, даже если переменный ток (или напряжение) подводится только к закрепленному кольцу.
При рассмотрении левитации абсолютно свободного кольца над закрепленным была доказана неустойчивость его положения равновесия при любых соотношениях параметров подвеса.
Для свободного кольца, находящегося под закрепленным, была продемонстрирована устойчивость в малом по всем возможным степеням свободы, хотя и в достаточно узкой области технических параметров. Было определено, что использование в качестве подвешиваемого кольца меньшего радиуса, чем закрепленное, расширяет параметрическую зону устойчивости. Однако, практическая реализация подвеса на переменном токе возможна только при исключении его поворота из горизонтальной плоскости.
Поскольку изменение формы проводника меняет коэффициенты его само- и взаимоиндукции и, следовательно, его магнитные свойства, в работе были найдены параметрические границы области устойчивости круговой конфигурации плоского упругого кольца с током. При моделировании его нитью или тонким стержнем с током, в неоднородном осесимметричном магнитном поле (при условии, что ось поля совпадает с осью кольца в исходной недеформированной конфигурации), было определено, что потеря устойчивости может происходить по различным формам свободных колебаний.
Было показано, что хотя учет изгибной жесткости проводника качественно не меняет результата, полученного для проводящей нити, тем не менее параметрическая зона устойчивости значительно расширяется. Причем, чем выше предполагаемая форма потери устойчивости, тем сильнее увеличивается зона "устойчивости по этой форме".
В заключение можно отметить, что рассмотренные в работе задачи существенно расширяют круг задач, касающихся быстро развивающейся области аналитической механики - нелинейной электромеханики, а некоторые из них, в частности, исследование динамики электромагнитного подвеса на переменном токе, уже находятся в стадии своего практического воплощения.
Библиография Артемьева, Мария Станиславовна, диссертация по теме Математическое моделирование, численные методы и комплексы программ
1. Аркадьев В.К. Избранные труды. M.;JI.: Изд-во АН СССР, 1961.
2. Баутин Н.Н., Леонтович Е.А. Методы и приемы качественного исследования динамических систем на плоскости. М.: Наука, 1990.
3. Белецкий В.В., Хентов А.А. Вращательное движение намагниченного спутника. М.: Наука, 1985.
4. Блехман И.И. Вибрационная механика. М.: Наука, 1994.
5. Ветюков М.М., Ходжаев К.Ш. Уравнения медленных движений систем с квазициклическими координатами и электромеханических систем. В сб. "Динамика систем", Горький, изд-во горьковского ун-та, 1976, вып.9, с.92.
6. Волосов В.М.,Моргунов Б.И. Метод усреднения в теории нелинейных колебательных систем. М.: Изд-во МГУ, 1971.
7. Вышков Ю.Д., Иванов В.И. Магнитные опоры в автоматике. -М.: Энергия, 1978.89 10 111217
8. Журавлев Ю.Н. Синтез линейной оптимальной системы управления магнитным подвесом жесткого ротора. // Машиноведение, 1987, №4, с.49-56.
9. Иоффе Б.А., Калнинь Р.К. Ориентирование деталей электромагнитным полем. Рига: Зинатне, 1972.
10. Козорез В.В. Динамические системы магнитно взаимодействующих свободных тел-Киев: Наукова думка, 1981.
11. Кувыкин В.И. Магнитное трение в неконтактных подвесах. Нижний Новгород: Изд-во общества "Интелсервис", 1997.
12. Ланда П.С. Нелинейные колебания и волны. М.: Наука, 1997.
13. Ландау Л.Д., Лифшид Е.М. Электродинамика сплошных сред.-М.: Наука, 1982.
14. Лурье А.И. Аналитическая механика. М.: ГИФМЛ, 1961.
15. Мартыненко Ю.Г. Движение твердого тела в электрических и магнитных полях. М.: Наука, 1988.
16. Мартыненко Ю.Г. Движение проводящего твердого тела около неподвижной точки в магнитном поле. // Изв. АН СССР МТТ, 1977, №4, с.36-45.
17. Меркин Д.Р. Введение в механику нити. М.: Наука, 1981.
18. Меркин Д.Р. Введение в теорию устойчивости движения. М.: Наука, 1987.
19. Митропольский Ю.А. Метод усреднения в нелинейной механике. -Киев: Наукова думка, 1971.
20. Неймарк Ю.И., Фуфаев Н.А. Динамика неголономных систем. М.: Наука, 1967.
21. Осокин Ю.А., Герди В.Н., Майков К.А., Станкевич Н.Н. Теория и применение электромагнитных подвесов. М.: Машиностроение, 1980.
22. Пеннер Д.И., Дубошинский Я.Б., Козаков М.И. и др. Асинхронное возбуждение незатухающих колебаний. // УФН, 1973, т. 109, вып.2, с.402-406.
23. Сика З.К., Куркалов И.И., Петров Б.А. Электродинамическая левитация и линейные синхронные двигатели транспортных систем. -Рига: Знание, 1988.
24. Скубов Д.Ю., Ходжаев К.Ш. Системы с магнитоэлектрическими гасителями колебаний. // Изв. РАН МТТ, 1996, №2, с.64-74.
25. Сорин В.М. Некоторые особенности расчета электромеханических систем. // Труды ЛПИ, "Механика и процессы управления", Ленинград, 1988, №425.
26. Сорин В.М. Магнитомеханическая устойчивость упругого соленоида. // Труды ЛПИ, "Механика и процессы управления", С-Пб, 1992, №443, с.77-84.
27. Реймерс Н.А., Ходжаев К.Ш. Усреднение квазилинейных систем со многими быстрыми переменными. // Дифференциальные уравнения, 1978, т. 14, №8, с. 1388-1399.
28. Ходжаев К.Ш. Об устойчивости стационарных движений систем с квазициклическими координатами и механического равновесия под действием магнитного поля. // Изв. АН СССР. Прикладная математика и механика, 1973, т.37, с.400-406.
29. Ходжаев К.Ш. Нелинейные задачи о деформировании упругих тел в магнитном поле. // ПММ, 1970, т.34, вып.4, с.653-671.
30. Ходжаев К.Ш., Шаталов С.Д. О медленных движениях проводящего твердого тела в магнитном поле. // Изв. АН СССР. Механика твердого тела, 1981, №2, с. 175-181.
31. Braunbeck W. Freies Schweben diamagnetischer Korper im Magnetfeld. // Z.Phys., 1939, 112, H. 9, s.764-769.
-
Похожие работы
- Развитие научных основ моделирования и анализа электромагнитных процессов для систем проектирования асинхронных двигателей с токопроводящим слоем ротора
- Улучшение характеристик датчиков измерения слабых магнитных полей для систем управления
- Динамика частиц в вязкой жидкости в быстропеременных полях
- Разработка и применение процессов электроимпульсного разупрочнения углеродистых сталей и сплавов цветных металлов в операциях холодной листовой штамповки
- Основы теории и создание герметичных машин и аппаратов с магнитными муфтами
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность