автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.05, диссертация на тему:Метод и модели создания встраиваемых оптико-электронных устройств распознавания изображений в многомерном пространстве признаков
Автореферат диссертации по теме "Метод и модели создания встраиваемых оптико-электронных устройств распознавания изображений в многомерном пространстве признаков"
На правах рукописи
ТИТОВ ДМИТРИЙ ВИТАЛЬЕВИЧ
МЕТОД И МОДЕЛИ СОЗДАНИЯ ВСТРАИВАЕМЫХ ОПТИКО-ЭЛЕКТРОННЫХ УСТРОЙСТВ РАСПОЗНАВАНИЯ ИЗОБРАЖЕНИЙ В МНОГОМЕРНОМ ПРОСТРАНСТВЕ ПРИЗНАКОВ
05.13.05 — Элементы и устройства вычислительной техники и систем управления
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата технических, наук
Курск-2012
005042653
005042653
Работа выполнена в Юго-Западном государственном университете
Научный руководитель: доктор технических наук, профессор,
лауреат премии Правительства Российской Федерации в области науки и техники Емельянов Сергей Геннадьевич
Официальные оппоненты Ильин Анатолий Александрович
доктор технических наук, доцент, Тульский институт экономики и информатики, кафедра информатики и информационной безопасности, профессор
Тихонов Дмитрий Владимирович кандидат технических наук, НИЦ «г. Курск» ФГУП 18 ЦНИИ МО РФ, начальник отдела
Ведущая организация: Воронежский государственный
технический университет
Защита состоится 6 апреля 2012 г. в 14.00 часов на заседании диссертационн!
совета Д 212.105.02 при Юго-Западном государственном университете по адре
305040, Курск, ул. 50 лет Октября, 94 (конференц-зал).
С диссертацией можно ознакомиться в библиотеке Юго-Западн
государственного университета.
Автореферат разослан « № »¿¿¿у М-—2012 г.
Ученый секретарь диссертационного совета
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность работы. Задачей любого государства является обеспечение военной, продовольственной, экологической безопасности, технологической независимости, охраны здоровья. Все эти задачи сложно решить без применения овременных технических средств, среди которых оптико-электронные устройства вх°Дяи1ие в состав систем управления, предназначенных для .ашиностроения и приборостроения (высокоточные линейные и угловые измерения еталеи, узлов; фотометрические приборы; геодезические приборы), геологии годезии, картографии (спектральные приборы; спектрозональная тепловизионнм ггпаратура; фотограмметрические приборы для обнаружения и распознавания) аучных исследований, медицины (офтальмологические приборы для клинический ¡следований глазных сред, подбора и назначения средств коррекции зрения) сологии (многоспектральные оптико-электронные системы).
Современный этап развития методов обработки изображений и ОЭУ ходящих в системы автоматического управления, обусловлен усилением степени шяния тенденций, действующих в этой области техники на протяжении последних лет> которые можно условно поделить на две группы. К первой группе относятся тенденции алгоритмической, системотехнической [теграции устройства управления и объекта. Тенденции такого рода проявляются в фоком применении устройств управления, разработанных с ориентацией на ределенный класс или группу объектов. Одними из перспективных аппаратных атформ являются встраиваемые системы, вычислительными средствами в торых служат микроконтроллеры, микросхемы с программируемой структурой и их гибриды, цифровые сигнальные процессоры, что обеспечивает достижение <ордных массогабаритных показателей устройства управления и возможность жого изменения алгоритма управления. Область применения таких встраиваемых :тем довольно широка - автоматика, средства связи, медицинское оборудование говая техника и др. Использование специализированных вычислительных систем' анавливает дополнительные огряничения на допустимую производительность шслении, а также предъявляет Яяд требований к процессу проектирования
Ко второй группе относятся тенденции вовлечения в сферу практического юльзования так называемых «сложных» объектов. К этому классу принадлежат ■екты с высоким порядком уравнений в математическом описании, не полностью людаемые объекты, системы, функционирующие в условиях не полностью еделеннои внешней среды, системы с не полностью определенными целями явления и критериями оценки качества их функционирования. К этой же группе эсятся тенденции роста требований к качеству управления объектами 'влениГ6 Н0ВЫХ ОГр8НИЧеНИЙ К Режимам эксплуатации систем автоматического
Для решения указанных задач широко применяются методы теории
интеллектуальных систем (нечеткие и нейросетевые технологии, генетические алгоритмы и другие).
Следовательно, необходима трансформация методов обработки видеоинформации, содержащейся в изображениях, и оптико-электронных устройств, учитывающая особенности встраиваемости, что, в конечном счете, должно обеспечить сочетание интеллектуальных и встраиваемых технологи!" (простота, высокая надежность, минимизированные массогабаритные, стоимостные энергетические показатели). Наряду с этим, следует предусмотреть возможное^ анализа изображений в широком диапазоне частот, так как, зачастую, информаци: одного частотного диапазона (только видимого, инфракрасного шн ультрафиолетового) не обеспечивает решение задачи распознавания или измерени параметров объекта. При этом анализ нескольких частотных диапазоне обуславливает использование нескольких оптико-электронных датчиков, что, свою очередь, требует разработки методов взаимной калибровки с учетет особенностей встраиваемых ОЭУ и специфики решаемых задач; комплексирование информации, полученной от разных оптико-электронны датчиков (ОЭД), вызывает необходимость решения задачи принятия решения пр нескольких источниках данных, сводимую к двухальтернативной классификации.
Таким образом, противоречие между требуемыми быстродействием достоверностью распознавания образов на основе оптико-электронных устройств оперативно-техническими возможностями существующих средств определяе актуальность работы.
Указанное противоречие определяет следующую научно-техническу] задачу: разработка метода и алгоритмов распознавания изображений путем анализ изображений в широком диапазоне частот, формирования прнзнаковог пространства и решающего правила на основе обработки данны двухальтернативных классификаторов.
Диссертационная работа выполнена в соответствии с грантом Фонт Содействия Развитию малых форм предприятий в научно-технической сфере г программе «У.М.Н.И.К.» (государственный контракт №6076р/8555 от 28.06.2008), также в рамках аналитической ведомственной целевой программы Министерстт образования и науки РФ «Развитие научного потенциала высшей школы», те.\ 1.1.10 «Разработка фундаментальных основ алгоритмического конструирован! адаптивных высокоточных систем технического зрения широкого,назначения ¡V поддержки информационных технологий средств вычислительной техник распознавания образов и обработки изображений» (№ государственной регистращ 0120115099).
Целью диссертационной работы является разработка метода, алгорита предварительной обработки, распознавания изображений и встраиваемых оптик электронных устройств на базе твердотельных матричных приемников излучени обеспечивающих требуемую достоверность распознавания образов на осно:
формирования признакового пространства и анализа изображений в широком спектральном диапазоне.
Научно-техническая задача диссертационной работы декомпозируется на следующие частные задачи:
1. Анализ состояния вопроса создания встраиваемых оптико-электронных 'стройств на основе твердотельных матричных приемников излучения (ТМПИ). Обоснование направления исследований.
!. Разработка математической модели распознавания образов и анализа (зображений на основе обработки спектров ультрафиолетового, видимого и [нфракрасного диапазонов и принятия решений с использованием аппарата [ечеткой логики.
Разработка метода и алгоритма распознавания образов с учетом [вухальтернатавной классификации в условиях разных спектральных диапазонов юлучаемых изображений.
Разработка метода автоматической калибровки ОЭД, входящих в состав страиваемого оптико-электронного устройства (ВОЭУ).
Разработка структурно-функциональной организации ВОЭУ на основе ТМПИ [ совокупности двухальтернативных классификаторов.
Методы исследования. В работе для решения поставленных задач «пользуются проектная геометрия, теория распознавания образов и анализа зображений, математическое моделирование, теория нечеткой логики.
Новыми научными результатами и положениями, выносимыми на ащиту, являются:
Математическая модель функционирования ВОЭУ распознавания образов, собенностями которой является учет априорной неопределенности рабочей сцены внутренних параметров оптико-электронных устройств.
Метод автоматической калибровки, отличающийся возможностью выполнить алибровку трех ОЭД при их различных внутренних параметрах (оптической истемы и ТМПИ) по априори неизвестному эталонному объекту, выбираемому из бъектов рабочей сцены.
Метод и алгоритм распознавания образов, особенностью которых являются нализ спектров ультрафиолетового, видимого и инфракрасного диапазонов и ополнительное введение операций коррекции дисторсии, достоверного выделения онтуров и автокапибровки, позволяющие распознавать объекты при наблюдении в азличных спектральных диапазонах и изменяющихся параметрах ОЭУ.
Структурно-функциональная организация ВОЭУ распознавания образов, собенностью которой является введение оптико-электронных каналов обработки нформации ультрафиолетового, видимого и инфракрасного диапазонов излучения; вухальтернативного модуля распознавания; модуля обработки нечетких данных; ешающего устройства и связей между ними, позволяющая обеспечить решение
задачи распознавания в условиях разнородной информации различны спектральных диапазонов.
Объект исследования - встраиваемые оптико-электронные устройств; работающие в ультрафиолетовом, видимом и инфракрасном диапазонах излучения.
Предмет исследования - математические модели, методы, алгоритмы средства создания встраиваемых оптико-электронных устройств. Практическая ценность работы заключается в том, что - разработанные метод, алгоритм и ВОЭУ на базе ТМПИ позволяю обеспечивать требуемую достоверность распознавания образов на основ формирования признакового пространства и анализа изображений в широко! спектральном диапазоне, а также могут служить основой для разработки широког класса ВОЭУ многофункциональных систем управления;
разработанная структурно-функциональная организация ВОЭУ построенного по модульной архитектуре, и декомпозиция общей задачи на частны задачи позволяют в широком диапазоне варьировать функционально-стоимостны параметры созданного ВОЭУ и конфигурировать его в зависимости от целево] задачи.
Реализация и внедрение. Результаты диссертационных исследованж внедрены в ООО «Корпорация Ред Софт» (г. Москва) при разработке подсисте! безопасности; при выполнении научно-исследовательской работы №41-11 Рязанским государственным радиотехническим университетом, проводимой : рамках реализации аналитической ведомственной целевой программы «Научные ) научно-педагогические кадры инновационной России на 2009-2013 годы» (контрак №16.740.11.0086); при выполнении проекта (код 2.1.2/12.356) Томски? государственным университетом управления и радиоэлектроники «Исследование ] разработка методов коррекции искажений в телевизионных датчиках пр] экстремальных условиях контроля и наблюдения» в рамках АВЦП «Развита научного потенциала высшей школы (2009-2011 годы)»; при выполнении научно исследовательской работы Юго-Западным государственным университетом -опытно-конструкторской работы «Разработка научно-технических путей построения мобильной системы сбора, обработки и хранения информации», научно-исследовательских работ «Исследование научно-технических путей построения встраиваемых систем распознавания изображений объектов» и «Разработка научно-методического обеспечения профилактики чрезвычайных и кризисных ситуаций потенциально-опасных объектов с использованием трехмерного моделирования».
Научно-методические результаты, полученные в диссертационной работе, внедрены в учебный процесс кафедры «Вычислительная техника» Юго-Западного государственного университета и использованы при постановке учебных курсов «Основы теории распознавания образов», «Основы теории управления».
05 13 S""T,rC'°'"' """""" Согласно пас,юр,у специальна
( й '05 " ,Л""Л"" » У«РО«с™ вычислительно» ,„„„„ „ систем урав:
ГциГ„Г,;.Р,ССМ°,Ре"НаЯ ° ™CCePI"™- 1 иТГи™'
докладывались1"» "f"""' ' °С"ОШ" -™"4>™<«он,,ои рабош
«„„ lUa^oJbi' г:
<И™». 2,т ' ■ Испания, 2007 г, ГрецТТоз г! OTV В>~, научно-техническая конференция Гх£ Z (г.
« TZ—"
экологические „цформациониь.е технолог™» (г. Курск, 2Ю Г 1 г) к у^ТсГТ ™*Ч>— «Опгако-электронные приборы и
символьж>й г?Г' 0бРа6"К" "
работ аспирантов и МПrrnl, J Конкурс научно-исследовательских
и „пелпп! Д УЧ6НЫХ В °бласти стРатегического партнерства ВУЗов
и предприятии радиоэлектронной промышленности (г. Санкт-Петербург 2010 г V VI международная „аучно-техническал конференция «Электро^срлс^' и
Гф«ТеГ (Г" ТОМСК' 2010 Г°; УШ междУнаР°'дна^ научно-техническая
1е"Хг 2Ш, ТГем ПеР6ДаЧа И °бРабОТКа Й» Санкт-
международная научно-техническая конЛепенпия
"ГТоГьГ ТеХНОЛОГИИ И моделирование enet 1> Т
1осква 2011 г.) и научно-технических семинарах кафедры вычислительной техник', Эго-Западного государственного университета с 2008 по 2012 гг
.ублико^^ТпечТ™0 РГУЛЬТаШ ВЫП0Л~х исследований и разработок
ЬНS—
Личный вклад автора. Все выносимые на защиту Hav4HMP
щучены соискателем лично. В работах, опубликованный во вт^Ге^Гно искателем предложены: в Г1 2 23 26 281 _ авторстве, лично
«-». встраиваемых оцгикЦ^™ "„сТТрЖ^Г [тико-электронные усройс, „, коррекции „ pac„„„,„L tl^Sl Г.
[12,15,19,21] - методы и способы коррекции изображения; в [4,8,16-18,22] - метод и средства испытания оптико-электронных устройств.
Структура и объем работы. Диссертационная работа состоит из введени четырех глав, заключения, списка литературы, включающего 94 наименования, приложения, изложена на 139 страницах машинописного текста и поясняется 1 рисунками и 20 таблицами.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы диссертационной работ] сформулирована цель и обоснованы основные задачи, которые необходимо реши-для ее достижения, изложены полученные результаты, включающие научну новизну и практическую значимость, рассмотрены используемые метод исследования, описаны итоги применения результатов работы, приведены основнь научные положения, выносимые на защиту.
В первой главе проведен анализ современных методов распознавай изображений и ВОЭУ, позволивший сформулировать требования разрабатываемым методу и моделям создания ВОЭУ распознавания изображений.
Показан и обоснован выбор спектрального диапазона ВОЭУ, основанный ] анализе таких исходных данных, как классы наблюдаемых объектов, а также i параметры.
Проведенный анализ элементной базы ВОЭУ на основе приборов с зарядовс связью (ПЗС), КМОП технологии и микроболометрических матриц показал, ч' наиболее актуальной и перспективной является разработка ОЭУ на базе КМО приемников для ультрафиолетового и видимого спектральных диапазонов, т.к. oi обладают высоким быстродействием, малым энергопотреблением, низке стоимостью. Для инфракрасного диапазона более целесообразным являет использование микроболометрических матриц.
Выполнен анализ решения задачи распознавания образов в услови: разнородной видеоинформации на основе двухальтернативных классификатор! принятия решения.
Показана необходимость калибровки ВОЭУ в процессе его первоначалью настройки и дальнейшей работы.
Во второй главе разработана математическая модель распознавания анализа изображений для ВОЭУ:
ммюэу=мещфи,мт{мт)),м1к{мл)), (!)
где Uе - модель распознавания; МФИ - модель фильтрации изображения; Мщ модель коррекции дисторсии; Мт) - модель выбора калибровочного объекта; Мм модель выделения контуров; Мл - модель адаптации. .
Модель распознавания, особенностью которой является использован: трехмерных эталонов вектора, обеспечивает высокую скорость обработки данных.
Введем матрицу весов Wt и матрицу входных значений XtJ. Вычисляет поэлементно произведение данных матриц, после чего происходит суммирован всех элементов результирующей матрицы:
где хя - матрица входных значений; W9 - матрица весов.
После сравнения полученного значения с установленным порогом принимается решение о принадлежности изображения объекта к классу текущего эталона.
Модель фильтрации изображения, позволяющая выполнить фильтрацию изображения, имеет вид:
Мф„ (3)
где I - интенсивность света; д„;iJ - приращение интенсивности света для каждого центрального пикселя относительно соседних; Д,пш. - знак приращения интенсивности света; g - значение перелада яркости.
Модель коррекции дисторсии позволяет получить исправленное изображение при помощи переноса точек в их истинные позиции:
_ А = х + у-Х, (4)
А'=(х + Ах) + (у + Ау) ■ X, (5)
где Л . адрес очередного пикселя; А' - скорректированный адрес пикселя; х - номер столбца, у - номер строки, на пересечении которых находится очередной пиксель; X - размер кадра вводимого изображения по горизонтали; Ах, Ау - корректирующие смещения пикселя.
Модель выбора калибровочного объекта основывается на расчете значений функций принадлежности контуров, находящихся в кадре, и выборе контура с максимальным значением функции принадлежности мти = Яи£; ц,).
где fi( ~ функция принадлежности терма «четкий контур»; ¡i - функция принадлежности терма «длинный периметр»; - функция принадлежности терма «центр кадра»; //, - функция принадлежности терма «неизменный».
Модель выделения контуров основывается на частных производных Гаусса acnwj -дг -у
дх 2 палс ' ду 2по\ ' (/)
де <j, - масштабный параметр функции Гаусса, вычисляемый в каждой точке
зображения, и выглядит следующим образом:
" г
= z Z С + - рУУ1 Х^ rain, (8)
■1 *ж!
це а-2,Ь = 1.с = 5, Х] - измеренные данные, х„ - центральный пиксель выбранной
асти входного изображения.
МоДель_адаптации заключается в последовательном выполнении ряда
пераций:
• Расчет функций принадлежности для входных (//,,,//,,,/О и выходж переменной ().
• Определение нечетких правил управления, описывающих взаимосвязь меж; входными и выгодными переменными вида
Я/7У,:если есть М,,,х,то ц^, есть , (9)
где 2 = 1.л,«-количество правил управления.
• Определение уровней отсечения
X= (А ^ Л Мрг (Рг >л (Р>) а ... л мр„ (р„ )|/ = 1 ..и, (10)
где п - количество правил управления; л — операция взятия минимума.
• Расчет усеченных функций принадлежности на основе нечетких прав] управления
С' = (о и,..„.(/>))= | с, Л £ц,,.(/;),приэтомс. = )|!'=1 • ^ ^
• Объединение полученных усеченных функций принадлежности.
• Дефаззификация результата.
'' Разработанная математическая модель распознавания и анализа изображен! объектов послужила основой создания ВОЭУ, метода автоматической калибров] ОЭУ, а также метода и алгоритма распознавания изображений.
В третьей главе на основе предложенной математической мoдeJ распознавания и анализа изображений разработан метод и алгоритм распознавай] изображения (рис. 1). Метод распознавания изображений включает в себя:
Шаг 1. Ввод изображения с помощью ОЭУ в инфракрасном, видимом ультрафиолетовом диапазонах.
Шаг 2. Преобразование изображения в двумерный массив, элемента]* которого являются яркостные составляющие.
Шаг 3. Предварительный анализ изображения путем вычисления параметр! соотношения сторон входящего изображения, кода изображения объекта кодированного представления контура изображения объекта.
Шаг 4. Сравнение базы данных эталонов, имеющих характеристики, близкие вышеуказанным в шаге 3.
Шаг 5. Формирование трехмерной векторной модели и синтез проекц! эталона в масштабе, соизмеримом с входным изображением. В случае достижен: соответствия происходит процедура сравнения по формуле (2).
Шаг 6. Если значение Е, найденное по (2), находится в допустимом преде/ то соответствующие индексы заносятся в стек, который в процессе распознавай: заполняется индексами и соответствующими значениями Е.
Шаг 7. Формирование и вывод заданного количества проекций этaлo^ соответствующих максимальным значениям коэффициента Е.
Шаг 8. Принятие окончательного решения на основе двухальтернативш классификаторов.
Рис. 1. Алгоритм распознавания изображений
На основе предложенной математической модели распознавания и анализа изображений, а также алгоритма распознавания изображений разработана структурно-функциональная организация ВОЭУ (рис. 2).
Конструктив «КрэГп 19" ЗУ»
Молу ль питания
<5=?
Ж
Модуль предварите дь по I обработки на
Ж
Решающее устройство
Ж
Двухяльтерма-тивкым мо^ль распознавания
Ж
ш
ж
Клавиатура. «Мышь»
31
Ж!
Ж
Ж
оэу в ПК-лиапазоне
♦ ♦ ♦
Мол у ль ; ориентации ;
И 1 -
ОЗУ
В ВЯЛИМОМ
лиаиазоне
ГЗи..:
ор не« мании О'ЭУ
Ж!
Выхолное ус 1ройство сопряжения
j I I Выходные 1 ланные
ОЭУ в УФ-
-Л-. .
Мо.1>ль ориентации ОЭУ
рабочей
*
С II С II ы
Рис. 2. Структурно-функциональная организация встраиваемого оптико-электронного устройства
В состав ВОЭУ входят три ОЭУ, работающих в инфракрасном, видимом и ультрафиолетовом диапазонах, три модуля ориентации, прикрепленных к каждому ОЭУ, и три устройства сопряжения УС, модуль предварительной обработки изображения, решающее устройство, двухальтернативный модуль распознавания, выходное устройство сопряжения, дисплей, «мышь».
Предложенное ВОЭУ осуществляет ввод изображения с ОЭУ и коррекцию искажений изображения, а также обнаружение на изображении объекта заданного класса.
Разработан метод и алгоритм калибровки ВОЭУ, позволившие устранить погрешности изображения путем дополнительной их коррекции. На рис. 4 изображена схема расположения ОЭУ.
первое ШУ1
Рис.4. Схема расположения оптико-электронных устройств
Первое и второе ОЭУ1,2 направлены на один и тот же объект на различные его части. Третье ОЭУЗ направлено на всё изображение в целом. Разработанный метод заключается в попарной последовательной калибровке ОЭУ и коррекции дисторсии на полученных с ОЭУ изображениях.
Алгоритм калибровки и коррекции дисторсии представлен на рис. 5.
Рис. 5. Алгоритм калибровки и коррекции дисторсии встраиваемого оптико-электронного устройства
Разработанные алгоритм распознавания изображений, метод и алгоритм калибровки ОЭУ, а также структурно-функциональная организация ВОЭУ позволили разработать метод создания ВОЭУ распознавания изображений.
В четвертой главе для проведения экспериментальных исследований разработан аппаратно-программный стенд, позволяющий исследовать адекватность разработанной математической модели, а также получить численные значения параметров устройства, характеризующие точность калибровки дисторсии, достоверность распознавания изображения. В его состав входят вычислительный комплекс на базе встраиваемой архитектуры «Евромеханика 19» (одноплатный специальный вычислитель на базе процессора Intel Pentium4 с ОЗУ, ПЗУ); модуль распознавания, реализованный на сигнальном процессоре; модуль коррекции дисторсии; коммутационная плата с интегрированной системной шиной PCI; USB порт и Wi-Fi приемник; оптико-электронные датчики (ОЭД) со сменными объективами (ОЭД1 с ТМПИ Logitech9000 и объективами Canon 18-55мм, Canon 70300мм; ОЭД2 с ТМПИ Canon350D и объективами Canon 18-200мм; ОЭДЗ -беспроводной видеокамеры TrendNet 612 с опорно-поворотным устройством); прецизионного устройства ориентации Meade (погрешность ориентации в вертикальной и горизонтальной плоскостях менее 2'); ультрафиолетового осветителя, инфракрасного светодиодного осветителя (рис. 6).
Рис. 6. Структурно-функциональная схема аппаратно-программного стенда для проведения испытаний встраиваемого оптико-электронного устройства
Внешний вид аппаратно-программного стенда представлен на рис. 7.
Рис. /. инешний вид аппаратно-программного стенда
Исследования проводились в соответствии с разработанной методикой проведения экспериментальных исследований. Согласно этой методике ОЭД1 ОЭД2, ОЭДЗ устанавливались в горизонтальном положении, затем выполнялось уточнение уровня горизонта; устанавливались эквивалентные фокусные расстояния всех ОЭД в значение 35мм посредством итерационного определения текущего фокусного расстояния и его последующего уменьшения/увеличения до приведения к величине (35±0,5)мм; выполнялась автоматическая калибровка по известному эталонному объекту; корректировалась дисторсия; рассчитывались остаточные погрешности после калибровки дисторсии; измерялась точность калибровки по априори неизвестному удаленному объекту при больших фокусных расстояниях (Р= 100мм); ОЭД ориентировались в направлении удаленного объекта, в качестве которого выступали окна расположенного на расстоянии 560 м здания-устанавливались эквивалентные фокусные расстояния всех ОЭД в значение 100мм'
выполнялась автоматическая калибровка по автоматически выбранному априори неизвестному эталонному объекту; вычислялась погрешность калибровки; выполнялось сравнение с существующими результатами.
Основные параметры, полученные в результате экспериментальных исследований, показаны в табл. 1.
Таблица 1.
Основные параметры разработанного встраиваемого _оптико-электронного устройства
Устройство ВОЭУ Устройство распознавания Устройство калибровки
Предварительная обработка изображения Есть Нет Есть
Повышение достоверности выделения информативных признаков Есть Нет Нет
Мультиспектральный анализ Да Нет Нет
Погрешность калибровки дисторсии, пиксель 0,21-0,35 Нет 0,8-1,2
Достоверность распознавания 0,995±0,018 0,973±0,014 Нет
Также проведены экспериментальные исследования оценки быстродействия и достоверности разработанной математической модели распознавания и анализа изображения.
На основе полученных экспериментальных исследований сделан вывод о том, что достоверность распознавания объектов увеличилась с 0.973±0,014 до
0.995±0,018. Погрешности получаемого изображения снижены в 3,4 раза.
В заключении сформулированы основные результаты диссертационной работы.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ
При решении поставленной в диссертационной работе задачи были получены следующие основные результаты:
1. Создана математическая модель распознавания образов и анализа зображений в ультрафиолетовом, видимом и инфракрасном спектральных иапазонах, отличающаяся учетом особенностей априорной неопределенности абочей сцены и внутренними параметрами оптико-электронных устройств, Дозволяющая на своей основе разработать встраиваемые оптико-электронные стройства.
Разработан метод и алгоритм распознавания образов, основанный на анализе пектров ультрафиолетового, видимого и инфракрасного диапазонов и чедварительной коррекции дисторсии на исходном изображении, достоверного
выделения контуров и автокалибровки, позволяющие распознавать объекты при наблюдении в различных спектральных диапазонах и изменяющихся параметрах оптико-электронных устройств.
3. Разработан метод автоматической калибровки оптико-электронного устройства и коррекции дисторсии, обеспечивающий исправление искажений на аппаратно-программном уровне, что не требует введения корректирующих элементов в оптическую систему и обеспечивает снижение сложности и массогабаритных параметров оптико-электронных датчиков.
4. Разработана структурно-функциональная организация встраиваемого оптико-электронного устройства, особенностью которого является введение твердотельных матричных приемников излучения ультрафиолетового, видимого и инфракрасного диапазонов излучения; двухапьтернативного модуля распознавания; модуля обработки нечетких данных; решающего устройства и связей между ними, позволяющая обеспечить встраивание устройства в систему управления.
5. В процессе экспериментальных исследований подтверждена адекватность математической модели распознавания и анализа изображений, проведен анализ полученных результатов, показавший, что разработанное устройство характеризуется повышенной точностью (погрешность получаемого изображения снижена в 3,4 раза), достоверность распознавания увеличилась с 0.973 до 0.995. Разработанное встраиваемое оптико-электронное устройство, обладающее высокими качественными и эксплуатационными показателями, обеспечивает ускорение научно-технического прогресса и является основой для разработки широкого класса встраиваемых оптико-электронных устройств многофункциональных систем управления.
СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ в рецензируемых научных журналах и изданиях
1. Титов, Д.В. Вейвлет - обработка ИК изображений для компенсации дрейфа вольтовой чувствительности элементов фотоэлектронных модулей / Д.В. Титов, Ю.С. Бехтин // Известия вузов. Приборостроение. 2008. Т. 51, №2. С. 10-15.
2. Титов, Д.В. Модуль цифровой коррекции дисторсии изображения / Д.В. Титов, Т.А. Ширабакина // Известия вузов. Приборостроение. 2009. Т. 52, №2. С. 7478.
3. Титов, Д.В. Сопряжение многоэлементного фотоприемного устройства с персональным компьютером измерительного стенда / Д.В. Титов, Ю.С. Бехтин, В.И. Саляков // Известия вузов. Приборостроение. 2009. Т. 52, №2. С. 78-83.
4. Титов, Д.В. Модульная встраиваемая интеллектуальная оптико-электронная система видеонаблюдения / Д.В. Титов, A.C. Сизов, М.И. Труфанов // Известия вузов. Приборостроение. 2010. Т. 53, №9. С. 52-57.
5. Титов, Д.В. Стенд для испытаний оптико-электронных систем / Д.В. Титов // Известия вузов. Приборостроение. 2010. Т. 53, №9. С. 80-83.
6. Титов, Д.В. Подход к оценке эффективности функционирования системы мониторинга ситуаций на основе теории ценности информации / Д.В. Титов, А.С. Сизов, В.В. Теплова // Телекоммуникации. 2011. №6. С. 2-6.
7. Титов, Д.В. Многофункциональная встраиваемая система технического зрения для интеллектуальных комплексов видеонаблюдения / Д.В. Титов, А.С. Сизов, М.И. Труфанов// Телекоммуникации. 2011. №4. С. 19-23.
8. Титов, Д.В. Быстродействующая система технического зрения для поиска и определения характеристик очага возгорания / Д.В. Титов, С.Г. Емельянов, М.И. Труфанов // Известия вузов. Приборостроение. 2012, №2. С. 40-43.
9. Титов, Д.В. Устройство распознавания возгорания на основе двуальтернативных классификаторов / Д.В. Титов, С.Г. Емельянов, М.И. Труфанов // Известия ЮЗГУ. 2012. №1(40). С. 40-43.
Патенты
10. Патент 2005131696 Российская Федерация, МПК H01L21/66. Термокамера для испытания электронных изделий / Кобелев В.Н., Титов Д.В., Желанов A.JL, Родионов А.А., Кобелев Н.С. заявлено 12.10.2005, опубл. 27.02.2006, Бюл. №6.
11. Патент 2295153 Российская Федерация, МПК G06K 9/32, МПК G 06 Т 1/00. Корректирующее устройство ввода изображения в ЭВМ / Титов Д.В., Труфанов М.И. заявлено 04.07.2005, опубл. 10.03.07, Бюл. №7.
12. Патент 2321888 Российская Федерация, МПК 06GK9/32, G01M11/02. Способ калибровки дисторсии оптико-электронного устройства / Стрелкова А.Н., Титов Д.В., Труфанов М.И. заявлено 16.10.2006, опубл. 10.04.2008, Бюл. №10.
13. Патент 2351983 Российская Федерация, МПК G06K9/32. Устройство ввода изображения в ЭВМ коррекции дисторсии / Титов Д.В., Труфанов М.И. заявлено 01.11.2007, опубл. 10.04.2009, Бюл. № 10.
14. Патент 2382515 Российская Федерация, МПК G06K9/32. Способ калибровки системы технического зрения из трех видеокамер и устройство для его реализации / Титов Д.В., Труфанов М.И. заявлено 23.12.2008, опубл. 20.02.2010, Бюл. №5.
15. Патент 2441283 Российская Федерация, МПК G08G1/16. Оптико-электронное устройство предупреждения столкновений транспортного средства / Титов Д.В., Гридин В.Н., Газов А.И., Труфанов М.И. заявлено 27.06.2011, опубл. 27.01.2012, Бюл. №18.
16. Патент 2440783 Российская Федерация, МПК А61В1/055, G06T1/00. Устройство для повышения резкости изображения для эндоскопа / Титов Д.В., Гридин В.Н., Аньшаков Г.Г., Стрелкова А.Н., Труфанов М.И. заявлено 20.10.2010, опубл. 27.01.12, Бюл. №3.
17. Свидетельство о гос. регистрации программы для ЭВМ №2011612774 Надзор МЧС / Емельянов С.Г., Добросердов О.Г., Гривачев А.В., Титов Д.В. заявлено 14.02.2011, опубл. 06.04.2011.
Другие публикации
18. Titov, D.V. The information protection of the autoraatic climatic testing system of
electronic products / D.V. Titov, V.N. Kobelev // Information and telecommunication technologies in intelligent systems: Proc. of 4th Inter. Conf. Italy. 2006. PP. 89-91.
19. Titov, D. Radial Distortion Calibration Method and Device for Images Input on its Base // D.Titov, E. Bugaenko, M. Truphanov // Pattern Recognition and Image Analysis: New Information Technologies: Proc. Of 8th Inter. Conf. Russia, Mari E] Republic, Yoshkar-Ola, 2007. PP. 181-184.
20. Titov, D.V. The Correction Device of Distortion / T.A. Shirabakina, D.V. Titov // Information and telecommunication technologies in intelligent systems: Proc. of 5th Inter. Conf. Spain. 2007. PP. 122-124.
21. Titov, D.V. The Mathematical Model and the Device of Rise in a Precision of Image Forming / D.V. Titov, T.A. Shirabakina // Information and telecommunication technologies in intelligent systems: Proc. of 6th Inter. Conf. Greece. 2008. PP. 66-68.
22. Titov, D.V. Program Model for Testing of the Correction Device of Distortion / D.V. Titov, M.I. Truphanov // Pattern Recognition and Image Analysis: New Information Technologies: Proc of 9th Inter. Conf. Russia, Nizhni Novgorod, 2008. PP. 226-227.
23. Титов, Д.В. Система визуализации динамических стереоизображений на базе двух web-камер / Д.В. Титов, Р.С. Азимов, М.А. Плуженский // Научно-техническое творчество молодежи - путь к обществу, основанному на знаниях: материалы научно-практической конференции. Москва, МГСУ, 2007. С.240-241.
24. Титов, Д.В. Встраиваемые оптико-электронные устройства / Д.В. Титов, Т.А. Ширабакина // Ползуновский альманах. 2009. том 2, №3. С.73-76.
25. Титов, Д.В. Встраиваемые интеллектуальные оптико-электронные устройства систем управления / Д.В. Титов // Сборник конкурсных НИР аспирантов и молодых ученых в области стратегического партнерства ВУЗов и предприятий радиоэлектронной промышленности. Санкт-Петербург. 2010. С. 97-101.
26. Титов, Д.В. Встраиваемая интеллектуальная оптико-электронная система видеонаблюдения / Д.В. Титов // Электронные средства и системы управления: материалы 6-ой МНТК. Томск: ТУСУР, 2010. Часть 2. С. 164-165.
27. Титов, Д.В. .Адаптивное оптико-электронное устройство для обнаружения объектов / Д.В. Титов // Медико-экологические информационные технологии -2011: материалы XIV МНТК, Курск: ЮЗГУ, 2011. С.291-292.
28. Титов, Д.В. Модульное оптико-электронное устройство обнаружения пожара / Д.В. Титов, А.С. Сизов, М.И. Труфано? // Телевидение: передача и обработка изображений: материалы 8-ой МНТК. Санкт-Петербург, ЛЭТИ, 2011. С. 133-135.
Подписано к печати 24.02.2012. Формат 60x84 1/16. Печатных листов 1.1 . Тираж 100 экз. Заказ Vi. Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.
Текст работы Титов, Дмитрий Витальевич, диссертация по теме Элементы и устройства вычислительной техники и систем управления
Юго-Западный государственный университет
61 12-5/2129
На правах рукописи
Титов Дмитрий Витальевич
МЕТОД И МОДЕЛИ СОЗДАНИЯ ВСТРАИВАЕМЫХ ОПТИКО-ЭЛЕКТРОННЫХ УСТРОЙСТВ РАСПОЗНАВАНИЯ ИЗОБРАЖЕНИЙ В МНОГОМЕРНОМ ПРОСТРАНСТВЕ ПРИЗНАКОВ
05.13.05 - Элементы и устройства вычислительной техники
и систем управления
Диссертация на соискание ученой степени кандидата технических наук
Научный руководитель: доктор технических наук, профессор Емельянов С.Г.
Курск, 2012
Содержание
Введение 4
1 Анализ состояния вопроса создания встраиваемых оптико- 12 электронных устройств
1.1 Современные методы и аппаратные средства встраиваемых систем управления
1.2 Устройство ввода и коррекции изображения 18
1.3 Выбор элементной базы встраиваемых оптико-электронных устройств 21
1.4 Обоснование выбора спектрального диапазона встраиваемых оптико-электронных устройств 30
1.5 Определение местоположения объекта на программируемых логических интегральных схемах 34 Выводы 38
2 Разработка математической модели распознавания образов и анализа изображений в ультрафиолетовом, видимом и инфракрасном спектральных диапазонах 39
2.1 Модель распознавания образов 41
2.2 Модель фильтрации изображения 41
2.3 Модель коррекции дисторсии 45
2.4 Модель выбора калибровочного объекта 46
2.5 Модель выделения контуров 46
2.6 Модель адаптации нейронной сети 50
2.7 Оценка эффективности функционирования встраиваемых оптико- 52 электронных устройств на основе теории ценности информации Выводы 59
3 Разработка и синтез структурно-функциональной организации встраиваемых оптико-электронных устройств распознавания 61 образов
3.1 Метод и алгоритм распознавания изображений 61
3.2 Структурно-функциональная организация встраиваемого оптико-электронного устройства 64
3.3 Метод и алгоритм калибровки оптико-электронных устройств 67
3.4 Чувствительность твердотельных матричных приемников излучения
и её математическая модель 71
3.5 Оценка достоверности распознавания образов встраиваемыми оптико-электронными устройствами на основе двухальтернативных классификаторов 78 Выводы 81
Экспериментальные исследования разработанного
встраиваемого оптико-электронного устройства, работающего в инфракрасном, видимом и ультрафиолетовом спектральных 83 диапазонах
4.1 Разработка аппаратно-программного стенда для испытания встраиваемых оптико-электронных устройств 83
4.2 Методика проведения экспериментальных исследований 86
4.2.1 Методика определения погрешностей калибровки дисторсии, фокусных расстояний объективов и суммарного расхождения изображений с оптико-электронных датчиков 87
4.2.2 Исследование особенностей функционирования встраиваемых оптико-электронных устройств при распознавании объектов 89
4.3 Оценка быстродействия экспериментальных исследований на основе разработанной математической модели распознавания образов и анализа изображений 95
4.4 Оценка достоверности результатов экспериментальных исследований на основе разработанной математической модели распознавания образов и анализа изображений 107
4.5 Специализированный стенд для климатических экспериментальных исследований разработанного встраиваемого оптико-электронного устройства
4.6 Разработка специализированного стенда для измерения разброса чувствительности пикселей твердотельных матричных приемников излучения
4.7 Быстродействующее оптико-электронное устройство поиска и определения характеристик очага возгорания 116 Выводы 120 Основные результаты работы 121 Библиографический список 123 Приложение 134
109
112
ВВЕДЕНИЕ
Актуальность работы. Задачей любого государства является обеспечение военной, продовольственной, экологической безопасности, технологической независимости, охраны здоровья. Все эти задачи сложно решить без применения современных технических средств, среди которых оптико-электронные устройства (ОЭУ), входящие в состав систем управления, предназначенных для машиностроения и приборостроения (высокоточные линейные и угловые измерения деталей, узлов; фотометрические приборы; геодезические приборы), геологии, геодезии, картографии (спектральные приборы; спектрозональная тепловизионная аппаратура; фотограмметрические приборы для обнаружения и распознавания), научных исследований, медицины (офтальмологические приборы для клинических исследований глазных сред, подбора и назначения средств коррекции зрения), экологии (многоспектральные оптико-электронные системы) [1-6].
Современный этап развития методов обработки изображений и ОЭУ, входящих в системы автоматического управления, обусловлен усилением степени влияния тенденций, действующих в этой области техники на протяжении последних 20-25 лет, которые можно условно поделить на две группы [7].
К первой группе относятся тенденции алгоритмической, системотехнической интеграции устройства управления и объекта. Тенденции такого рода проявляются в широком применении устройств управления, разработанных с ориентацией на определенный класс или группу объектов. Одними из перспективных аппаратных платформ являются встраиваемые системы, вычислительными средствами в которых служат микроконтроллеры, микросхемы с программируемой структурой или их гибриды, цифровые сигнальные процессоры, что обеспечивает достижение рекордных массогабаритных показателей устройства управления и возможность гибкого изменения алгоритма управления. Область применения
таких встраиваемых систем довольно широка - автоматика, средства связи, медицинское оборудование, бытовая техника и др. Использование специализированных вычислительных систем устанавливает дополнительные ограничения на допустимую производительность вычислений, а также предъявляет ряд требований к процессу проектирования.
Ко второй группе относятся тенденции вовлечения в сферу практического использования так называемых «сложных» объектов. К этому классу принадлежат объекты с высоким порядком уравнений в математическом описании, не полностью наблюдаемые объекты, системы, функционирующие в условиях неопределенной внешней среды, системы с не до конца определенными целями управления и критериями оценки качества их функционирования. К этой же группе относятся тенденции роста требований к качеству управления объектами, предъявление новых ограничений к режимам эксплуатации систем автоматического управления.
Для решения указанных задач широко применяются методы теории интеллектуальных систем (нечеткие и нейросетевые технологии, генетические алгоритмы и другие).
Следовательно, необходима трансформация методов обработки видеоинформации, содержащейся в изображениях, и оптико-электронных устройств, учитывающая особенности встраиваемости, что, в конечном счете, должно обеспечить сочетание интеллектуальных и встраиваемых технологий (простота, высокая надежность, минимизированные массогабаритные, стоимостные, энергетические показатели). Наряду с этим, следует предусмотреть возможность анализа изображений в широком диапазоне частот, так как, зачастую, информация одного частотного диапазона (только видимого, инфракрасного или ультрафиолетового) не обеспечивает решение задачи распознавания или измерения параметров объекта. При этом анализ нескольких частотных диапазонов обуславливает использование нескольких оптико-электронных датчиков, что, в свою очередь, требует разработки методов взаимной калибровки с учетом
особенностей встраиваемых ОЭУ и специфики решаемых задач, а комплектование информации, полученной от разных оптико-электронных датчиков (ОЭД), вызывает необходимость решения задачи принятия решения при нескольких источниках данных, сводимой к двухальтернативной классификации.
Диссертационная работа выполнена в соответствии с грантом Фонда Содействия Развитию малых форм предприятий в научно-технической сфере по программе «У.М.Н.И.К.» (государственный контракт №6076р/8555 от 28.06.2008), а также в рамках аналитической ведомственной целевой программы Министерства образования и науки РФ «Развитие научного потенциала высшей школы», тема 1.1.10 «Разработка фундаментальных основ алгоритмического конструирования адаптивных высокоточных систем технического зрения широкого назначения для поддержки информационных технологий средств вычислительной техники, распознавания образов и обработки изображений» (№ государственной регистрации 0120115099).
Результаты диссертационных исследований внедрены в ООО «Корпорация Ред Софт» (г. Москва) при разработке подсистем безопасности; при выполнении научно-исследовательской работы №41-10 Рязанским государственным радиотехническим университетом, проводимой в рамках реализации аналитической ведомственной целевой программы «Научные и научно-педагогические кадры инновационной России на 20092013 годы» (контракт №16.740.11.0086); при выполнении проекта (код 2.1.2/12.356) Томским государственным университетом управления и радиоэлектроники «Исследование и разработка методов коррекции искажений в телевизионных датчиках при экстремальных условиях контроля и наблюдения» в рамках АВЦП «Развитие научного потенциала высшей школы (2009-2011 годы)»; при выполнении научно-исследовательской работы Юго-Западным государственным университетом - опытно-конструкторской работы «Разработка научно-технических путей построения мобильной системы сбора, обработки и хранения информации», научно-
исследовательских работ «Исследование научно-технических путей построения встраиваемых систем распознавания изображений объектов» и «Разработка научно-методического обеспечения профилактики чрезвычайных и кризисных ситуаций потенциально-опасных объектов с использованием трехмерного моделирования».
Научно-методические результаты, полученные в диссертационной работе, внедрены в учебный процесс кафедры «Вычислительная техника» Юго-Западного государственного университета и использованы при постановке учебных курсов «Основы теории распознавания образов», «Основы теории управления».
Противоречие: между требуемыми быстродействием и достоверностью распознавания образов на основе оптико-электронных устройств систем управления и оперативно-техническими возможностями существующих средств.
Указанное противоречие определяет следующую научно-техническую задачу: разработка метода и алгоритмов распознавания изображений путем анализа спектра в широком диапазоне частот, формирования признакового пространства и решающего правила на основе обработки данных двухальтернативных классификаторов.
Целью диссертационной работы является разработка метода, алгоритма предварительной обработки, распознавания изображений и встраиваемых оптико-электронных устройств на базе твердотельных матричных приемников излучения, обеспечивающих требуемую достоверность распознавания образов на основе формирования признакового пространства и анализа изображений в широком спектральном диапазоне.
Научно-техническая задача диссертационной работы декомпозируется на следующие частные задачи:
1. Анализ состояния вопроса создания встраиваемых оптико-электронных устройств на основе твердотельных матричных
приемников излучения (ТМПИ). Обоснование направления исследований.
2. Разработка математической модели распознавания образов и анализа изображений на основе обработки спектров ультрафиолетового, видимого и инфракрасного диапазонов и принятия решений с использованием аппарата нечеткой логики.
3. Разработка метода и алгоритма распознавания образов с учетом двухальтернативной классификации в условиях разных спектральных диапазонов получаемых изображений.
4. Разработка метода автоматической калибровки ОЭД, входящих в состав встраиваемого оптико-электронного устройства (ВОЭУ).
5. Разработка структурно-функциональной организации ВОЭУ на основе ТМПИ и совокупности двухальтернативных классификаторов. Объект исследования: встраиваемые оптико-электронные устройства,
работающие в ультрафиолетовом, видимом и инфракрасном диапазонах излучения.
Предмет исследования: математические модели, методы, алгоритмы и средства создания встраиваемых оптико-электронных устройств.
Методы исследования: для решения поставленных в работе задач используются проектная геометрия, теория распознавания образов и анализа изображений, математическое моделирование, теория нечеткой логики.
Новыми научными результатами и положениями, выносимыми на
защиту, являются:
1. Математическая модель функционирования ВОЭУ распознавания образов, особенностями которой является учет априорной неопределенности рабочей сцены и внутренних параметров оптико-электронных устройств.
2. Метод автоматической калибровки, отличающийся возможностью выполнить калибровку трех ОЭД при их различных внутренних параметрах (оптической системы и ТМПИ) по априори
неизвестному эталонному объекту, выбираемому из объектов рабочей сцены.
3. Метод и алгоритм распознавания образов, особенностью которых является анализ спектров ультрафиолетового, видимого и инфракрасного диапазонов и дополнительное введение операций коррекции дисторсии, достоверного выделения контуров и автокалибровки, позволяющий распознавать объекты при наблюдении в различных спектральных диапазонах и изменяющихся параметрах ОЗУ.
4. Структурно-функциональная организация ВОЭУ распознавания образов, особенностью которой является введение оптико-электронных каналов обработки информации ультрафиолетового, видимого и инфракрасного диапазонов излучения; двухальтернативного модуля распознавания; модуля обработки нечетких данных; решающего устройства и связей между ними, позволяющая обеспечить решение задачи распознавания в условиях разнородной информации различных спектральных диапазонов.
Практическая ценность состоит в том, что
• разработанные метод, алгоритм и ВОЭУ на базе ТМПИ позволяют обеспечивать требуемую достоверность распознавания образов на основе формирования признакового пространства и анализа изображений в широком спектральном диапазоне, а также могут служить основой для разработки широкого класса ВОЭУ многофункциональных систем управления;
• разработанная структурно-функциональная организация ВОЭУ, построенного по модульной архитектуре, и декомпозиция общей задачи на частные задачи позволяют в широком диапазоне варьировать функционально-стоимостные параметры созданного ВОЭУ и конфигурировать его в зависимости от целевой задачи.
Соответствие паспорту специальности. Согласно паспорту специальности 05.13.05 - Элементы и устройства вычислительной техники и систем управления, проблематика, рассмотренная в диссертации, соответствует пунктам 1 и 2 паспорта специальности.
Апробация работы. Основные положения диссертационной работы докладывались и получили положительную оценку на Международных и Российских конференциях:
• IV, V, VI международные научно-технические конференции «Информационные и телекоммуникационные технологии в интеллектуальных системах» (Италия, 2006 г.; Испания, 2007 г.; Греция, 2008 г.);
• XXXIV Вузовская научно-техническая конференция «Молодежь и XXI век» (г. Курск, 2006 г.);
• Всероссийская научно-техническая конференция «Интеллектуальные и информационные системы» (г. Тула, 2007 г., 2009 г., 2011 г.);
• VIII международная научно-техническая конференция «Новые информационные технологии» (г. Йошкар-Ола, 2007 г.);
• IX международная научно-техническая конференция «Распознавание образов и анализ изображения: новые информационные технологии» (г. Нижний Новгород, 2008 г.);
• «Информационно-измерительные, диагностические и управляющие системы» (г. Курск, 2009 г., 2011 г.);
• XII, XIV международные научно-технические конференции «Медико-экологические информационные технологии» (г. Курск, 2009 г., 2011 г.);
• IX международная научно-техническая конференция «Оптико-электронные приборы и устройства в системах распознавания образов, обработки изображений и символьной информации» (г. Курск, 2010 г.);
• конкурс научно-исследовательских работ аспирантов и молодых ученых в области стратегического партнерства ВУЗов и предприятий радиоэлектронной промышленности (г. Санкт-Петербург, 2010 г.);
• VI международная научно-техническая конференция «Электронные средства и системы управления» (г. Томск, 2010 г.);
• VIII международная научно-техническая конференция «Телевидение: передача и обработка изображений» (г. Санкт-Петербург, 2011 г.);
• международная научно-техническая конференция «Информационные технологии и математическое моделирование систем» (г. Москва, 2011 г.)
и научно-технических семинарах кафедры вычислительной техники Юго-Западного государственного университета с 2008 по 2012 гг.
Публикации. Основные результаты выполненных исследований �
-
Похожие работы
- Метод, алгоритмы и бинокулярное оптико-электронное устройство с переменным фокусным расстоянием для трехмерного зрения мобильного транспортного робота
- Инвариантное представление изображений для распознавания космических объектов
- Устройство распознавания изображений текстовых знаков по энтропийным характеристикам
- Быстродействующее оптико-электронное устройство распознавания изображений объектов на основе трехмерных векторных эталонов
- Теория, принципы построения и создание визуально-информационных устройств и контрольных автоматов для систем управления качеством промышленных изделий
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность