автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Математическое моделирования лучевым методом распространения волн в трубопроводах с учетом их особенностей

кандидата физико-математических наук
Сумец, Павел Петрович
город
Воронеж
год
2003
специальность ВАК РФ
05.13.18
Автореферат по информатике, вычислительной технике и управлению на тему «Математическое моделирования лучевым методом распространения волн в трубопроводах с учетом их особенностей»

Автореферат диссертации по теме "Математическое моделирования лучевым методом распространения волн в трубопроводах с учетом их особенностей"

На правах рукописи

СУМЕЦ ПАВЕЛ ПЕТРОВИЧ

¡МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЛУЧЕВЫМ МЕТОДОМ РАСПРОСТРАНЕНИЯ ВОЛН В ТРУБОПРОВОДАХ С УЧЕТОМ ИХ ОСОБЕННОСТЕЙ

Специальность: 05.13.18 - "Математическое моделирование, численные методы и комплексы программ"

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Воронеж 2003

Работа выполнена в Воронежском государственном университете

Научный руководитель:

доктор технических наук, профессор Н.Д. Вервейко

Официальные оппоненты:

доктор физико-математических наук, профессор А.Д. Чернышов доктор физико-математических наук, профессор А.И. Сумин

Ведущая организация:

ФГУП «Конструкторское бюро химической

автоматики»

(г. Воронеж)

Защита состоится «16 » октября 2003 года в /£> в конференц-зале на заседании диссертационного совета Д 212.035.02 Государственного образовательного учреждения Воронежской государственной технологической академии по адресу: 394000, г. Воронеж, проспект Революции, 19.

С диссертацией можно ознакомиться в библиотеке Воронежской государственной технологической академии.

Автореферат разослан « 10 » сентября 2003 года

Ученый секретарь диссертационного совета, кандидат технических наук

В.М. Самойлов

Актуальность работы. Развитие гвдросетей в конце XIX начале XX веков обусловило необходимость описания наблюдаемых в них физических явлений. Это придало мощный импульс развитию соответствующих разделов гидромеханики, а наблюдения аналогичных явлений в газах утвердило исследователей в необходимости широкого и детального исследования природы этих явлений. В начале XX века появились работы Жуковского, посвященные движению жидкости в гидросетях, а его исследовательские работы, посвященные описанию явления гидроудара, по общему признанию научной общественности того времени носили фундаментальный характер.

Конструирование оборудования нефтегазодобычи, появление нефтепроводов и газопроводов, а также линий транспортировки веществ, не допускающих утечки, требовало использование новых принципов движения этих сред по трубопроводам, удовлетворяющих поставленным задачам. Это привело к необходимости математического моделирования задач о неустановившемся движении жидкости в сложной системе трубопроводов. Значительный вклад в решение подобных задач осуществили ученые Воеводин А.Ф., Шугрин С.М., Тара-севич B.C., Сагомонян AJL, Чарный И.А.

Проведение исследований по математическому моделированию нестационарного движения жидкости в трубопроводах обусловлено несколькими факторами. Поскольку на практике чаще встречаются существенно непериодические, нестационарные волновые явления, большой теоретический и практический интерес представляют исследования волновых задач в общей, нестационарной постановке. Существование большого количества методов решения нестационарных волновых задач объясняется значительными трудностями их решения, поэтому не прекращаются поиски новых, наиболее оптимальных методов. Развитие приближенных аналитических методов решения уравнений и систем уравнений в частных производных (одним из таких методов является лучевой метод) позволило построить аналитическое решение, описывающее распространение произвольного импульса давления вдоль трубопровода или сети трубопроводов с учетом затухания импульса за счет путевого сопротивления. Получение приближенного аналитического выражения позволяет проводить качественные и количественные исследования влияния отдельных факторов (свойств материала трубопровода и его геометрических характеристик по трассе прохождения импульса и др.) на процесс распространения импульса давления или по его анализу судить о состоянии трассы. Поэтому изучение процесса распространения волн в трубопроводах представляется актуальным.

Работа выполнена в рамках госбюджетной НИР Воронежского госуниверситета (№ гос. per. 01.9.90 001106) "Разработка математических моделей и эффективных аналитических и численных методов решения статических и динамических задач механики деформируемых сред сложной структуры".

Цель и задачи уаботъу Цель работы заключается в разработке уточненной математической модели нестационарного движения сжимаемой жидкости в трубопроводе и ее исследование на основе лучевого метода, обеспечивающего построение инструментальных средств для установления закономерностей распространение волн гидроудара в трубопроводах с учетом их особенностей.

Достижение поставленной цели включало решение следующих задач:

- уточнение математической модели распространения волн гидроудара в трубопроводах при ламинарном и переходном режимах течения жидкости;

- получение аналитических выражений для интенсивности волны гидроудара в любой точке гидролинии;

- анализ структуры переднего фронта волны гидроудара;

- разработка прикладной программы, реализующей алгоритм решения одномерных волновых задач на основе лучевого метода и обеспечивающей расчет распределения давления при распространении волн гидроудара;

- анализ распространения волны гидроудара при течении жидкости в трубопроводах с дефектами стенки, а также с учетом анизотропии стенок и упрочнения трубопровода сетчатой оболочкой;

- получение оценок максимально допустимых давлений жидкости в трубопроводе исходя из упруго - пластического поведения стенок трубопровода при его разрушении.

Объекты и методы исследования. Исследовался процесс распространения волн гидроудара в трубопроводах при ламинарном и переходном режимах течения жидкости. Изучение математической модели такого процесса осуществлялось на основе лучевой теории распространения волн разрывов, позволяющей приближенно построить решение системы гиперболических уравнений з частных производных в окрестности волновых фронтов. Учет дефектов стенок осуществлялся расширением модели путем ее обобщения для случая трубопровода с переменной толщиной стенки в поперечном сечении. Изучение структуры переднего фронта волны гидроудара осуществлялось с учетом наличия гидравлического сопротивления.

Научная новизна. При выполнении диссертационного исследования решены следующие задачи:

- построено уточнение математической модели течения жидкости в упру-годеформируемых трубопроводах переменного поперечного сечения;

- сформулировано решение задачи о нестационарном течении жидкости в окрестности переднего фронта волны в трубопроводах переменного сечения с использованием лучевого разложения;

- получены соотношения, описывающие распространение скачков давления при ламинарном и переходном режимах течения жидкости, позволяющие рассчитывать интенсивность волны гидроудара в любой точке трубопровода;

- установлены закономерности влияния гидравлического сопротивления на искажение распределения давления и скорости вблизи переднего фронта волны гидроудара при ее распространении вдоль трубопровода;

- разработан алгоритм решения одномерной волновой задачи и в интегрированной среде ОЕЬРШ реализована программа, обеспечивающая численное решение задачи о распространения волны гидроудара;

- получены выражения, определяющие скорость распространения волны гидроудара с учетом: анизотропии; дефектов стенки; упрочнения трубопровода сетчатой оболочкой; исходя из условий упругопластического поведения стенок трубопровода

Положения, выносимые на защиту:

1. Уточненная математическая модель распространения золн в трубопроводах переменного сечения при ламинарном и переходном режимах течения жидкости с учетом дефектов стенок и их анизотропной структуры.

2. Приближенное решение, описывающее распределение давления для одномерной волновой задачи о нестационарном течении жидкости в окрестности переднего фронта волны в трубопроводах переменного сечения.

3. Закономерности влияния локальных утончений стенки трубопровода на процесс распространения волны на основе математической модели распространения волн гидроудара в трубопроводе с дефектами стенок. Показано, что утончение стенки приводит к уменьшению скорости распространения волны гидроудара, уменьшению амплитуды скачка давления и потере прочности трубопровода

4. Закономерности влияния сетчатой оболочки на процесс распространения волны гидроудара. Показано, что усиление трубопровода сетчатой оболочкой приводит к увеличению скорости распространения волны гидроудара, меньшему затуханию амплитуды скачка давления при его распространении и к увеличению прочности трубопровода

5. Закономерности влияния сопротивления на распределение давления и скорости течения жидкости вблизи переднего фронта волны гидроудара Показано, что распределение давления и скорости вблизи передний фронт волны гидроудара, распространяясь вдоль трубопровода, терпит искажение за счет бегущего относительно него возмущения с малой скоростью, определяемой наличием гидравлического сопротивления.

Научная и практическая значимость. Математическое моделирование распространения волн в трубопроводах лучевым методом дает аналитический и численный инструмент, позволяющий выявить закономерности распространения волн в трубопроводах различной структуры, что позволяет проанализировать влияние отдельных факторов на процесс распространения волны при различных режимах течения жидкости. Результаты решения задачи о нестационарном движении жидкости могут быть попользованы при расчете давления в различных материачопроводах, насосных агрегатах, турбинах и т. п.

Личный вклад автора. Определение направлений исследований, постановка задач, проведение расчетов, получение основных результатов и выводов осуществлено лично автором под руководством научного руководителя д.т.н. профессора Вервейко Н.Д. Обсуждение результатов на протяжении всей работы над диссертацией проводились вместе с д.т.н., профессором Вервейко Н.Д. и д.т.н., профессором Сысоевым В.В.

Апробация работы. Результаты диссертационной работы докладыватась и обсуждатись на второй и третьей всероссийской научно - технической конференции «Прикладные задачи механики и тепломассообмена в авиастроении» (Воронеж 2001,2002г.г.); конференции «Актуальные проблемы динамики и прочности в теоретической и прикладной механике» (Минск 2001г.); семинаре "Современные проблемы механики и прикладной математики" (Воронеж 2002г.); научных семинарах Воронежского государственного университета, Во-

ронежского государственного технического университета, Воронежской государственной медицинской академии, Воронежской государственной технологической академии в 2000 - 2002г.г.

Публикации. Результаты, полученные в ходе работы над диссертацией, опубликованы в 10 работах.

Структура и объем диссертации. Диссертация состоит из 146 страниц машинописного текста и содержит 26 рисунков, и по структуре состоит из введения, четырех глав, основных выводов и списка цитируемой литературы, включающего 133 наименований литературных источников.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ.

Во введеши обоснована актуальность работы, сформулированы цель, основные задачи, научная новизна, сформулированы научные положения, выносимые на защиту.

В первой главе на основе анализа работ различных авторов рассматриваются различные подходы к математическому моделированию нестационарного движения жидкости в трубопроводах. Отмечены возможности и условия применения математических моделей, а также способы решения поставленных задач. Для математического описания нестационарного движения жидкости в уп-ругодеформируемых трубопроводах переменного поперечного сечения проведен переход от системы уравнений Навье-Стокса в двумерной постановке к уравнениям одномерного осредненного движения вязкой сжимаемой жидкости в упругосжимаемых трубах переменного сечения при ламинарном и турбулентном режимах течения:

-Г—= — + —МЫ;

5х а 2В т

' др 2дМ

-I — = с —.

. а бх

Здесь х-ось координат, совпадающая с осью трубопровода; М=£\ур - массовый расход жидкости через трубу в сечении; А(х) - площадь поперечного сечения трубопровода; р - плотность жидкости; - средняя по сечению скорость течения жидкости; р(хД) - давление; с - скорость распространения возмущений в системе: текущая сжимаемая жидкость в трубе с упругими стенками; Б(х) - диаметр трубопровода; X - коэффициент гидравлического сопротивления, который зависит от режима течения жидкости. При редукции двумерных уравнений к одномерным были определены границы применимости уравнений (1). Результирующими условиями применимости являются: 1) безотрывность течения и малость поперечной скорости по сравнению с продольной; 2) упругий трубопровод под действием давления меняет свой объем за счет продольной сжимаемости самой жидкости и радиального расширения поперечного сечения трубы; 3) поперечное расширение тонких стенок трубопровода происходит в квазистационарном режиме. Приведенная система уравнений (1) имеет погрешность порядка 5Г2 (о^К/Ь). Среди множества способов решения задачи (1) о распространении нестационарных волн выделяется лучевой метод, и излагаются основные принципы применения этого метода

Во второй главе исследована математическая модель распространения волн гидроудара в трубопроводах при ламинарном и переходном режимах течения жидкости. Математическое моделирование осуществлялось на основе лучевой теории, применение которой является оправданным для анализа зависимости амплитуды волны и ее других характеристик в случае распространения волн разрьвов. Получено лучевое решение задачи о нестационарном течении сжимаемой жидкости в цилиндрических улругосжимаемых трубах переменного сечения при ламинарном и переходном режимах течения жидкости. При переходном режиме коэффициент гидравлического сопротивления X определялся по формуле Блаузиса: >»=0,3 164(\уО/г|)"э'25, гдет) - кинематический коэффициент вязкости жидкости.

При ламинарном режиме течения жидкости скачок давления и скачок производной давления на фронте волны затухает по экспоненциальному закону

с пройденным волной расстоянием:

/ л

Ч вг

*о у

а

1-Я

где

1 х £2 = ^ [ 2

х0

г,

н

?о |

+ Апт1

м.

[р»Зо

ехр

хо

{н2

-4ПТ] |

4 л: г)

(2)

Здесь х - ось координат, совпадающая с осью трубопровода, [р]=(р~ р~) - превышение (скачок) давления на фронте волны, [р]0 - значение скачка давления в точке хо, ^ - площадь поперечного сечения трубопровода в точке Хо, [Р1З0 - значение скачка производной по времени в точке Хо, в - скорость распространения волны гидроудара. Предполагалось, что в некоторой точке Хо задано распределение давления р(хоД), которое имеет разрыв самой функции и ее производных, а также известно давление р+ впереди фронта волны. Тогда, при дискретизации временного интервала точками ^ решение за фронтом волны представимо в виде отрезка ряда по временному промежутку второго порядка погрешности:

тЛ —

[Г J

ф'

а

гтт*» тс^.......

.........а ■

При ламинарном режиме течения жидкости, полученные выражения позволяют применить решение задачи о распространении волн слабого разрыва к построению закономерностей распространения импульса произвольной формы, полученного последовательным наложением нескольких волн слабого и сильного разрывов. На рис. 1 показан вариант описания распространения импульса давления, измеренного в некоторой точке трубопровода, путем последовательного распространения 4-х слабых волн Гь Г2, Г3, Г4. С помощью такого линейного приближения можно воспроизвести свойства реальной волны, в том числе подъем и последующее затухание амплитуды волны давления с увеличением расстояния при убывании площади поперечного сечения трубопровода

Г,

г*

N

Ч, N

Г, \

'Г! а)х=хд П 6) х=х1

Рис. 1. Изменение импульса давления по мере его продвижения. Кривая I - измеренная волна давления, 2 - кусочно-линейная аппроксимация.

При переходном режиме течения жидкости существует качественное отличие затухания скачка давления в случае распространения волны гидроудара в подвижную и неподвижную жидкость. В случае движения жидкости перед волной затухание происходит по экспоненциальному закону и определяется значением величины давления впереди фронта:

Ы=Ы0

±8[р]о (§Г + З|р+! и

ЗГ

ехр

%

\-1

(4)

Д /Лв Л ЛГ Л «ТГ ^ Л/

Здесь <3 = 0,3164л: ' ц ' р ' 2 ' , верхний знак соответствует ускорению или замедлению попутного волне потока, нижний знак соответствует случаям ускорения или замедления встречного потока за волной. При движении потока жидкости за волной против встречного или оттока жидкости за волной от жидкости, движущейся в направлении движения фронта волны, затухание скачка давления происходит по закону:

1 +

Ч

\ г

ехр / 1 4 ч

Хо

сф

(5)

у/

В случае покоя жидкости перед фронтом полны затухание скачка давления происходит по степенному закону и определяется величиной начального скачка:

/

(р№

1+-

ЫоТ^

Хо

ог

^ /з

(6)

Кусочно-постоянная аппроксимация формы распределения давления за фронтом волны позволяет уподобить процесс распространения волны давления процессу распространения пакета волн прямоугольной формы (см. рис. 2). Анализ зависимостей, определяющих закономерности распространения скачков давления, показал, что при турбулентном режиме течения жидкости сильнее затухают скачки, имеющие большую начальную интенсивность, так что крутой передний фронт волны затухает сильнее, чем идущие за ним возмущения (см. рис. 3).

Рис. 2. Изменение формы волны превышения давления ДР при распространении вдоль трубопровода постоянного сечения при переходном режиме течения жидкости, рассчитанные для случаев: а) при х=0, б) при х=100м. Параметры: 0о=0.1м, р=103 кг/м3, Е=8-109Па, Ь/0=0.05.

Рис. 3. Графики зависимостей относительных скачков давления от координаты х при разных интенсивностях начального скачка (кривая 1-при [р]о=10атм.; 2-при [р]0=20атм.; 3 - при (р]0=ЗОатм.). Расчеты производились для трубопровода постоянного сечения при переходном режиме течения жидкости. Параметры: 00=0.1м, р=103 кг/м3, Е=810Т1а, ЬЛ)=0.05.

Амплитуда волны затухает гораздо быстрее при турбулентном, чем при ламинарном режиме течения жидкости. То есть наличие турбулентности связано с дополнительной затратой энергии при движении жидкости. Независимо от режима течения жидкости к усилению затухания скачка давления ведет уменьшение скорости О распространения волны гидроудара, а также увеличе-|ние вязкости жидкости ц. Если вязкость отражает реологическое свойство жидкости, то скорость распространения волны является наиболее важным фактором, который отражает физико-механические свойства стенкн трубопровода. Поэтому все изменения свойств стенки сказываются на характере затухания скачка давления посредством скорости &

Адекватность полученных формул (2) - (6) подтверждается следующими ^осуждениями. Во-первых, при отсутствии гидравлического сопротивления

(при >.=0), из соотношений (2) - (6) следуют простое следствие: [рМрЪ'С^О-Следовательно, интенсивность волны гидроудара изменяется вдоль гидролинии без сопротивления согласно классическому закону геометрической оптики: обратно пропорционально площади поперечного сечения трубопровода Во вторых, выводы, полученные выше в результате анализа формул (2)-(6), не противоречат известным классическим закономерностям гидродинамики и соответствуют результатам, полученным в работах Жуковского Н.Е., а численные расчеты находятся в соответствии с экспериментальными данными.

Использование одномерной нестационарной модели движения сжимаемой жидкости в упругосжимаемых трубах переменного сечения (1) позволяет получить приближенные аналитические зависимости, описывающие течение в переходном слое волны гидроудара, а также выявить искажение вида решения вблизи переднего фронта волны гидроудара вследствие действия гидравлического сопротивления.

Преобразуем волновое уравнение

¡и -М „ д (7)

рБ1

с учетом малости коэффициента гидравлического сопротивления (Х«1). Здесь запятая в нижних индексах означает частную производную по соответствующей координате. Переход к системе координат, связанной с подвижным фронтом волны гидроудара и замена переменной г|=х-с1, приводит к уравнению

м,а-2см^+-^:м(мп-см,л)=0, (8)

которое описывает поведение массового расхода М в трубопроводе вблизи фронта волны гидроудара. Для рассмотрения решения в области больших градиентов массового расхода М,,, и М,, осуществляется преобразовглие координат (т^д) путем растяжения по координате ту Вводя новую координату п=5-т}, где 0<5«1 - малый параметр, и полагая 5=Х, после преобразований имеем:

М„-2сШ,п{+-^-М.М,{-^:М-М,п=0. (9)

рВГ рБГ

Оставляя в уравнении (9) только члены первого порядка малости относительно X и произведя замену переменных £=п+2сАд, получаем уравнение:

М,.+——М2 =0. (10)

' 2рЫ

Решение уравнения (10) можно записать в виде:

~ / , V гдеМ0 01)

Мо 1 + м0

\2рЫ)

Поскольку зависит только от начального распределения Мо(с,,0) и времени I и не зависит явно от то формула (11) описывает относительное изменение массового расхода М жидкости в трубопроводе постоянного сечения на фронте волны ^=сопй, т.е. в подвижной системе координат, движущейся со

скоростью -2сХ относительно фронта волны гидроудара Из вышесказанного вытекает следующая теорема

Теорема 1. Абсолютная скорость О распространения волны гидроудара с учетом гидравлического сопротивления X. задается соотношением: С=с(1-2А.).

Таким образом, при распространении волны гидроудара в переходном слое происходит убывание массового расхода жидкости на фронте волны, бегущей относительно волны гидроудара со скоростью п—2сХ.. Следовательно, распределение давления и скорости непосредственно за передним фронтом волны гидроудара, распространяющегося вдоль трубопровода со скоростью с, терпит искажение за счет бегущего относительно него возмущения с малой скоростью п=-2с\ вследствие наличия сопротивления (см. рис.4), м м

л

н,

Рис.4. Затухание и искажение фронта волны гидроудара при распространении вдоль трубопровода.

В третьей главе приведена модификация математической модели для случая распространения волн гидроудара в трубопроводах с дефектами стенок. Моделирование наличия дефекта стенки осуществлялось с помощью учета переменности толщины стенки в поперечном сечении.

Предполагаюсь, что трубопровод в поперечном сечении имеет форму кольца переменной по угловой координате толщины, у которого внутренняя граница поперечного сечения имеет вид окружности радиуса Яо, а радиус внешней границы

К1=1^)+Ь(1+5-зт(0)), где И - константа, 5 -малый параметр (0<5<1), который позволяет моделировать дефекты в виде локальных утончений стенки (см. рис. 5). Нахождение напряжений и деформаций в дефектной Рис.5. Форма поперечного сече-стенке осуществлялось с помощью разложе- ния трубопровода с дефектом ния решения в ряд по малому параметру 5. стенки

В предположении упругого плоского напряженного состояния, учитывающего нормальные и касательные напряжения, приведены выражения для напряжений, деформаций и перемещений стенки. Полученные соотношения позволяют анализировать влияние дефектов стенки на прочностные свойства рубопровода Для оценки влияния параметра 8 на прочностные характери-

11(1+5)

\ У \ \

ь>( (' У \ 1.

>4/

41(1-6)

стики стенки трубопровода, бьш введен в рассмотрение показатель я, характеризующий относительную потерю прочности трубопровода за счет утончения стенки:

ч = = + 8 -Г-^М"1. 02)

Р5=о ( (1 + (1 + а)7(2 + а^ ^ 2)

где Р*- критическое давления жидкости, при котором происходит разрыв материала стенки трубопровода в наиболее тонком месте.

Для скорости вз распространения волны гидроудара с учетом утончения стенки было получено следующее выражение:

I , + ,где а= —. (13)

128а \ ( { Е УГ Я0

1 I Л кж))

Здесь Е - модуль Юнга материала стенки трубопровода, v - коэффициент Пуассона материала стенки, Кж - модуль объемного сжатия жидкости. Из соотношений (2), (4), (12) и (13) вытекает следующая теорема

Теорема 2. В рамках принятых допущений, локальное утончение стенки трубопровода на 8Ь " приводит к уменьшению скорости распространения волны гидроудара в (1-52(1-у)2(1+2а)/(128а))

раз, уменьшению амплитуды скачка давления и уменьшению прочности трубопровода на величину 8(1+а/2)"1.

Для учета анизотропного характера материала стенок, рассматривалось напряженное состояние трубопровода с ортотропными стенками переменного поперечного сечения. Упругие свойства для окружных напряжений в цилиндрической системе координат г, ф, г характеризовались модулем Юнга а плоскость (г,т) считалась плоскостью упругой изотропии с модулем Юнга Ег=Ег. Основываясь на сделанных предположениях, получены в? фажения, определяющие напряжения, деформации и перемещения стенки трубопровода. Влияние утончения стенки трубопровода на его прочность привело к соотношению, определяющему давление, при котором начинается пластическое течение материала стенки трубопровода на его внутренней поверхности:

Р* = ^ат* (а2ю(7а- 2) + 14а2 -9а + 6-б(а2со(24а-5)+38а2-18<х + б| (14)

Здесь т* - максимальное касательное напряжение, при котором происходит достижение предела прочности материала стенки трубопровода. Анализ (14) показывает, что дефект стенки в виде ее утончения приводит к уменьшению величины критического давления.

Получены оценки толщины пластической зоны при приложении критического давления исходя из условий упругопластического поведения изотропных стенок трубопровода Предполагалось, что при распространении волны гидроудара внутри трубопровода давление жидкости достигло критической величины р , и начали происходить пластические деформации стенки трубопровода Полагалось, что если пластическая зона достигла внешней границы, то труба находится в состоянии полной пластичности и происходит ее разрушение.

качестве условия текучести определяющего уровень напряжений, при котором становится возможна значительная пластическая деформация, использовался критерий Треска. Полученные соотношения позволяют оценить относительную толщину стенки трубопровода, которую необходимо задать для обеспечения условия равнопрочности трубопровода при распространении скачка давления:

р* + [рГ

Ь

£Гехр

2ку

-1,

(15)

где [р] - скачок давления, который определяется исходя из режима течения жидкости к - константа, определяющая предел текучести материала стенки трубопровода, у=±1. Приведенные зависимости показывают, что при распространении волны гидроудара в трубопроводе переменного сечения целесообразно утолщение стенки трубопровода на некотором удалении от точки хо (см. рис. 6).

Рис. б. Изменение относительной толщины стенки трубопровода, находящейся в состоянии пластического деформирования при распространении волны гидроудара (а - при постоянной площади поперечного сечения; б-при законе изменения площади поперечного сечения: £"(х)=Гоехр(-2рх/1>о)).

Четвертая глава посвящена математическому моделированию распространения волн гидроудара в трубопроводах, усиленных на поверхности сетчатой оболочкой. Рассматривались основные соотношения и уравнения для плоского напряженно - деформируемого состояния стенки трубопровода с учетом сетчатой оболочки (см. рис. 7). Предполагалось, что оболочка в процессе деформации остается упругой и подчиняется обобщенному закону Гука для анизотропного тела, а сетка оболочки состоит из волокон четырех семейств. Ее схема показана на рис.8.

Рис. 7. Элемент трубы, усиленной сетчатой оболочкой.

Рис. 8. Структура сетчатой оболочки.

а)

При моделировании сегчатой оболочки статические и геометрические уравнения описываются соответствующими уравнениями теории сплошных оболочек. Уравнения состояния зависят от структуры сетки и ее материала и аналогичны уравнениям анизотропных оболочек. Полагая, что все волокна сетки сделаны из одинакового материала с модулем Юнга Е, и имеют одинаковую площадь поперечного сечения Б,, при условии совпадения радиальных перемещений внешней границы стенки трубы и сетчатой оболочки, найдены соотношения дая напряжений и перемещений стенки трубопровода, усиленного сетчатой оболочкой.Дпя скорости распространения волны гидроудара было получено следующее выражение:

_ ЕтКж (16)

" У, ^-ап^-Я^-у^-Е апИ^-^-^)) | £ ^ (Етаи(я? - ¿|)+Е,Ц22 -аиа22^ +К22 + у^

2Есов 4<р) Е Езт2(2(?>) 2Р58т4(р) Р3

где аи =—--+ —,а12 = -5-—-^ + —ф-угол

Я2а 112а4 2Я2а К2а К2а3

между образующей цилиндрической оболочки и осью волокна, а; - расстояние между волокнами ¿-го семейства, - внутренний радиус трубы, И2 - внешний радиус трубы, Ет и v - модуль Юнга и коэффициент Пуассона материала стенки трубы соответственно. Приведенное соотношение для скорости распространения волн гидроудара позволяет определять закономерность затухания скачков давления при распространении их в усиленном сетчатой оболочкой трубопроводе согласно полученным выше формулам для ламинарного и переходного режимов течения жидкости.

В частном случае, когда ф=л/4, проанализировано влияние наличия сетчатой оболочки на прочностные свойства трубопровода. Для оценки влияния сетчатой оболочки введен показатель, характеризующий относительное увеличение прочности трубопровода за счет его усиления сетчатой оболочкой:

^ _ Ркрит Ркрит _ ^ Ркрит

/

I ЕтЯ2

1 + 241)

2 +л/2

+ 2(1-у)

(17)

4^1 ;;

Здесь Е =ЕУа; р^ - критическое значение давления жидкости, при котором происходит достижение предела прочности материала стенки трубопровода без сетчатой оболочки; р*кркг - критическое значение давления жидкости в трубопроводе, армированном сетчатой оболочкой. Отметим, что увеличение проч ности будет тем больше, чем больше отношение Е/Е^,

Полученные соотношения для скорости распространения волн гидроудара в трубопроводах различной структуры позволяют применять аналитические выражения (2), (4) - (6) для описания распространения волн в трубопроводах с учетом таких особенностей, как дефект стенки, анизотропная структура стенки и усиление сетчатой оболочкой. При переходе к математическим моделям трубопроводов без особенностей мы получаем известные классические соотношения.

Дня задачи о распространении волн давления произвольной формы в уп-ругосжимаемых трубопроводах разработана программа, позволяющая рассчи

тывать распределение давления и средней скорости в упругодеформируемом трубопроводе при ламинарном и переходном режимах течения жидкости. Программа реализована на языке программирования "PASCAL" в интегрированной среде программирования "Delphi". Этот программный продукт имеет модульную структуру и имеет в своей основе пять функциональных модулей. Результаты работы программы представлены пользователю в виде значений компонент давления жидкости и в виде графиков для распределения давления в любой точке трубопровода

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ:

1. Математическое модатирование нестационарного течения жидкости в упру-годеформируемых трубопроводах переменного'сечения проводилось с точностью до величин порядка о/, а использование лучевого представления решения позволило установить что:

1.1 при турбулентном режиме течения жидкости существует качественное отличие закона затухания скачка давления в случаях распространения в подвижную и неподвижную жидкость состоящее в том, что в случае движения жидкости перед волной затухание происходит по экспоненциальному закону, а в случае покоя жидкости - по степенному закону;

1.2 при ламинарном режиме течения жидкости характер затухания скачка давления полностью определяется законом изменения площади поперечного сечения трубопровода, скоростью распространения волны гидроудара и величиной коэффициента кинематической вязкости жидкости;

1.3 передний фронт волны гидроудара, распространяясь вдоль трубопровода со скоростью с, терпит искажение за счет бегущего относительно него возмущения с малой скоростью -2ск вследствие наличия гидравлического сопротивления X.

2. Получены соотношения, определяющие скорость распространения волны гидроудара и напряженное состояние трубопровода с учетом анизотропии и дефектов стенки трубопровода, а также наличия упрочнения трубопровода сетчатой оболочкой, которые показали, что:

2.1 наличие дефекта трубопровода в виде локального утончения стенки приводит к уменьшению скорости распространения волны гидроудара, уменьшению амплитуды скачка давления и уменьшению прочности трубопровода;

2.2 по сравнению с трубопроводом без сетчатой оболочки, наличие сетчатой оболочки приводит к увеличению скорости распространения волны гидроудара, меньшему затуханию амплитуды скачка давления при его распространении и к увеличению прочности трубопровода

3. Показано, что с учетом упруго - пластического поведения материма стенок трубопровода при распространении волны гидроудара в трубопроводе с уменьшающимся переменным сечением целесообразно утолщение стенки трубопровода на некотором удалении от начала трубы.

к Результаты численного эксперимента по распространению импульса давления в упругодеформируемом трубопроводе переменного сечения показали, что форма волны давления, распространения вдоль трубопровода, искажается нелинейным образом в зависимости от режима течения жидкости.

По теме диссертации опубликованы следующие работы:

1. Вервейко Н.Д., Сумец П.П. Математическое моделирование распространения нелинейных пульсовых волн в сердечно - сосудистой системе человека// Актуальные проблемы динамики и прочности в теоретической и прикладной механике.-Мн.: УП «Технопринт», 2001.-С.89-93.

2. Сумец ПЛ Распространение волн гидроудара в трубопроводе с течением жидкости в переходном режиме// Труды второй всероссийской научно -технической конференции «Прикладные задачи механики и тепломассообмена в авиастроении», Воронеж, 2001. - 4.1 - С.73 - 76.

3. Сумец П.П., Сумец М.П. Переходный режим распространения волн гидроудара в трубопроводе// Материалы XL отчетной научной конференции за 2001 год. - Воронеж: BITA, 2002. - 4.2 - С.209-210.

4. Сумец П.П. Распространение пульсовых волн в сосудах со стенками переменной толщины// Вестник ф - та прикладной математики и механики: Вып. 3. - Воронеж: ВГУ, 2002. - С.44 - 46.

5. Сумец П.П. Определение напряжений и внутреннего просвета кровеносных сосудов в стимулированном состоянии// Объединенный научный журнал. -2002. - № 22 (45). - С.53-55.

6. Вервейко Н.Д., Сумец П.П. Распространение пульсовых волн в нелинейно-упругих сосудах// Материалы П Всероссийской научно-технической конференции «Теория конфликта и ее приложения».-Воронеж: ВГТА, 2002.-С.34.

7. Сумец П.П. Напряженное состояние трубопровода из ортотропного материала с дефектами стенки// Сборник трудов третьей международной научнс - технической конференции «Авиакосмические технологии». - Воронеж: ВГТУ, 2002. - С. 91 - 95.

8. Вервейко Н.Д., Сумец П.П. Выбор математической модели и исследованш структуры переднего фронта волны гидроудара// Информационные техноло гии и системы. - Воронж: ВГТА, 2002. - Вып.5 -С.131-133.

9. Сумец П.П. Скорость распространения волн гидроудара в усиленном сетча той оболочкой трубопроводе// Объединенный научный журнал. - 2003. - № (64). - С.52-55.

Ю.Гребенников Д.Ю., Сумец П.П Распространение волн гидроудара в трубе проводе, усиленном сетчатой оболочкой//Математические модели и опер; торные уравнения: Сборник научных трудов. - Воронеж: ВГУ, 2003. - Т. 2 С. 45-51.

Заказ № 505 от 01.09.2003 г. Тираж 100 экз. Лаборатория оперативной полиграфии ВГУ