автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Математическое моделирование интенсивного формообразования с использованием конечно-элементного анализа
Автореферат диссертации по теме "Математическое моделирование интенсивного формообразования с использованием конечно-элементного анализа"
На правах рукописи
Левщанов Владимир Викторович
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ИНТЕНСИВНОГО ФОРМООБРАЗОВАНИЯ С ИСПОЛЬЗОВАНИЕМ КОНЕЧНО-ЭЛЕМЕНТНОГО АНАЛИЗА^—
Специальность: 05.13.18 - Математическое моделирование, численные методы и комплексы программ
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук
Ульяновск -
2010
004600548
Работа выполнена на кафедре общей физики в Государственном образовательном учреждении высшего профессионального образования Ульяновский государственный педагогический университет им. И.Н. Ульянова.
Научный руководитель:
доктор технических наук,
профессор Филимонов Вячеслав Иванович
Научный консультант:
Официальные оппоненты:
доктор физико-математических наук, профессор Леонтьев Виктор Леонтьевич
доктор технических наук, профессор Антонов Иван Степанович
доктор физико-математических наук, профессор Вельмисов Петр Александрович
Ведущая организация:
ГОУ ВПО Магнитогорский государственный технический университет им. Г.И. Носова
Защита диссертации состоится « 28 » апреля 2010 г. в 11— часов на заседании совета Д 212.278.02 при Ульяновском государственном университете по адресу: ул. Набережная р. Свияги, 106, корп. 1, ауд. 703.
С диссертацией можно ознакомиться в библиотеке Ульяновского государственного университета, с авторефератом - на сайте www.uni.ulsu.ru.
Автореферат разослан «23 » марта 2010 г.
Просьба прислать отзыв на автореферат в одном экземпляре, заверенном печатью организации по адресу: 432000, г. Ульяновск, ул. Л.Толстого, д. 42, УлГУ, Управление научных исследований
Ученый секретарь диссертационного совета (// ' Волков М.А.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность темы. В последние годы активно развиваются новые технологии пластического деформирования, в том числе холодного профилирования, позволяющие получать детали с высоким классом точности и чистотой поверхности. К наиболее перспективным технологиям, сочетающим в себе высокую универсальность и эффективность, можно отнести метод интенсивного деформирования (МИД), созданный в последнее десятилетие1. МИД позволяет получать требуемое сечение профиля при меньшем числе переходов, что повышает эффективность производства и снижает себестоимость продукции, однако недостаточная изученность его предельных возможностей сдерживает широкое применение этого метода. Несмотря на значительное количество опубликованных работ, посвященных данной проблеме, до настоящего времени отсутствует достаточно точное количественное описание большого числа факторов, оказывающих влияние на процесс формообразования, К их числу можно отнести, например, нестабильность граничных условий и изменение свойств материала заготовки в процессе формоизменения. Проблему усиливает сложность и высокая стоимость натурных экспериментов, а также ограниченные возможности доступных контрольно-измерительных приборов. Сегодня эффективное решение таких задач возможно с использованием достижений прикладной математики, современной вычислительной техники и профессиональных комплексов программ численного анализа. Программные системы компьютерного инжиниринга2 (САЕ) позволяют реализовать виртуальный анализ имеющихся или находящихся на стадии проектирования технологических схем и дать прогноз их эффективности. Таким образом, развитие этого направления -актуальная задача.
Предметом исследования являются математические модели процессов формообразования, их изучение с помощью конечно-элементного анализа и его реализация в комплексе программ.
Объектом исследования являются процессы формообразования заготовок в роликах профилировочных станков.
Целью работы является комплексное исследование процессов формообразования профилей методом интенсивного деформирования путем создания и изучения аналитических и конечно-элементных математических моделей и моделирования в программных средах АИБУБ и ЬЗ-ВУМА, с целью расширения области применения МИД и его совершенствования. Для достижения этой цели решались следующие задачи:
- изучение степени влияния различных факторов на процесс формообразования профиля и определение круга физико-механических явлений, подлежащих учету при разработке моделей;
- разработка математических и дискретных конечно-элементных моделей (формоизменения, материалов), соответствующих их физическим прототипам;
1 Филимонов, C.B. Интенсивное формообразование гнутых профилей / C.B. Филимонов, В.И. Филимонов. -Ульяновск: УлГГУ, 2008. - 444 с.
2 ANS YS/LS-DYNA Metal Forming Simulation [Электронный ресурс]. Режим доступа: http://www.metalfonrangsimulation.com, свободный. - Загл. с экрана. - Яз. англ.
- реализация численного анализа задач формообразования с целью исследования предельных возможностей МИД и установление границ применимости предлагаемых аналитических и конечно-элементных моделей;
- создание новых элементов алгоритма численного анализа, направленных на реализацию в среде ANSYS/LS-DYNA предложенных математических моделей и на их численное исследование;
- разработка экспериментальной гибочной установки и проведение на ней верификационных исследований, подтверждающих адекватность авторских аналитических и конечно-элементных моделей.
Методы исследования. В диссертационной работе применялись:
- методы математического моделирования и вычислительной математики;
- методы статистического анализа;
- методы механики деформируемого твердого тела.
Научная новизна. В диссертации созданы новые математические модели процессов формообразования и комплекс программ, предназначенный для исследования этих моделей с помощью конечно-элементного анализа. Основные положения, выносимые на защиту:
- математическая модель интенсивного деформирования перфорированных заготовок при профилировании в условиях нормального нагружения по кромке детали;
- математическая модель деформирования зоны изгиба с учетом упрочнения при профилировании и высвобождении угловой зоны;
- математическая модель зоны плавного перехода при интенсивном формообразовании профиля из упрочняющегося материала с учетом прогибов донной части профиля;
- комплекс программ, реализующих предложенные модели и алгоритм их исследования при решении поставленных задач.
Достоверность и обоснованность результатов.
Достоверность научных положений и полученных результатов исследований обеспечивается совпадением результатов конечно-элементных расчетов и экспериментальных данных в пределах 5 - 10%, а также их применением в практике профилирования. Ряд результатов, полученных в данной работе, находит подтверждение в экспериментальных исследованиях других авторов.
Практическая значимость работы состоит в ее ориентации на расширение области применения метода интенсивного деформирования и па его совершенствование.
Апробация работы. Результаты основных положений диссертации докладывались на Всероссийской научно-практической конференции (г. Ульяновск, 2004 год), научно-технических конференциях «Вузовская наука в современных условиях» в 2005, 2006, 2008 гг., а также на расширенных заседаниях кафедр общей физики Ульяновского государственного педагогического университета (в полном объеме диссертации) и информационной безопасности и теории управления Ульяновского государственного университета.
Личный вклад. Создан ряд аналитических и дискретных моделей формообразования профилей. Разработаны численные алгоритмы, увеличивающие эффективность вычислительных экспериментов в среде ANSYS и выполнена их программная реализация. Произведен анализ полученных результатов и осуществлена их верификация экспериментальным методом.
Публикации. По теме диссертации опубликованы 16 работ, в том числе 3 статьи из перечня изданий, рекомендованных ВАК, и патент на полезную модель.
Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, четырех приложений и списка литературы, включающего 150 наименований. Основная часть работы изложена на 174 страницах машинописного текста и содержит 101 рисунок и 18 таблиц.
Использование результатов. Результаты диссертационного исследования позволили выработать рекомендации для совершенствования технологии МИД 12-ти типоразмеров многоэлементных гнутых профилей, которые были использованы в НПО «ИДМ» (Научно-Производственное Объединение «Интенсивное Деформирование Материалов»). Результаты проведенных исследований были рассмотрены экспертной комиссией ОАО «Ульяновский НИАТ», были отмечены научная новизна и практическая значимость работы. Предложенные модели были использованы при проектировании новых технологий.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении рассмотрены актуальность исследования и цель работы.
В первой главе проведен обзор литературных источников, отражающих методы и способы формообразования тонкостенных профилей. Показаны преимущества и ограничения существующих методов производства гнутых профилей. Обоснован выбор МИД как наиболее универсальной технологии, отличающейся высокой производительностью, сравнительно низкой энергоемкостью и незначительными потерями металла при производстве изделий.
Рассмотрены проблемы, сдерживающие широкое применение МИД, и выделены основные из них:
- отсутствие установленных количественных взаимозависимостей между физико-механическими, размерными характеристиками исходного профиля и параметрами процесса формообразования МИД;
- отсутствие модели формоизменения перфорированной заготовки при поджа-тии в торец, позволяющей прогнозировать деформацию отверстий и изменение их топологии на подгибаемых элементах;
- отсутствие моделей зоны изгиба в условиях деформационного упрочнения материла с высвобождением угловой зоны, позволяющих назначать рациональные режимы формообразования;
- отсутствие моделей зоны плавного перехода, в которых учитывается эффект прогиба донной части, позволяющих сократить число переходов и предотвратить неустойчивость пластического деформирования в форме кромковой волнистости (рис. 1).
Рис. 1. Один из основных типов потери устойчивости - кромковая волнистость
Обзор работ теоретического и прикладного характера отечественных и зарубежных исследователей, посвященных указанным проблемам, показал, что для достаточно точного количественного описания большого числа факторов, влияющих на процесс формообразования методом интенсивного деформирования, наиболее целесообразно применение методов математического моделирования и конечноэлементного анализа.
Рассмотрены основные методы математического моделирования процессов профилирования, а также их возможности и ограничения. Предложен комплексный метод, включающий создание аналитических и конечно-элементных математических моделей.
Выполнен сравнительный анализ современных программных пакетов, реализующих принцип конечно-элементного анализа и применяемых для решения технологических задач обработки металлов давлением (ОМД), обоснован выбор программных комплексов А№У8 и ЬБ-ОТОА как наиболее универсальных для решения рассматриваемых задач.
Первая глава диссертационной работы заканчивается рассмотрением причин возникновения погрешностей при использовании численных методов и способов их оценки.
Во второй главе представлены разработанные аналитические модели.
1. Модель интенсивного деформирования перфорированных заготовок отражает напряженно-деформированное состояние металла вблизи отверстий различных размеров и различной топологии при профилировании перфорированной ленты МИД.
Расчетная схема и принятые допущения'. ^рассматривается только часть заготовки, расположенной в меж-клетьевом пространстве профиле-гибочного станка; 2) влияние смежных с очагом пластической деформации участков на общую картину напряженно-деформируемого состояния не учи- Рис 2 Схем нагружения участков заготовки при тывается, а нагружение считается формовке в горизонтальных роликах (а) и с межблизким к нагружению, показан- клетьевой проводкой (б) ному на рис. 2.
Напряженное состояние в произвольной точке заготовки описывается за-111
висимостями : о„
-о,
(l + cos2é>),
где om ffee, тгв- напряжения.
3 Филимонов, в.И. Теория обработки металлов давлением / В.И Филимонов,- Ульяновск: Изд-во УлГТУ «Венец». 2004. - 208 с.
Для осесимметричной части, представляемой модельной задачей сжатия кольца, нагруженного напряжением £Т0/ 2 по наружному контуру и имеющего свободный от напряжений внутренний контур, решение в терминах осесимметричной функции Эри известно4: Фс(/-) = ^Ь(2Л'1т--/-2), где Фс(г) - функция
Эри; г - текущая радиальная координата.
Неосесимметричная функция напряжений Эри Ф„(г, 0) для задачи сжатия
кольца с напряжениями на внешней границе: 20,
представима в виде: Фн (г, в) = /(/•)соб2# .
Определив функцию /(г) из уравнения V3ФЯ (г,в) = 0 и просуммировав осесимметричную и неосесимметричную функции напряжений Эри, получим:
г1
Ф (г,в):
'-cos2e~r-2R4nr
L
, и как следствие формулы:
2 г
Gro
M{\+2-R1
•3^-lsin 29
r J
2 ^ Г
Отсюда следует, что при г = Я (контур отверстия): аев = сг0 (2соэ20 — 1). Видно, что для некоторых направлений напряжение ода может троекратно превышать значение напряжения, приложенного к торцевой поверхности заготовки. Характер распределения напряжений в области с преобладанием упругих деформаций согласно полученным формулам представлен на рис. 3.
Выявлена локализация напряжений в области, примыкающей к отверстию, а также их затухание по мере удаления от границ отверстия.
Для круглого отверстия в пластической области нагрузка действует в плоскости полки, при этом напряжения, обозначенные на рис. 3 индексом «3», равны нулю при условии дис-торсии полки на протяжении всего процесса деформирования. При этих условиях уравнения равновесия а,^ - 0 (у принимают значения от 1 до 3; щ - компоненты напряжений; "у " после запятой означает дифференцирование по7-ой координате) сводятся к двум дифференциальным уравнениям в частных
10 15 20 25 30 г. мм
10 15 20 23 30 Г, ММ
б
Рис. 3, Распределение радиальных (а) и тангенциальных (б) напряжений по радиусу г под углом 45° к оси Х| в упругой области для отверстий с различными радиусами R, мм: 5(1), 10(2), 15(3). 20(4)
4 Флетчер. К. Численные .методы на основе метода Галеркина: Пер. с англ. - М.: Мир. I9S8. - 352 с.
производных, а переход к главным напряжениям <хь сгг позволяет получить их значения в следующем виде:
0-,,+сг,.
Л- - ап+сгп
12 >
где о\ и аг - главные напряжения.
Нижняя и верхняя границы разрушающего напряжения были определены
анализом поля разрывов скоростей. Если ввести коэффициент: д = —, то верх-
Ъ
ней границей коэффициента ослабления х будет величина:
%в = + Зд2 - д, а нижней границей величина: Хн = ~ ■
На рис. 4 показано, что обе границы лежат достаточно близко. При высоком уровне сжимающих напряжений и диаметре отверстия, соизмеримом с шириной полки, в зонах, примыкающих к точкам пересечения координатных осей с контуром отверстия, образуется некое подобие «пластических шарниров». В этих зонах при торцевом сжатии наблюдается раз-
0
0,6 -1\
1\
0,45 - \ \ х \
\ \
0,3 - \ N
N
0,15 - \
Хн
0,3 0,4 0,5 0,6 0,7 0,8
Рис. 4. Верхняя и нижняя границы рушение материала или локальное «про-«коэффициекга ослабления» давливание», что является неустранимым
дефектом.
2. Модель деформационного упрочнения материала при профилировании с высвобождением угловой зоны позволяет сопоставить величину дрейфа нейтрального слоя напряжений (НСН) с изменением значений напряжений в зависимости от радиуса гиба для моделей из материала, упрочняющегося по линейному закону. От соотношения размеров зон сжатия и растяжения, а также соотношения упругих и пластических зон, зависит угол пружинения, определяющий характеристики точности производимого профиля. Принятые допущения:
1) материал - упрочняемый по линейному закону;
2) материал считается несжимаемым;
3) аксиальная вытяжка материала заготовки отсутствует (принимается схема плоской деформации);
4) компоненты тензора напряжений в угловой зоне зависят только от одной из координат;
5) справедлива гипотеза «единой кривой»5;
6) зона сжатия и зона растяжения равны по площадям и разделяются нейтральным слоем деформаций (рис. 5).
тов. - М.: Изд. АСВ, 2004. — 424 с.
Дифференциальные уравнения равновесия а^ = 0 для угловой зоны в рамках принятых допущений вырождаются в одно уравнение:
да,
р--£- + (7 -<7в=0, (1)
идррв
где Ор, ив - радиальное и окружное напряжение соответственно; р- относительный радиус гиба.
С учетом условия пластичности материала, упрочняющегося по линейному закону, для Рис. 5. Схема и параметры зоны растяжения уравнение (1) принимает вид: формовки угловой зоны:
1 - ролик нижний; 2 - ролик верхний; НСН- нейтральный слой напряжений; НСД - нейтральный слой деформаций
дР
2 Л
а'+Тз
2л
Р.
■Я
•Р.
где р£ =
г2 + Яг
радиус кривизны нейтраль-
ного слоя деформаций; Я - показатель упрочнения; <т7- - предел текучести материала. Введем обозначения: А = £ = —и проинтегрировав
у/3 ре-у13
дифференциальное уравнение, с учетом обозначений и граничного условия °"р(Ю = 0 получим: + и арв = + ^ + В{Я-2р).
Аналогично для зоны сжатия с учетом граничного условия аср (г) = О получим:
г
ст^АЫ
+ В{р - г) и асд = А
Г г
!п|-|-1 \+В{2р-г).
В случае отсутствия упрочнения уравнения дают известные решения аналогичной задачи для случая идеальной пластичности6, поскольку следует: А = стт, 5 = 0.
Расположение НСД между зонами сжатия и растяжения не означает равенства радиальных напряжений на этой границе, Границу НСН можно найти в результате «сшивания» радиальных напряжений из формулы:
А • 1п
А
г-К
= В(2р„-г-К).
(2)
На рис. б и рис. 7 в графической форме показаны зависимости смещения НСН от относительного радиуса гиба степени упрочнения материала, построенные на основе формулы (2).
6 Ивлев, Д.Д. Механика пластических сред Том 1. Теория идеальной пластичности - М: Наука, -
2001. -
-448 с.
Ol 2345678
Рис. б. Зависимость смешения НСН от относительного радиуса гиба: 1 - X. = 0; 2 - X = 400 МПа
о 50 100 150200 250 300 350 X
Рис. 7. Зависимость смещения НСН от степени упрочнения материала: 1,2,3,4, 5 -т = 0,2; 0,4; 0,6; 0,8; 1,0
Установлено, что при изменении относительного радиуса гиба от 1 до 9 для неупрочняющегося материала (кривая 1 на рис. 6) смещение НСН не превышает 6%, а при относительном радиусе более 3 смещение составляет менее 1%. Для малых радиусов гиба смещение НСН существенно больше для неупрочняющегося материала и имеет тенденцию к увеличению.
3. Модель зоны плавного перехода СЗПП) при интенсивном формообразовании профиля из упрочняющегося материала7. Предложенная модель позволяет прогнозировать эффект переформовки заготовки из упрочняющегося материала и назначать такие предельные углы подгибки (с учетом прогиба донной части профиля), которые не приведут к потере устойчивости деформирования.
Принятые допущения при определении работы при подгибке полки:
1) материал несжимаемый, упрочняемый по степенному закону;
2) ширина полки не изменяется, а срединная поверхность полки описывается линейчатой поверхностью;
3) сдвиговые деформации в плоскости полки отсутствуют;
4) размеры угловой зоны в сравнении с шириной полки малы.
На рис. 8 изображены геометрия ЗПП и расположение локальной системы координат. Переходя от декартовых координат к криволинейным, получаем следующие уравнения срединной поверхности полки: С
x¡ — = v • eos в(и), х2 = и, х3 = v • sin в(и),
где XI, х2, х3 - декартовы координаты; С - ширина донной части профиля; V, и - криволинейные координаты.
Рис. 8. Геометрия ЗПП и расположение локальной системы координат: 1 - аппроксимация реальной границы пластической области; 2 - реальная граница пластической области
7 Филимонов, В.И., Левщано», В.В. Моделирование процессов формообразования гнутых профилей в роликах / В.И. Филимонов, В.В. Левщанов. - Ульяновск: УлГПУ, 2009. - 51 с.
Для получения математической модели ЗПП принимаются следующие допущения для угловой зоны (рис. 9):
1) принимается схема плоской деформации (е„ = 0);
2) радиус кривизны срединной поверхности остается постоянным;
3) работы деформирования сжатой зоны и растянутой зоны равны;
4) элементарные площадки при изгибе сохраняют свои площади.
Решая вариационную задачу с подвижной границей для полной функции ра- Рис. 9. Параметры угловой зоны бот правой половины профиля, получаем следующую формулу протяженности ЗПП:
X. \A ■"liiV XjVi ' ЛР/ /J WVo
Xi
£ =
где вк - угол подгибки на ¿-ом переходе, D = метр упрочнения, £
2т + \
В =
2т + 2
f-(2m + 2)' 2m+ 1 константа, определяемая параметрами ЗПП.
(3)
т - пара-
Пределъные случаи для модели (3). Если положить С = О (абсолютно жесткое дно или уголок), то получаем модель Гунна-Полухина для формовки уголка из упрочняющейся полосы8. При т = 0 (неупрочняющийся материал заготовки) легко показать, что предлагаемая модель в точности совпадает с моделью Бхаттачария-Коллинза9 и с моделью изгиба полки при стесненном изгибе для случая формовки изотропной полосы с постоянным радиусом гиба и формующих роликов для всех переходов. Разработанная модель асимптотически корректна с физической точки зрения - при стремлении толщины заготовки к нулю протяженность ЗПП становится бесконечной.
Во избежание переформовки заготовки и потери устойчивости деформирования надлежит следить за тем, чтобы применяемые углы подгибки не выводили длину ЗПП за пределы межклетьевого расстояния, то есть должно выполняться условие: Ь <ЬМ, где Ьи - межклетьевое расстояние профилировочного станка, чему соответствует ограничение 9к < ОТ", где определяется из уравнения;
D
У
Lm= о.
8 Полухин, П.И., Гунн Г.Я., Галкин A.M. Сопротивление пластической деформации металлов и сплавов: Справочник. - М.: Металлургия, 1983. - 352 с.
s Bhattachaiyya, D. The prediction of deformation lenth in cold roll-forming / D. Bbattacharyya, P.D. Smith, I. F. Collins // Journal of Mechanical Working Technology, 1984. - V. 9. - № 2. - P. 181 -191
В третьей главе проведен ряд численных исследований в программной среде комплекса ANSYS/LS-DYNA с использованием решателя явного типа (динамическая фаза, включающая в себя большие деформации) и с использованием неявного решателя (упругая отдача).
Для выполнения моделирования в программной среде ANSYS/LS-DYNA была создана пользовательская база данных конструкционного материала Сталь 08кп, включающая типовые и экспериментальные физико-механические характеристики. Работа проводилась с помощью разработанного программного модуля, который представляет собой текстовый файл (скрипт) на языке APDL (внутренний параметрический язык программирования высокого уровня) и содержит перечень последовательно выполняемых команд. С помощью этого программного модуля в алгоритм численного метода ANSYS были внесены авторские изменения, учитывающие предложенные математические модели и позволяющие отказаться от процедуры пересчета результатов лабораторных испытаний на растяжение (engineering stress-strain) в истинные значения напряжений и деформаций, а также от трудоемкого ручного ввода большого количества данных через графический интерфейс программы.
1. Моделирование подсадки заготовки с ограничением по наружному контуру. Цель численного эксперимента - исследование потери устойчивости и установление зависимости утолщения угловой зоны профиля от величины смещения формообразующего инструмента. На рис. 10 показана конечно-элементная деформированная модель по окончании подсадки полки значительной сжимающей силой, приводящей к потере устойчивости полки. Выявлена зависимость набора толщины в угловой зоне от величины смещения формообразующего инструмента (рис. 11) и величины обратного пружинения (рис. 12).
Рис. 10. Конечно-элементная модель угловой зоны после окончания процесса деформирования
2,6
£ 2,5
£
з 2,4
§
2.3
з
О 2,2
2,1
1 2,0
.5 1,9
| й 6 £ 8 £ I £
VI (Л 'Л 'Л '.Л VI '-/I л
Смещение инструмента, мм
Рис. 11. Зависимость набора толшины в угловой зоне от величины смещения формообразующего инструмента
-3,5 -3 -2,5 -2 -1,5 -1 -0,5 0 Величина пружинения, мм
Рис, 12. Зависимость эффекта обратного пружинения заготовки от смещения формообразующего инструмента
МПа
О 0,5 Д^с ]
Рис. 13. Распределение главных напряжений по биссектрисе угла: 1 - радиальное; 2 - продольное; 3 - окружное
2. Моделирование изгиба с высвобождением угловой зоны позволило осуществить анализ распределения главных напряжений по биссектрисе угла зоны изгиба (рис. 13), качественно и количественно охарактеризовать взаимосвязь величины перемещения торца заготовки и разгрузки наружного контура.
По результатам численного моделирования выявлено, что при подсадке можно производить изгиб на меньшие радиусы, чем те, что традиционно приводятся в многочисленных справочниках по холодной штамповке для обычного изгиба.
Подтверждено соответствие деформационных характеристик угловой зоны аналитической модели пластического изгиба и торцевого поджатая.
Показано, что уровень окружных деформаций на наружном контуре не превышает 10, а на внутреннем контуре - 25. Следовательно, наружный контур разгружается за счет действия торцевых сил, внутренний нагружается дополнительно (при чистом изгибе окружная деформация наружного контура составляет около 20 при той же геометрии угловой зоны). Величина деформации в любой точке на срединной поверхности заготовки не превышает 0,4.
3. Моделирование деформирования перфорированных профилей в закрытом калибре выполнялось на конечно-элементной модели, содержащей 1124 конечных элемента SOLID 164 (рис. 14). Была решена задача об изменении формы отверстий в зонах высоких деформаций.
Анализ геометрических искажений показал, что наибольшему искажению формы подверглись отверстия, расположенные в правой части модели, при этом первоначально параллельные грани отверстий утратили параллельность и деформировались до появления контакта частей контура отверстий. Отверстия круглой формы приобрели эллипсоидность, а в верхней части отверстия с наибольшим диаметром образовался разрыв между краем отверстия и торцом профиля (рис. 15).
Рис. 14. Конечно-элементная модель заготовки созданная средствами препроцессора
Рис. 15. Картина распределения интенсивности напряжений после деформирования, в среде постпроцессора АЫБУБ
Проведенные исследования предельных возможностей профилирования перфорированной ленты в среде АТЧБУЗ позволили получить функциональную зависимость критической деформации от величины смещения формообразующего инструмента с учетом физико-механических явлений, сопровождающих пластическую деформацию. Показано влияние основных технологических параметров на качество получаемого изделия и на его геометрические характеристики. Осуществлен прогноз потери устойчивости элементами профиля.
В четвертой главе представлены результаты комплексных численных и экспериментальных исследований формообразования профиля швеллерного типа, получаемого с помощью МИД. Проведено сопоставление данных численного и натурного экспериментов.
Программа исследований данного раздела включала в себя:
- изучение геометрических характеристик зоны плавного перехода;
- измерение величины удлинения кромки полки в зоне плавного перехода;
- измерение величины утонения угловой зоны.
Для повышения эффективности постпроцессорной обработки результатов моделирования и предотвращения возникновения ошибок, являющихся следствием выполнения большего количества операций, был разработан авторский программный модуль на языке ЗСМРТО (параметрический язык программирования, предоставляющий пользователю возможность управлять инструментами пре/постпроцессора Ь8-РгеРоз1). Этот модуль позволил автоматизировать процесс выборки данных и этим сократить расход машинного времени более чем в 1000 раз. Совместно с модулем на языке АРОЬ, реализующим предлагаемую автором модель материала и вносящим изменения в алгоритм численного метода А^Ув, программный модуль на языке ЗСШРТО составил комплекс программ. С помощью этого комплекса программ в среде АМБУЗ/ЬБ-ОУТЧА были проведены исследования отраженные в данной работе и выполнена интерпретация полученных результатов.
Предложенный комплекс программ, дополнив собой внутренний инструментарий среды АИБУБ позволил повысить эффективность численного эксперимента при решении поставленных задач.
Исследования протяженности ЗПП были проведены на фрагменте конечно-элементной модели, расположенном между первым и вторым роликовым калибром (рис. 16).
Выявлено, что протяженность ЗПП, измеренная средствами постпроцессора АЫвУБ на конечно-элементной модели, близка к полученной из аналитической модели10, После статистической обработки результаты конечно-элементного эксперимента представлены в графической форме (рис. 17).
мм 460 J
400.
280-
Рис. 16. Распределение интенсивности истинных значений напряжений на исследуемом фрагменте профиля
Филимонов. C.B. Метод расчеты и технология интенсивного деформирования в роликах гнутых профилей типовой номенклатуры ' С В. Филимонов. В.И. Филимонов. - Ульяновск: УлГТУ, 2004. - 246 с
мИШИНН
-г I
< ¿4 - _ 1 1
Е XI / 11 1 зона остаточных деформаций
/ \ \
зона \ [ 1
остаточных деформаций зона контакта второго роликового
калибра
. гг. ,.. — } ——
320
340
420
440
380
расстояние, мм
Рис. 17. Номограмма изменения утла подгибки на участке, включающем в себя зону плавного перехода
Проведенные исследования показали, что после окончания формообразования на исследуемом переходе угол подгибки продолжает увеличиваться за осевой плоскостью роликового калибра под воздействием внутренних напряжений.
Моделирование позволило определить критерии предельного формообразования и разработать рекомендации практического характера (приведены в работе) для специалистов данной предметной области.
Экспериментальное подтверждение результатов аналитических и конечно-элементных исследований, проведенных в рамках настоящей работы, было осуществлено на разработанной и созданной автором гибочной установке (рис. 18). Путем сопоставления расчётных и экспериментальных данных подтверждена высокая эффективность конечно-элементного моделирования применительно к технологическим процессам формообразования тонкостенных профилей методом интенсивного деформирования.
На рис. 19 показана фотография ЗПП заготовки из холоднокатаной оцинкованной стали марки 08кп. Толщина заготовки, деформированной с помощью гибочной установки, 1 мм. Значение Ьк , полученное экспериментальным методом (рис. 19), и значение I/,, полученное из результатов численного эксперимента (рис. 17),
совпадают с точностью, приемле- ^^^^^аАММШНПШр мой для практического применения. ЩШШШШ
Расхождение экспериментальных 'ЦИДИрщвддарм^^ЩЩЩЩ
Рис. 18. Экспериментальная гибочная установка
данных и конечно-элементного моделирования не превышает 5%, что является хорошим показателем для задач такого плана и позволяет использовать результаты проведенных исследований при создании технологий.
|«--1к -
I__I_1_I_I__I_!_I I I
О 10 20 30 40 50 60 70 80 90
ЭКТ, мм
Рис. 19. Фото зоны плавного перехода при подгибке полки на угол 22°
ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ
1. Изучены степени влияния различных факторов и механических свойств заготовки на процесс формообразования профиля. Показано, что наибольшее влияние на процесс формообразования оказывают размерные параметры сечения профиля (толщина стенок, ширина подгибаемых полок и дна), механические свойства заготовки (предел текучести, показатели упрочения, относительное удлинение), углы подгибки за переход и межклетьевое расстояние профилировочного станка, которые были учтены при моделировании процесса формообразования.
2. Разработана математическая модель деформирования перфорированных заготовок, которая позволила определять напряжения вблизи отверстий, а также верхнюю и нижнюю границы разрушающих напряжений. Показано, что эти напряжения в зависимости от топологии и размеров отверстий могут в несколько раз превышать напряжения, приложенные к торцевой поверхности заготовки.
3. Разработана математическая модель формирования зоны изгиба заготовки, которая позволила установить, что смещение нейтрального слоя напряжений существенно зависит от относительного радиуса изгиба и несколько в меньшей степени - от показателей упрочнения, причем, при относительном радиусе меньшем единицы смещение может превышать 10%.
4. Математическая модель зоны плавного перехода получена вариационным методом посредством минимизации функционала полной энергии деформирования. Она позволяет учесть влияние ширины донной части профиля и тем самым сократить число переходов путем «ужесточения» режимов подгибки. Модель устанавливает предельные углы подгибки полок во избежание переформовки заготовки.
5. Выполнено тестирование полученных аналитических моделей, которое показало, что в предельных случаях они совпадают с известными решениями, а в асимптотике являются физически непротиворечивыми.
6. Созданы дискретные конечно-элементные модели соответствующих аналитических моделей и проведено их численное исследование. Установлены предельные значения характеристик угловых зон, углов подгибки, а также отверстий в перфорированной заготовке для различных размеров и их расположения на подгибаемой полке.
7. Установлена область применения аналитических и конечно-элементных моделей: профили с толщиной стенок до 2 мм, относительной шириной подгибаемых полок до 80 мм и относительной шириной дна до 200 мм.
8. Разработан программный модуль на языке АРЭЬ, предназначенный для создания в среде программного комплекса АШУБ базы данных для материала Сталь 08кп. Программный модуль содержит перечень выполняемых команд и вносит авторские изменения в алгоритм численного метода АШУБ. Модуль позволил отказаться от процедуры пересчета результатов лабораторных испытаний в формат, принятый в среде АЫБУБ, и от трудоемкого ручного ввода большого количества данных через графический интерфейс программы.
9. Разработан программный модуль на языке SCRIPTO, позволивший автоматизировать процесс выборки данных о деформационных характеристиках конечно-элементной модели и интерпретировать полученные результаты в графической форме. Программный модуль предоставил возможность эффективного управления инструментами пре/постпроцессора LS-PrePost и предотвратил возникновение ошибок, являющихся следствием выполнения большего количества однотипных операций.
10. Программный модуль на языке APDL и программный модуль на языке SCRIPTO составили комплекс программ. Предложенный комплекс программ позволил повысить эффективность работы в среде ANSYS/LS-DYNA, провести исследования, отраженные в данной работе, и выполнить интерпретацию полученных результатов.
11. Результаты конечно-элементного моделирования были подтверждены экспериментальным методом на разработанной и созданной автором гибочной установке.
12. Разработаны практические рекомендации для специалистов-технологов, которые были использованы в НПО «ИМД» (г. Ульяновск) и ОАО «Ульяновский НИАТ» при разработке схем формообразования и технологического оснащения для производства 12 типоразмеров многоэлементных гнутых профилей.
ОПУБЛИКОВАННЫЕ РАБОТЫ ПО ТЕМЕ ДИССЕРТАЦИИ
В изданиях, рекомендованных ВАК:
1. Гудков, И.Н., Левщанов В.В., Филимонов В.И. Моделирование интенсивного деформирования перфорированных заготовок при профилировании // Производство проката. 2006. № 4. С. 30-34.
2. Филимонов, В.И., Левщанов В.В. Исследование методом конечных элементов процесса профилирования ленты с торцевым сжатием при высвобождении угловых зон. // Наука и технологии. Избранные труды Российской школы. Серия «Технологии и машины обработки давлением». - М.: РАН, 2005. - 204 с. С. 66 - 69.
3. Левщанов, В.В. Моделирование потери устойчивости донной области профиля в среде программного комплекса ANSYS / В.В. Левщанов // Программные продукты и системы. - Тверь. 2009. - №4. С. 105-108.
Работы, приравненные к публикациям в изданиях, рекомендованных ВАК:
4. Патент на полезную модель №44551. Клеть профилегибочного стана для непрерывного профилирования / Литвинов В.А., Зарубин Д.П., Филимонов C.B., Лапшин В.И., Левщанов В.В. Заявка №2004132023. Зарегистрировано в Государственном реестре полезных моделей РФ 27 марта 2005г.
В других изданиях:
5. Левщанов, В.В. Использование программного комплекса ANSYS при решении сложных задач физики и механики // Формирование учебных умений
в процессе реализации стандартов образования, материалы Всероссийской научно-практической конференции, УлГТУ, 2004. - С. 19-22.
6. Левшанов, В.В. Выбор конечных элементов для моделирования процессов профилирования // XXXIX НТК, УлГТУ «Вузовская наука в современных условиях», материалы конференции, Часть 1, УлГТУ, 2005. - С. 34.
7. Левщанов, В.В. Сравнительный анализ программных пакетов на основе МКЭ применяемый при моделировании профилирования металла // Современные проблемы проектирования, производства и эксплуатации радиотехнических систем, сборник научных трудов, УГТУ, 2005. - С. 43^8.
8. Левщанов, В.В. Компьютерное моделирование физических процессов с использованием программного комплекса ANS YS // Вестник УлГПУ, № 1, 2005.-С. 32-34.
9. Левщанов, В.В., Филимонов В.И. Формовка угловых зон с высвобождением при профилировании // Вестник УлГТУ, 2005. - № 2. - С. 39 - 42.
10. Левщанов, В.В., Филимонов, В.И. Моделирование реализации аксиального сжатия при профилировании полосы // Вестник УлГТУ, 2005. - № 3. -С. 34-37.
11. Левщанов, В.В. Сравнительный анализ процесса формообразования профиля с использованием программных сред ANS YS 8.0 и DEFORM 3D // Материалы 40-й НТК УлГТУ «Вузовская наука в современных условиях» (20 января - 24 января 2006 г.). - Ульяновск: УлГГУ, 2006. - С. 65 - 68.
12. Левщанов, В.В., Филимонов В.И. Моделирование процесса профилирования в среде ANSYS 8.0 // Современные проблемы проектирования, производства и эксплуатации радиотехнических систем: Сборник научных трудов. Вып. 5. - Ульяновск: УлГТУ, 2006. - С. 159 - 163.
13. Левщанов, В.В. Исследование процесса формирования уголковой зоны профиля. // Наука и технологии. Избранные труды российской школы. Серия «Технологии и машины обработки давлением». - Челябинск: Уральское отделение РАН. 2006. С. 49 - 53.
14. Левщанов, В.В., Филимонов В.И. Математическая модель кручения полки профиля несущей отбортованную часть // Материалы 42-й НТК УлГТУ «Вузовская наука в современных условиях» (28 января - 4 февраля 2008 г.). - Ульяновск: УлГТУ, 2008. - С. 41.
15. Левщанов, В.В. Конечно-элементный анализ зоны плавного перехода// Современные проблемы проектирования, производства и эксплуатации радиотехнических систем: Сборник научных трудов. Вып. 6. - Ульяновск: УлГТУ, 2008.-С. 205-207.
16. Филимонов, В.И., Левщанов В.В. Моделирование процессов формообразования гнутых профилей в роликах // Научное издание / В.И. Филимонов, В.В. Левщанов. - Ульяновск: УлГПУ, 2009. - 51 е.; илл. 33.
Подписано в печать iS.Qi.fOr. Формат 60x90 Бумага офсетная. Печать оперативная. Усл.печ.л. 7.0 Тираж 400 экз. Заказ 115 _
Ротапринт Ульяновского государственного
Педагогического университета им.И.Н.Ульянова
432700 г.Ульяновск, пл. 100-летия со дня рождения В.ИЛенина, д.4
Оглавление автор диссертации — кандидата технических наук Левщанов, Владимир Викторович
Основные обозначения, принятые в работе.
Введение.
1. СОСТОЯНИЕ ВОПРОСА И ЗАДАЧИ ИССЛЕДОВАНИЯ.
1.1. Методы и способы формообразования профилей.
1.1.1. Изготовление профилей в кромкогибочных машинах.
1.1.2. Гибка профилей в штампах.
1.1.3. Изготовления профилей в инструментальных фильерах.
1.1.4. Формообразование гнутых профилей, в роликах.
1.1.5. Комбинированный метод.
1.2. Дефекты профилей, возникающие в процессе формообразования.
1.2.1. Саблевидностъ.
1.2.2. Продольная кривизна.
1.2.3. Скрутка.
1.2.4. Кромковая волнистость.
1.3. Методы анализа процессов профилирования, их возможности и ограничения.
1.3.1. Сравнительный анализ математических методов.
1.3.2. Формулировка метода конечных элементов.
1.4. Сравнительный анализ современных программных пакетов на основе МКЭ применяемых для решения технологических задач.
1.4.1. Программный комплекс ANSYS.
1.4.2. Программный продукт LS-DYNA.
1.4.3. Программный продукт DEFORM.
1.4.4. Программный продукт MSC.Nastran.
1.4.5. Программный продукт COPRA RollForm.
1.4.6. Программный продукт Eta/DYNAFORM.
1.5. Причины возникновения погрешностей.
1.6. Проблемы и задачи, подлежащие решению.
Выводы.
Постановка задач исследования.
2. ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ ПРОЦЕССОВ ФОРМООБРАЗОВАНИЯ.
2.1. Модель интенсивного деформирования перфорированных заготовок.
2.2. Модель деформационного упрочнения материала при профилировании с высвобождением угловой зоны.
2.3. Модель зоны плавного перехода при интенсивном формообразовании профиля из упрочняющегося материала.
Выводы.
3. ЧИСЛЕННЫЙ АНАЛИЗ ПРОЦЕССОВ ПРОФИЛИРОВАНИЯ.
3.1. Применяемые программные средства и схема проведения исследований.
3.2. Выбор типа конечного элемента для решения задач профилирования.
3.2.1. Свойства материалов использованные при моделировании.
3.2.2. Создание программного модуля на языке APDL в среде программного комплекса ANSYS.
3.2.3. Omfuu контактного взаимодействия использованные при моделировании.
3.3. Исследование предельных возможностей профилирования перфорированной ленты.
3.4. Моделирование процесса формирования угловой зоны профиля методом стесненного изгиба.
3.4.1. Моделирование высвобождения угловой зоны.
3.5. Моделирование осадки заготовки подковообразной формы.
3.6. Моделирование подгибки полки в межклетьевом пространстве профилегибочного станка.
Выводы.
4. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ КРИТЕРИЕВ ПРЕДЕЛЬНОГО ФОРМООБРАЗОВАНИЯ.
4.1. Программа экспериментальных исследований.
4.1.1. Цель и задачи исследований.
4.1.2. Применяемые средства и алгоритм проведения конечно-элементного эксперъшента.
4.1.3. Выбор схемы форлюобразования профиля.
4.2. Конечно-элементная модель профилегибочного станка.
4.2.1. Конечно-элементная модель деформируемой заготовки.
4.2.2. Конечно-элементные модели роликовых калибров.
4.2.3. Конечно-элементная модель направляющего устройства.
4.2.4. Полная конечно-элементная модель профилегибочного станка.
4.2.5. Допущения, принятые при моделировании.
4.2.6. Опции решателя и контроля конечно-элементной модели.
4.3. Постпроцессорная обработка результатов решения.
4.3.1. Зоны контроля.
4.3.2. Создание программного модуля на языке SCRIPTOреализующего алгоритм автоматизированной выборки данных о характеристиках напряженно-деформированного состояния модели.
4.3.3. Исследования протяженности зоны плавного перехода.
4.3.4. Измерение величины относительного удлинения кромки полки.
4.3.5. Измерение величины отклонения дна профиля в вертикальной плоскости.
4.3.6. Исследование зависимости геометрических характеристик угловой зоны от суммарного угла подгибки в условиях интенсивного деформирования.
4.4. Экспериментальная гибочная установка.
4.4.1. Конструкция установки.
4.4.2. Работа с установкой.
4.5. Результаты экспериментальных исследований.
4.5.1. Исследование потери устойчивости дна профиля в форме депланации поверхности.
4.5.2. Исследование геометрических характеристик зоны плавного перехода профиля.:.
4.6. Основные направления дальнейших исследований.
Выводы.
Введение 2010 год, диссертация по информатике, вычислительной технике и управлению, Левщанов, Владимир Викторович
В настоящее время процесс технического переоснащения охватил большинство отечественных машиностроительных и металлообрабатывающих предприятий. Фактором, обусловившим это, явилась острая конкуренция со стороны зарубежных производителей, имеющих более гибкую систему производства, способную быстрее реагировать на запросы потребителя. Особое значение приобретает вопрос разработки и освоения новых высокопроизводительных и ресурсосберегающих технологий обработки металла. На передний план выходят новые методы холодного формообразования (пластического деформирования), позволяющие получать детали с высоким классом точности и чистоты поверхности. Детали, полученные с помощью таких методов, не требуют доводки и часто являются законченным продуктом, готовым к использованию сразу после изготовления. Это особенно актуально при производстве профилей сложной, специальной и асимметричной формы, сортамент которых неуклонно увеличивается в связи с расширением областей их применения.
К числу наиболее перспективных, сочетающих в себе высокую универсальность и эффективность, можно отнести метод интенсивного деформирования (МИД) в роликовых калибрах. В отличии от традиционного, метод интенсивного деформирования позволяет получать требуемое сечение профиля при меньшем числе переходов, что повышает производительность оборудования и снижает себестоимость продукции. Однако, сдерживающим фактором, ограничивающим его широкое применение, является недостаточная изученность предельных возможностей этого метода. Более жесткие схемы формообразования, реализуемые МИД, часто становятся причиной ухудшения геометрических характеристик готового изделия, вплоть до возникновения таких распространенных дефектов как кромковая волнистость и прогиб в горизонтальной плоскости (саблевидность). Предотвратить появление дефектов можно только детальной проработкой каждого технологического перехода, для чего необходимо углубленное изучение напряженно-деформированное состояния зоны сгиба и периферийных элементов детали в процессе формообразования. Ограниченные возможности аналитических методов и высокая стоимость экспериментальных исследований привели к необходимости поиска новых путей решения этой проблемы. Опыт ведущих производителей профильной продукции убедительно доказал необходимость применение новейших информационных технологий при решении таких задач.
На Российских машиностроительных и проектных предприятиях широкое распространение получили системы автоматизированного проектирования на базе хорошо освоенного отечественными специалистами AutoCAD. Было достигнуто повышение производительности труда за счет автоматизации рутинных и трудоемких работ, связанных с разработкой и документированием простых и сложных деталей, сборок, деталировок и др. Значительно хуже ситуация в области автоматизированного инженерного анализа. Статистика отмечает медленный рост числа специалистов занятых в этой сфере. Сдерживающим фактором выступает высокая цена на программные продукты, реализующие метод конечных элементов (МКЭ) при моделировании технически сложных задачи. К типичным представителям таких программ, представленных на рынке программного обеспечения, можно отнести ANSYS, NASTRAN и LS-DYNA. Слабая подготовка отечественных ученых-исследователей и инженеров-расчетчиков к работе с программами такого класса объясняется отсутствием доступной русскоязычного документации к ним, учебных пособий и, за редким исключением, учебных (студенческих) версий этих программ.
Таким образом, преодолев вышеперечисленные трудности и используя современную вычислительную технику, можно разрабатывать новые схемы формообразования, сокращать время проектирования оборудования и оснастки, повышать качество продукции при одновременном снижении себестоимости, и как следствие этого, увеличивать рентабельность производства.
Цель данной работы - углубленное исследование предельных возможностей технологии интенсивного формообразования с помощью моделирования в программной среде ANSYS и LS-DYNA. Основываясь на данных, полученных в результате моделирования, были выявлены причины возникновения таких дефектов холоднокатаных профилей, как кромковая волнистость, скручивание и др.
Результаты проведенных исследований прошли апробацию и были использованы при разработке новых технологий и проектировании технологического оборудования в ООО «НПО «ИДМ» (Научно-Производственное Объединение «Интенсивное Деформирование Металлов») и ОАО «Ульяновский НИАТ» (Ульяновский научно-исследовательский институт авиационной технологии и организации производства).
Диссертационная работа состоит из четырех глав.
В первой главе описаны различные способы изготовления профильной продукции и рассмотрены характерные дефекты, возникающие в процессе формообразования, для их учета в построении математических моделей. Проведен сравнительный анализ современных программных продуктов на основе МКЭ, применяемых для решения задач профилирования с учетом особенностей поставленной задачи.
Вторая глава посвящена разработке трех математических моделей: модели интенсивного деформирования перфорированных заготовок, модели деформационного упрочнения материала при профилировании с высвобождением угловой зоны и модели зоны плавного перехода при интенсивном формообразовании профиля из упрочняющегося материала.
В третьей главе проведен численный анализ процессов профилирования. С помощью языка программирования APDL, в среде программного комплекса ANSYS создана базы данных для материала Сталь 08кп.
В четвертой главе описаны экспериментальные исследования критериев предельного формообразования с использованием конечно-элементной модели профилегибочной линии. Приведены опции решателя и контроля конечно-элементной модели. Создан программный модуль на языке SCRIPTO для автоматизации процесса выборки данных о характеристиках напряженно-деформированного состояния модели. Исследовано напряженно-деформированное состояние детали в процессе формообразования. Приведены описание и принцип работы разработанной и созданной экспериментальной гибочной установки. Дан сравнительный анализ результатов конечно-элементного и лабораторного экспериментов потери устойчивости дна профиля и геометрических характеристик зоны плавного перехода. Подтверждена высокая надежность использованных численных методов при решении задач ОМД.
Предложенные аналитические и конечно-элементные модели прошли апробацию на двух ульяновских предприятиях специализирующихся на производстве профильной продукции и были использованы при разработке технологического оборудования.
По результатам исследований опубликовано 17 работ и получено положительное решение на выдачу патента.
Автор выражает глубокую признательность научному руководителю, научному консультанту, ООО «НПО «ИДМ» и ОАО «Ульяновский НИАТ» за оказанную помощь и поддержку в процессе подготовки работы.
Заключение диссертация на тему "Математическое моделирование интенсивного формообразования с использованием конечно-элементного анализа"
ЗАКЛЮЧЕНИЕ: ОСНОВНЫЕ РУЗУЛЬТАТЫ И ВЫВОДЫ
С помощью мощных и удобных программных средств ANSYS и LS-DYNA было проведено исследование одного из наиболее перспективных методов обработки металлов давлением — метода интенсивного деформирования (МИД). В итоге были преодолены сложности, связанные с исследованием напряженно-деформированного состояния детали в момент формообразования и одновременно относительном движении. Конечно-элементное представление процесса позволило дать качественную и количественную оценку факторов, являющихся причиной возникновения дефектов получаемых профилей. Результаты проведенной работы могут быть использованы для оптимизации технологических параметров МИД, а также стать частью дальнейших исследований.
В рамках данной работы были достигнуты следующие основные результаты:
1. Разработана аналитическая модель интенсивного деформирования перфорированной заготовки. Модель характеризует напряженно-деформированное состояние металла вблизи отверстий продолговатой и овальной формы и позволяет осуществить прогноз распределения напряжений при профилировании перфорированной ленты.
2. Разработана аналитическая модель деформационного упрочнения материала при профилировании с высвобождением угловой зоны. Учитывая упрочнение металла и прогиб донной части профиля, модель позволяет устранить переформовку заготовки, а также сократить число переходов.
3. Разработана аналитическая модель зоны плавного перехода для технологии МИД с высвобождением угловой зоны. Модель может найти применение для анализа скоростного режима профилирования как многоэлементных профилей, так и профилей типовой номенклатуры.
4. Проведена верификация предложенных аналитических моделей с результатами экспериментальных исследований и данными других авторов. Показано, что согласование моделей лежит в диапазоне 10.15%, что является хорошим показателем при решении технологических задач.
5. С помощью языка APDL, в среде программного комплекса ANSYS создана программа, реализующая базу данных, содержащая описание упру-гопластических и прочностных характеристик материала Сталь 08кп и вносящая элементы новизны в алгоритмы МКЭ. База данных может найти применение при инженерном и исследовательском моделировании с использованием данного материала. В результате использования базы данных возросла эффективность работы в программной среде ANSYS за счет отмены ручного ввода большего количества данных через графический интерфейс программы.
6. Моделирование предельных возможностей профилирования перфорированной ленты в среде ANSYS позволило получить функциональную зависимость величины пластической деформации в критических зонах от смещения формообразующего инструмента с учетом физико-механических свойств материала и геометрических характеристик отверстий различной формы.
7. Моделирование процесса формирования угловой зоны профиля методом стесненного изгиба позволило сформулировать критерии гибки с учетом упругопластических свойств материала профиля как на стадии упругого деформирования, так и в пластическом состоянии. Получен график зависимости величины обратного пружинения детали от смещения пуансона, который позволяет скорректировать угол раскрытия калибра и добиться компенсации вредного эффекта обратного пружинения. В качестве составной части этого моделирования было исследовано высвобождение угловой зоны при стесненном изгибе. Выявлены условия посадки наружного контура заготовки на формующий инструмент и показано, что торцевое сжатие дает возможность разгрузить наружный контур зоны сгиба по деформациям в 2,0 - 2,5 раза, что обеспечивает получение радиусов гиба меньше предельно допустимого.
8. Моделирование процесса осадки заготовки подковообразного сечения гладким цилиндрическим роликом в закрытом калибре предоставило возможность оценить влияние основных технологических параметров на геометрические характеристики получаемой детали. Была решена трехмерная задача с изменяющимся контактным взаимодействием между упруго-пластичной средой сложной формы и абсолютно жестким вращающимся инструментом. Показана связь между распределением остаточных напряжений и величиной обратного пружинения полок профиля, предложены пути устранения этого вредного эффекта. Дан прогноз потери устойчивости элементами профиля.
9. Моделирование подгибки полки профиля в межклетьевом пространстве, выполненное в программной среде LS-DYNA, позволило исследовать депланацию элементов профиля при использовании технологии МИД и выявить области критической концентраций напряжений. Получены графики распределения напряжений по сечению профиля от угла подгибки. Графики могут быть использованы при выборе оптимальных режимов технологического процесса исключающих появление потери устойчивости элементами профиля.
10. На этапе подготовки к реализации программы экспериментальных исследований предельных возможностей метода интенсивного деформирования была создана универсальная математическая конечно-элементная модель профилегибочного станка ГПС-300М6.
11. Разработан и написан на языке SCRIPTO программный модуль, реализующий алгоритм автоматизированной выборки данных о напряженно-деформированном состоянии модели из базы результатов с их последующей интерпретацией в графической форме. Программный модуль значительно повысил эффективность работы в среде постпроцессора LS-DYNA и исключил ошибки, возникающие в процессе обработки результатов моделирования.
12. Получена качественная и количественная оценка протяженности зоны плавного перехода в межклетьевом пространстве профилегибочного станка. Показано, что угол подгибки продолжает увеличиваться за осевой плоскостью роликового калибра под воздействием внутренних напряжений. Подтверждена надежность аналитической модели Филимонова [150] при расчете геометрических характеристик протяженности зоны плавного перехода.
13. С помощью конечно-элементной модели были проведены измерения относительной величины отклонения дна профиля в вертикальной плоскости. Получены значения радиусов продольной кривизны детали для каждого из четырех технологических переходов.
14. Получен график зависимости величины утонения угловой зоны от суммарного угла подгибки и степени кинематического упрочнения материала.
15. Разработана и создана экспериментальная гибочная установка, с помощью которой были проверены результаты моделирования.
16. Путем сопоставления расчётных и экспериментальных данных, подтверждена высокая эффективность конечно-элементного моделирования и численного метода конечных элементов применительно к технологическим процессам формообразования тонкостенных профилей методом интенсивного деформирования.
Оценка научно-исследовательской работы и апробация результатов конечноэлементного моделирования
1. Результаты проведенных исследований были рассмотрены экспертной комиссией ОАО "Ульяновский НИАТ" (Ульяновский научно-исследовательский институт авиационной технологии и организации производства). Были отмечены научная новизна и практическая значимость работы. Предложенные аналитические и конечно-элементные модели были использованы при проектировании новых технологий и технологической оснастки.
2. В рамках соглашения о научно-техническом сотрудничестве с ООО «НПО «ИДМ» (Научно-Производственное Объединение «Интенсивное Деформирование Металлов»), за период 2007 - 2008 г., была проведена экспериментальная апробация представленных в работе конечно-элементных моделей. Результаты расчетов и разработанные модели были использованы при проектировании схем формообразования и технологического оснащения для производства 12 типоразмеров многоэлементных профилей.
Библиография Левщанов, Владимир Викторович, диссертация по теме Математическое моделирование, численные методы и комплексы программ
1. Первое Независимое Рейтинговое Агентство Электронный ресурс.: отдел информации. Режим доступа: http://www.fira.ru/site/products/pro.html, свободный. - Загл. с экрана. - Яз. рус.
2. Iron and Steel Statistics Bureau Electronic resource. Electronic data. - London, cop. 2008. - Mode acess : http://www.issb.co.uk
3. Аверкиев, Ю.А., Аверкиев А.Ю. Технология холодной штамповки: Учебник для вузов по специальностям «Машины и технология обработки металлов давлением» и «Обработка металлов давлением». — М.: Машиностроение, 1989. 304 с.
4. Беняковский, М.А.Технология прокатного производства. Кн. 1. Справочник / Беняковский М.А., Богоявленский К.Н., Виткин А.И. и др. М.: Металлургия, 1991 г., 440 с.
5. Митрофанов, С.П., Григорьев JI.JL, Клепиков Ю.М. и др. Гибкие технологические системы холодной штамповки. Под общ. ред. С.П. Митрофанова.- JL: Машиностроение, 1987. 287 с.
6. Живов, Л.И. и др. Машины и технология обработки металлов давлением. Лабораторные работы. — Издательское объединение «Вища школа», 1975.- 196 с.
7. Головин, В.А., Ракошиц Г.С., Навроцкий А.Г. Технология и оборудование холодной штамповки: Учебник для машиностроительных техникумов по специальности «Ковочно-штамповочное производство» / В.А. Головин,
8. Г.С. Ракошиц, А.Г. Навроцкий. М.: Машиностроение, 1987. - 352 с.
9. Катков, В.Ф. Оборудование и средства автоматизации и механизации за-готовительно-штамповочных цехов: Учебник для авиационных вузов. -М.: Машиностроение, 1985. 384 с.
10. Ю. Кухтаров, В.И. Холодная штамповка. — М.: Машгиз, 1962. — 402 с.
11. И. Вдовин, В.И. Упругопластический изгиб тонкого листа поперечной силой / С.И. Вдовин, С.В. Семин // Кузнечно-штамповочное производство. -1995. -№ 11.-С. 5-7.
12. Колганов, И.М. Исследование процесса формообразования профилей стесненным изгибом в инструментальной фильере / И.М. Колганов, Г.В. Проскуряков. Тольятти, 1979. - 9 с. - Деп. в ВИНИТИ 15.02.79, Д 1096 - 79.
13. Чекмарев, А.П., Калужский В.Б. Гнутые профили проката. М.: Металлургия, -1974. - 264 с.
14. Липецкий Завод профилегибочного оборудования Электронный ресурс., 2008. — Режим доступа: http://znpo.lipetsk.ru/m2.htm, свободный. Загл. с экрана. — Яз. рус.
15. Масленников, Ю. Производство стального рулонного листа с покрытием / Ю. Масленников, Ю. Волков // Металлоснабжение и сбыт. — 1999. — № 2. — С. 36-39.
16. Ершов, В.И. Совершенствование формообразующих операций листовой штамповки / В.И. Ершов, В.И. Глазков, М.Ф. Каширин. — М.: Машиностроение, 1990. 312 с.
17. Инженерные методы расчета технологических процессов обработки металлов давлением под редакцией И .Я. Тарновского М.: Металлургия, 1967.-240 с.
18. Воронцов, В.К., Лашин В.В. Влияние геометрических параметров очага деформации на дефектообразование боковой грани раската // Пластическая деформация металлов и сплавов: Темат. сб. науч. тр. / МЧМ СССР (МИСиС)-М.: Металлургия, 1975. № 85. С. 58-63.
19. Богоявленский, К.Н., Григорьев А.К. Основные вопросы теории и технологии изготовления профилей на профилегибочных станах: Темат. сб. тр. / ЛПИ. Л.: Машиностроение, - 1967. - № 282. - С. 127-136.
20. Тришевский, И.С., Юрченко А.Б., Марьин B.C. и др. Производство гнутых профилей. Оборудование и технология. -М.: Металлургия, 1982. 384 с.
21. Киути, М. Проблемы и оптимизация профилирования в валках. Пер. с яп. Харьков: УкрНИИмет, 1976. — 32 с.
22. Работнов, Ю.Н. Механика деформируемого твердого тела / Учебное пособие. 2-е издание, испр. М.: Наука, Библиогр., 1988. 712 с.
23. Количество переходов и критерий подобия при профилировании / В.А. Марковцев, С.В. Филимонов, М.В. Кокорин, В.И. Филимонов // Современные технологии в машиностроении: тез. докл. 5 Всероссийской нпк. — Пенза: ПДЗ, 2002. Ч. 2. - С. 168-170.
24. Машины и агрегаты металлургических заводов. Т. 3. Машины и агрегаты для производства и отделки проката / А.И. Целиков, П.И. Полухин, В.М. Гребенник и др. М.: Металлургия, 1981. 576 с.
25. Жадан, В.Т., Осадчий А.Н., Стеценко Н.В. Отделка и термическая обработка сортового проката. — М.: Металлургия, 1978. 408 с.
26. Отделка сортового проката / Н.И. Шефтель, И.И. Мурзин, В.З. Аршавский и др. М.: Металлургия, 1974. - 408 с.
27. Романовский В.П. Справочник по холодной штамповке. 6-е изд., перераб. и доп. Л.: Машиностроение, 1985. С. - 184 с.
28. Тришевский, И.С. Гнутые профили проката: справочник / И.С. Тришев-ский, Н.М. Воронцов, Ю.В. Дзина и др. М.: Металлургия, 1967. — 379 с.
29. Тришевский, И.С. Теоретические основы процесса профилирования / И.С. Тришевский, М.Е. Докторов. М.: Металлургия, 1980. — 288 с.
30. Колганов, И.М. Применение модели пластичного формоизменения / И.М. Колганов, В.И. Филимонов, С.В. Филимонов // Авиационная промышленность. 1984. - № 2 - 4. - С. 26-30.
31. Гунн, Г.Я. Теоретические основы обработки металлов давлением / Г.Я. Гунн. М.: Металлургия, 1980. - 456 с.
32. Филимонов, С.В. Метод, расчеты и технология интенсивного деформирования в роликах гнутых профилей типовой номенклатуры /С.В. Филимонов, В.И. Филимонов. Ульяновск: УлГТУ, 2004. - 246 с.
33. Левщанов, В.В. Формовка угловых зон с высвобождением при профилировании // Вестник УлГТУ, 2005. № 2. - С. 39-42.
34. Проскуряков, Г.В. Стесненный изгиб / Г.В. Проскуряков // Авиационная промышленность. 1966. - № 2. - С. 9-13.
35. Проскуряков, Г.В. Опыт промышленного изготовления листовых профилей и деталей из них / Г.В. Проскуряков, А.В. Нуждов, В.И. Филимонов // Авиационная промышленность. 1990. - № 1. - С. 3-4.
36. Марковцев, В.А. Изготовление методом интенсивного деформирования профилей из листа и их внедрение в авиастроении / В.А. Марковцев, В.И. Филимонов, И.М. Колганов, С.В. Филимонов, П.В. Куприн // Авиационная промышленность. 2001. — № 4. - С. - 21-23.
37. Колганов, И.М. Изготовление методом интенсивного деформирования профилей из листа и их внедрение в авиастроении / И.М. Калганов, В.А. Марковцев, В.И. Филимонов и др. // Авиационная промышленность № 4.
38. Третьяков, А.В., Зюзин В.И. Механические свойства металлов и сплавов при обработке металлов давлением: Справочник. М.: Металлургия,1973.-223 с.
39. Полухин, П.И., Гунн Г.Я., Галкин A.M. Сопротивление пластической деформации металлов и сплавов: Справочник. М.: Металлургия, 1983. -352 с.
40. Кухтаров, В.И. Холодная штамповка. — М.: Машгиз., 1962. — 402 с.
41. Ершов, В.И. Изгиб со сжатием в тангенциальном направлении листов из титановых сплавов и стали ВНС—2 // Авиационная промышленность,1974.-№8.-С. 46-48.
42. Ульяновский научно-исследовательский институт авиационной технологии Электронный ресурс., 2008. — Режим доступа: http://www.ulniat.ru, > свободный. — Загл. с экрана. — Яз. рус.
43. Developments in roll forming and bending // Welding and metal fabrication. -1986. V. 54, № 8. - P. 354-356.
44. Profil, Walzanlagen van Otterloo. Electronic resource. Electronic data. // Blech - Rohre - Profile. 1985. - V. 32. - Mode acess : http://www.resale.de/angebotelinkdold.php
45. Nuevas tecnologias para el perfilado en frio // Novamaguina, № 126. 1986. P. 133-137.
46. Филимонов, В.И. Теория обработки металлов давлением. Курс лекций / В.И. Филимонов. Ульяновск: Изд-во УлГТУ «Венец», 2004. - 208 с.
47. Колганов, И.М. Разработка технологии изготовления профилей стесненным изгибом из сплава АБМ 1 / И.М. Колганов, Г.В. Проскуряков, В.И. Филимонов и др. // Авиационная промышленность - 1989. - № 8. - С. 10
48. Головлев, В.Д. Расчеты процессов листовой штамповки (Устойчивость формообразования тонколистового металла). — М.: Машиностроение, 1974.- 136 с.
49. Филимонов, С.В. Разработка технологии интенсивного формообразования гнутых тонкостенных профилей в роликах // Авиационная промышленность. 1989. - № 8. - С. 10-12.
50. Илюшкин, М.В. Интенсивная технология производства гнутых профилей из материалов с покрытием / Илюшкин М.В., Филимонов В.И. — Ульяновск: УлГТУ, 2006. 200 с.
51. Марковцев, В.А. Выбор схемы правки профилей при их формообразовании методом стесненного изгиба / В.А. Марковцев, Г.В. Проскуряков // Авиационная промышленность. — 1988. № 7. - С. 31-37.
52. Проскуряков, Г.В. Исследование и разработка способа изменения кривизны профиля при стесненном изгибе / Г.В. Проскуряков, Е.Н. Чебурахин, В.И. Филимонов и др. // Авиационная промышленность. 1989. — № 1.
53. Марковцев, В.А., Разработка и внедрение технологии и оборудования для изготовления прямолинейных листовых профилей для авиационных конструкций методом стесненного изгиба: дис. канд. техн. наук: 05.07.04. /
54. B.А. Марковцев. -НИАТ, 1991. 202 с
55. Филимонов, В.И. Интенсификация процесса формообразования стесненным изгибом профилей для авиационных конструкций: дис. канд. техн. наук: 05.07.04. Самара: Самарский аэрокосмический ун-т, 1993. - 199 с.
56. Марковцев, В.А. Правильное устройство профилегибочной линии 4MIS-10 японской фирмы NACATA / В.А Марковцев // Авиационная промышленность. 1985.-№ 11.-С. 89.
57. Марковцев, В.А. Выбор диаметра роликов для формообразования профиля стесненным изгибом / В.А. Марковцев, Г.В. Проскуряков // Авиационная промышленность. 1990. - № 8. - С. 8-9.
58. Марковцев, В.А. Потеря устойчивости боковых полок на предварительных переходах при профилировании / В.А. Марковцев, В.И. Филимонов,
59. C.В. Филимонов //Технико-экономические проблемы промышленного производства: тез. докл. международной конф. — Набережные Челны: КамПИ, 2000. С. 148.
60. Производство и применение гнутых профилей проката: справочник / под ред. И.С. Тришевского. — М.: Металлургия, 1975. — 536 с.
61. Филимонов, С.В. Зависимость деформационных параметров подгибаемой полки профиля от применяемого способа предотвращения волнистости ее кромки / С.В. Филимонов, В.А. Марковцев, В.И. Филимонов // Научно-технический калейдоскоп. 2002. № 1. - С. 53-58.
62. Лапчик, М.П. Численные методы: учеб. пособие. — М.: Академия. 2004. -384 с.
63. Турчак, Л.И. Основы численных методов: учеб. пособие. — М.: Наука. Гл. ред. физ.-мат. лит., 1987. 320 с.
64. Деклу, Ж. Метод конечных элементов. М.: Мир, 1976. — 96 с.
65. Комеч, А.И. Практическое решение уравнений математической физики. Учеб.-метод. пособие. Механико-математический факультет МГУ, 1993. -155 с.
66. Васидзу, К. Вариационные методы в теории упругости и пластичности: Пер. с англ. М.: Мир, 1987. - 542 с.
67. Демидов, С.П. Теория упругости. М.: Высшая школа, 1979. - 432 с.
68. Абовский, Н.П., Андреев Н.П., Деруга А.П. Вариационные принципы теории упругости и теории оболочек. М.: Наука, 1978. - 288 с.
69. Биргер, И.А. Стержни, пластинки, оболочки. М.: Физматлит., 1992. - 392 с.
70. Демидович, В.Б. Приближенные вычисления с помощью обобщенных полиномов из чебышевских пространств. Чебышевские обобщенные полиномы. М.: Изд-во. Моск. ун-та, 1990. — 96 с.
71. Самарский, А.А. Введение в численные методы: М.: Наука. Гл. ред. физ.-мат. лит., 1987. - 459 с.
72. Форсайт, Дж., Малькольм М., Моулер К. Машинные методы математических вычислений. -М.: Мир, 1980. 280 с.
73. Методы вычислений. (Численный анализ. Методы решения задач математической физики) / Ляшко И.И., Макаров В.Л., Скоробогатько А.А. Киев.: Издательское объединение «вища школа», 1977. 408 с.
74. Рычков, А.Д. Введение в численные методы, Часть 1, Численный анализ. — Новосибирск, 1992. 77 с.
75. Лоусон, Ч., Хенсон Р. Численное решение задач метода наименьших квадратов: Пер. с англ. М.: Наука. Гл. ред. физ.-мат. лит., 1986. — 232 с.
76. Сальвадори, М.Дж. Численные методы в технике: Пер. с англ. М.: издательство иностранной литературы, 1955. — 247 с.
77. Бреббия, К. и др. Методы граничных элементов: Пер. с англ. / Бреббия К., Теллис Ж., Вроубел Л. М.: Мир, 1987. - 524 с.
78. Флетчер, К. Численные методы на основе метода Галеркина: Пер. с англ. -М.: Мир, 1988.-352 с.
79. Бенерджи, П., Баттерфилд Р. Метод граничных элементов в прикладных науках: Пер. с англ. М.: Мир, 1984. - 494 с.
80. Норри, Д., де Фриз Ж. Введение в метод конечных элементов: Пер. с англ. -М.: Мир, 1981.-304 с.
81. Еременко, С.Ю. Методы конечных элементов в механике деформируемых тел. Харьков.: Изд-во "Основа" при Харьков, гос. ун-те, 1991.
82. Шайдуров, В.В. Многосеточные методы конечных элементов. М.: Наука. Гл. ред. физ.-мат. лит., 1989.
83. Сьярле, Ф. Метод конечных элементов для эллиптических задач:. Пер. с англ. М.: Мир, 1980. - 472 с.
84. Кокорин, В.Н. Технологические расчеты в процессах холодной листовой штамповки. Учебное пособие / В.Н. Кокорин, К.К. Мертенс, Ю.А. Титов, А.А. Григорьев Ульяновск: УлГТУ, 2002. - 36 с.
85. Бреббия, К., Уокер С. Применение метода граничных элементов в технике: Пер. с англ. -М.: Мир, 1982. 248 с.
86. Алейников, С.М. Метод граничных элементов в контактных задачах для упругих пространственно неоднородных оснований. М.: Изд-во «АСВ», 2000. - 754 с.
87. Краскевич, В.Е., Зеленский В.И. Гречки В.И. Численные методы в инженерных исследованиях. — Вшца. шк. Головное изд-во, 1986. — 263 с.
88. Hrennikoff, A., Solution of problems of elasticity by the framework method, Journal of Applied Mechanics and Technical Physics Volume 39, Number 5, 1941. P. 169-175.
89. Courant, R., Variational methods for the solution of problems of equilibrium and variation / Bulletine of the American Mathematical Soviety, Number 1. 1943. P. 1-23.
90. Стренг, Г. Теория метода конечных элементов: Пер. с англ. М.: Наука, 1972.-400 с.
91. Ланцош, К. Вариационные принципы механики. М.: Мир, 1965. - 472 с.
92. Гунн, Г.Я. Математическое моделирование процессов обработки металлов давлением. М.: Металлургия, 1983. — 352 с.
93. Коновалов, А.Н. Введение в вычислительные методы линейной алгебры. -Новосибирск, ВО «Наука», 1993. 159 с.
94. Зенкевич, О., Морган К. Конечные элементы и аппроксимация. Пер. с англ.-М.: Мир, 1986.-318 с.9В. Елепов, Б.С Решение краевых задач методом Монте-Карло / Б.С. Елепов, А.А. Кронберг, Г.А. Михайлов. Новосибирск.: Наука, 1980.
95. Хемминг, Р.В. Численные методы: Пер. с англ. М.: Наука, 1972. - 400 с.
96. Демидович, Б.П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения. — М.: Наука. Гл. ред. физ.-мат. лит., 1967.
97. Сегерлинд, Л. Применение метода конечных элементов: Пер. с англ. — М.: Мир, 1979.-392 с.
98. Крылов, О.В. Метод конечных элементов и его применение в инженерных расчетах: учеб. пособие для вузов. М.: Радио и связь, 2002. - 104 с.
99. Красносельский, М.А., Лифшиц Е.А., Соболев А.В. Позитивные линейные системы: метод положительных операторов. — М.: Наука. Гл. ред. физ.-мат. лит., 1985. 256 с.
100. Бурман, З.И. и др. Программное обеспечение матричных алгоритмов и метода конечных элементов в инженерных расчетах / З.И. Бурман, Г.А. Артюхин, Б.Я. Зархин. М.: Машиностроение, 1988. - 256 с.
101. Вибрации в технике. / Справочник в 6 томах // Т. 4. Вибрационные процессы и машины. Под ред. Э.Э. Лавендела. М.: Машиностроение, 1981. — 510с.
102. Мясникова, М.В., Шлесов В.А. Инженерный метод расчета упругой деформации валков при многониточной сортовой прокатке. // Уральский государственный техн. университет. — Екатеринбург, 1997.
103. Григоренко, Я.М., Мукоед А.П. Решение нелинейных задач теории оболочек на ЭВМ. — К.: Вища школа. Головное изд-во, 1983. 286 с.
104. Бурман, З.И., Десятник Г.А. Расчет на прочность авиационных конструкций смешанным суперэлементным методом // ИВУЗ. Авиационная техника, 1984. №2. С. 89-91.
105. Сьярле, Ф. Математическая теория упругости: Пер. с англ. М.: Мир, 1992.-472 с.
106. Оден, Дж. Конечные элементы в нелинейной механике сплошных сред: -М.: Мир, 1976.-465 с.
107. ИЗ. Смирнов-Аляев, Г.А. Сопротивление материалов пластическому деформированию. 3-е изд., перераб. и доп. М.: Машгиз, 1978. - 368 с.
108. Полухин, В.П. Математическое моделирование и расчеты на ЭВМ листовых прокатных станов. — М.: Металлургия, 1972. 512 с.
109. Целиков, А.И., Никитин Г.С., Рокотян С.Е. Теория продольной прокатки.- М.: Металлургия, 1980. 320 с.
110. Кучеряев, Б.В. Механика сплошных сред: Теоретические основы обработки давления композитных металлов: Учебник М.: МИСИС, 2000. - 319 с.
111. Васильев, Ф.П. Численные методы решения экстремальных задач: Учеб. пособие для вузов. 2-изд., перераб. и доп. — М.: Наука. Гл. ред. физ.-мат. лит., 1988.-552 с.
112. Ланцош, К. Практические методы прикладного анализа: справочное руководство. Пер. с англ. М.: Наука. Гл. ред. физ.-мат. лит., 1961. - 524 с.
113. ANSYS Inc. Electronic resource. — Electronic data. Pennsylvania, USA, 2008. - Mode acess : http://www.ansys.com
114. CAD-FEM Электронный ресурс. : представительство фирмы CAD-FEM GmbH в СНГ, 2008. Режим доступа: http://cadfem.ru, свободный. — Загл. с экрана. - Яз. рус., англ.
115. Комплексные решения Электронный ресурс. : представительство фирмы CAD-FEM GmbH в СНГ, 2008. Режим доступа: http://cadfem.ru/program/ansys/ansysprog.htm, свободный. - Яз. рус., англ.
116. ANSYS LS-DYNA User's Guide Electronic resource. Version 1.1. - Electronic data. USA, 2008. - Mode acess : http://ansys.com
117. Livermore Software Technology Corp Electronic resource. Electronic data.- Livermore, 2009. Mode acess : http://lstc.com
118. Инжиниринговая компания ТЕСИС Электронный ресурс. : информационный центр, 2009. Режим доступа: http://www.tesis.com.ru, свободный. -Яз. рус., англ.
119. ООО «АМИ» Электронный ресурс. : проектирование и создание современной информационной и инженерной инфраструктуры, 2009. Режим доступа: http://sapr.ami.ua/po/mscnastran.html, свободный. — Загл. с экрана.- Яз. рус.
120. DataM Electronic resource. Electronic data. - D-83626 Valley / Oberlain-dem, Germany, 2009. - Mode acess : http://www.datam.de
121. CADmaster Электронный ресурс. Журнал для профессионалов в области САПР, 2008. Режим доступа: http://www.cadmaster.ru, свободный. -Загл. с экрана. - Яз. рус.
122. Eta Innovative CAE solutions Electronic resource. Electronic data. - Engineering Technologies Associates United States (Headquarters). 2008. - Mode acess : http://www.eta.com
123. Кунцман, Ж. Численные методы: Пер. с франц. / Под ред. Костомарова. -М.: Наука. Гл. ред. физ.-мат. лит., 1979.
124. Хаусхолдер, А.С. Основы численного анализа: Пер. с англ. Н.П. Жидкова, М.И. Серова; Под ред. JI.A. Люстерника. М.: Издательство иностранной литературы, 1956. - 320 с.
125. Филимонов, В.И., Левщанов, В.В. Моделирование процессов формообразования гнутых профилей в роликах / В.И. Филимонов, В.В. Левщанов. -Ульяновск: УлГПУ, 2009. 51 с.
126. Ивлев, Д.Д. Механика пластических сред Том 1. Теория идеальной пластичности -М.: Наука, 2001. — 448 с.
127. ANSYS. Basic Analysis Procedures Guide. Rel. 8.0. / ANSYS Inc. Houston, USA, 1994.
128. Пластическое формоизменение металлов // Гунн Г.Я., Полухин П.И., По-лухин В.П., Прудковский Б.А. — М.: Металлургия, 1968. — 416 с.
129. Bhattacharyya, D. The prediction of deformation lenth in cold roll-forming / D. Bhattacharyya, P.D. Smith, L.F. Collins // Journal of Mechanical Working
130. Technology, 1984. V. 9.-№2.-P. 181-191.
131. Левщанов, B.B. Выбор конечных элементов для моделирования процессов профилирования // XXXIX НТК, УлГТУ «Вузовская наука в современных условиях», Часть 1, тезисы докладов, УлГТУ, 2005.
132. Bradley, N. Input Parameters for Metal Forming Simulation using LS-DYNA ANSYS LS-DYNA User's Guide Electronic resource. Electronic data. -Livermore, 2000. - Mode acess : http://www.feainformation.com / form-ingparameters2 .pdf
133. Simon Hellborg. Finite Element Simulation of Roll Forming Master Thesis carried out at Solid Mechanics Linkoping University. 2007
134. Methodology for Selection of Material Models for Plastics Impact Simulation. Electronic resource. Electronic data. - New York. 2006. - Mode acess : http ://www.testpaks .com/default, asp
135. Тыняный, А.Ф. Численное моделирование контактной задачи в рамках квазистатического упругопластического деформирования в пакете AN-SYS/LS-DYNA г. Челябинск, Южно-Уральский государственный университет. Нефтегазовое дело, 2004.
136. Bradley, N. Maker Xinhai Zhu. Input Parameters for Metal Forming Simulation using LS-DYNA Livermore Software Technology Corporation April, 3th European LS-DYNA Users Conference, 2000.
137. Масленников, Ф.И. Лабораторный практикум по металловедению: Учеб. пособие для вузов. — 2-е изд., перераб. и доп. — М.: Наука. Гл. ред. машиностроительной лит. 1955.
138. Современный Фортран Электронный ресурс. / с.н.с. ИПМ РАН Горелик А. М. 2008. Режим доступа:http://www.parallel.ru/tech/techdev/newfortran.html, свободный. — Яз. рус.
139. Гудков, И.Н., Левщанов В.В., Филимонов В.И. Моделирование интенсивного деформирования перфорированных заготовок при профилировании //
140. Производство проката. 2006. -№ 4 С. 30-34.
141. Левщанов, В.В. Исследование процесса формирования уголковой зоны профиля // Наука и технология. Избранные труды российской школы. Серия "Технология и машины обработки давлением". Челябинск. Уральское отделение РАН. 2006. С. 49-53.
142. Филимонов, В.И. Касательные напряжения при стесненном изгибе / В.И. Филимонов, В.А. Марковцев, С.В. Филимонов // Вестник УлГТУ. 2000. -№ 4. -С. 30-35.
143. Левщанов, В.В. Сравнительный анализ процесса формообразования профиля с использованием программных сред ANSYS 8.0 и DEFORM 3D / В.В. Левщанов // Внутривузовская студенческая научно-практическая конференция: Ульяновск: УлГТУ, 2005.
144. Левщанов, В.В. Моделирование потери устойчивости донной области профиля в среде программного комплекса ANSYS /В.В. Левщанов // Программные продукты и системы. 2009. №4. С. 105-108.
145. Филимонов, В.И. О расчетных процедурах при проектировании технологи производства широкополочных профилей. С.В. Филимонов, А.С. Баранов, В.И. Филимонов // Автомобильная промышленность. 2008. — № 9. - С. 21-23.
146. Программный модуль на языке параметрического моделирования APDL для создания в среде ANSYS базы данных материала Сталь 08кптекст комментарий
147. KEYW,PRSET,1 KEYW,PR STRUC,1 KEYW,LSDYNA,1 выбор типа анализа в среде программного комплекса ANSYS2 /PREP7 вход в препроцессор
148. EDCURVE,ADD,1,truestrain, truestress добавление кривой stress—strain в базу данных
149. MP,DENS,1,7871 MP,EX,1,2.03ell MP,NUXY,1,0.29 ТВ,PLAW,1,,,7, TBDAT,1,1.9e8 TBDAT,2,7.63e8 TBDAT,3,1 ввод свойств материала (табл. 3.1)
150. TBDAT,4,1 добавление кривой с индексом «1» к свойствам материала
151. Программный модуль на языке SCRIPTO, предназначенный для выборки данных о значениях напряжений и деформаций в контрольных точках модели и интерпретации их в графической форме1. Текст Комментарий1 /*LS-SCRIPT*/ идентификатор скрипта
152. Int nodes4.={155589,155613, 155601,155608}; список узлов, для которых строятся графики
153. Int group=l; номер группы данных
154. Int i, n, j,node,fe; char etime64.; char buff[512]; char file name[2 60]; char tmp[32]; переменные скрипта
155. ExecuteCommand("local 1"); выбор локальной системы координат6 for(n=0; n<4; n=n+l) { цикл по количеству узлов
156. Echo("create:"); Echo(file name); вывод на экран имени создаваемого файла
157. ExecuteCommand("shellsurf lower"); выбор нижней поверхности модели
158. ExecuteCommand(etime); выборка данных по элементам модели за полное время моделирования
159. ExecuteCommand("shellsurf middle"); выбор средней поверхности модели
160. ExecuteComand("addplot") r добавление графика, построенного по выбранным данным, в существующую систему координат
161. ExecuteCommand(etime); выборка данных по элементам модели за полное время моделирования
162. ExecuteCommand("shellsurf upper"); выбор верхней поверхности модели
163. ExecuteCommand("addplot") f добавление графика, построенного по выбранным данным, в существующую систему координат
164. ExecuteCommand(etime); выборка данных по элементам модели за полное время моделирования
165. ExecuteCommand(buff) ; } вывод графиков в файл *.png25 else { если файл уже создан, не перезаписывать его
166. ExecuteCommand("addplot") r добавление графика в существующую систему координат
167. ExecuteCommand("addplot") r добавление графика, построенного по выбранным данным, в существующую систему координат
168. ExecuteCommand(etime); выборка данных по элементам модели за полное время моделирования
169. ExecuteCommand(buff); } вывод графиков в файл *.png45 else { если файл уже создан, не перезаписывать его
170. Тел. (8422) 54-42-72, 28-26-02 Факс 54-42-72
171. Исх. N от 2008 г. На N о г 2008 г.
172. У1ВЬЛ>ЖДЛЮ л *" Генеральный директор \ ' нпо°сЙО.° Й1Ю «ИДМ»а " ^ С.В. Филимонов1. Vх -!sjlwivl ^•Ги " рс 2008 г.i'^'irrTt IT 7jyм л г. и-, 1ч>,
173. ТЕХIIИ Ч ЕСКИЙ АКТ ИСПОЛЬЗОВАНИЯ РЕЗУЛЬТАТОВ1. Ж" JWvJ^2008 г.
174. Or НПО «ИДМ» Ген. директор, к.т.п.1. С.В. Филимонов1. Исполни I ельfJ jсу1. В.В. Левщаиов
175. ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ «РОСТЕХНОЛОГИИ»
176. Открытое акционерное общество "Ульяновский научно-исслечовлгельский институт авиационной технологии и оришпзации произволе та"1. ОАО "Ульяновский НИАТ"
177. Па рассмотрение были представлены материалы диссертационной работы на соискание ученой степени кандидата технических наук по теме: «Математическое моделирование ишенсивного формообразования гнутых профилей с использованием конечноэлементного анализа».
178. В первой главе автором рассмотрены существующие способы произволе 1ва гнутых профилей и дана краткая характеристика типичных дефектов возникающих в процессе их формообразования.
179. Следует отметить, чго наиболее значимые результаты конечноэле-мептного моделирования, автор подтверждает экспериментальными методами.1. ВЫВОДЫ:
180. Ре^улыаты исследовании рассмотрены и одобрены экспертной комиссией в составе:ч
-
Похожие работы
- Математическое моделирование интенсивного формообразования гнутых профилей в роликах с использованием конечно-элементного анализа
- Формообразование тонкостенных крутоизогнутых отводов в инструментальных штампах
- Смешанный метод конечных элементов в создании и исследовании моделей формообразования тонкостенных профилей
- Методология геометрического и компьютерного моделирования формообразования технических поверхностей
- Повышение эффективности технологического сочетания гибки-прокатки и дробеударного формообразования длинномерных обводообразующих деталей
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность