автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Компьютерное моделирование новых классов орбитального движения искусственных спутников Земли
Автореферат диссертации по теме "Компьютерное моделирование новых классов орбитального движения искусственных спутников Земли"
005052708
На правах рукописи
Ерёменко Алексей Павлович
КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ НОВЫХ КЛАССОВ ОРБИТАЛЬНОГО ДВИЖЕНИЯ ИСКУССТВЕННЫХ СПУТНИКОВ
ЗЕМЛИ
05.13.18 - Математическое моделирование, численные методы и комплексы программ
Автореферат
диссертации на соискание ученой степени кандидата физико-математических наук
О 4 окт 2012
Воронеж - 2012
005052708
Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Вологодский государственный технический университет»
Ведущая организация «Санкт-Петербургский государственный университет аэрокосмического приборостроения (СПб ГУАП)»
Защита состоится 24 октября 2012 г. в 15 часов 10 минут на заседании диссертационного совета Д.212.038.020 при Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Воронежский государственный университет» по адресу: 394006, г. Воронеж, Университетская пл., д.1, ауд. 335.
С диссертацией можно ознакомиться в научной библиотеке Вологодского государственного университета.
Автореферат разослан 21.09.12.
Научный руководитель:
Горбунов Вячеслав Алексеевич, доктор физико-математических наук, профессор.
Официальные оппоненты:
Каменский Михаил Игоревич, доктор физико-математических наук, профессор,
Воронежский государственный университет, заведующий кафедрой функционального анализа и операторных уравнений
Мухин Владимир Васильевич, доктор физико-математических наук, профессор, Череповецкий государственный университет, заведующий кафедрой прикладной математики и информатики
Ученый секретарь диссертационного совета кандидат физико-математических наук, доцент
Шабров С. А.
Общая характеристика работы
Актуальность темы Теория движения небесных тел много лет остается плодотворным направлением исследований, как в физике, так и в математике. Одной из ее важнейших проблем является ограниченная задача трех тел. Актуальность исследования этой задачи связана с тем, что ее общее решение до сих пор не известно, но сама она имеет многочисленные и важные практические приложения.
Моделирование орбит любых искусственных тел в околоземном пространстве опирается на отыскание частных решений ограниченной задачи трех тел. Для этого применяются разнообразные численные и численно-аналитические алгоритмы. Желание получить новые семейства орбит заставляет нас развивать способы интегрирования этой сложной задачи.
Разработке данных алгоритмов посвящено значительное число статей и монографий, как отечественных, за авторством Е. П. Аксенова, Р. Ф. Аппазова, В.Н.Гущина, Г. Н. Дубошина и др., так и зарубежных, за авторством Р. Баттина, С. Геррика, П. Гурфила, Дж. Винти, А. Роя и др.
Классические численные алгоритмы хорошо зарекомендовали себя в случае близких к Земле спутников, но в настоящее время растет научный интерес к искусственным телам, расположенным на сильно удаленных орбитах.
Такие объекты в виде космических телескопов и орбитальных зондов все чаще требуются астрофизикам, в связи с изучением солнечного ветра, поиском экзопланет и подобными исследованиями. Проведение этих работ требует значительного удаления автоматических станций от Земли, для минимизации магнитных и гравитационных помех.
Особенно удобными для таких наблюдений во всем диапазоне электромагнитного спектра являются орбиты окрестностей точек либрации (т. н. коллинеарные точки Ь,, Ь2, Ь3 и треугольные точки Ь4,Ь5) В системах тел Земля-Солнце и Земля-Луна, многие из коллинеарных точек уже заняты космическими аппаратами.
Исследований, посвященных использованию более удобных, в силу своего положения и устойчивости, точек Ь4 и Ь5 системы Земля-Луна существует значительно меньше. Для моделирования таких классов орбит классические методы малоприменимы, так как на движение спутника на таком удалении от Земли оказывает значительное влияние Луна, и ее точное движение чрезвычайно сложно описать.
В связи с этим, диссертационная работа, посвященная разработке новых подходов к моделированию движения искусственных спутников Земли в окрестности точек либрации, является актуальной.
Цель и задачи исследования Целью диссертационной работы является разработка математической модели, учитывающей сложные возмущения орбиты сильно удаленного искусственного спутника Земли (СИСЗ) под действием притяжения Луны, средств численной реализации данной модели, обеспечивающих хорошую точность и скорость расчетов, а так же проведение
численного эксперимента с целью показать существование моделируемых орбит при заданных начальных условиях.
, Для достижения указанной цели в работе поставлены и решены следующие задачи:
1. Анализ существующих классов орбит и практики их применения для астрофизических исследований, выявление недостатков указанных орбит, анализ существующих подходов к численному моделированию орбитального движения СИСЗ и выявление их недостатков.
2. Разработка математической модели движения искусственного тела с учетом теории движения Луны Хилла-Брауна, позволяющей эффективно исследовать орбиты в окрестностях точек Ь4 и Ь5 системы Земля-Луна.
3. Разработка средств численного анализа и алгоритма численного моделирования орбитального движения СИСЗ с учетом теории п. 2.
4. Разработка комплекса программ моделирования движения СИСЗ на основе п. 3.
5. Проведение численных экспериментов, подтверждающих практическую применимость данного алгоритма и его превосходство над традиционными методами моделирования.
6. Получение новых, перспективных классов орбит СИСЗ в окрестности треугольных точек либрации и изучение их свойств.
Методы исследования В диссертационной работе использованы методы теории моделирования, методы небесной механики, теории обыкновенных дифференциальных уравнений, вычислительной математики, объектно-ориентированного программирования.
Научная новизна В диссертационной работе получены следующие результаты, характеризующиеся научной новизной:
1. Математическая модель движения СИСЗ с учетом теории движения Луны Хилла-Брауна, позволяющая эффективно исследовать орбиты в окрестностях точек Ь4 и Ь5 системы Земля-Луна.
2. Численный метод моделирования движения СИСЗ с учетом теории п. 1.
3. Алгоритм численного анализа модели СИСЗ, реализующий метод п. 2.
4. Комплекс программ для моделирования движения искусственного спутника в окрестности треугольных точек либрации, реализующий алгоритм п. 3.
5. Новые квазиэллиптические орбиты СИСЗ, огибающие треугольные точки либрации системы Земля-Луна.
Результаты соответствуют следующим пунктам паспорта специальности: п. 2 «Разработка, исследование и обоснование математических объектов, перечисленных в формуле специальности»;
п. 5 «Реализация эффективных численных методов и алгоритмов в виде комплексов проблемно-ориентированных программ для проведения вычислительного эксперимента»;
п. 6 «Комплексное исследование научных и технических, фундаментальных и прикладных проблем с применением современной технологии математического моделирования и вычислительного
эксперимента».
Основные результаты, выносимые на защиту:
1. Новая математическая модель движения СИСЗ с учетом теории движения Луны Хилла-Брауна, позволяющая эффективно исследовать орбиты в окрестностях точек Ь4 и Ь5 системы Земля-Луна.
2. Численный метод моделирования движения СИСЗ с учетом теории п. 1.
3. Алгоритм численного анализа модели СИСЗ, реализующий метод п. 2.
4. Комплекс программ для моделирования движения искусственного спутника в окрестности треугольных точек либрации, реализующий алгоритм п. 3.
5. Новые квазиэллиптические орбиты СИСЗ, огибающие треугольные точки либрации системы Земля-Луна.
Практическая значимость работы заключается в:
1. разработке математической модели возмущенного движения СИСЗ с учетом теории движения Луны Хилла-Брауна, позволяющая эффективно исследовать орбиты в окрестностях точек Ь4 и Ь5 системы Земля-Луна;
2. разработке метода численного моделирования, с учетом теории п. 1.;
3. разработке алгоритма анализа данной модели, реализующего метод п. 2;
4. разработке комплекса программ для моделирования движения искусственного спутника в окрестности треугольных точек либрации, реализующий алгоритм п. 3.;
5. исследовании нового класса орбит астрофизических спутников.
Разработанный комплекс программ прошел государственную регистрацию и занесен в Единую федеральную базу данных, включающую результаты научно-исследовательских, опытно-конструкторских и технологических работ гражданского назначения, выполняемых за счет средств федерального бюджета, и проектов внедрения новых информационных технологий, выполняемых с использованием государственной поддержки (ЕФБД НИОКР), получено свидетельство о регистрации, инвентарный номер ВНТИЦ № 50201150569.
Реализация и внедрение результатов работы Теоретические результаты и комплекс программ внедрены в учебный и исследовательский процесс на кафедре «Общая физика и астрономия» федерального государственного бюджетного образовательного учреждения высшего пргАессионального образования «Вологодский государственный педагогический университет» в рамках дисциплины «Астрономия».
Апробация работы Материалы диссертации докладывались и получили положительную оценку на следующих научных форумах: серия международных научно-технических конференций «Информатизация процессов формирования открытых систем на основе СУБД, САПР, АСНИ и систем искусственного интеллекта (ИНФОС)» (Вологда, ВоГТУ, 2007 г, 2009 г, 2011 г.); серия всероссийских научно-технических конференций «Вузовская наука - региону» (Вологда, ВоГТУ, 2008 г., 2009 г., 2010 г.); международная конференция «Информатика: проблемы, методология, технологии» (Воронеж,
ВГУ, 2011 г.), международная конференция «Кибернетика и высокие технологии XXI века (С&Т 2012)» (Воронеж, ВГУ, 2012 г.).
По темам диссертации проводились доклады и делались сообщения на научно-практических конференциях ВоГТУ 2007-2011 гг. и научных семинарах кафедры «Общая физика и астрономия» ВГПУ 2007-2011 гг.
Публикации Основные положения диссертационной работы опубликованы в 12 научных работах, в том числе в 3 статьях по перечню ВАК.
Структура и объем работы Диссертационная работа состоит из введения, 4 глав, основных выводов, библиографического списка, включающего 127 наименований, включая работы автора, приложения. Работа изложена на 118 листах машинописного текста, содержит 20 рисунков, 9 таблиц, 8 листингов программ.
Краткое содержание работы
Во введении обоснована актуальность темы диссертационного исследования, определены его цели и задачи, перечислены методы исследования, представлены основные положения, выносимые на защиту.
В первой главе проводится обзор современной теории орбит искусственных спутников. Дан анализ развития теории движения СИСЗ и рассмотрены возникающие на современном этапе проблемы, предложены методы их решения.
Астрофизические наблюдения можно осуществлять двумя основными способами - с поверхности Земли и из космоса. Наземные исследования с помощью обсерваторий проводить намного проще и дешевле, но земная атмосфера задерживает гамма, рентгеновское и ультрафиолетовое излучение, а также большую часть инфракрасного излучения. В видимом спектре орбитальный телескоп с зеркалом диаметром 1 метр дает качество изображения, сравнимое с наземным телескопом с зеркалом диаметром 5 метров. Атмосферные помехи также значительно затрудняют наземное наблюдение.
Размещением телескопов и зондов на классических орбитах также нельзя решить ряд проблем, характерных для длительных космологических исследований.
Наибольшие затруднения вызывает непрерывное изучение солнечной атмосферы и глубинных слоев Солнца, околосолнечных комет, сверхчувствительная спектрометрия удаленных галактик и наблюдения гравитационного линзирования реликтового излучения.
Оптимальными точками размещения обсерватории, в данном случае, являются окрестности точек либрации. Решения задачи трех тел, приводящие к данным точкам впервые были получены Лагранжем и носят его имя. Первое из них соответствует расположению трех точек в вершинах равностороннего треугольника (треугольные точки либрации), второе - на одной прямой (коллинеа'рные точки либрации).
Координаты треугольных точек либрации L4 и L, системы Земля-Луна в
барицентрических вращающихся осях даются выражениями х = (М2 — //)ЛЭЛ,
либрации мы будем иметь в виду именно треугольные точки системы Земля-Луна.
Во второй главе рассматривается построение стандартной математической модели поставленной задачи, проводится ее интегрирование и исследование.
Существует большое количество форм уравнений движения в задаче многих тел. Выбранная нами форма должна удовлетворять следующим требованиям:
1. задача упрощается до плоской круговой ограниченной задачи трех тел;
2. уравнения задачи должны иметь минимальный порядок и форму записи удобную для применения численных методов и контроля точности вычислений;
3. при дальнейших исследованиях уравнения должны легко преобразовываться в уравнения возмущенного движения, оставаясь не менее удобными для численного интегрирования.
Этим требованиям удовлетворяет представление задачи в классической форме Якоби. В данной форме система уравнений разбивается на две части: полностью интегрируемые уравнения, для кругового движения Луны и не имеющие полного набора первых интегралов уравнения, для сложного движения СИСЗ.
Примененный к плоской ограниченной задаче, записанной в абсолютных координатах (система 12 обыкновенных дифференциальных уравнений), переход Якоби также дает максимально возможное понижение порядка (система 8 обыкновенных дифференциальных уравнений).
Выберем следующую систему постоянных: мера массы М — масса Земли; мера времени I — сутки; мера расстояния г— возмущенное среднее расстояние Луны по Хиллу-Брауну.
Классические уравнения движения п тел в абсолютной системе координат (£,т|,0 можно записать как:
у = г(тот| + тот2 + т1т2) - силовая функция,
А0| Д02 Ап_
д.. = +(г|1 -Л))2 - взаимное расстояние между
точками иМр т| - массы тел, Г - гравитационная постоянная.
Рассмотрим теперь плоскую задачу трех тел и отнесем движение точки М, к системе координат с началом в точке М0, а движение точки М2 к системе с началом в барицентре (М0,М,).
В дальнейшем, если это не оговорено особо, упоминая точки
(1)
где
Величины с индексом 0 относятся к Земле, с индексом 1 к Луне, с индексом 2 к СИСЗ, оси параллельны осям абсолютной системы координат. В таком случае система (1) запишется в новых координатах как
аи ,.. эи
ш,у, = — , 1 = 1,2. (2)
дх, ду!
Силовая функция и инвариантна относительно этого преобразования,
т0ш, , тДтр + п^) приведенные массы т, определятся как т =-, т, = ---.
Шо + т, (т0 + т1 + гп2)
Взаимные расстояния даются соотношениями: Д ш=х'12 + У'.2'
Д2.« = (х2 + х!" т1 К™» + т1))2 + (У2 + У\' т1 /(®о + т1 ))2 д2.2 = (х2 - х! ■ т1 т» + т1»2 + (Уг - у! • т1 /(то + т1))2
Теперь учтем, что масса СИСЗ относительно основных гравитирующих тел пренебрежимо мала, и окончательно перейдем к плоской ограниченной задаче трех тел в координатах Якоби. Положив в (2) ш'2 = 0, получим систему, разбивающуюся на две части:
ах, 5у, д.,
(4)
8хг ду1 Д02 Д12
где ^ - гелиоцентрическая гравитационная постоянная. Система (3) описывает круговое движение Луны вокруг Земли, система (4) - сложное движение СИСЗ.
Для исследования полученной модели воспользуемся стандартным многошаговым методом Адамса 5-го порядка. Качественный результат расчетов представлен на рис. 1
Было установлено, что орбиты СИСЗ существуют и достаточно стабильны в большом диапазоне начальных условий, если использовать для их получения разработанную нами схему модификации управляющих численными методами параметров.
Мы показали, что для задачи (3}-{4) всегда определен такой алгоритм согласования параметров, который приводит к генерации семейств орбит, проходящих сколь угодно близко к точкам Ь4 и Ь5.
Однако остается открытым вопрос - насколько корректными можно считать данные решения? В первом приближении, как уже говорилось, мы не учитывали возмущенное движение Луны.
Мы видим, что точности стандартной модели недостаточно даже для того, чтобы орбита Луны была замкнутой. Мы выбирали значения переменных среды, отвечающих за погрешность встроенных численных алгоритмов равными 10"7 и менее, но это не решило проблему.
Орбита СИСЗ существует, но орбита Луны определена с такой погрешностью, которая ставит под сомнение корректность всех вычислений.
В третьей главе рассматриваются более точные модели движения Луны, строится модель движения на основе теории движения Луны Хилла-Брауна и приводится алгоритм ее численного анализа.
Рядом ранних исследователей, таких, как Ш. Делонэ было показано, что на движение Луны оказывает огромное влияние притяжение Солнца и больших планет.
Математические трудности метода Делонэ заключались в громоздкости метода исключения членов ряда в разложениях.
Позднее, Дж. У. Хилл нашел удобный способ интегрирования задачи трех тел путем разложения уравнений движения во
вращающейся системе координат по степеням малого параметра т, связанного с истинной аномалией к.
Рис. 1. Один виток орбиты ИСЗ, стандартная модель.
В разработанной нами модели орбиты СИСЗ движение Луны рассчитано аналитически, с помощью одного из вариантов задачи Хилла-Брауна, затем проведено численное интегрирование задачи движения СИСЗ.
Прямоугольные координаты Луны представим в виде рядов Хилла, разложенных по истинной аномалии ^ до второго порядка:
х = А • [(1 - ш2 ■ 19/16) cos(^) + (m2 • 3/16)cos(3Q] ^
у = А ■ [(1 + ш2 • 19/16)sin© + (m2 • 3/16)sin(3£)]
Здесь А - возмущенная большая полуось орбиты Луны:
А = а(1 - ш2 • 1/6 + т3 • 1/3 + т4 ■ 407/2304 - т5 ■ 67/288),
где а = \j\J-/n2 = 1.0007163г - большая полуось орбиты Луны,
ш = п/(п + п) = 8.08489-10"3 - параметр Хилла, п и п определяются из эфемериды ОЕ405/ЬЕ405.
Выражением (5) даются координаты Луны, найденные аналитически.
Вторым этапом определим координаты СИСЗ, они, как и прежде, даются уравнениями (4).
Мы построили модель плоской ограниченной задачи трех тел, представленную в виде системы обыкновенных и дифференциальных уравнений:
'х, = А • [(1 - т2 • 19/16)со5(£) + (ш2 • 3/16)со5(3^)] у, = А • [(1 + ш2 • 19/16) ыпф + (ш2 ■ 3/16) 5т(3§)]
дх2 .. Ш,
Данная система зависит от истинной аномалии и не является автономной. Нами предложен следующий численный алгоритм ее решения:
1. Рассчитаем среднее движение Луны аналитически с помощью рядов Хилла на промежутке I и получим явно выраженные координаты Луны в выбранной системе в данный момент времени, не зависящие от истинной аномалии.
2. Примем положение Луны постоянным на том же промежутке. Подставим полученные координаты в нашу систему дифференциальных уравнений и приведем ее к автономному виду на (1,1 +1).
3. Разобьем этот отрезок на опорные точки и проведем интегрирование полученной автономной системы дифференциальных уравнений численно.
4. Действуя так, мы получим п последовательно интегрируемых автономных систем, описывающих движение СИСЗ с учетом среднего движения Луны на заданном интервале, где п — общее количество точек, в которых ищется решение.
5. Сшивание решений произведем посредством передачи последнего значения координат и скоростей СИСЗ, полученных на ¡-м шаге в качестве начальных условий для функции-решателя на ¡+1-м шаге. Необходимая гладкость решения достигается за счет выбора надлежащего числа опорных точек.
Предложенный нами алгоритм реализован на языке МАТЬАВ, предоставляющем широкие возможности построения численных и аналитических моделей. Блок-схема предложенного алгоритма представлена на рисунке 2.
Данный алгоритм позволяет вычислить координаты Луны и СИСЗ на указанном интервале с указанной погрешностью. Он допускает удобное управление вычислениями посредством массива передаваемых в подпрограммы управляющих параметров и предназначен для работы с различными численными методами.
Рис. 2. Блок-схема алгоритма моделирования.
В четвертой главе рассматривается комплекс программ моделирования движения СИСЗ и приводятся результаты ее исследования
Используем полученные результаты для написания удобного решателя. Данная программа была скомпилирована в исполняемый файл из среды GUIDE с помощью компилятора MATLAB 4.6. Для ее корректной работы требуется свободно распространяемая компанией The Math Works программная библиотека MCR версии 12 и выше.
Результат работы усовершенствованного алгоритма, представлен на рис. 3. Мы видим, что орбита Луны рассчитана корректно. Исследование показало, что расчет проводится многократно быстрее (до 10-15 раз), по сравнению со
стандартными методами.
Во многом это происходит благодаря
следующему факту. Для прямого численного
интегрирования систем (3)-(4) используется функция, реализующая метод Адамса, для контроля точности используется внутренняя переменная TOL. При решении с помощью стандартной модели,
значение TOL, как показано во второй главе должно быть не более чем Ю-7. Если же мы используем модель (7), то значение переменной может быть увеличено до 10~3—10"". Скорость расчетов
многократно вырастет, но решение не потеряет в точности.
С помощью свойств интеграла Якоби исследуем количественные отличия решений рис. 1 и рис 3.
Как известно, уравнения (3) имеют лишь один первый интеграл, существующий, если (4) — круговая ограниченная задача. Получить этот интеграл можно, перейдя от барицентрической системы координат к специальной, вращающейся с постоянной угловой скоростью вокруг оси GZ. Здесь G - барицентр системы т0 + т,, ось Z перпендикулярна плоскости орбит Луны и СИСЗ.
Орбита Луны \
Орбита ИСЗ \
Тотки либрации
/ \ 1 \ / \
4; fr.' Ii
Рис. 3. Один виток орбиты ИСЗ, численная модель
Обозначим новые координаты (С,л)> запишем преобразование, связывающее старые координаты и новые:
(созф (7)
^¡п(^) соз(^)
Истинная аномалия £ найдется как = п-г, где п - среднее движение точки ш,.
Искомый интеграл выразится в данной системе координат как:
V2 = 2и - Н (8)
где
V2 = 42 + л2 - полная скорость СИСЗ в новой системе координат,
С = 1п2(£; + г|) + 1"Е(— + —) - потенциальная энергия,
2 го Г1
г2 =(^-а)2 + Г|2, г22 = (С, - Ь)2 + Л2 - радиус-векторы гравитирующих тел,
а = т'г_, ь = —--приведенные массы,
т0 + т. Шо + Ш,
\yJ
(9)
г = т0т, - расстояние между гравитирующими телами,
Н - постоянная энергии. Обратив матрицу перехода из (8) получим:
(CWcosG) sin№)> [ц) t-sin(^) cos(5), Это выражение позволит нам пересчитать массив координат (х,у) в К,Л)- Конечно, после преобразования интеграл станет зависеть явно от времени, т.к. от времени зависит £(t) = n-t. Строго говоря, результат преобразования уже не может называться первым интегралом, но мы исследовали его регулярность, см. рис 4.
Интеграл ведет себя регулярно, за исключением критических областей, в которых квазиэллиптическая орбита СИСЗ переходит на следующий виток. В этот момент погрешность достигает максимума, тем не менее, орбита спутника
остается стабильной.
В качестве количественных характеристик отклонения выбраны
статистические параметры:
1. Средние значения M(J).
2. Дисперсия V(J).
3. Размах выборки D(J).
Их значения для всех четырех случаев даны в таблице 1. Здесь J(t) -
характеристики псевдоинтеграла для численно-аналитического метода, Ja(t) -для метода Адамса, Jbs(t) - для метода Булирша-Штера, Jrk(t) - для метода Рунге-Кутта.
Таблица I.
Статистические характеристики псевдоинтеграла Якоби на промежутке (0, 7000).
M(J) V(J) D(J)
J(t) 0.026601045 0.004006724 1.016856821
Ja(t) 0.023803805 0.040699105 1.210607356
Jbs(t) 0.023819557 0.004070879 1.205163070
Jrk(t) 0.023819790 0.004070803 1.205092984
Построенная нами численная модель не только более корректна физически, так как учитывает возмущенное движение Луны, но и более точная, расчеты с помощью указанного алгоритма проводятся быстрее в несколько раз и, за счет ослабления требований к решающей функции, требуют меньше ресурсов. Также стоит отметить, что алгоритм вычислений стал намного менее чувствительным к выбору внутреннего решателя, что позволит использовать менее ресурсоемкие методы, не уменьшая точности расчетов.
В заключении подведены итоги и обобщены основные результаты
исследований.
Рис. 4. Поведение псевдоинтеграла Якоби на протяжении восьми витков орбиты СИСЗ, количество точек интегрирования 107.
Основные результаты работы
В диссертационной работе в рамках решения поставленной задачи математического моделирования орбитального движения искусственных спутников Земли в условиях повышенной нестабильности их траекторий получены следующие основные результаты:
1. Проведен анализ существующих классов орбит и практики их применения для астрофизических исследований, который показал, что наиболее актуальными направлениями моделирования для решения задач наблюдения являются неклассические типы движения ИСЗ.
2. Выявлены недостатки известных орбит, заключающиеся в неспособности одновременно удовлетворять критерию устойчивости и подходить для перспективных астрофизических наблюдений. Предложен метод преодоления данных недостатков путем перехода к орбитам, огибающим треугольные точки либрации системы Земля-Луна.
3. Проведен анализ существующих подходов к численному моделированию орбитального движения ИСЗ, который показал их несостоятельность для решения поставленной задачи в связи с недостаточной точностью вычислений либо большими аппаратными требованиями и значительным временем расчетов.
4. Разработана новая математическая модель движения удаленного ИСЗ с учетом теории Луны Хилла-Брауна.
5. Разработан новый алгоритм численного анализа для модели движения удаленного ИСЗ с учетом теории Луны Хилла-Брауна и комплекс программ для реализации модели движения удаленного ИСЗ.
6. Подтверждено существование квазиэллиптических орбит ИСЗ, траектории которых проходят в окрестности треугольных точек либрации системы Земля-Луна.
7. Показано, что полученные орбиты устойчивы и удовлетворяют критериям орбит для долговременных астрофизических наблюдений.
Публикации Основные положения диссертационной работы опубликованы в 12 научных работах, в том числе в 3 статьях по перечню ВАК:
1. Ерёменко А. П., Горбунов В. А. Улучшение орбит сильно удаленных искусственных спутников земли (СИСЗ) с помощью численно-аналитических методов // Вестн. Воронеж, гос. ун-та. Сер. Системный анализ и информационные технологии / Ерёменко А. П., Горбунов В. А. - Воронеж: Изд-во Воронеж, гос. ун-та, 2012 - № 1(12). - С. 59-64.
2. Ерёменко А. П., Горбунов В. А. Алгоритм численного моделирования орбиты сильно удаленного искусственного спутника Земли // Межд. научн. изд. «Современные фундамеш-альные и прикладные исследования» / Ерёменко А. П., Горбунов В. А. -Кисловодск: Изд-во УЦ «МАГИСТР», 2012 - № 1(4). - С. 49-55.
3. Ерёменко А. П., Горбунов В. Л. Численно-аналитическое моделирование орбит сильно удаленных искусственных спутников Земли // Информационные технологии в моделировании и производстве: Науч.-техн. журн. / Ерёменко А. П., Горбунов В. А. - М.: Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт межотраслевой информации - федеральный информационно-
о
аналитический центр оборонной промышленности» (ФГУП «ВИМИ»), 2012 - № 2 - С 6974.
4. Ерёменко А. П., Горбунов В. А. К вопросу оптимизации методов орбитального движения искусственных спутников Земли // Информатизация процессов формирования открытых систем на основе СУБД, САПР, АСНИ и систем искусственного интеллекта (ИНФОС - 2007): Мат. 4-й межд. научно-техн. конф. / Ерёменко А. П., Горбунов В. А. -Вологда: Изд-во Волог. гос. техн. ун-та, 2007. - С. 66-69.
5. Ерёменко А. П., Горбунов В. А. К исследованию одного вида орбитального движения искусственного спутника Земли // Вузовская наука - региону: Мат. 6-й Всероссийской научно-техн. конф. в 2-х т. / Ерёменко А. П., Горбунов В. А. - Вологда: Изд-во Волог. гос. техн. ун-та, 2008, Т. I. - С. 79-81.
6. Ерёменко А. П., Горбунов В. А.К одному методу исследования движения искусственного спутника Земли (ИСЗ) в окрестностях двух треугольных точек либрации // Вузовская наука - региону: Мат. 7-й Всероссийской научно-техн. конф. в 2-х т. / Ерёменко А. П., Горбунов В. А. - Вологда: Изд-во Волог. гос. техн. ун-та,, 2009, Т. I. - С. 79-81.
7. Ерёменко А. П., Горбунов В. А. О методах сведения круговой ограниченной задачи трех тел к полностью интегрируемому случаю // Информатизация процессов формирования открытых систем на основе СУБД, САПР, АСНИ и систем искусственного интеллекта (ИНФОС - 2009): Мат. 5-й межд. научно-техн. конф. / Ерёменко А. П., Горбунов В. А. -Вологда: Изд-во Волог. гос. техн. ун-та,, 2009. - С. 96-98.
8. Ерёменко А. П., Горбунов В. А. Численное моделирование движения искусственного объекта в системе Земля-Луна // Вузовская наука - региону: Мат. 8-й Всероссийской научно-техн. конф. в 2-х т. / Ерёменко А. П., Горбунов В. А. - Вологда: Изд-во Волог. гос. техн. ун-та,, 2010, Т. I. -С. 70-73.
9. Ерёменко А. П., Горбунов В. А. Математическое моделирование движения искусственных спутников Земли в окрестности треугольных точек либрации // Информатика: проблемы, методология, технологии: Труды 11-й межд. конференции в в 3-х т. / Ерёменко А. П., Горбунов В. А. - Воронеж: Изд-во Воронеж, гос. ун-та, 2011. Т. I. - С. 285-289.
10. Программа моделирования движения ИСЗ в окрестности треугольной точки либрации (информационная карта) / Свидетельство о регистрации программы № 04-65/49 от от 18.04.2011, инв.номер ВНТИЦ № 50201150569 от 18.04.2011.
11. Ерёменко А. П., Горбунов В. А. Программа моделирования движения ИСЗ в окрестности треугольной точки либрации // Информатизация процессов формирования открытых систем на основе СУБД, САПР, АСНИ и систем искусственного интеллекта (ИНФОС - 2011): Мат. 6-й межд. научно-техн. конф. / Ерёменко А. П., Горбунов В. А. -Вологда: Изд-во Волог. гос. техн. ун-та,, 2011. - С.78-80.
12. Ерёменко А. П., Горбунов В. А. Анализ применимости стандартных алгоритмов численного моделирования к исследованию орбит искусственных объектов в окрестностях точек либрации системы Земля-Луна // Информационные технологии моделирования и управления. Науч.-техн. журн. / Ерёменко А. П., Горбунов В. А. - Воронеж: Изд-во Научная книга,2012-№2(74).-С. 125-130.
Работы №1-3 опубликованы в изданиях, рекомендуемых ВАК РФ.
Подписано в печать 13.09.2012 г. Формат 60*84/16. Печать офсетная. Бумага офисная. Усл. печ. л. 1,0. Тираж 100 экз. Заказ
Отпечатано: РИО ВоГТУ, г. Вологда, ул. Ленина, д. 15
Оглавление автор диссертации — кандидата физико-математических наук Ерёменко, Алексей Павлович
ВВЕДЕНИЕ.
ГЛАВА 1. АНАЛИЗ РАЗВИТИЯ ВНЕЗЕМНОЙ АСТРОНОМИИ.
1.1 Развитие внеземной астрономии.
1.2 Преимущества внеземной астрономии.
1.3 Перспективы внеземной астрономии в России.
1.4 Точки либрации и внеземная астрономия.
ГЛАВА 2.СТАНДАРТНЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ В ЗАДАЧЕ ТРЕХ ТЕЛ.
2.1 Постановка задачи, допустимые движения и выбор начальных условий.
2.2 Калибровка численных методов МаЛСАБ.
2.2.1 Алгоритм Рунге-Кутты 4-го порядка.
2.2.2 Алгоритм Рунге-Кутты-Мерсона 4-го порядка, Булирша-Штера и Адамса-Башфорта.
2.2.3 Алгоритм Розенброка, алгоритм Радау 5-го порядка, метод дифференцирования назад.
2.3 Калибровка численных методов МАТЬАВ.
2.3.1 Алгоритм Рунге-Кутты 5-го порядка.
2.3.2 Алгоритм Адамса-Башфорта.
2.3.3 Алгоритм Дормана-Принса 8-го порядка.
2.4 Результативность стандартного моделирования.
ГЛАВА 3. ЧИСЛЕННО-АНАЛИТИЧЕСКИЙ МЕТОД МОДЕЛИРОВАНИЯ В ЗАДАЧЕ ТРЕХ ТЕЛ.
3.1 Постановка задачи и численно-аналитические теории движения
Луны.
3.2 Разработка алгоритма моделирования движения ИСЗ.
ГЛАВА 4. ИССЛЕДОВАНИЕ ОРБИТ В ОКРЕСТНОСТИ ТОЧЕК ЛИБРАЦИИ.
4.1 Разработка программы моделирования движения СИСЗ.
4.1.1. Создание исходного т-кода.
4.1.2 Разработка графической оболочки.
4.1.3 Создание исполняемого модуля консольного приложения.
4.2 Анализ орбиты СИСЗ.
ВЫВОДЫ.
Введение 2012 год, диссертация по информатике, вычислительной технике и управлению, Ерёменко, Алексей Павлович
Актуальность темы Теория движения небесных тел много лет остается плодотворным направлением исследований, как в физике, так и в математике. Одной из ее важнейших проблем является ограниченная задача трех тел. Актуальность исследования этой задачи связана с тем, что ее общее решение до сих пор не известно, но сама она имеет многочисленные и важные практические приложения.
Моделирование орбит любых искусственных тел в околоземном пространстве опирается на отыскание частных решений ограниченной задачи трех тел. Для этого применяются разнообразные численные и численно-аналитические алгоритмы. Желание получить новые семейства орбит заставляет нас развивать способы интегрирования этой сложной задачи.
Разработке данных алгоритмов посвящено значительное число статей и монографий, как отечественных, за авторством Е. П. Аксенова, Р. Ф. Аппазова, В. II. Гущина, Г. Н. Дубошина и др., так и зарубежных, за авторством Р. Баттина, С. Геррика, П. Гурфила, Дж. Винти, А. Роя и др.
Классические численные алгоритмы хорошо зарекомендовали себя в случае близких к Земле спутников, но в настоящее время растет научный интерес к искусственным телам, расположенным на сильно удаленных орбитах.
Такие объекты в виде космических телескопов и орбитальных зондов все чаще требуются астрофизикам, в связи с изучением солнечного ветра, поиском экзопланет и подобными исследованиями. Проведение этих работ требует значительного удаления автоматических станций от Земли, для минимизации магнитных и гравитационных помех.
Особенно удобными для таких наблюдений во всем диапазоне электромагнитного спектра являются орбиты окрестностей точек либрации (т.н. коллинеарные точки Ь,, Ц, Ь3 и треугольные точки Ь4,Ь5) В системах тел Земля-Солнце и Земля-Луна, многие из коллинеарных точек уже заняты космическими аппаратами.
Исследований, посвященных использованию более удобных, в силу своего положения и устойчивости, точек Ь4 и Ь5 системы Земля-Луна существует значительно меньше. Для моделирования таких классов орбит классические методы малоприменимы, так как на движение спутника на таком удалении от Земли оказывает значительное влияние Луна, и ее точное движение чрезвычайно сложно описать.
В связи с этим, диссертационная работа, посвященная разработке новых подходов к моделированию движения искусственных спутников Земли в окрестности точек либрации, является актуальной.
Цель и задачи исследования Целью диссертационной работы является разработка математической модели, учитывающей сложные возмущения орбиты сильно удаленного искусственного спутника Земли (СИСЗ) под действием притяжения Луны, средств численной реализации данной модели, обеспечивающих хорошую точность и скорость расчетов, а так же проведение численного эксперимента с целью показать существование моделируемых орбит при заданных начальных условиях.
Для достижения указанной цели в работе поставлены и решены следующие задачи:
1. Анализ существующих классов орбит и практики их применения для астрофизических исследований, выявление недостатков указанных орбит, анализ существующих подходов к численному моделированию орбитального движения СИСЗ и выявление их недостатков.
2. Разработка математической модели движения искусственного тела с учетом теории движения Луны Хилла-Брауна, позволяющей эффективно исследовать орбиты в окрестностях точек Ь4 и Ь5 системы Земля-Луна.
3. Разработка средств численного анализа и алгоритма численного моделирования орбитального движения СИСЗ с учетом теории п. 2.
4. Разработка комплекса программ моделирования движения СИСЗ на основе п. 3.
5. Проведение численных экспериментов, подтверждающих практическую применимость данного алгоритма и его превосходство над традиционными методами моделирования.
6. Получение новых, перспективных классов орбит СИСЗ в окрестности треугольных точек либрации и изучение их свойств.
Методы исследовании В диссертационной работе использованы методы теории моделирования, методы небесной механики, теории обыкновенных дифференциальных уравнений, вычислительной математики, объектно-ориентированного программирования.
Научная новизна В диссертационной работе получены следующие результаты, характеризующиеся научной новизной:
1. Математическая модель движения СИСЗ с учетом теории движения Луны Хилла-Брауна, позволяющая эффективно исследовать орбиты в окрестностях точек Ь4 и Ь5 системы Земля-Луна.
2. Численный метод моделирования движения СИСЗ с учетом теории п. 1.
3. Алгоритм численного анализа модели СИСЗ, реализующий метод п. 2.
4. Комплекс программ для моделирования движения искусственного спутника в окрестности треугольных точек либрации, реализующий алгоритм п. 3.
5. Новые квазиэллиптические орбиты СИСЗ, огибающие треугольные точки либрации системы Земля-Луна.
Результаты соответствуют следующим пунктам паспорта специальности: п. 2 «Разработка, исследование и обоснование математических объектов, перечисленных в формуле специальности»; п. 5 «Реализация эффективных численных методов и алгоритмов в виде комплексов проблемно-ориентированных программ для проведения вычислительного эксперимента»; п. 6 «Комплексное исследование научных и технических, фундаментальных и прикладных проблем с применением современной технологии математического моделирования и вычислительного эксперимента».
Основные результаты, выносимые на защиту:
1. Новая математическая модель движения СИСЗ с учетом теории движения Луны Хилла-Брауна, позволяющая эффективно исследовать орбиты в окрестностях точек Ь4 и Ь5 системы Земля-Луна.
2. Численный метод моделирования движения СИСЗ с учетом теории п. 1.
3. Алгоритм численного анализа модели СИСЗ, реализующий метод п. 2.
4. Комплекс программ для моделирования движения искусственного спутника в окрестности треугольных точек либрации, реализующий алгоритм п. 3.
5. Новые квазиэллиптическис орбиты СИСЗ, огибающие треугольные точки либрации системы Земля-Луна.
Практическая значимость работы заключается в:
1. разработке математической модели возмущенного движения СИСЗ с учетом теории движения Луны Хилла-Брауна, позволяющая эффективно исследовать орбиты в окрестностях точек Ь4 и Ь5 системы Земля-Луна;
2. разработке метода численного моделирования, с учетом теории п. 1. ;
3. разработке алгоритма анализа данной модели, реализующего метод п. 2;
4. разработке комплекса программ для моделирования движения искусственного спутника в окрестности треугольных точек либрации, реализующий алгоритм п. 3.;
5. исследовании нового класса орбит астрофизических спутников.
Разработанный комплекс программ прошел государственную регистрацию и занесен в Единую федеральную базу данных, включающую результаты научно-исследовательских, опытно-конструкторских и технологических работ гражданского назначения, выполняемых за счет средств федерального бюджета, и проектов внедрения новых информационных технологий, выполняемых с использованием государственной поддержки (ЕФБД НИОКР), получено свидетельство о регистрации, инвентарный номер ВНТИЦ№ 50201150569.
Реализация и внедрение результатов работы Теоретические результаты и комплекс программ внедрены в учебный и исследовательский процесс на кафедре «Общая физика и астрономия» федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Вологодский государственный педагогический университет» в рамках дисциплины «Астрономия».
Апробация работы Материалы диссертации докладывались и получили положительную оценку на следующих научных форумах: серия международных научно-технических конференций «Информатизация процессов формирования открытых систем на основе СУБД, САПР, АСНИ и систем искусственного интеллекта (ИНФОС)» (Вологда, ВоГТУ, 2007 г, 2009 г, 2011 г.); серия всероссийских научно-технических конференций «Вузовская наука - региону» (Вологда, ВоГТУ, 2008 г., 2009 г., 2010 г.); международная конференция «Информатика: проблемы, методология, технологии» (Воронеж, ВГУ, 2011 г.)., международная конференция «Кибернетика и высокие технологии XXI века (С&Т 2012)» (Воронеж, ВГУ, 2012 г.).
По темам диссертации проводились доклады и делались сообщения на научно-практических конференциях ВоГТУ 2007-2011 гг. и научных семинарах кафедры «Общая физика и астрономия» ВГПУ 2007-2011 гг.
Публикации Основные положения диссертационной работы опубликованы в 12 научных работах, в том числе в 3 статьях по перечню ВАК.
Структура и объем работы Диссертационная работа состоит из введения, 4 глав, основных выводов, библиографического списка,
Заключение диссертация на тему "Компьютерное моделирование новых классов орбитального движения искусственных спутников Земли"
Выводы.
В диссертационной работе в рамках решения поставленной задачи математического моделирования орбитального движения искусственных спутников Земли в условиях повышенной нестабильности их траекторий получены следующие основные результаты:
1. Проведен анализ существующих классов орбит и практики их применения для астрофизических исследований, который показал, что наиболее актуальными направлениями моделирования для решения задач наблюдения являются неклассические типы движения ИСЗ.
2. Выявлены недостатки известных орбит, заключающиеся в неспособности одновременно удовлетворять критерию устойчивости и подходить для перспективных астрофизических наблюдений. Предложен метод преодоления данных недостатков путем перехода к орбитам, огибающим треугольные точки либрации системы Земля-Луна.
3. Проведен анализ существующих подходов к численному моделированию орбитального движения ИСЗ, который показал их несостоятельность для решения поставленной задачи в связи с недостаточной точностью вычислений либо большими аппаратными требованиями и значительным временем расчетов.
4. Разработана новая математическая модель движения удаленного ИСЗ с учетом теории Луны Хилла-Брауна.
5. Разработан новый алгоритм численного анализа для модели движения удаленного ИСЗ с учетом теории Луны Хилла-Брауна и комплекс программ для реализации модели движения удаленного ИСЗ.
6. Подтверждено существование квазиэллиптических орбит ИСЗ, траектории которых проходят в окрестности треугольных точек либрации системы Земля-Луна.
7. Показано, что полученные орбиты устойчивы и удовлетворяют критериям орбит для долговременных астрофизических наблюдений.
Библиография Ерёменко, Алексей Павлович, диссертация по теме Математическое моделирование, численные методы и комплексы программ
1. Куликовский П. Г., под ред. В. Сурдина. Справочник любителя астрономии. Изд.6, испр. и доп., М.: Эдиториал УРСС, 2009. 704 с.
2. Roger D. Launius, Dennis R. Jenkins. To Reach the High Frontier: A History of U.S. Launch Vehicles, University Press of Kentucky, 2002, 519p.
3. Richard McKim. Audouin Charles Dollfus 1924-2010, Astronomy & Geophysics, Vol. 52, Issue 1, page 1-44, February 2011
4. Robert E. Danielson. Project Stratoscope. American Scientist Vol. 49, No. 3 (Sept. 1961), pp. 370-398
5. Andrew J. Dunar, Stephen P. Waring. Power to Explore: A History of Marshall Space Flight Center, 1960-1990. National Aeronautics and Space Administration, NASA History Office, Office of Policy and Plans, 1999 713p
6. Бронштэн В. А. Как движется Луна? М.: Наука. Главная редакция физико-математической литературы, 1990. Проблемы науки и технического прогресса, - 208с.
7. Paul Dickson. Sputnik: The Launch of the Space Race. Toronto: MacFarlane Walter & Ross, 2001, 190.
8. Keller, Luke, Jurgen Wolf. NASA's New Airborne Observatory. Sky and Telescope Oct. 2010: p22-28.
9. Spitzer, Lyman, Jr. History of the Space Telescope. Quarterly Journal of the Royal Astronomical Society, Vol. 20, p.29, 03/1979
10. Черток Б.Е. Ракеты и люди (в 4-х тт.), М.: Машиностроение, 1999. 2-е изд. 416 с.
11. Coleman, P. J., Davis, Leverett, Sonett, С. P. Steady Component of the Interplanetary Magnetic Field: Pioneer V. Physical Review Letters, vol. 5, Issue 2, 07/1960 pp. 43-46
12. Code A.D., Houck Т.Е., McNall J.F., Bless R.C., Lillie C.F. Ultraviolet Photometry from the Orbiting Astronomical Observatory. I. Instrumentation and Operation, Astrophysical Journal, v. 161, 1970, p.377
13. Zvereva, A. M., Eerme, K. A. Results of stellar ultraviolet photometry aboard the Cosmos 215 satellite. Krymskaia Astrofizicheskaia Observatoriia, Izvestiia, vol. 55, 1976, p. 200-207.
14. Rogerson J.B., Spitzer L., Drake J.F., Dressier K., Jenkins E.B., Morton D.C. Spectrophotometric Results from the Copernicus Satellite. I. Instrumentation and Performance, Astrophysical Journal, v. 181, 1973, p. 97
15. Thomas O'Toole. Mystery Heavenly Body Discovered. Washington Post., 30 December 1983 p. Al.
16. M. A. C. Perryman. Astronomical Applications of Astrometry: Ten Years of Exploitation of the Hipparcos Satellite Data. Cambridge University Press, 2009,670p
17. Harwit M. The Herschel Mission. Advances in Space Research 34, 2004 (3): 568-572.
18. Jonathan P. Gardner; et al. The James Webb Space Telescope. Space Science Reviews, Nov. 2006 (Springer, Netherlands): pp 484-606.
19. Федеральная космическая программа России на 2006-2015 годы. Утв. пост. Прав. Российской Федерации от 22.08.05 № 635 // Журнал Международной ассоциации участников космической деятельности "Российский космос". 2006. - №1
20. С. D. Brown, Spacecraft Mission Design, 2nd Edition, AIAA Education Series, 1998
21. Охоцимский Д. E., Сихарулидзе E. Г. Основы механики космического полета: Учеб. пособие. М.: Наука, 1990. -448 с.
22. Аппазов Р. Ф., Сытин О. Г. Методы проектирования траекторий носителей и спутников Земли М.: Наука, 1987. - 440 с.
23. Гущин В. Н. Проектирование искусственных спутников Земли. М.: МАИ, 1999.-52 с.
24. Иванов М. Н., Лысенко Л. Н. Баллистика и навигация космических аппаратов: Учеб. Пособие. - М.: Дрофа, 2004. - 544 с.
25. Е. Canalias, J. Cobos, J.J. Masdemont. Impulsive Transfers Between Lissajous Libration Point Orbits. Preprint 2003.
26. M. Michalodimitrakis. A New Type of Connection Between the Families of Periodic Orbits of the Restricted Problem. Astronomy & Astrophysics, 64(l):83-86, 1978.
27. Маршал, К. Задача трёх тел / К. Маршал; пер. с англ. Ю.А. Сагдеевой, Н.В. Юговой, А.Г. Арзамасцева; под ред. А.В. Борисова, И.С. Мамаева. Москва-Ижевск: Институт компьютерных исследований, 2004. - 640 с.
28. R.W. Farquhar, D.P. Muhonen, and D.L. Richardson. Mission Design for a Halo Orbiter of the Earth. Journal Spacecraft and Rockets, 14(3): 170-177, 1977.
29. D. Folta and M. Beckman. Libration Orbit Mission Design: Applications of Numerical and Dynamical Methods. In Libration Point Orbits and Applications, World Scientific, 2003.
30. Субботин M. Ф. Введение в теоретическую астрономию. М.: Наука, 1968.- 800 с.
31. Р. Кейдл. Твердые частицы в атмосфере и космосе М.:МИР, 1969. -284 с.
32. Иванов В. Перенос излучения и спектры небесных тел. Проблемы теоретической астрофизики. М.: Наука, 1969. -472 с.
33. Planck Science Team. Planck: The Scientific Programme (Blue Book). ESA-SCI (2005)-1. Version 2. European Space Agency. Режим доступа: www.rssd.esa.int/SA/PLANCK/docs/Blucbook-ESA-SCI%282005%291 V2.pdf. свободный. Загл. с экрана.
34. Steven Wissler, Jennifer Rocca, Daniel Kubitschek Deep Impact Comet Encounter: Desing, Development, and Operations of the big event at Tempel-1. Paper No. GT-SSEC.C.2 Jet Propulsion Laboratory, California Institute of Technology
35. Маркеев, А. П. Точки либрации в небесной механике и космодинамике / А.П. Маркеев. М.: Глав. ред. физ.-мат. лит. изд-ва «Наука», 1978.-312 с.
36. P. Sharer, J. Zsoldos, and D. Folta. Control of Libration Point Orbits Using Lunar Gravity-Assisted Transfer. Advances in the Astronautical Sciences, 64:651-663, 1993.
37. L. Steg. Libration-Point Satellites. In XVII International Astronautical Congress Proceedings: Astrodynamics, Guidance and Control, Madrid, pages 59-64, 1966.
38. L. Steg and J.P: De Vries. Earth-Moon Libration Points: Theory, Existente and Applications. Space Science Reviews, 5(3):210-233, 1966.
39. R.S. Wilson. Optimization of Insertion Cost Transfer Trajectories to Libration Point Orbits. Advances in the Astronautical Sciences, 103:1569-1586, 2000.
40. Barden, B.T. Fundamental Motions near Collinear Libration Points and their Transitions / B.T Barden, K.C. Howell // Journal of the Astronautical Sciences. 1998. - №46 (4). - P. 361-378.
41. Рой, А. Движение по орбитам / А. Рой ; пер. c англ. C.A. Мирера; под ред. В.А. Сарьічева. М.: Мир, 1981. - 544 с.
42. Зигель, К. Лекции по пебесной механике / К. Зигель, Ю. Мозер ; пер. М.С. Яров-Ярового, Л.Д. Пустьільникова, А.Г. Арзамасцева. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. - 384 с.
43. R.W. Farquhar. The Role of the Sun-Earth Collinear Libration Points in Future Space Explorations. Space Times, 39(6):9-12, 2000.
44. R.W. Farquhar and D.W. Dunham. A New Trajectory Concept for Exploring the Earth's Geomagnetic Tail. In AIAA Aerospace Sciences Meeting, 1980.
45. R.W. Farquhar. The Control and Use of Libration Point Satellites. Technical Report TR R346, Stanford University Report SUDAAR-350 (1968). Reprinted as NASA, 1970.
46. M. Beckman and J.J. Guzman. Triana Mission Design. Advances in the Astronautical Sciences, 103:1549-1568, 2000.
47. J. Cobos and M. Hechler. FIRST Mission Analysis: Transfer to Small Lissajous Orbits around L2. Technical Report MAS Working Paper No. 398, ESOC, 1997.
48. M.C. Huber et al. The History of the SOHO Mission. ESA Bulletin, 86:25-35, 1996.
49. W.S. Koon, M.W. Lo, J.E. Marsden and S.D. Ross. The Genesis Trajectory and Heteroclinic Connections, AAS Paper 99-451, AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, 1999.
50. R.W. Farquhar. Lunar Communications with Libration-Point Satellites. Journal of Spacecraft and Rockets, 4(10): 1383-1384, 1967.
51. Domingo, V. The SOHO Mission. An Overview / V. Domingo et al. // Solar Physics. 1995. - Vol. 162, no. 1-2, December. - P. 1-37.
52. Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. The Fermi LAT and Fermi GBM Collaborations / M. S. Briggs et al. // Science. 2009. - Vol. 323, no. 5922. - P. 1688-1693.
53. I-Iarwit, M. The Herschel Mission / M. Harwit // Advances in Space Research. 2004. - № 34 (3). - P. 568-572.
54. Лукьянов Л.Г., Сучкин Г.Л., Токарев Ю.В., Ширмин Г.И. Лагранжевы точки в проблеме поиска внеземных цивилизаций. Пробл. поиска жизни во вселен. Наука, 1986, с. 138-144
55. Кирпичников с. Н. Энергетически оптимальные полеты с учетом влияния светового давления // Вести. Лгу, 1965. №7. 144-156.
56. Поляхова E. H., Шмыров А. С, Шмыров В. А. Стабилизация орбитального движения КА в окрестности коллинеарной фотогравитационной точки либрации // От спутников до галактик. Тезисы докладов, 2005. 16.
57. Леонтович А. М. Об устойчивости лагранжевых периодических решений в ограниченной/ задаче трех тел. Докл. АН СССР, 1962, 143, № 3
58. Deptit A., Deprit-Bartholome. Stability of the triangular Lagrangian points. Astron. Journ. 1968. v. 72 №2 p. 173
59. Kordylewski, К. Photographische Untersuchungen des Librationspunktes L5 im System Erde-Mond / K. Kordylewski // Acta Astronomica. -1961. №11.-P. 165-169.
60. O'Neill, Gerard К. Space Colonies and Energy Supply to the Earth, Science 190:943-947. December 5, 1975
61. T.A. Heppenheimer. Steps Toward Space Colonization: Colony Location and Transfer Trajectories. Journal of Sapcecraft and Rockets, 15(5):305— 312, 1978.
62. В. E. Schutz. Orbital Mechanics of Space Colonies at L4 and L5 of The Earth-Moon System. In AIAA Astrodynamics Specialist Conference, volume AIAA Paper No. 77-33, 1977.
63. Koon, W.S. Dynamical Systems, the Three-Body Problem, and Space Mission Design / Wang Sang Koon // International Conference on Differential Equations. 2000. - Berlin: World Scientific. - P. 1167-1181.
64. Gudkova T.V, Zharkov V.N. 2002, The exploration of the lunar interior using torsional oscillations Planetary and Space Science, v. 50, N.10-11 , pp. 1037-1048
65. Галимов Э.М., Куликов С.Д., Кремнев P.С., Сурков Ю.А., Хаврошкии О.Б., 1999, Российский проект исследования Луны // Астрономический вестник. № 5.
66. Галимов Э.М., 2004 Состояние и перспективы исследования Луны и планет. Вестник РАН, том 74, № 12, с. 1059-1081.
67. Анри Пуанкаре. Избранные труды в трех томах. Т. 1. Новые методы небесной механики / А. Пуанкаре ; сост. И.Б. Погребысский.; под ред. Н.Н. Боголюбова (гл. ред.), В.И. Арнольда, И.Б. Погребысского. М.: Наука, 1971.-772 с.
68. Албуи, А. Лекции о задаче двух тел / А. Албуи; пер. с фр. В.В. Шуликовской // Задача Кеплера. Столкновения. Регуляризация : Сб. работ/ Гл. ред. В.В. Козлов. Москва-Ижевск: Институт компьютерных исследований, 2006. - С. 83-144.
69. МакГихи Р. Тройное столкновение в коллинеарной задаче трех тел // Современная небесная механика. Задача Кеплера, столкновения,регуляризации: Сб. работ под ред. Козлова В. В. М.-Ижевек: Институт компьютерных исследований, 2006. - С. 340-385.
70. Справочное руководство по небесной механике и астродинамике / В.К. Абалакин и др. ; под ред. Г.Н. Дубошина. Изд. 2-е, доп. и перераб. -М.: Наука, 1976.- 863 с.
71. Е.М. Standish. User's Guide to the JPL Lunar and Planetary Ephemeris Export Package. Technical report, NASA-Jet Propulsion Laboratory, 1985.
72. E.M. Standish. JPL Planetary and Lunar Ephemerides, de405/le405. Technical Report JPL IOM 314.10-127, NASA-Jet Propulsion Laboratory, 1998.
73. Себехей, В. Теория орбит: ограниченная задача трех тел / В. Себехей; под ред. Г. Н. Дубошина; пер. с англ. А.Н. Рубашова . М.: Глав, ред. физ.-мат. лит. изд-ва «Наука». - 1982. - 656 с.
74. Рахимов Ф.С. Движение спутникового типа в предельном варианте ограниченной гиперболической задачи трех лет. Докл. АН Респ. Таджикистан, т. XL, № 8, Душанбе, 1997.
75. Рахимов Ф.С. Об областях невозможности движения в общей задаче трех тел. Докл. АН Респ. Таджикистан, т. XLI, N5 9, Душанбе, 1998, с.89-94.
76. Рахимов Ф.С. К вопросу о существовании интеграла движения в ограниченных задачах трех тел. Докл. АН Респ. Таджикистан, т. XLI, № 10, Душанбе, 1998, с.76-81.
77. Гурский, Д.А. Вычисления в MathCAD 12 / Д.А. Гурский, Е.С. Турбина. СПб.: Питер, 2006. - 544 с.
78. Дьяконов В. П. Энциклопедия Mathcad 2001 i, 11. Библиотека профессионала. М.: Солон-Пресс.- 2004,- 832 с.
79. Хайрер Э., Нерсетт С. и др. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи М.: Мир, 1990.- 462 с.
80. Хайрер Э., Нерсетт С. и др. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. М.: Мир, 1999. - 685 с.
81. Эдварде, Ч.Г. Дифференциальные уравнения и краевые задачи: моделирование и вычисление с помощью Mathematica, Maple и Matlab / Ч. Г. Эдварде, Д.Э. Пенни. М.: Издательский дом Вильяме, 2008. - 1104 с.
82. Мэтьюз Дж. Г., Фише Куртис Д. Численные методы. Использование Matlab. М.: Издательский дом Вильяме, 2001. - 720 с.
83. Кетков Ю. JI, Кетков А. Ю. и др. Matlab: программирование, численные методы. СПб.: БХВ-Петербург, 2005. - 752 с.
84. Brian R. Hunt, Ronald L. Lipsman, Jonathan M. Rosenberg. A Guide to MATLAB for Beginners and Experienced Users. Cambridge University Press, Cambridge, 2005.
85. Howard B. Wilson, Louis II. Turcotte, David Halpern. Advanced Mathematics and Mechanics Applications Using MATLAB. CHAPMAN & HALL/CRC, Boca Raton, 2003.
86. Brian D. Hahn, Daniel T. Valentine. Essential MATLAB for Engineers and Scientists. Elsevier Ltd., Oxford, 2007.
87. Чен К., Джиблин П. и др. MATLAB в математических исследованиях. М.: Мир, 2001,- 346 с.
88. Бахвалов Н. С. Численные методы / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков; Московский государственный университет им. М. В. Ломоносова. 6-е изд. - М.: БИНОМ. Лаборатория знаний, 2008. - 636 с.
89. Ильина В. А., Силаев П. К. Численные методы для физиков-теоретиков. Т. 2- Ижевск: НИЦ РХД, 2004. - 118 с.
90. Butcher J. С. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Ltd, Chichester, 2008.
91. Ерёменко А. П., Горбунов В. А. К вопросу оптимизации методов орбитального движения искусственных спутников Земли // Информатизация процессов формирования открытых систем на основе
92. СУБД, САПР, АСНИ и систем искусственного интеллекта (ИНФОС -2007): Мат. 4-й межд. научно-техн. конф, Вологда: ВоГТУ, 2007. - С. 6669.
93. Ерёменко А. П., Горбунов В. А. К исследованию одного вида орбитального движения искусственного спутника Земли // Вузовская наука региону: Мат. 6-й Всероссийской научно-техн. конф. в 2-х томах. -Вологда: ВоГТУ, 2008, Т. I. - С. 79-81.
94. Ерёменко А. П., Горбунов В. А. Численное моделирование движения искусственного объекта в системе Земля-Луна // Вузовская наука -региону: Мат. 8-й Всероссийской научно-техн. конф. в 2-х томах. -Вологда: ВоГТУ, 2010, Т. I.
95. Ерёменко А. П., Горбунов В. А. Математическое моделирование движения искусственных спутников Земли в окрестности треугольных точек либрации.//Информатика: проблемы, методология, технологии: Труды 11-й межд. конференции в 3-х томах. Воронеж: ВГУ, 2011.
96. Депри, А. Движение Луны в пространстве / А. Депри // Физика и астрономия Луны / Под ред. 3. Копала; пер. с англ. под ред. Г.А. Лейкина. -М.: Мир, 1973.-С. 9-36.
97. Брумберг, В.А. Аналитические алгоритмы небесной механики / В.А. Брумберг. М.: Наука, 1980. - 208 с.
98. Broer H.W., Simo A. Hill's equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena // Bui. Soc. Bras. Mat., 1998, Vol. 29, p. 253-293
99. Henon M. Numerical Exploration of the Restricted Problem. V. Hill's Case: Periodic Orbits and their stability. Astron.& Astrophys., 1969, 1, 223— 238.
100. C. Simo. Computer assisted studies in dynamical systems. In: Progress in nonlinear science. Vol. I:Mathematical problems of nonlinear dynamics (Eds.: L. M. Lerman, L. P. Shilnikov). Univ. Nizhny Novgorod Press, 2002, p. 152165.
101. Krasinsky G.A., 2002, Dynamical history of the Earth-Moon system., Cel. Mech. and Dyn. Astron, v. 84, pp. 27-55
102. Ivanova T.V., A new Esheloned Poisson Series Processor (EPSP). Celestial Mechanics and Dynamical Astronomy, 80, 2001, pp. 167-176
103. Карпасюк И. В., Шмыров А. Канонические приближения уравнений движения в гравитационном поле // Вестник СПбГУ. Сер.1, 1998, ВЫП.2 (№8), 86-93.
104. Ерёменко А. П., Горбунов В. А. Алгоритм численного моделирования орбиты сильно удаленного искусственного спутника
105. Земли. // Современные фундаментальные и прикладные исследования, 2012
106. A Guide to MATLAB for Beginners and Experienced Users / Hunt B. R. et al.. Cambridge: Cambridge University Press, 2005. 635 p.
107. Hunt, B. R. A Guide to MATLAB for Beginners and Experienced Users / Brian R. Hunt et al. Cambridge: Cambridge University Press, 2005. - 635 p.
108. Программа моделирования движения ИСЗ в окрестности треугольной точки либрации (информационная карта) / Свидетельство о регистрации программы № 04-65/49 от от 18.04.2011, инв.номер ВНТИЦ № 50201150569 от 18.04.2011.
109. Wilson, Н.В. Advanced Mathematics and Mechanics Applications Using MATLAB / H.B. Wilson, L.H. Turcotte, D. Halpern. Boca Raton : CHAPMAN & HALL/CRC, 2003. - 678 p.
110. Hahn B.D. Essential MATLAB for Engineers and Scientists / Brian D. Hahn, Daniel T. Valentine. Oxford : Elsevier Ltd.,2007. - 480 p.
111. MATLAB Compiler User's Guide. Sixth printing. Revised for Version 3.0 (Release 13) / The MathWorks, Inc. 2002. - 274 p.
112. MATLAB C/C++ Graphics Library User's Guide. Fifth printing. Revised for Version 2.1 (Release 12) / The MathWorks, Inc. 2000. - 52 p.
113. Смоленцев, H. MATLAB: программирование на Visual C#, Borland JBuilder, VBA : Учебный курс / II. Смоленцев. СПб. : Питер, 2009. -464 с.
114. Подкур, M.JI. Программирование в среде Borland С++ Builder с математическими библиотеками MATLAB / M.JI. Подкур, П.Н. Подкур, Н.К. Смоленцев. М.: ДМК Пресс, 2006 - 496 с.
-
Похожие работы
- Метод проектирования региональной системы дистанционного зондирования Земли на базе малых искусственных спутников с оптико-электронной целевой аппаратурой
- Разработка и исследование методов использования координатных и некоординатных наблюдений геостационарных ИСЗ для решения геодезических задач
- Методы и алгоритмы проектирования смешанной экономически эффективной космической системы наблюдения
- Резервные режимы ориентации спутников связи серии "Ямал" с использованием наземных радиоизмерений
- Метод проектирования электроракетных модулей орбитального перелета и управления орбитальным построением систем спутников
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность