автореферат диссертации по энергетике, 05.14.01, диссертация на тему:Исследование процессов, разработка и создание металлогидридной системы хранения и очистки водорода для энергоустановок на основе ТПТЭ киловаттного класса мощности
Автореферат диссертации по теме "Исследование процессов, разработка и создание металлогидридной системы хранения и очистки водорода для энергоустановок на основе ТПТЭ киловаттного класса мощности"
На правах рукописи
005042940
БОРЗЕНКО Василий Игоревич
Исследование процессов, разработка и создание металлогидридной системы хранения н очистки водорода для энергоустановок на основе ТПТЭ кнловаттного класса мощности
05.14.01 — энергетические системы и комплексы
Автореферат диссертации на соискание ученой степени кандидата технических наук
1 7 МДМ 2012
Москва - 2012
005042940
Работа выполнена в Федеральном государственном бюджетном учреждении науки Объединенном институте высоких температур Российской академии наук.
Научный руководитель: доктор физико-математических наук,
Малышенко Станислав Петрович;
Официальные оппоненты: доктор технических наук,
Кулешов Николай Васильевич;
доктор технических наук, Попель Олег Сергеевич.
Ведущая организация: Национальный исследовательский центр
«Курчатовский институт».
Защита состоится " 30 " мая 2012 г. в 11 ч. 00 мин. на заседании диссертационного совета Д 002.110.03 Федерального государственного бюджетного учреждения науки Объединенного института высоких температур Российской академии наук по адресу: г. Москва, ул. Ижорская, д. 13, стр. 2, экспозиционный зал.
С диссертацией можно ознакомиться в библиотеке ОИВТ РАН.
Отзывы на автореферат просим направлять по адресу: 125412, Москва, Ижорская ул., д.13, стр.2, Диссертационный совет Д 002.110.03 ОИВТ РАН.
Автореферат разослан " 27_" апреля 2012 г.
Ученый секретарь
Диссертационного совета Д 002.110.03 д.ф.-м.н., чл.-корр. РАН
© Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук
Вараксин А.Ю.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы диссертации
Рост интереса к водородным энергетическим технологиям последнего времени, в большой степени связан с успехами в разработке и создании электрохимических генераторов (топливных элементов), преобразующих водород и кислород воздуха в электрическую энергию с высоким КПД. Из всех типов топливных элементов наиболее перспективными видятся системы на основе полимерэлектролитных ячеек (твердополимерные топливные элементы, ТГТТЭ), характеризующиеся низкими рабочими температурами, высокой плотностью потока энергии в единичной ячейке и большим сроком службы при правильной эксплуатации. К настоящему времени в мире создано большое число успешных демонстрационных и промышленных систем на основе ТПТЭ, в том числе транспортных, однако дальнейшее развитие технологии сдерживается рядом технических проблем, где ключевой является проблема хранения водорода, как на борту транспортного средства, так и в стационарных энергетических установках.
Среди разрабатываемых новых технологий и устройств хранения водорода наиболее экономически приемлемыми и безопасными могут стать устройства и системы, основанные на использовании обратимых металлогидридов — интерметаллических соединений (ИМС), способных избирательно и обратимо поглощать водород [1, 2]. При этом основная масса водорода в системе находится в связанном твердофазном состоянии, что обеспечивает повышенную безопасность при эксплуатации. Водород поглощается ИМС с отводом тепла и выделяется при нагреве, причем большой тепловой эффект реакции обеспечивает весьма сильную зависимость равновесного давления водорода над сплавом от температуры — для низкотемпературных систем оно может изменяться от долей атмосферы до величины порядка 1 МПа при изменении температур от 20 °С до 80-90 °С. Это позволяет обеспечить проведение процессов поглощения и выделения водорода за счет имеющихся в системе энергообеспечения ресурсов горячей и холодной воды и осуществить безмашинное компримирование газообразного водорода за счет использования низкопотенциального тепла потерь в топливном элементе. Поскольку ИМС избирательно поглощают только водород, в циклическом процессе сорбции/десорбции осуществляется очистка водорода от примесей. Для низкотемпературных гидридов ИМС весовое содержание водорода в металлогидридах относительно невелико (1-2%), но объемная плотность (более 75 кг Н2/м3) превышает плотность жидкого водорода. По низшей теплоте сгорания это соответствует более 2,5 МВтч/м3 среды хранения энергии.
Поэтому металлогидридные системы очистки и хранения водорода на основе низкотемпературных гидридов весьма перспективны для создания систем аккумулирования энергии для стационарных энергоустановок, в том числе на основе возобновляемых источников энергии (ВИЭ).
В активированном состоянии металлогидриды в реакторах сорбции/десорбции водорода являются мелкодисперсным порошком с характерными размерами частиц примерно 1-10 мкм с низкой эффективной теплопроводностью среды (0,1-1 Вт/м-К), зависящей от давления водорода и концентрации поглощенного водорода частицами сплава. Реакция сорбции/десорбции водорода сопровождается большим тепловым (20-50 кДж/моль Н2) и объемным эффектами. Основным лимитирующим процессом, определяющим эффективность работы металлогидридных реакторов, является тепломассоперенос в металлогидридной засыпке при сорбции/десорбции. Теория тепломассообмена в мелкодисперсных средах при наличии фазовых превращений и реакции сорбции/десорбции, учитывающая размерные и масштабные эффекты, в настоящее время отсутствует. В этой связи важнейшими задачами становятся экспериментальные исследования процессов тепломассопереноса в реакторах и разработка эффективных методов их математического моделирования и инженерных методик оптимизации конструктивных решений.
Другой, не менее важный класс научных и технических задач, связан с разработкой эффективных технологий системной интеграции металлогидридных устройств для хранения и очистки водорода с энергоустановкой на основе 11113 с учетом требований потребителей энергии (график потребления, требуемая электрическая и тепловая мощность), а также с источниками водорода. Для таких систем необходима оптимизация как схемы автономной энергоустановки в целом, так и режимов работы ее агрегатов, исходя из графиков электрической и тепловой нагрузки конкретных потребителей.
Цели работы:
• Разработка и создание комплексного экспериментального стенда для проведения исследований процессов тепломассопереноса в металлогидридных реакторах систем хранения и очистки водорода и проблемы системной интеграции металлогидридных устройств с энергоустановкой киловаттного класса мощности на основе ТПТЭ.
• Исследование особенностей тепломассопереноса в металлогидридных реакторах при сорбции и десорбции чистого водорода и водорода с
примесями и создание экспериментальных образцов реакторов производительностью до 3 н.м3/ч и емкостью до 12 н.м3.
Исследование особенностей системной интеграции металлогидридных устройств хранения и очистки водорода с энергоустановками киловаттного класса мощности на основе ТГТТЭ и создание экспериментальной системы хранения и очистки водорода для топливообеспечения энергоустановок на основе электрохимических генераторов.
Научная новизна
При выполнении работы получены следующие новые научные результаты: Разработан и создан комплексный экспериментальный стенд, позволяющий проводить исследования, как тепловых процессов в металлогидридных реакторах различных типов и масштабов, так и проблем системной интеграции металлогидридных устройств с энергоустановками киловаттного класса мощности на основе ТПТЭ.
Выполнен комплекс исследований тепловых процессов в металлогидридных реакторах при сорбции и десорбции водорода и разработана оригинальная методика экспериментов, основанная на инструментальном ограничении расхода водорода. Впервые определены различные режимы зарядки металлогидридных реакторов и установлены условия реализации оптимальных режимов.
Разработаны конструкции и изготовлены экспериментальные образцы металлогидридных реакторов для систем очистки и хранения водорода. Проведены их успешные испытания и определены оптимальные режимы работы.
Впервые исследованы особенности тепловых процессов в металлогидридных средах, связанные с наличием неабсорбируемых газовых примесей в водороде и предложена технология глубокой очистки водорода путем циклирования давления в реакторах. Изучены основные факторы, лимитирующие потери водорода при очистке, и эффективность процессов очистки водорода. Впервые исследованы основные проблемы системной интеграции металлогидридных устройств очистки и хранения водорода с промышленной энергоустановкой и создана интегрированная с ТПТЭ система топливообеспечения. Определены основные источники потерь и направления оптимизации структурной схемы системы топливообеспечения. Впервые разработаны и практически реализованы алгоритмы работы автоматической системы управления технологическими процессами для металлогидридных систем очистки водорода, в том числе, в составе энергоустановки на основе ТПТЭ мощностью до 5 кВт.
Практическая значимость
• В результате выполненных исследований созданы научно-технические основы технологии водородного аккумулирования энергии с использованием металлогидридных устройств для автономных систем энергообеспечения киловаттного класса мощности;
• Разработанные оригинальные конструктивные решения для стационарных систем хранения и очистки водорода допускают масштабирование и могут быть практически использованы при создании систем обеспечения различных технологических процессов высокочистым водородом в микроэлектронной, фармацевтической, пищевой и ряде других отраслей.
Достоверность полученных результатов Достоверность результатов работы обусловлена результатами детальных экспериментальных исследований процессов тепломассопереноса в металлогидридных системах, экспериментальными исследованиями интегрированных систем и сопоставлением с теоретическими расчетами процессов тепломассопереноса в разработанных металлогидридных аккумуляторах.
Положения выносимые на защиту
Автор защищает:
1. Разработку и создание комплексного экспериментального стенда для исследований процессов тепломассопереноса в металлогидридных средах и процессов системной интеграции металлогидридных устройств хранения и очистки водорода с ТПТЭ, включающего все основные элементы перспективных металлогидридных систем топливо и -энергоообеспечения автономных объектов киловаттного класса мощности.
2. Методику экспериментальных исследований процессов в металлогидридных реакторах, основанную на аппаратном ограничении расхода водорода.
3. Результаты фундаментальных экспериментальных исследований процессов тепломассопереноса в мелкодисперсных металлогидридных средах при сорбции и десорбции чистого водорода и с газовыми примесями.
4. Разработку и реализацию алгоритма работы АСУ ТП в меташюгидридной системе хранения и очистки водорода интегрированной с ТПТЭ.
5. Разработанные конструкции и результаты испытаний экспериментальных образцов металлогидридных реакторов хранения и очистки водорода производительностью до 5 н.м3/ч и емкостью по водороду до 15 н.м3.
6. Результаты исследований особенностей системной интеграции металлогидридных устройств и энергоустановок на основе ТПТЭ киловаттного класса мощности в автономные системы энергообеспечения и предложения по оптимизации основных схемных и конструктивных решений.
Личный вклад автора
Все перечисленные выше результаты получены автором лично или при его определяющем участии.
Апробация работы
Материалы диссертации были представлены на:
• 11-ой Международной конференции по чистой энергетике, 2-5 ноября 2011 г., Тайчунг, Тайвань.
• XVIII Школе -семинаре «Проблемы газодинамики и тепломассообмена в новых энергетических технологиях», 23-27 мая 2011 г., Звенигород.
• Юбилейной научной конференции, посвященной 50-летию ОИВТ РАН, Москва, сентябрь 2011 г.
• 18-ой Всемирной конференции по водородной энергетике, 16-21 мая 2010 г., Эссен, Германия.
• II Международной выставке и конференции «Технологии хранения водорода», 28-29 октября 2009 г., Москва.
• Семинаре Соглашения по внедрению водорода Международного энергетического агентства (HIA IE A Task 17/22), Сакакоми лейк, Канада, 2-5 марта 2008 г.
• 2-ом Международном конгрессе по водородной энергетике, Стамбул, Турция, 15-19 июля 2007 г.
• Семинаре Соглашения по внедрению водорода Международного энергетического агентства (HIA IEA Task 17/22), Виндермере, Англия, 2-6 мая 2006 г.
• Международном симпозиуме по водородной энергетике. Москва, 1—2 ноября 2005 г.
• Конференции по технологиям хранения водорода Международного партнерства по водородной экономике, Лука, Италия, 19-22 июня 2005 г.
Публикации
По теме диссертации опубликовано 18 работ, из них 2 входят в перечень ВАК, получено 2 патента.
Структура и объем работы
Диссертация состоит из введения, пяти глав, заключения и списка литературы. Объем диссертации составляет 124 страницы, включая 72 рисунка, 11 таблиц и библиографию, содержащую 118 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Во введении показана актуальность выбранной темы и определены цели работы.
Первая глава представляет собой обзор литературы, посвященной современному состоянию вопроса разработки и создания систем хранения и очистки водорода на основе металлогидридных технологий. Рассмотрены различные технологии хранения водорода, изложены физические основы технологии обратимого твердофазного хранения водорода (ОТХВ) в гидридах металлов и рассмотрены работы, связанные с исследованиями в области создания новых интерметаллических соединений для систем хранения и очистки водорода. Рассмотрены различные химические системы, пригодные в технологии ОТХВ, перспективы их практического применения. Отмечены как недостатки, в частности, низкое массовое содержание водорода, так и достоинства низкотемпературных металлогидридов (НМГ) на основе Ьа"№3, а именно, хорошая изученность свойств и удобство их модификации. Рассмотрены литературные источники по моделированию процессов тепломассообмена при сорбции/десорбции водорода в пористых засыпках НМГ и произведен выбор модели для сопоставления с результатами экспериментальных исследований [3]. На основе литературных источников проанализированы возможные источники и состав примесей в водороде и проведена их классификация по степени отравляющего воздействия на НМГ. Рассмотрены различные технологии очистки водорода и сделан вывод о возможности построения универсальных стационарных систем хранения и очистки водорода на основе НМГ для использования совместно с ТПТЭ в энергоустановках резервного питания и в автономных энергоустановках на основе ВИЭ в качестве аккумулятора энергии.
Во второй главе приводится описание созданного комплексного экспериментального стенда (КЭС), предназначенного для решения следующих задач: исследования процессов тепломассообмена в металлогидридных
пористых средах при сорбции чистого водорода, а также при наличии примесей во входящем газе и проверки выбранных математических моделей; экспериментального исследования режимов работы металлогидридных устройств хранения и очистки водорода; исследования сорбирующих свойств различных НМГ; исследования особенностей совместной работы T1IГЭ и металлогидридной системы хранения водорода. В соответствии со сформулированными требованиями КЭС состоит из подсистем предварительной очистки водорода, экспериментальной системы тонкой очистки, системы хранения водорода, серийной энергоустановки на ТГГГЭ (GenCore 5В(Т) 48), системы диагностики и управления и модельного потребителя мощности. Для решения задач экспериментальных исследований тепломассообмена в пористых засыпках НМГ созданы модульные исследовательские реакторы хранения и очистки водорода РХО-1 (Рис.1), оснащенные датчиками температуры и давления. В качестве сплава образующего НМГ в реакторе использовался сплав Mmo.8Lao.2Ni4iFeo.gAlo.1 (4,69 кг), созданный в МГУ [4] и отличающийся повышенной разностью величин давления в заданном интервале температур десорбции 20-60°С. На Рис. 2 приведены изотермы десорбции водорода указанным сплавом (Р-С-Т диаграмма).
На начальном этапе исследования в качестве металлогидридного хранилища чистого водорода был использован аккумулятор, созданный ранее в ИПМаш HAH Украины [5] совместно с ИВТ РАН и оснащенный сплавом на основе LaNi5, а именно его модификацией церием: Lao.ssCeo^Ni^esAlo.is-
Рис. 1. Модульный металлогидридный реактор хранения и очистки водорода РХО-1
Массовое содержание водорода, %
Рис. 2. Изотермы десорбции водорода в системе Mmo.8Lao.2Ni4jFeo.8Alo ! -Н2
Приводятся состав и параметры системы
диагностики КЭС, основанной на многофункциональном РХ1-1036, оценочные
шасси N1 приводятся расчеты измерений давления и описывается приготовления смесей для
погрешностей температуры, расхода и методика газовых исследований
процессов тепломассообмена при сорбции водорода с примесями неабсорбируемых
газов.
В третьей главе диссертации приводятся основные результаты экспериментальных исследований процессов тепломассообмена [6] при сорбции/десорбции чистого водорода в реакторе РХО-1, их сравнения с результатами математического моделирования, описания конструкций нескольких типов созданных металлогидридных реакторов с оптимизированными теплообменными характеристиками и результаты их испытаний. В ходе экспериментальных исследований была применена оригинальная методика аппаратного ограничения расхода на входе/выходе из реактора, позволяющая избежать потери ценных данных по интегральным расходным характеристикам реактора (Рис. 3) и определить стадии зарядки/разрядки реактора с целью, дальнейшей оптимизации его режимов работы. Для сопоставления с расчетами по модели [3] были получены временные характеристик давления и температуры (Рис. 4 и 5). По результатам серии экспериментов по зарядке и разрядке реактора РХО-1 его водородная емкость оказалась равной 690±5 нл (1,33 % масс.). Для номинальных расходов от 30% и выше время зарядки реактора до 650 нл составило 18±1 мин и практически не зависело от начальных условий, для меньших номинальных расходов наблюдался рост времени зарядки до 30 мин (режим 10%). Для большинства номинальных расходов водорода реактор не может долго поддерживать установленную скорость поглощения водорода (Рис. 3). Анализ кривых роста содержания водорода в поглощающем сплаве показывает, что в общем случае процесс поглощения водорода протекает в три стадии. На первой
Время, мин
Рис. 3. Расход водорода на входе в реактор для различных режимов зарядки, 1 - 100% (240 н.л/мин), 2 -80%; 3 - 40%; 4 - 20%; 5 - 10%
Время, мин
Рис. 4. Температура в центре засыпки водородопоглощающего материала для различных режимов зарядки, 1 - 100%, 2 - 80%; 3 - 40%; 4 - 20%; 5 - 10%
стадии реакция ограничена притоком газа в реактор через регулятор, и расход водорода постоянен, содержание водорода в поглощающем сплаве растет
линейным образом. Окончание первой
1 5 10 Время, мин
Рис. 5. Давление в реакторе для различных режимов зарядки, 1 - 10%, 2 - 20%; 3 - 30%; 4 - 40%; 5 - 60%; 6 - 100%
стадии характеризуется резким снижением расхода водорода на входе в реактор. Вторая стадия характеризуется постепенным снижением скорости поглощения водорода и по мере снижения расхода водорода на входе в реактор переходит в третью стадию, на которой достигается окончательное насыщение
поглощающего сплава водородом. Эти особенности работы металлогидридного реактора определяются характером
теплопереноса в засыпке водородопоглощающего сплава. На Рис. 4 представлены кривые изменения температуры в засыпке в течение процесса зарядки
реактора. Первая стадия зарядки сопровождается резким прогревом засыпки, вызванным выделением теплоты реакции поглощения водорода. Анализ перепада температур в засыпке (Рис. 6) показывает, что в наиболее интенсивных режимах зарядки на первой стадии температура у охлаждаемой границы засыпки выше, чем в ее центре, то есть прогрев распространяется от внешних границ засыпки к центру по мере проникновения водорода от проницаемых стенок водородопоглощающих модулей в поровое пространство между частицами сплава. Частицы у границы засыпки быстрее контактируют с водородом и, соответственно, выделяют больше тепла, чем частицы в центре. При этом внешнее охлаждение практически не играет никакой роли на первой стадии процесса зарядки реактора, и его тепловое состояние определяется только скоростью подачи водорода в поглощающую зону. По мере роста температуры засыпки и насыщения частиц сплава водородом, их поглощающая способность снижается, что приводит к росту давления водорода в реакторе (Рис. 5). Окончание первой стадии зарядки характеризуется достижением максимума температуры, формированием радиального градиента температуры в засыпке, а также, резким снижением темпа роста давления в реакторе. На второй стадии зарядки скорость поглощения водорода в засыпке ограничивается скоростью отвода тепла реакции через охлаждаемую стенку,
процесс на этой стадии перестает зависеть от начальных условий, при этом происходит при температуре, близкой к максимальной, и характеризуется слабым
ростом давления в реакторе. На третьей стадии сплав уже практически насыщен
водородом, интенсивность тепловыделения значительно снижена, и происходит охлаждение реактора при давлении, равном давлению на входе в реактор. Отличаются по характеру режимы зарядки с малым расходом водорода на входе (см. представленный на рисунках режим 10% и,
0,2 0,4 0,6
Давление, МПа
Рис. 6. Разница между температурой в центре засыпки поглощающего сплава и температурой у внешней охлаждаемой стенки в зависимости от давления в реакторе: 1 - 10%, 2 - 20%; 3 — 30%;
4 - 40%; 5 - 60%; 6 - 100%
частично, режим 20%). В этих режимах начального расхода водорода недостаточно для создания избыточного тепловыделения в реакционной зоне, тепло реакции отводится через охлаждаемую стенку, и в результате первая и вторая стадии зарядки сливаются. Такие режимы можно назвать сбалансированными. В процессе разрядки реактора можно выделить те же три стадии, что и при его зарядке, отличающиеся только знаком изменения характеристик процесса.
На Рис. 7 показано изменение среднеинтегральной концентрации связанного водорода в реакторе в процессе зарядки, рассчитанное с использованием подобранной зависимости равновесного давления по модели, созданной в МЭИ (ТУ) [3]. Подбор производился для максимального режима, поэтому именно в этом режиме наблюдается наилучшее соответствие результатов расчета и эксперимента. В остальных режимах наблюдается отклонение в начальные
3"
го о. н
I 0) =г
I
о ^
о;
го т о о о го
0,0100 -
0,0010
0,0001
Эксперимент, режим 20% Расчет, режим 20% Эксперимент, режим 30% Расчет, режим 30%
Эксперимент, режим 100% Расчет, режим 100%
10
15
Время, мин
Рис. 7. Изменение среднеинтегральной концентрации водорода в твердой фазе в
процессе сорбции
моменты времени, которое может быть обусловлено зависимостью ширины «плато» равновесной изотермы от температуры, которое в данном расчете не учитывалось. В результате численного моделирования удалось достичь хорошего количественного соответствия экспериментальным данным по среднеинтегральным характеристикам работы металлогидридного реактора и
Рис. 8. Разработанные реакторы хранения и очистки водорода: 1 - РХО-1; 2 -РХО-2 (трубная доска); 3 - РХО-3 (трубная доска); 4 - РХО-5 (только один патрон,
сильфон)
качественного соответствия в локальных характеристиках. По итогам экспериментальных исследований и в соответствии с рекомендациями по
результатам математического
моделирования были спроектированы и созданы несколько типов
металлогидридных реакторов патронного типа (Рис. 8) для систем тонкой очистки водорода с улучшенными теплообменными характеристиками и динамикой зарядки/разрядки (РХО-3). Основными техническими решениями, обусловившими улучшение характеристик по отношению к реактору РХО-1, явились уменьшение толщины сорбирующего слоя и увеличение удельной площади теплообмена путем создания канала для внутреннего тока теплоносителя [7]. Для системы хранения очищенного водорода был создан реактор на 81 кг сплава, изготовленный по схеме аналогичной реакторам очистки РХО-3 (Рис. 9). Состав использованных гидридообразующих материалов был оптимизирован с точки зрения соответствия предполагаемым режимам работы реакторов
Рис. 9. Реактор хранения водорода РХ-1
системы очистки и хранения. Выбраны оптимальные композиции интерметаллических сплавов, исследованы их свойства и изготовлены партии сплавов ЬаРе0лМпо.з^в - для использования в системе очистки водорода, и Ьаа5Мс105А1(пРео.4Соо2№4з. — для использования в системе хранения водорода.
В четвертой главе представлены результаты экспериментальных исследований системной интеграции ТПТЭ и созданных металлогидридных устройств хранения и очистки водорода, где были измерены основные
интегральные характеристики энергоустановки (Рис. 10), такие как потребляемая мощность (в пересчете на теплоту сгорания водорода), мощность стэка ТПТЭ, общая мощность энергоустановки с учетом собственных нужд и инвертирования постоянного тока в переменный (220 В, 50 Гц) и соответствующие КПД. Учитывая, что рабочая температура ТПТЭ лежит в диапазоне равновесных температур НМГ типа АВ5, сделан вывод о целесообразности использования низкопотенциального тепла системы охлаждения ТПТЭ для десорбции водорода в реакторах систем ОТХВ. При совместной работе с ТПТЭ, реактор РХ-1 продемонстрировал ёмкость по водороду более 13 н.м3 и обеспечил работу ТПТЭ на номинальной мощности в течении более 3-х часов при нагреве в диапазоне 30 -85 "С.
В пятой главе представлены результаты экспериментальных исследований процесса очистки водорода, описание созданной автоматической металлогидридной системы очистки водорода, использующей технологию схожую с методом коротко-цикловой адсорбции (КЦА), и приводится алгоритм её функционирования. Особенностью предложенного метода циклирования давления является избирательное поглощение адсорбентом не примеси, как в методе КЦА, а самого водорода. Обнаружено радикальное влияние эффекта
200 220 240 260 Время, мин
Рис. 10. Энергетические характеристики совместной работы металлогидридной системы хранения и подачи водорода с энергоустановкой на основе ТПТЭ мощностью 5 кВт. 1 - тепловая мощность потока водорода (по низшей теплоте сгорания); 2 - электрическая мощность
батареи ТЭ; 3 — мощность перед инвертором; 4 - электрическая мощность потребителя; 5 - мощность, потребляемая на собственные нужды энергоустановки
га 1=
ш s х ш с; ю го Ct
0,3 -
0,0
4k
I 1 I 1 I 1 I 45 50 55 60 65 70 75
Время, мин
Рис. 11. Давление в реакторе РХО-3 при зарядке смесью водорода и 6,6% азота с последующей разрядкой в металлогидридный реактор хранения РХ-1
блокирования инертной
примесью ("inert blanketing") [2] на процесс циклической очистки. Накопление примесей в свободном объеме реактора блокирует реакцию сорбции и для продолжения сорбции до полной зарядки реактора необходима эвакуация
примесей из свободного объёма реактора, которая в
автоматической системе может быть организована
несколькими способами:
регулировкой времени цикла, расходов на входе и выходе или давления. Последняя методика имеет свои преимущества, как с точки зрения эффективности очистки, уменьшения потерь водорода, так и с точки зрения простоты организации системы диагностики и управления при переходе от экспериментальной к демонстрационной или полупромышленной установке. В рамках исследования предложена и успешно реализована методика процесса очистки водорода основанная на экспериментальных данных по изотермамметаллогидридной засыпке ниже температуры охлаждающей воды, которые могут быть объяснены только предположением о локальном процессе десорбции водорода в том месте, где расположен датчик температуры. Эффект "перераспределения" заключается в одновременном наличии зон в металлогидриде, сорбирующих и десорбирующих водород. Возможность получения такого же результата для чистого водорода, в аналогичном по количеству заправленного водорода цикле зарядки была проверена в специальном эксперименте, где эффект проявился слабее. Полученный результат подтверждает фронтальный характер распространения процесса сорбции в пористой засыпке НМГ, свойственный работе аппаратов со стационарным зернистым слоем [9].
В заключении сформулированы основные результаты работы и выводы. 1. Создан комплексный экспериментальный стенд для исследований тепловых процессов в металлогидридных реакторах различных типов и масштабов и проблем системной интеграции металлогидридных устройств с
энергоустановками на основе ТПТЭ, разработана оригинальная методика экспериментов, основанная на аппаратном ограничении расхода водорода, и исследованы тепловые процессы в металлогидридных реакторах при сорбции и десорбции водорода. Определены различные режимы зарядки металлогидридных реакторов и установлены условия реализации оптимальных режимов.
2. Разработаны конструкции, изготовлены и испытаны экспериментальные образцы металлогидридных реакторов для систем очистки и хранения водорода.
3. Исследованы особенности тепловых процессов в металлогидридных средах, связанные с наличием неабсорбируемых газовых примесей в водороде, предложена и реализована в автоматическом режиме технология глубокой очистки водорода от неабсорбируемых газовых примесей путем циклирования давления в реакторах. Изучены основные факторы, лимитирующие потери водорода при очистке и эффективность процессов очистки водорода.
4. Исследованы основные проблемы системной интеграции металлогидридных устройств очистки и хранения водорода с промышленной энергоустановкой и создана интегрированная с ТПТЭ система топливообеспечения. Определены направления оптимизации структурной схемы системы топливообеспечения.
5. Разработаны и практически реализованы алгоритмы работы АСУ ТП для металлогидридных систем очистки водорода, в том числе, в составе энергоустановки на основе ТПТЭ мощностью до 5 кВт
Публикации по теме диссертации
1 .Артемов В.И., Лазарев Д.О., Яньков Г.Г., Борзенко В.И., Дуников Д.О., Малышенко С.П. Влияние неабсорбируемых газовых примесей на процессы тепломассообмена в металлогидридных устройствах для аккумулирования и очистки водорода.// Теплофизика высоких температур. 2004. Т. 42. № 6. с. 97105.
2. Борзенко В.И., Дуников Д.О., Малышенко С.П. Кризисные явления в металлогидридных устройствах хранения водорода.// Теплофизика высоких температур. 2011. Т. 49. № 2. с. 256-264.
3. Artemov V.l., Yankov G.G., Lazarev D.O., Borzenko V.l., Dunikov D.O., Malyshenko S.P. Numerical Simulation of the Processes of Heat and Mass Transfer in Metal-Hydride Accumulators of Hydrogen // Heat Transfer Research, 2004, Vol. 35, Issue 1&2, p. 140-156
4. Malyshenko S.P., Borzenko V.l., Dunikov D.O. et. al. Modeling of Thermophysical Processes in Me-H Cleaning Systems. // Hydrogen Energy Progress XIII. Proc. of the 13th World Hydrogen Energy Conference, Beijing, China, June 12-15, 2000. V.2. p. 1323-1327.
5. Borzenko V.l., Blinov D.V., Dunikov D.O., Malyshenko S.P. Reversible Solid State Hydrogen Storage System Integrated with РЕМ Fuel Cell.// Proceedings of the 18th World Hydrogen Energy Conference 2010 - WHEC 2010. Schriften des Forschungszentrums Jülich, Essen, Germany. V. 4, p. 115-121.
6. Borzenko V.l., Dunikov D.O., Malyshenko S.P. Optimization of heat transfer in metal hydride reactor.// 18th World Hydrogen Energy Conference 2010, May 16-21. Essen, (CD-ROM).
7. Блинов Д.В., Борзенко В.И., Дуников Д.О., Жемерикин В.Д. Система твердофазного хранения и очистки водорода и ее использование с водородо-воздушным топливным элементом.// Труды международного симпозиума по водородной энергетике, Москва, 2007, Издательство МЭИ, с.226-230.
8. Артемов В.И., Лазарев ДО., Яньков Г.Г., Борзенко В.И., Дуников ДО., Мсшышенко С.П. Основные факторы, ограничивающие скорость сорбции водорода в металлогидридных системах хранения.// Труды Международного симпозиума по водородной энергетике. Москва, 1—2 ноября 2005 г. Издательство МЭИ, с.121—126.
9 .Artemov V.l., Borovskih O.V., Lazarev D.O., Yankov G.G.. Borzenko V.l., Dunikov D.O. Mathematical model and 3d numerical simulation of heat and mass transfer in metalhydride reactors.// 17th World Hydrogen Energy Conference. 2008. Brisbane. Australia, (CD-ROM).
10. Borzenko V.l., Malyshenko S.P. Hydrogen technologies for power production.// 2010 APEC Advanced Biohydrogen Technology, November 18-20, 2010, Taichung, Taiwan. Proc. Vol.1 p.107-129.
11. Borzenko V.l., Dunikov D.O., Malyshenko S.P., Zhemerikin V.D. Experimental investigations of Heat and Mass Transfer Processes in Metal Hydride Porous Bed of Hydrogen Storage and Purification Unit. // IPHE International Hydrogen Storage Technology Conference 19-22 June 2005. Lucca, Italy, (CD-ROM).
12. Дуников Д.О., Борзенко В.И., Малышенко С.П. Влияние теплопередачи в водородопоглощающих материалах на эффективность работы металлогидридных устройств хранения водорода.// Тезисы докладов II Международной конференции «Технологии хранения водорода». Москва, 28-29 окт. 2009 г., с. 46-47.
13. Блинов Д.В., Борзенко В.И., Дуников Д.О., Малышенко С.П. Система твердофазного хранения и очистки водорода и ее использование с твердополимерным топливным элементом.// Тезисы докладов II Международной конференции «Технологии хранения водорода». Москва, 28-29 окт. 2009 г., с.76-77.
14. Borzenko V.l., Dunikov D.O., Malyshenko S.P. Reversible solid-state hydrogen storage systems and their integration with РЕМ FC.// Second Russia-Taiwan
Symposium on Hydrogen and Fuel Cell Technology Application. Moscow, Oct. 5-6, 2009, (CD-ROM).
15. Борзенко В.И., Дуников Д.О., Жемерикин В.Д., Малышенко С.П. Металлогидридные системы хранения и очистки водорода и их применение в энергетике.// Юбилейная научная конференция, посвященная 50-летию ОИВТ РАН. Сборник тезисов докладов. М.: ОИВТ РАН, 2011. с. 278 -281.
16. Борзенко В.И., Дуников Д.О., Малышенко С.П. Кризисные явления в металлогидридных устройствах хранения водорода.// Юбилейная научная конференция, посвященная 50-летию ОИВТ РАН. Сборник тезисов докладов. М.: ОИВТ РАН, 2011. с. 286 - 289.
17. Борзенко В.К, Дуников Д.О., Малышенко С.П. Металлогидридный патрон для хранения водорода.// Патент РФ на полезную модель №80702,2008.
18.Борзенко В.И. и др. Металлогидридный патрон с гофрированной внешней поверхностью для хранения водорода.// Патент РФ на полезную модель №81568.2009.
Цитируемая литература
1. Тарасов Б.П., Потоцкий М.В., Яртысь В.А. Проблема хранения водорода и перспективы использования гидридов для аккумулирования водорода.// Рос.хим.ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева), 2006, т. L, №6, с. 34-48.
2. Sandrock G. A panoramic overview of hydrogen storage alloys from a gas reaction point of view.// Journal of Alloys and Compounds, vol 293-295, 1999, p. 877-888.
3. Artemov V.I., Yankov G.G., Lazarev D.O., Borzenko V.I., Dunikov D.O., Malyshenko S.P. Numerical Simulation of the Processes of Heat and Mass Transfer in Metal-Hydride Accumulators of Hydrogen // Heat Transfer Research, 2004, Vol. 35, Issue 1&2, p. 140-156.
4. Mitrokhin, S., et al. Synthesis and properties of AB5-type hydrides at elevated pressures.// Journal of Alloys and Compounds, vol. 446-447(0), 2007, p. 603-605.
5. Соловей В.В., Кривцова В.И. Системы хранения и подачи водорода для автономных энергоустановок// Харьков, 1994.-35 с. — Препр. / НАН Украины. Ин-т проблем машиностроения; № 376.
6. Борзенко В.И., Дуников Д.О., Малышенко С.П. Кризисные явления в металлогидридных устройствах хранения водорода.// Теплофизика высоких температур. 2011. Т. 49. № 2. с. 256-264
7. Борзенко В.И., Дуников ДО., Малышенко С.П. Металлогидридный патрон для хранения водорода. // Патент РФ на полезную модель № 80702,2008.
8. Chernov /., Gabis I. Mathematical model of metal-hydride hydrogen tank with quick sorption // Journal of Alloys and Compounds. Vol. 509.2011. p. 809-811.
9. Аэров М. Э., Тодес О. М. Гидравлические и тепловые основы работы аппаратов со стационарным и кипящим зернистым слоем.// Изд-во «Химия», 1968 г., 512 с.
Борзенко В.И.
ИССЛЕДОВАНИЕ ПРОЦЕССОВ, РАЗРАБОТКА И СОЗДАНИЕ МЕТАЛЛОГИДРИДНОЙ СИСТЕМЫ ХРАНЕНИЯ И ОЧИСТКИ ВОДОРОДА ДЛЯ ЭНЕРГОУСТАНОВОК НА ОСНОВЕ ТПТЭ КИЛОВАТТНОГО КЛАССА МОЩНОСТИ
Автореферат
Подписано в печать 23.04.2012 Формат 60x84/16 Печать офсетная Уч.-изд.л. 1,25 Усл.печ.л. 1,16 Тираж 100 экз._Заказ № 101_Бесплатно
ОИВТ РАН. 125412, Москва, Ижорская ул., 13, стр.2
Текст работы Борзенко, Василий Игоревич, диссертация по теме Энергетические системы и комплексы
61 12-5/3914
Федеральное государственное бюджетное учреждение науки ОБЪЕДИНЕННЫЙ ИНСТИТУТ ВЫСОКИХ ТЕМПЕРАТУР РОССИЙСКОЙ АКАДЕМИИ НАУК
На правах рукописи
БОРЗЕНКО Василий Игоревич
ИССЛЕДОВАНИЕ ПРОЦЕССОВ, РАЗРАБОТКА И СОЗДАНИЕ МЕТАЛЛОГИДРИДНОЙ СИСТЕМЫ ХРАНЕНИЯ И ОЧИСТКИ ВОДОРОДА ДЛЯ ЭНЕРГОУСТАНОВОК НА ОСНОВЕ ТПТЭ КИЛОВАТТНОГО КЛАССА МОЩНОСТИ
Диссертация на соискание ученой степени кандидата технических наук
05.14.01 —энергетические системы и комплексы
Научный руководитель: доктор физико-математических наук Малышенко Станислав Петрович
Москва - 2012
СОДЕРЖАНИЕ
Глава 1. Металлогидридные технологии для энергетики. Современное
состояние вопроса......................................................................................................^
1.1 Технологии хранения водорода..........................................................................11
1.1.1 Физические методы хранения водорода.....................................................11
1.1.2 Адсорбционные методы хранения водорода..............................................13
1.1.3 Химические методы хранения водорода.....................................................15
1.2 Металлогидридные технологии хранения и очистки водорода......................17
1.3 Особенности тепловых процессов при сорбции/десорбции водорода в металлогидридных пористых засыпках...................................................................23
1.4 Применение металлогидридных систем хранения и очистки водорода........30
3?
1.5 Выводы к главе 1..................................................................................................^
Глава 2. Создание комплексного экспериментального стенда. Методика
.......................................33
2.1 Общие требования к экспериментальному стенду...........................................33
экспериментальных исследовании.
2.1 Общие требования к экспериме
2.2 Схема и состав оборудования комплексного экспериментального стенда... 35
2.2.1 Система предварительной очистки водорода.............................................38
2.2.2 Экспериментальная система тонкой очистки водорода............................41
2.2.3 Реактор РХО-1 системы тонкой очистки водорода...................................43
2.2.4 Водородсодержащие материалы для системы тонкой очистки...............45
2.3 Экспериментальная система хранения водорода.............................................46
48
2.4. Система диагностики и управления..................................................................
до
2.5. Технология подготовки газовых смесей...........................................................
2.6. Измерение состава газа в реальном времени...................................................50
53
2.7. Электрохимическии генератор.............................................................................
2.8. Оценка погрешностей основных измерении....................................................
60
2.9. Выводы к главе 2.................................................................................................
Глава 3. Экспериментальные исследования процессов тепломассообмена.
Создание оптимизированных реакторов для систем очистки и хранения..............61
3.1 Экспериментальные исследования процессов тепломассообмена при сорбции чистого водорода........................................................................................61
3.2 Оценка коэффициента теплоотдачи к внешнему теплоносителю..................68
3.3 Сравнение результатов экспериментов с результатами моделирования.......70
3.4 Оптимизация конструкции металлогидридных реакторов с точки зрения улучшения тепломассообмена..................................................................................74
3.5 Реактор рхо-3........................................................................................................78
3.6. Выбор новых водородсодержащих материалов для систем хранения и очистки........................................................................................................................82
3.7 . Реактор системы хранения РХ-1......................................................................83
3.8 Выводы к Главе 3..............................................................................................87
Глава 4. Экспериментальные исследования системной интеграции ТПТЭ и металлогидридных устройств хранения и очистки водорода...................................89
4.1 Концепция интегрированной системы топливообеспечения..........................89
4.2 Испытания ТПТЭ с использованием баллонной системы хранения водорода ......................................................................................................................................90
4.3 Испытания ТПТЭ с использованием металлогидридной системы хранения
92
водорода......................................................................................................................
4.3 Выводы к главе 4..................................................................................................94
Глава 5. Экспериментальные исследования процессов очистки водорода.............95
5.1. Модернизация экспериментальной установки................................................95
5.2 Предварительные исследования и выбор способа очистки водорода............98
5.3 Автоматизация процесса очистки водорода...................................................101
5.4 Оптимизация автоматического режима процесса очистки водорода...........105
5.5 Влияние зависимости свободного объёма реактора от массового содержания водорода на характеристики процесса очистки....................................................109
5.6 Эффект перераспределения водорода при релаксации процесса зарядки... 112
5.7 Выводы к Главе 5...............................................................................................
ЗАКЛЮЧЕНИЕ............................................................................................................115
Список использованных источников........................................................................117
ВВЕДЕНИЕ
Первый элемент таблицы Менделеева - водород обладает уникальными физико-химическими свойствами, делающими его самым перспективным промежуточным энергоносителем для будущих нужд энергетики, химической технологии и транспорта. Действительно, самая высокая теплота сгорания, достаточно хорошая реакционная способность водорода, доступность в виде разнообразных соединений, в том числе в составе воды и углеводородов, позволяют разработку огромного числа технологий преобразования энергии в водород и обратного использования водорода в качестве топлива. Водород, как промежуточный энергоноситель, может быть использован в распределенных энергетических сетях, транспортных системах, системах автономного энергоснабжения на базе возобновляемых источников энергии и перспективных системах аккумулирования электроэнергии в централизованных сетях. Необходимость снижения нагрузки на мировую экосистему по мере роста потребления энергии, также, заставляет искать новые подходы к повышению эффективности производства и потребления энергии, что выводит водородные технологии на первое место в силу экологической чистоты процесса окисления
водорода.
Рост интереса к водородным энергетическим технологиям последнего времени, в большой степени связан с успехами в разработке и создании электрохимических генераторов (топливных элементов), преобразующих водород и кислород воздуха в электрическую энергию с высоким КПД. Из всех типов топливных элементов наиболее перспективными видятся системы на основе полимерэлектролитных ячеек (твердополимерные топливные элементы, ТПТЭ), характеризующиеся низкими рабочими температурами, высокой плотностью потока энергии в единичной ячейке и большим сроком службы при правильной эксплуатации. К настоящему времени в мире создано большое число успешных демонстрационных и промышленных систем на основе ТПТЭ, в том числе транспортных, однако дальнейшее развитие технологии сдерживается рядом технических проблем, где ключевой является проблема хранения водорода, как на борту транспортного средства, так и в стационарных энергетических установках.
Среди разрабатываемых новых технологий и устройств хранения водорода наиболее экономически приемлемыми и безопасными могут стать устройства и системы, основанные на использовании обратимых металлогидридов -интерметаллических соединений (ИМС), способных избирательно и обратимо
поглощать водород. При этом основная масса водорода в системе находится в связанном твердофазном состоянии, что обеспечивает повышенную безопасность при эксплуатации. Водород поглощается ИМС с отводом тепла и выделяется при нагреве, причем большой тепловой эффект реакции обеспечивает весьма сильную зависимость равновесного давления водорода над сплавом от температуры - для низкотемпературных систем оно может изменяться от долей атмосферы до величины порядка 1 МПа при изменении температур от 20 °С до 80-90 °С. Это позволяет обеспечить проведение процессов поглощения и выделения водорода за счет имеющихся в системе энергообеспечения ресурсов горячей и холодной воды и осуществить безмашинное компримирование газообразного водорода за счет использования низкопотенциального тепла потерь в топливном элементе. Поскольку ИМС избирательно поглощают только водород, в циклическом процессе сорбции/десорбции осуществляется очистка водорода от примесей. Для низкотемпературных гидридов ИМС весовое содержание водорода в металлогидридах относительно невелико (1-2%), но объемная плотность (более 75 кг Н2/м3) превышает плотность жидкого водорода. По низшей теплоте сгорания это соответствует более 2,5 МВт-ч/м3 среды хранения энергии. Поэтому металлогидридные системы очистки и хранения водорода на основе низкотемпературных гидридов весьма перспективны для создания систем аккумулирования энергии для стационарных энергоустановок, в том числе на основе возобновляемых источников энергии (ВИЭ).
В активированном состоянии металлогидриды в реакторах сорбции/десорбции водорода являются мелкодисперсным порошком с характерными размерами частиц примерно 1-10 мкм с низкой эффективной теплопроводностью среды (0,11 Вт/м-К), зависящей от давления водорода и концентрации поглощенного водорода частицами сплава. Реакция сорбции/десорбции водорода сопровождается большим тепловым (20-70 кДж/моль Н2) и объемным эффектами. Основным лимитирующим процессом, определяющим эффективность работы металлогидридных реакторов, является тепломассоперенос в металлогидридной засыпке при сорбции/десорбции. Теория тепломассообмена в мелкодисперсных средах при наличии фазовых превращений и реакции сорбции/десорбции, учитывающая размерные и масштабные эффекты, в настоящее время отсутствует. В этой связи важнейшими задачами становятся экспериментальные исследования процессов тепломассопереноса в реакторах и разработка эффективных методов их математического моделирования и инженерных методик оптимизации конструктивных решений.
Другой, не менее важный класс научных и технических задач, связан с разработкой, эффективных технологий системной интеграции металлогидридных устройств для хранения и очистки водорода с энергоустановкой на основе ТПТЭ с учетом требований потребителей энергии (график потребления, требуемая электрическая и тепловая мощность), а также с источниками водорода. Для таких систем необходима оптимизация как схемы автономной энергоустановки в целом, так и режимов работы ее агрегатов, исходя из графиков электрической и тепловой нагрузки конкретных потребителей. Исходя из вышеизложенных научно-технических барьеров на пути развития технологии, целями работы являются:
1. Разработка и создание комплексного экспериментального стенда для проведения исследований процессов тепломассопереноса в металлогидридных реакторах систем хранения и очистки водорода и проблемы системной интеграции металлогидридных устройств с энергоустановкой киловаттного класса мощности на основе ТПТЭ.
2. Исследование особенностей тепломассопереноса в металлогидридных реакторах при сорбции и десорбции чистого водорода и водорода с примесями и создание экспериментальных образцов реакторов производительностью до 3 н.м3/ч и емкостью до 12 н.м3.
3. Исследование особенностей системной интеграции металлогидридных устройств хранения и очистки водорода с энергоустановками киловаттного класса мощности на основе ТПТЭ и создание экспериментальной системы хранения и очистки водорода для топливообеспечения энергоустановок на основе электрохимических генераторов.
При выполнении работы получены следующие новые научные результаты: •Разработан и создан комплексный экспериментальный стенд, позволяющий проводить исследования, как тепловых процессов в металлогидридных реакторах различных типов и масштабов, так и проблем системной интеграции металлогидридных устройств с энергоустановками киловаттного класса мощности на основе ТПТЭ.
•Выполнен комплекс исследований тепловых процессов в металлогидридных реакторах при сорбции и десорбции водорода и разработана оригинальная методика экспериментов, основанная на инструментальном ограничении расхода водорода. Впервые определены различные режимы зарядки металлогидридных реакторов и установлены условия реализации оптимальных режимов.
•Разработаны конструкции и изготовлены экспериментальные образцы металлогидридных реакторов для систем очистки и хранения водорода. Проведены их успешные испытания и определены оптимальные режимы работы. •Впервые исследованы особенности тепловых процессов в металлогидридных средах, связанные с наличием неабсорбируемых газовых примесей в водороде и предложена технология глубокой очистки водорода путем циклирования давления в реакторах. Изучены основные факторы, лимитирующие потери водорода при очистке, и эффективность процессов очистки водорода.
•Впервые исследованы основные проблемы системной интеграции металлогидридных устройств очистки и хранения водорода с промышленной энергоустановкой и создана интегрированная с ТПТЭ система топливообеспечения. Определены основные источники потерь и направления оптимизации структурной схемы системы топливообеспечения.
•Впервые разработаны и практически реализованы алгоритмы работы автоматической системы управления технологическими процессами для металлогидридных систем очистки водорода, в том числе, в составе энергоустановки на основе ТПТЭ мощностью до 5 кВт.
Практическая значимость полученных результатов состоит в создании научно-технических основ технологии водородного аккумулирования энергии с использованием металлогидридных устройств для автономных систем энергообеспечения киловаттного класса мощности, разработке оригинальных конструктивных решений для стационарных систем хранения и очистки водорода, допускающих масштабирование, которые могут быть практически использованы при создании систем обеспечения различных технологических процессов высокочистым водородом в микроэлектронной, фармацевтической, пищевой и
ряде других отраслей.
Достоверность результатов работы обусловлена результатами детальных экспериментальных исследований процессов тепломассопереноса в металлогидридных системах, экспериментальными исследованиями интегрированных систем и сопоставлением с теоретическими расчетами процессов тепломассопереноса в разработанных металлогидридных аккумуляторах. Автор защищает:
1. Разработку и создание комплексного экспериментального стенда для исследований процессов тепломассопереноса в металлогидридных средах и процессов системной интеграции металлогидридных устройств хранения и
очистки водорода с ТПТЭ, включающего все основные элементы перспективных металлогидридных систем топливо и -энергообеспечения автономных объектов киловаттного класса мощности.
2. Методику экспериментальных исследований процессов в металлогидридных реакторах, основанную на аппаратном ограничении расхода водорода.
3. Результаты фундаментальных экспериментальных исследований процессов тепломассопереноса в мелкодисперсных металлогидридных средах при сорбции и десорбции чистого водорода и с газовыми примесями.
4. Разработку и реализацию алгоритма работы АСУ ТП в металлогидридной системе хранения и очистки водорода интегрированной с ТПТЭ.
5. Разработанные конструкции и результаты испытаний экспериментальных образцов металлогидридных реакторов хранения и очистки водорода производительностью до 5 н.м3/ч и емкостью по водороду до 15 н.м3.
6. Результаты исследований особенностей системной интеграции металлогидридных устройств и энергоустановок на основе ТПТЭ киловаттного класса мощности в автономные системы энергообеспечения и предложения по оптимизации основных схемных и конструктивных решений.
Все перечисленные выше результаты получены автором лично или при его определяющем участии. Материалы диссертации были представлены на:
• 11-ой Международной конференции по чистой энергетике, 2-5 ноября 2011 г., Тайчунг, Тайвань.
»XVIII Школе -семинаре «Проблемы газодинамики и тепломассообмена в новых энергетических технологиях», 23-27 мая 2011 г., Звенигород.
»Юбилейной научной конференции, посвященной 50-летию ОИВТ РАН, Москва, сентябрь 2011 г.
»18-ой Всемирной конференции по водородной энергетике, 16-21 мая 2010 г., Эссен, Германия.
•II Международной выставке и конференции «Технологии хранения водорода», 2829 октября 2009 г., Москва.
•Семинаре Соглашения по внедрению водорода Международного энергетического агентства (HIAIEA Task 17/22), Сакакоми лейк, Канада, 2-5 марта 2008 г.
•2-ом Международном конгрессе по водородной энергетике, Стамбул, Турция, 1519 июля 2007 г.
•Семинаре Соглашен�
-
Похожие работы
- Технология и аппаратурное оформление получения водорода гидротермальным окислением алюминия для энергетических установок
- Получение водорода и нановолокнистого углерода селективным каталитическим пиролизом легких углеводородов
- Каталитические слои топливных элементов
- Исследование тепловых процессов и разработка экспериментальных H2/O2-парогенераторов для энергетики
- Исследование пожаровзрывоопасности разгерметизации гидридного аккумулятора водорода при пожаре в помещении
-
- Энергетические системы и комплексы
- Электростанции и электроэнергетические системы
- Ядерные энергетические установки, включая проектирование, эксплуатацию и вывод из эксплуатации
- Промышленная теплоэнергетика
- Теоретические основы теплотехники
- Энергоустановки на основе возобновляемых видов энергии
- Гидравлика и инженерная гидрология
- Гидроэлектростанции и гидроэнергетические установки
- Техника высоких напряжений
- Комплексное энерготехнологическое использование топлива
- Тепловые электрические станции, их энергетические системы и агрегаты
- Электрохимические энергоустановки
- Технические средства и методы защиты окружающей среды (по отраслям)
- Безопасность сложных энергетических систем и комплексов (по отраслям)