автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.06, диссертация на тему:Автоматизированная система определения способов устранения неисправностей листового офсетного печатного оборудования
Автореферат диссертации по теме "Автоматизированная система определения способов устранения неисправностей листового офсетного печатного оборудования"
ДЕНИСОВ ДМИТРИЙ АЛЕКСАНДРОВИЧ
Автоматизированная система определения способов устранения неисправностей листового офсетного печатного оборудования
Специальность 05.13.06 - Автоматизация и управление технологическими процессами и производствами (полиграфические средства информации и информационные системы)
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук
? И ЮЛ 2012
Москва -2012
005046449
005046449
Работа выполнена на кафедре «Информатика и вычислительная техника» ФГБОУ ВПО «Московский государственный университет печати имени Ивана Федорова».
Научный руководитель: Гасов Владимир Михайлович
профессор, доктор технических наук
Официальные оппоненты: Куликов Григорий Борисович
профессор, доктор технических наук, зав. каф. печатного и послепечатного оборудования Московского государственного университета печати имени Ивана Федорова Мосягии Александр Борисович кандидат технических наук, доцент кафедры информационных технологий и телекоммуникаций Российского государственного торгово-экономического
университета
Ведущая организация: ЗАО «НИИПолиграфмаш»
Защита состоится 27 сентября 2012 г. в 14 часов 00 минут на заседании диссертационного совета Д 212.147.03 при Московском государственном университете печати имени Ивана Федорова по адресу 127550, г. Москва, ул. Прянишникова, дом 2А.
С диссертацией можно ознакомиться в библиотеке ФГБОУ ВПО «Московский государственный университет печати имени Ивана Федорова».
Автореферат разослан « »
Ученый секретарь диссертационного совета Д 212.147.03:
д.т.н., профессор Агеев В.Н.
1. Общая характеристика работы 1.1. Актуальность темы
Обслуживание печатных машин является сложным, дорогостоящим, трудоемким процессом, для организации которого требуется участие специалистов высокого класса, знающих принципы процесса печати, устройства печатных машин, имеющих опыт и навыки ремонта сложного по своему технологическому устройству оборудования. Также немаловажную роль играет объем знаний сервисных инженеров. Объем знаний постоянно увеличивается, так как практически все производители имеют собственные конструкторские бюро и исследовательские центры, занимаются разработкой новых моделей машин, узлов, их модернизацией и автоматизацией, накапливая и увеличивая знания.
В настоящий момент постпродажное сервисное обслуживание листовых офсетных машин подразумевает возможность типографии обратиться к инженерам сервисной службы для получения информации по возникшей неисправности. Под неисправностью понимается не только невозможность оборудования выполнять требуемую функцию, но и ошибка технологического характера. Однако консультирование не всегда проходит быстро и качественно. Заявки на обслуживание могут быть потеряны, компетентного специалиста может не быть на месте. Это ведет к простою печатной машины. Для принятия точного и быстрого решения специалисту необходимо иметь опыт, но опыт человеком копится длительное время и может быть полноценно использован, только если данный конкретный специалист занимается устранением неисправностей на определенной модели машины. Дефицит достаточного количества специалистов высокого уровня делает их услуги весьма дорогими, и не каждая типография готова обращаться к ним за помощью на регулярной основе.
Среди систем, направленных на поддержку операторов, прототипов можно выделить системы диагностики. Анализируя входные данные с датчиков, установленных на узлах машины, системой принимается решение о предупреждении оператора о возникшей неисправности. Особенностью систем подобного типа является то, что не всегда указывается способ устранения возникших неисправностей, и не всегда предлагаются рекомендации по их устранению. Следует учесть, что не каждая печатная машина, и не каждый узел машины оснащается данными системами.
Таким образом, существующие методы организации сервисного обслуживания листовых офсетных печатных машин основаны на обращении к сервисному инженеру и не позволяют достаточно эффективно проводить поддержку типографий и за короткий временной промежуток предоставлять в полном объеме информацию, использование которой могло бы позволить быстро и качественно организовать процесс устранения неисправности.
Решение данной проблемы лежит на пути автоматизации определения способов устранения неисправностей на основе разработки системы алгоритмов, позволяющие осуществлять поиск способов устранения
неисправностей с опорой на базу данных экспертов в сфере обслуживания печатных машин, накапливать их опыт, выявлять слабые узлы машин и способствовать самостоятельному принятию обслуживающим персоналом решения по выбору способа устранения неисправностей без необходимости обращения в сервисную службу и к сервисному инженеру.
1.2. Цели работы
Целью диссертационной работы является автоматизация процесса определения способов устранения неисправностей в системе сервисного обслуживания листовых офсетных печатных машин; внедрение системы на промышленном предприятии.
1.3. Задачи исследования
Для реализации целей необходимо решить такие задачи, как:
— проведение анализа предметной области, изучение алгоритмов систем обслуживания и диагностики производственного оборудования,
— формирование базы данных с описанием неисправностей, причин их возникновения и способов устранения, корнями слов и слов-синонимов,
— разработка методики определения способов устранения неисправностей и их принципов представления пользователю,
— кластерный анализ прецедентов и внедрение метрики для определения расстояния между ними,
— разработка интуитивно понятного интерфейса пользователя.
1.4. Методы исследования
Для достижения поставленных целей используются методы реляционных баз данных, теории построения интеллектуальных систем, теории множеств, математической статистики, алгоритмы поиска подстроки и лингвистического анализа. Разработка системы произведена на языке программирования Delphi с использованием языка структурированных запросов SQL и скриптового языка программирования общего назначения PHP.
1.5. Область исследования
Ремонт и обслуживание листовых офсетных печатных машин, автоматизация процессов определения и устранения неисправностей.
1.6. Научная новизна
Научная новизна представленного исследования может быть сведена к следующим положениям:
1. Предложена новая методика выявления неисправностей листовых офсетных печатных машин, позволяющая анализировать запросы, введенные в свободной форме. Применение методики сокращает время простоя оборудования при определении способа устранения неисправности.
2. Разработан алгоритм определения способов устранения неисправностей, основанный на методе эвристического ветвления с введением дополнительной метрики, ориентированный на пользователей с разным уровнем компетенций. Применение алгоритма позволяет сократить время поиска неисправности для операторов с низкой квалификацией.
3. Разработана новая методика формирования тестовых заданий при определении компетенции операторов производственного оборудования на основе метода размытых эвристик, позволяющая контролировать актуальность и полноту знаний операторов листовых офсетных печатных машин. Применение методики позволяет повысить уровень квалификации операторов.
1.7. Методологическая основа
Методологической основой исследования являются работы в области рассуждений на основе прецедентов (работы Варшавского, Башмакова, Уоссермана, Фотсера), адаптации сложных систем, решения задач сервисного обслуживания производственного оборудования, в частности, печатных машин (подходы к сервисному обслуживанию листовых офсетных машин компаний КВА, Heidelberg, manroland).
1.8. Достоверность полученных результатов
Подтверждается практической реализацией разработанных моделей и алгоритмов, а также методами математической статистики, успешной апробацией и внедрением разработанной методики на профильном предприятии.
1.9. Теоретическая значимость результатов
Теоретическая значимость заключается в возможности использовать базу данных для разработки системы оценки объема знаний операторов листовых офсетных печатных машин.
1.10. Практическая ценность
Практическая ценность и значимость результатов работы состоит в получении научных результатов, позволивших сформулировать рекомендации к процессу автоматизации поиска способов устранения неисправностей, среди которых:
1. Применение предложенной методики и алгоритма позволило автоматизировать процесс определения способа устранения неисправности.
2. Визуализация процесса определения способа устранения неисправности позволяет сократить время устранения неисправности.
3. Внедрение методик и алгоритмов позволяет сформировать статистические данные о возникающих неисправностях, что позволяет оптимально подобрать нужный способ их устранения, определить слабые узлы оборудования, эффективно проводить профилактику и определение уровня компетенций пользователей оборудования.
1.11. Основные научные и практические результаты, выносимые на защиту
1. Новая методика выявления неисправностей листовых офсетных печатных машин, позволяющая анализировать запросы, введенные в свободной форме.
2. Алгоритм определения способов устранения неисправностей, основанный на методе эвристического ветвления с введением дополнительной метрики, ориентированный на пользователей с разным уровнем компетенций.
3. Новая мете тика формирования тестовых заданий при определении
компетенции операторов производственного оборудования на основе метода размытых эвристик, позволяющая контролировать актуальность и полноту знаний операторов листовых офсетных печатных машин. 1.12. Апробация работы
Основные результаты диссертационной работы обсуждены на научно-технической международной молодежной конференции «Системы, методы, техника и технологии обработки медиаконтента», Москва, 2011.
Методы, разработанные в диссертационной работе, используются операторами при производстве печатной продукции на листовой офсетной печатной машине на многопрофильном полиграфическом предприятии ООО «РПА ВизАрт» при возникновении ситуаций, требующих устранения неисправностей. 1.13 Личный вклад
Автором была поставлена задача исследования, были проанализированы результаты, проведен эксперимент и сформулированы выводы по работе.
1.14. Публикации
Результаты проведенного анализа, разработки алгоритмов и программной реализации отражены в 5 статьях, напечатанных в журналах, в том числе, рекомендуемых ВАК - 3 статьи.
1.15. Структура и объем работы
Диссертация состоит из введения, четырех глав и заключения. Материалы изложены на 119 страницах, включая 20 рисунков, 19 таблиц. 2. Краткое содержание работы
Во введении раскрывается вопрос актуальности темы, ставятся цели и задачи работы, отмечена научная новизна и практическая значимость работы.
В первой главе описывается внедрение информационных технологий в производственные системы на современном этапе развития информатики. Описываются в общем виде структура автоматизированных систем, а также предпосылки их развития и области применения.
В качестве аналогов разрабатываемой системы были рассмотрены системы лидеров рынка по производству листовых офсетных печатных машин. Рассматривалась система контроля качества КВА QualiTronic концерна Koenig & Bauer AG, системы Prinect Easy Control, Prinect Auto Register, Prinect Axis Control, Prinect Dipco Elements, Prinect Image Control, Prinect Inpress Control, Prinect Inspection Control фирмы Heidelberg, системы IntelliTrax и EasyTrax компании X-Rite, которые лишь выявляют факт неисправности в работе печатной машины, но не предлагают в наглядной форме способов их устранения.
Были изучены методы рассуждений, основанные на прецедентах, работы из области теории построения интеллектуальных систем. В данном направлении наиболее значительны труды отечественных ученых Вагина В.Н., Головиной Е.Ю., Загорянской A.A., Фоминой М.В., Варшавского П.Р., Еремеева А.П., Башлыкова A.A., Бриткова В.Б., Вязилова Е.Д., а также зарубежных авторов - • G. Hachtel, F. Somenzi, М. Hoffman, D. Shute.
Во второй главе описывается математически процесс принятия решения при определении способов устранения неисправностей. Были предложены графовая модель и кластерный анализ, на основе которых в дальнейшем была проведена разработка целевого программного продукта.
Так как при возникновении неисправностей процесс печати не всегда прекращается, то возникает необходимость в постоянном контроле качества продукции. Данный контроль осуществляется как визуально оператором листовых офсетных печатных машин, так и специализированными системами контроля. Многие неисправности оказывают воздействие на запечатанный лист, и, проанализировав его, можно будет говорить о возможных причинах их возникновения. В случае если печатная машина не оснащена датчиками контроля, либо они не сигнализируют о неисправности, оператору необходимо самостоятельно, изучив некорректно отпечатанный лист, определить признаки неисправности, возможный узел, в котором она возникла, и причину ее вызвавшую. После этого необходимо предпринять шаги к устранению неисправности. Качественное выполнение всех указанных действий требует от оператора не только теоретических знаний о том, как происходит печать, какие факторы могут влиять на ее качество, не только знания основ таких дисциплин как механика, химия, устройство печатных машин, технологию печати, но, что также важно, требует от печатника практических навыков по устранению неисправностей. Обладать полным набором знаний и навыков -сложная задача для любого специалиста, так как необходимо не только глубоко изучить предмет, но и знать устройство современных систем, модулей, которые у разных производителей могут выглядеть по-разному, которые требуют использования различного инструмента, последовательности совершаемых действий при ремонте и правил эксплуатации.
Для описания алгоритма определения способа устранения вводится множество параметров <2, характеризующих тот или иной способ устранения неисправности:
0 = М С У-А О, (1)
где
<? = {<?|/ = й}, где<7=161;
Л/- множество моделей машин, М = {М \ > = Гш}, где т=\Щ\
С - множество узлов листовых офсетных печатных машин, С = {С |» = й}, где с=\С\;
А - множество внешних признаков проявления неисправностей, Л = {/) | / = Го}, где а=И|;
V- множество причин неисправностей, Г = {(' | < = 1,V}, где г=|Р|;
О -множество способов устранения возникшей неисправности, 0 = {0 |/ = По}, где о=|0|.
То есть, множество О при произведении элементов включает в себя всевозможные варианты соотношения моделей, причин неисправностей, способов их устранения и пр. Для описания неисправностей, которые могли
бы в реальной ситуации произойти, необходимо выделить эти смысловые значения в отдельное множество К Совокупностью смысловых значений будет являться отображение/из множества <2 в Р
/■<>-*Р (2)
В проектируемом графе определения способа устранения неисправности вершины графа соединяют ребра, если соответствующие вершинам элементы множества входят в подмножество, соответствующим вершинам, соединенными ребрами.
Описание графа выглядит следующим образом:
С=(Ж Л'Л (3)
где
IV- множество вершин графа,
¿V-множество ребер графа,
Полученный граф состоит из непустого множества - вершин и ребер. Каждая его вершина представляет промежуточный этап в достижении цели по определению способа устранении неисправности. Вершины - факты из базы данных. Дуги в свою очередь задают соотношения между фактами. Граф дает возможность более наглядно уяснить отношения среди элементов конечного множества и описать однородную семантическую сеть с бинарным отношением.
На основании данного графа строится информационная модель,
представляющая предметную область в виде структурных информационных связей (рис. 2).
Рис. 2. Информационная модель разрабатываемой экспертной системы
■*-► Связь один к одному
<—Связь один ко многим —►»■ Связь многие ко многим
Для успешного выбора требуемого способа устранения необходимо ввести дополнительную метрику, позволяющую более точно определить расстояния между прецедентами. Расстояние определяется последовательно в 5-мерной системе координат с осями:
- х - совпадение по модели машины (возможные значения: [0; 100]), -у - совпадение по узлу машины (возможные значения: 0,1),
-г - количество совпавших корней полиграфических терминов, -к - количество совпавших корней общеупотребительных слов,
- / - совпадение по корням, введенными операторами ранее.
Описывая математически зависимость множества способов устранения R, получим:
R=R(M, С, А, У, О, G, D), (4)
где _
М— множество моделей машин, Л/ = {М | / = 1,т), где т=\Щ\ С - множество узлов листовых офсетных печатных машин, С = {С | / = 1,с}, где с=|С|; _
А - множество внешних признаков проявления неисправностей, А = {А | / = 1,о}, где а=\А\; _
V- множество причин неисправностей, V - {V \ i = l,v}, где v=|K]; О -множество способов устранения возникшей неисправности, О = {0 \ i = 1 ,о), где а=\0\.
О - множество рейтинговых значений неисправности, С = {О | / = Г^}, где Э- множество расстояний между прецедентами, С = {£>| / = Ы}, где с1=\й\.
В случае, если оператор при формировании запроса укажет модель и узел машины, то системой будет проанализированы не только модели указанного производителя, но и модели других производителей со схожим строением узлов. За определение схожести узлов отвечает эксперт, который выделяет на множестве моделей машин кластеры. Пусть имеется множество узлов С и дана функция определения расстояния между объектами с1(с,с')-Эксперту необходимо разбить выборку на непересекающиеся подмножества так, чтобы каждый кластер состоял из близких объектов по метрике с!. В результате будут получены группы схожих по своему строению узлов машин разных производителей.
Информация о схожести узлов разных моделей машин выражается в процентном соотношении. В итоге будет получена матрица смежности (таблица 1):
Табл.1
Матрица смежности
С, С2 с„
С, - Х/.2 Х/.„
С, Х2.1 - х2.п
с„ хп.1 СП2 -
С — множество узлов машин, п - количество узлов разных моделей, х - процент схожести моделей.
После анализа введенной информации о модели машины и узлах необходимо определить наиболее близкие к требуемому запросу элементы. Выделяются корни узкоспециальных терминов и общеупотребительных слов, а также корни слов, которые не вошли в описание признаков неисправностей, но которые были упомянуты ранее другими операторами во время успешного нахождения требуемого способа устранения.
Предположим, что идеальная (искомая) точка имеет координаты (х/.^/.г/.А/,//), а текущий рассматриваемый прецедент из множества Я имеет координаты (х2,у2,=2,^2.12)- Высчитывается удаленность координат по осям в следующем порядке: сначала высчитывается удаленность по оси х:
г,=т1п(х,- х,), (5)
где
/' - индекс рассматриваемого элемента, а е /?.
Далее из сформированного множества Я определяются последовательно наиболее близкие объекты по оставшимся осям у,г,к,1.
В результате получим наиболее близкие элементы, на основе которых будет формироваться итоговый список возможных устранений неисправностей.
Последовательный анализ и разделение слов на группы обусловлен тем, что оператор, описывая возникшую неисправность одним словом, принятым описывать эту и только эту неисправность, повышает вероятность нахождения требуемого способа устранения, чем, если будет описывать возникшую ситуацию с помощью общеупотребительной лексики. Слова образуют определенные лексические группы: общеупотребительную лексику и лексику ограниченного употребления. К лексике ограниченного употребления относят профессионально-терминологические слова, используемые группой лиц, объединенных по роду деятельности. Соответственно, описывая внешние признаки неисправности профессиональными терминами, повышается вероятность нахождения требуемого способа устранения, так как семантическая мера информации в запросе будет выше.
Для дальнейшей оценки введем понятие рейтинга й и расстояния £>. Под рейтингом понимается частота упоминания прецедента среди решений, позволивших устранить возникшую неисправность, а под расстоянием -удаленность между прецедентами. Тогда, если расстояние между двумя прецедентами В(г„г,ч)=0 равно нулю, а рейтинг г, меньше, чем рейтинг Г[+] С(г,)<С(г^1), то они меняются местами в последовательности вероятных решений.
Преимущество данной методики заключается в том, что повышается вероятность получения требуемого способа устранения за счет поэтапного определения расстояний между ними.
В третьей главе описывается алгоритм определения способов устранения неисправностей, который отражает процесс принятия решения, и проведенный эксперимент.
В таблице 2 приведено среднее время определения способа устранения системой и пятью экспертами. Экспериментальные данные были получены при обслуживании листовой офсетной печатной машины СТО 52-4. Под временем определения понимается время, прошедшее с момента подачи заявки оператором до получения ответа с описанием предполагаемого способа устранения неисправности. Количество записей в системе: 1700.
Табл. 2
Время определения способов устранения
Количество обработанных неисправностей Среднее время работы системы, с Среднее время работы пяти экспертов, с Отношение среднего арифметического времен работы экспертов к среднему времени работы системы
1 2 3 4 5
98 2,1 6800 10900 15700 18900 7500 5700
Среднее арифметическое средних времен определения способов устранения неисправностей экспертами составило 12000+100 с. Среднее время работы системы составило около 2 с. Количество обработанных неисправностей - 98.
Описание алгоритма
Если в процессе производства возникают неисправности, устранить которые оператор не может, то для решения этой задачи оператором может быть использована система, позволяющая находить наиболее подходящие способы устранения. Процесс определения начинается с того, что оператор формирует запрос в свободной форме, указывает признаки неисправности. Перед разработкой алгоритма была сформулирована задача по интеллектуализации поиска, под которой понимается:
1. Поиск описания неисправности, учитывая однокоренные слова.
2. Поиск описания неисправности, учитывая синонимы, так как запрос может быть сформирован в свободной форме.
3. Определение расстояния между прецедентами.
4. Обучение системы за счет выявления новых слов.
Для решения задачи необходимо ввести дополнительные множества: | ¡=1^}, где 5=|5) - множество слов в запросе оператора листовой машины,
У=/У/1 ¡=1,у}, где у=\У\ - множество корней слов,
Х={Х, \ /= \,х}, где х=Щ - множество слов, входящих в описание неисправности в базе данных,
К={К, | ¡=1,к}, где к=\К\ - множество совпавших корней,
Ь={Ь, | 1=1,1}, где 1=\Ц - расширенное множество К, содержащее корни слов, которые являются синонимами к словам, корни которых содержатся во множестве К.
Множество 5 содержит в себе перечень слов, которые ввел оператор при формировании запроса. Множество корней содержит в себе корни слов, которые употребляются при описании неисправностей. В качестве примера можно привести такие корни слов как {мат, бум, лист, мят, форм, ниж}, соответственно от слов {материал, бумага, лист, мятый, форма, снижение}.
Алгоритм определения способов устранения неисправности на основании данных о внешних признаках ее проявления осуществляется путем сравнения каждого элемента множества У с элементом множества 5.
Если при последовательном анализе обнаруживается, что множество У, включено во множество 5,, то элемент множества У удаляется, если же множество К, не включено во множество то множеству К, присваивается индекс последнего элемента, а индексы других элементов изменяются на их новые порядковые номера.
В случае если элемент множества У входит в любой из элементов множества 5, то он добавляется в отдельное множество К, то есть К -множество корней слов, которые были найдены в исходном запросе. На
следующем шаге, после анализа всех слов из запроса, необходимо расширить множество корней для более точного и обширного поиска, добавив в него корни синонимичных слов, информация о синонимичности слов которых содержится в специальной таблице соответствия корней слов-синонимов. На данном этапе создается множество Ь, элементами которого также являются множества символов. На следующем этапе необходимо выявить вхождение корней из расширенного множества Ь во множество X. Условие вхождения корней из расширенного множества в словах строки с описанием, находящейся в базе данных, описывается следующим уравнением:
/, (6)
где
е 1,
Если при последовательном анализе обнаруживается, что множество Ц включено во множество А',, то элемент множества удаляется, значение параметра /, учитывающего количество совпадений корней со словами увеличивается на единицу, а индексы оставшихся элементов множества уменьшаются на единицу. Если множество I, не включено во множество Х1, то множеству /., присваивается индекс последнего элемента, а индексы других элементов уменьшаются на единицу.
Если оператор ищет способ устранения и в запросе описания неисправности указывает слова, корни которых не входят во множество У, а способ устранения возникшей неисправности в процессе выполнения алгоритма определения был успешно найден, то слова, корни которых не будут найдены, обрабатываются на основе лингвистического анализа и записываются в базу данных. Из слов будут выделены корни и подобраны корни слов-синонимов. Таким образом, системой производится самообучение, позволяющее накапливать слова. Накопленные знания позволят более точно находить способы устранения. Для лингвистического анализа используются два словаря: словарь корней слов и словарь синонимов.
Также ставится задача эффективного использования полученной информации оператором, чтобы максимально ускорить процесс устранения причины неисправности. Для этого необходимо вывести тот способ устранения, который бы был наиболее вероятный, то есть тот способ, который наиболее близок к искомому. На данном этапе определяется расстояние между прецедентами. В случае если способ устранения неисправности найден не был, оператору предлагается написать запрос в службу поддержки или сформировать запрос иначе (рис. 3).
г
Отправка информации
Рис. 3. Алгоритм поиска способа устранения неисправности
На рис. 4 приведена реализация предопределенного процесса «поиск неисправности».
Рис. 4. Алгоритм предопределенного процесса «поиск неисправности»
В четвертой главе описывается методика формирования тестовых заданий при определении компетенций операторов производственного оборудования. В настоящее время на предприятиях активно применяются системы оценки знаний специалистов. Как правило, они представляют собой базу данных и программную оболочку. Зачастую при изменениях в отрасли,
тестовые задания со временем теряют свою актуальность. Чтобы этого не допустить и всегда иметь возможность контролировать соответствующую времени актуальность и требуемый объем знаний операторов листовых офсетных печатных машин, была разработана модель системы тестирования. Структура системы выстроена таким образом, что лицо, проводящее тест, имеет возможность определить актуальные знания пользователя в любой момент времени за счет регулярного пополнения информацией базы данных. Поступающая от разных типографий информация в базу данных регулярно анализируется модулем обновления и учитывается при составлении тестовых заданий в зависимости от модели машины.
Рис. 5 Структура системы тестирования
Модель предлагаемого подхода к тестированию и определению уровня компетенции можно представить следующим образом: д={М, А, У, О, Т, 5, О},
где
М- множество моделей машин,
А — множество внешних признаков проявления неисправностей, К - множество причин неисправностей,
О - множество способов устранения возникшей неисправности, Т — множество коэффициентов быстроты выполнения п-го задания, 5—множество коэффициентов правильности выполнения заданий, й — множество групп сложностей вопросов.
Для определения сложности тестового задания используются следующие критерии:
1. Время решения поставленной задачи.
2. Количество обращений к полученному решению.
3. Процент правильных ответов.
Коэффициент времени выполнения п-го задания:
где
с = 1 сек
Т) - длительность выполнения /'-го задания п - количество заданий.
Коэффициент правильности выполнения п-го задания:
^'■-р =
" - , (8)
где
п - количество раз, которое выводилось тестовое задание при проверке знаний; Б, -правильность ответа на /-ое задание, 5,=0 при неправильном ответе, 5/=1 при правильном ответе. Учитывая все это, можно оценить сложность задания в системе следующим образом:
Т
В= р'ш
(9)
где
к- количество пользователей, сообщивших, что они решили проблему неисправности указанным способом.
Для формирования заданий используется метод размытых эвристик поиска в задачах большой размерности при отсутствии реализуемых методов строгого решения. В данном случае уместнее использовать тип эвристики, порождающий перспективные направления поиска, не требующий анализа всей области возможных решений для выделения перспективного направления поиска.
Для этого введем некоторые обозначения: с1(\,]) — расстояние между решениями / и у гк, - расстояние от точки к до точки /'
я/.)- расстояние между решениями и по 5-ОЙ гипотезе с',1; — ближайшее расстояние на у-ом этапе по гипотезе
С^ — подмножество множества локальных решений, отстоящих от ближайшего локального решения на расстояние не больше, чем Д (д-окрестность ближайшего локального решения).
Для определения расстояния между решениями необходимо использовать меру близости. Пусть для выбора локального решения используется эвристика перехода в ближайшую точку. Тогда расстояние между локальными решениями будет тем меньше, чем меньше разница расстояний от соответствующих этим решениям точек до текущей. Если расстояние от прецедента к до точек / и _/ равно ги и гк,, то расстояние по данной гипотезе между локальными решениями, соответствующими выбору / и у равно:
= 1. (10) Если целесообразность выбора на у'-ом этапе решений и gl по гипотезе Г5 определяется локальными критериями с1 и с'л, соответственно, то
расстояние между локальными решениями gf и g( по гипотезе Г5 определяется как:
d,(g!,gi) = te-cL (Н)
Локальное решение gf по гипотезе rs называется ближайшим, если для любых /, / * 0,
(12)
Путь д-окрестность ближайшего локального решения по гипотезе/^ такое подмножество G* множество локальных решений Gh для всех элементов которого gjt выполняется условие
(13)
Аналогичным образом можно определить и д -окрестности некоторого подмножества G0 локальных решений, если дополнить его всеми элементами gl ИЗ Gj , для которых
ds(g) ,iT/ )^ А , Vg/eG0, g'eGj. (14)
На каждом этапе поиска Д - окрестность должна содержать заданное количество решений. Экспертом определяется гипотеза на основании которой отбираются близкие по степени сходства внешние признаки и способы устранения неисправности.
Также в четвертой главе описывается процесс разработки программного обеспечения, состоящего из базы данных, подсистемы поиска, интерфейса, подсистемы лингвистического анализа и подсистемы управления. Разработка системы осуществлялась с помощью программы Delphi 2010. Системой управления базой данных является MySQL. Использование данной системы со скриптовым языком программирования общего назначения РНР позволило создать web-интерфейс и подключить модуль подсистемы поиска прецедентов и подсистемы управления. Разработанная система может устанавливаться с базой данных как на компьютер в типографии, так и на удаленный сервер с предоставлением доступа клиенту.
Основные выводы и результаты работы:
1. В работе была решена задача автоматизации процесса определения способов устранения неисправностей в системе сервисного обслуживания листовых офсетных печатных машин.
2. Была сформирована база данных с описанием неисправностей, причин их возникновения и способов устранения, корнями слов и слов-синонимов.
3. Был описан принцип представления пользователю способов устранения и разработан интуитивно понятный интерфейс.
4. В диссертационной работе описывается проведенный анализ предметной области. Анализ показал, что работа сервисной службы строится на экспертах, а не системах. А предлагаемые программные продукты в сфере сервисного обслуживания производственного оборудования позволяют
лишь диагностировать неисправность и сообщить о ней оператору. Данные системы не всегда анализируют причины возникновения неисправностей и не предлагают способы их устранения в доступной и наглядной форме. Отсутствуют системы, направленные на поддержку операторов листовых офсетных печатных машин, принцип работы которых был бы основан на вводимых запросах в свободной форме, рассчитанных, в том числе, на операторов, не являющихся специалистами в области ремонта листовых офсетных печатных машин.
5. Был разработан алгоритм определения способов устранения неисправностей, позволяющий самостоятельно организовать сервисную поддержку без участия сервисного инженера на основе метода эвристического ветвления с введением дополнительной метрики для более эффективного определения требуемого способа устранения неисправности.
6. Был предложен способ формирования тестовых заданий при определении компетенций операторов и сервисных инженеров листовых офсетных печатных машин на основе метода размытых эвристик, позволяющий определять и контролировать объем и актуальность знаний технических специалистов.
7. Одна из версий была внедрена на многопрофильном полиграфическом предприятии ООО «РПА ВизАрт». Внедренная версия позволила значительно уменьшить время выявления способа устранения неисправностей и снизить время простоя печатной машины.
8. Внедрение разработанной методики происходило в системе обслуживания листовых офсетных печатных машин, которую также возможно применять в системах обслуживания другого технически сложного производственного оборудования.
Публикации по теме диссертационного исследования
Публикации в ведущих рецензируемых научных изданиях, рекомендуемых ВАК:
1. Денисов Д.А. Интеллектуальная система дистанционной поддержки, ремонта, профилактики листовых офсетных печатных машин / Д.А. Денисов // Известия высших учебных заведений. Проблемы полиграфии и издательского дела №2, 2011. С. 50-53.
2. Денисов Д.А. Автоматизированная система контроля знаний операторов листовых офсетных печатных машин / Д.А. Денисов, Д.А. Арсентьев // Известия высших учебных заведений. Проблемы полиграфии и издательского дела №5, 2011. С. 9-12.
3. Денисов Д.А. Декомпозиция задачи поиска и отображения способов устранения неисправностей в работе системы по ремонту и обслуживанию листовых офсетных печатных машин / Д.А. Денисов // Известия высших учебных заведений. Проблемы полиграфии и издательского дела №5, 2011. С. 13-17.
Перечень публикаций в других научных изданиях:
4. Денисов Д.А. О принципах организации информации и поиске решений в системе по обслуживанию и ремонту листовых офсетных печатных машин / Д.А. Денисов // Вестник МГУП №11, 2010. С. 64-67.
5. Денисов Д.А. Алгоритм поиска способа устранения неисправности в экспертной системе по ремонту и обслуживанию листовых офсетных печатных машин /Д.А. Денисов // Вестник МГУП № 8, 2011. С. 189-194.
Подписано в печать 25.06.2012. Формат 60x84/16. Бумага офсетная. Печать на ризографе. Усл. п. л. 1.16. Тираж 100 экз. Заказ № 145/145 Отпечатано в РИЦ МГУП имени Ивана Федорова 127550, Москва, ул. Прянишникова, 2а
Оглавление автор диссертации — кандидата технических наук Денисов, Дмитрий Александрович
ПЕЧАТНЫХ МАШИН.
1.1. Роль интеллектуальных и экспертных систем в производстве.
1.2. Роль Интернета в интеграции экспертных систем в производственную сферу.
1.3. Возможные прототипы для построения интеллектуальной системы в диагностике полиграфических машин.
1.4. Выводы.
ГЛАВА 2. ОСНОВНЫЕ ЗАДАЧИ, ПРИНЦИПЫ И ЦЕЛИ
СОЗДАНИЯ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ.
2.1. Постановка задачи.
2.2. Кластерный анализ прецедентов.
2.3. Особенности методики проведения сервисного ремонта.
2.4. Построение графовой модели системы и декомпозиция поиска прецедентов.
2.5. Выводы.
ГЛАВА 3. АЛГОРИТМЫ И МЕТОДЫ
ФУНКЦИОНИРОВАНИЯ ИНТЕЛЛЕКТУАЛЬНОЙ
СИСТЕМЫ.
3.1. Роль эксперта в системе.
3.2. Используемые модели баз данных.
3.3. Структура базы данных.
3.4. Реляционный подход к построению информационно-логической модели.
3.5. Нормализация отношений.
3.6. Информационно-логическая модель.
3.7. Функция времени поиска способа устранения.
3.8. Алгоритм поиска способа устранения неисправности и формирование строки запроса.
3.9. Алгоритм поиска подстроки в строке.
3.10. Процесс формирования описаний неисправностей.
3.11. Выводы.
ГЛАВА 4. ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ.
4.1. Способы применения полученных результатов в тестировании печатников.
4.2. Методы разработки.
4.3. Выводы.
Введение 2012 год, диссертация по информатике, вычислительной технике и управлению, Денисов, Дмитрий Александрович
Все большую роль в жизнедеятельности людей стали играть информационные технологии. Модернизация и прогресс стали побочным эффектом желания людей снизить издержки на производстве, повысить производительность труда, сделать качество выпускаемой продукции выше. Бизнес ставит все новые цели и задачи науке и разработчикам программных и технических средств по модернизации имеющихся аппаратно-программных средств. Под аппаратными средствами понимаются датчики, считывающие информацию о состоянии узлов производственной линии, о качестве как полностью произведенной продукции, так и о соответствии критериям качества на конкретном этапе производства. Под программными средствами понимается набор правил по обработке, поступающей с датчиков, информации. Это своего рода конструктор, который может быть адаптирован под практически любое производство. Необходимость обладания навыками в создании данных средств и трудоемкость процесса производства делают данные экспертные и интеллектуальные системы дорогостоящими.
Не каждое производство должно и может быть оснащено интеллектуальными системами. Невозможным является создание системы, позволяющей производить автоматическую печать продукции, то есть заместить оператора листовой офсетной печатной машины, хотя и не только листовой. Сложность заключается в том, что в разные моменты времени приходится отслеживать большое количество факторов и сопоставлять их. Например, при просьбе заказчика ускорить печать печатнику придется перестраивать не только само производство печатных оттисков, но и по-другому выстраивать всю цепочку заказов, обращая внимание как на остаток необходимых в каждом заказе расходных материалов, так и на параметры, непосредственно влияющие на качество печати.
Перед созданием любой системы формируются задачи, которые она должна решать. Эти задачи логически вытекают из проблем, которые ставит полиграфическая отрасль. В данной работе рассматривается такая узкоспециализированная часть, как ремонт и обслуживание листовых офсетных печатных машин.
Использование данного типа оборудования в российских типографиях очень широко распространено. С помощью данного оборудования печатается большинство настенных календарей, листовок, брошюр, визиток, папок, упаковок, эксклюзивной продукции, журнальных обложек, самих журналов, рекламных материалов и т.д.
Печать на оборудовании осуществляется печатниками, его исправное состояние обеспечивается сервисными инженерами. Данные группы людей называют операторами печатной машины. Текущая ситуация в отрасли создала спрос на экспертов или на системы, которые могли бы сократить временные издержки на поиск и устранения неисправностей.
При внедрении интеллектуальных систем необходимо также учитывать специфику отрасли. Полиграфия имеет свои особенности, среди которых есть как преимущества, так и недостатки.
Преимущества:
- концентрация агрегатов и машин в одном месте (контроль качества, ремонт)
- ремонт многих неисправностей возможно произвести своими силами, имея небольшой склад запасных частей и инструментов
- большой объем накопленных знаний и опыта, охватывающий информацию о наиболее часто возникающих неисправностях и путях к их устранению
- большие затраты на сервисных инженеров (интерес в сторону системы, позволяющей уменьшить издержки)
- крайне большие издержки при простое оборудования (система позволит найти решение в кратчайшие сроки)
- развитие высокоскоростного интернета для обмена данными между предприятием и базой данных
Недостатки:
- технологически сложное оборудование
- большое количество возможных неисправностей
- неявные причины возникновения каждой конкретной неисправности
- возможность возникновения разных неисправностей из-за разных причин (совокупность разных причин может породить одни и те же неисправности)
Как видно из приведенных доводов, в отрасли сложилась благоприятная ситуация для создания систем, подобных предлагаемой. В настоящее время существуют системы по выявлению неисправностей, разработанные производителями, но они не рассчитаны на печатников машин. Существуют также системы автоматизации контроля качества продукции, но данные системы не объединены в единую сеть и не охватывают множество неисправностей множества узлов. Разработано множество систем по диагностике неисправностей. Это очень важный этап в развитии интеграции интеллектуальных систем в полиграфической отрасли, но на данный момент он является недостаточным. Необходима система со справочной службой, позволяющая учитывать всевозможные возникающие неисправности и давать рекомендации по их устранению. Для решения описанных проблем и создания интеллектуальной автоматизированной системы необходимо решить основные задачи по созданию принципиально новой системы, которая разрабатывается не производителем печатных машин исходя из нужд своей сервисной службы, а ориентирована на широкий круг пользователей без привязки к определенной модели машины.
Актуальность темы
Обслуживание печатных машин является сложным, дорогостоящим, трудоемким процессом, для организации которого требуется участие специалистов высокого класса, знающих принципы процесса печати, устройства печатных машин, имеющих опыт и навыки ремонта сложного по своему технологическому устройству оборудования. Также немаловажную роль играет объем знаний сервисных инженеров. Объем знаний постоянно увеличивается, так как практически все производители имеют собственные конструкторские бюро и исследовательские центры, занимаются разработкой новых моделей машин, узлов, их модернизацией и автоматизацией, накапливая и увеличивая знания.
В настоящий момент постпродажное сервисное обслуживание листовых офсетных машин подразумевает возможность типографии обратиться к инженерам сервисной службы для получения информации по возникшей неисправности. Под неисправностью понимается не только невозможность оборудования выполнять требуемую функцию, но и ошибка технологического характера. Однако консультирование не всегда проходит быстро и качественно. Заявки на обслуживания могут быть потеряны, компетентного специалиста может не быть на месте. Это ведет к простою печатной машины. Для принятия точного и быстрого решения специалисту необходимо иметь опыт, но опыт человеком копится длительное время и может быть полноценно использован, только если данный конкретный специалист занимается устранением неисправностей на определенной модели машины. Дефицит достаточного количества специалистов высокого уровня делает их услуги весьма дорогими, и не каждая типография готова обращаться к ним за помощью на регулярной основе.
Среди систем, направленных на поддержку операторов, прототипов можно выделить системы диагностики. Анализируя входные данные с датчиков, установленных на узлах машины, системой принимается решение о предупреждении оператора о возникшей неисправности. Особенностью систем подобного типа является то, что не всегда указывается способ устранения возникших неисправностей, и не всегда предлагаются рекомендации по их устранению. Следует учесть, что не каждая печатная машина, и не каждый узел машины оснащается данными системами.
Таким образом, существующие методы организации сервисного обслуживания листовых офсетных печатных машин основаны на обращении к сервисному инженеру и не позволяют достаточно эффективно проводить поддержку типографий и за короткий временной промежуток предоставлять в полном объеме информацию, использование которой могло бы позволить быстро и качественно организовать процесс устранения неисправности.
Решение данной проблемы лежит на пути автоматизации определения способов устранения неисправностей на основе разработки системы алгоритмов, позволяющих осуществлять поиск способов устранения неисправностей с опорой на базу данных экспертов в сфере обслуживания печатных машин, накапливать их опыт, выявлять слабые узлы машин и способствовать самостоятельному принятию обслуживающим персоналом решения по выбору способа устранения неисправностей без необходимости обращения в сервисную службу и к сервисному инженеру. Цели работы
Целью диссертационной работы является автоматизация процесса определения способов устранения неисправностей в системе сервисного обслуживания листовых офсетных печатных машин; внедрение системы на промышленном предприятии. Задачи исследования
Для реализации целей необходимо решить такие задачи, как: проведение анализа предметной области, изучение алгоритмов систем обслуживания и диагностики производственного оборудования, формирование базы данных с описанием неисправностей, причин их возникновения и способов устранения, корнями слов и слов-синонимов, разработка метода определения способов устранения неисправностей и их принципов представления пользователю, кластерный анализ прецедентов и внедрение метрики для определения расстояния между ними разработка интуитивно понятного интерфейса пользователя. Методы исследования
Для достижения поставленных целей используются методы реляционных баз данных, теории построения интеллектуальных систем, теории множеств, математической статистики, алгоритмы поиска подстроки и лингвистического анализа. Разработка системы произведена на языке программирования Delphi с использованием языка структурированных запросов SQL и скрипто-вого языка программирования общего назначения PHP. Область исследования
Ремонт и обслуживание листовых офсетных печатных машин, автоматизация процессов определения и устранения неисправностей. Научная новизна
Научная новизна представленного исследования может быть сведена к следующим положениям:
1. Предложена новая методика выявления неисправностей листовых офсетных печатных машин, позволяющая анализировать запросы, введенные в свободной форме. Применение методики сокращает время простоя оборудования при определении способа устранения неисправности.
2. Разработан алгоритм определения способов устранения неисправностей, основанный на методе эвристического ветвления с введением дополнительной метрики, ориентированный на пользователей с разным уровнем компетенций. Применение алгоритма позволяет сократить время поиска неисправности для операторов с низкой квалификацией.
3. Разработана новая методика формирования тестовых заданий при определении компетенции операторов производственного оборудования на основе метода размытых эвристик, позволяющая контролировать актуальность и полноту знаний операторов листовых офсетных печатных машин. Применение методики позволяет повысить уровень квалификации операторов. Методологическая основа
Методологической основой исследования являются работы в области рассуждений на основе прецедентов (работы Варшавского, Башмакова, Уос-сермана, Фотсера), адаптации сложных систем, решения задач сервисного обслуживания производственного оборудования, в частности, печатных машин (подходы к сервисному обслуживанию листовых офсетных машин компаний КВА, Heidelberg, manroland). Достоверность полученных результатов
Подтверждается практической реализацией разработанных моделей и алгоритмов, а также методами математической статистики, успешной апробацией и внедрением разработанного метода на профильном предприятии. Теоретическая значимость результатов
Теоретическая значимость заключается в возможности использовать базу данных для разработки системы оценки объема знаний операторов листовых офсетных печатных машин. Практическая ценность
Практическая ценность и значимость результатов работы состоит в получении научных результатов, позволивших сформулировать рекомендации к процессу автоматизации поиска способов устранения неисправностей, среди которых:
1. Применение предложенной методики и алгоритма позволило автоматизировать процесс определения способа устранения неисправности.
2. Визуализация процесса определения способа устранения неисправности позволяет сократить время устранения неисправности.
3. Внедрение методик и алгоритмов позволяет сформировать статистические данные о возникающих неисправностях, что позволяет оптимально подобрать нужный способ их устранения, определить слабые узлы оборудования, эффективно проводить профилактику и определение уровня компетенций пользователей оборудования.
Основные научные и практические результаты, выносимые на защиту
1. Новая методика выявления неисправностей листовых офсетных печатных машин, позволяющая анализировать запросы, введенные в свободной форме.
2. Алгоритм определения способов устранения неисправностей, основанный на методе эвристического ветвления с введением дополнительной метрики, ориентированный на пользователей с разным уровнем компетенций.
3. Новая методика формирования тестовых заданий при определении компетенции операторов производственного оборудования на основе метода размытых эвристик, позволяющая контролировать актуальность и полноту знаний операторов листовых офсетных печатных машин.
Апробация работы
Основные результаты диссертационной работы обсуждены на научно-технической международной молодежной конференции «Системы, методы, техника и технологии обработки медиаконтента», Москва, 2011.
Методы, разработанные в диссертационной работе, используются операторами производства печатной продукции на листовой офсетной печатной машине на многопрофильном полиграфическом предприятии ООО «РПА Ви-зАрт» при возникновении ситуаций, требующих устранения неисправностей. Публикации
Результаты проведенного анализа, разработки алгоритмов и программной реализации отражены в 5 статьях, напечатанных в журналах, в том числе, рекомендуемых ВАК - 3 статьи.
Заключение диссертация на тему "Автоматизированная система определения способов устранения неисправностей листового офсетного печатного оборудования"
ОБЩИЕ ВЫВОДЫ
В работе была решена задача автоматизации процесса определения способов устранения неисправностей в системе сервисного обслуживания листовых офсетных печатных машин.
Была сформирована база данных с описанием неисправностей, причин их возникновения и способов устранения, корнями слов и слов-синонимов.
Был описан принцип представления пользователю способов устранения и разработан интуитивно понятный интерфейс.
В диссертационной работе описывается проведенный анализ предметной области. Анализ показал, что работа сервисной службы строится на экспертах, а не системах. А предлагаемые программные продукты в сфере сервисного обслуживания производственного оборудования позволяют лишь диагностировать неисправность и сообщить о ней оператору. Данные системы не всегда анализируют причины возникновения неисправностей и не предлагают способы их устранения в доступной и наглядной форме. Отсутствуют системы, направленные на поддержку операторов листовых офсетных печатных машин, принцип работы которых был бы основан на вводимых запросах в свободной форме, рассчитанных, в том числе, на операторов, не являющихся специалистами в области ремонта листовых офсетных печатных машин.
Был разработан алгоритм определения способов устранения неисправностей, позволяющий самостоятельно организовать сервисную поддержку без участия сервисного инженера на основе метода эвристического ветвления с введением дополнительной метрики для более эффективного определения требуемого способа устранения неисправности.
Был предложен способ определения компетенций операторов и сервисных инженеров листовых офсетных печатных машин на основе метода размытых эвристик, позволяющий определять и контролировать объем и актуальность знаний технических специалистов.
Одна из версий была внедрена на многопрофильном полиграфическом предприятии ООО «РПА ВизАрт». Внедренная версия позволила значительно уменьшить время выявления способа устранения неисправностей и снизить время простоя печатной машины.
Внедрение разработанной методики происходило в системе обслуживания листовых офсетных печатных машин, которую также возможно применять в системах обслуживания другого технически сложного производственного оборудования.
Библиография Денисов, Дмитрий Александрович, диссертация по теме Автоматизация и управление технологическими процессами и производствами (по отраслям)
1. Авдонин A.C. Прикладные методы расчета оболочек и тонкостенных конструкций. М.: Машиностроение, 1969. - 405 с.
2. Аверкин А. Н., Гаазе-Рапопорт М. Г., Поспелов Д. А. Толковый словарь по искусственному интеллекту. М.: Радио и связь, 1992. - 256 с.
3. Алферова З.В. Математическое обеспечение экономических расчетов с использованием теории графов. М.: Статистика, 1974. - 208 с.
4. Астанин C.B., Курейчик В.М., Попов Д.И. Интеллектуальная образовательная среда дистанционного обучения // Новости искусственного интеллекта. Москва, 2003. - С. 7-14.
5. Башмаков А.И., Башмаков И.А. Интеллектуальные информационные технологии: Учебное пособие. М.: Издательство МГТУ им. Н.Э. Баумана, 2005.-304 с.
6. Бернштейн Л.С. Модели и методы принятия решений в интегрированных интеллектуальных системах. Ростов-на-Дону: издательство Ростовского университета, 1999. - 128 С.
7. Бойко В.В., Савинков В.М. Проектирование информационной базы автоматизированной системы на основе СУБД. М.: Финансы и статистика, 1982.- 174 с.
8. Букатова И.Л. Эволюционное моделирование и его приложения. М.: Наука, 1979. - 232 с.
9. Букатова И.Л., Михасев Ю.И., Шаров A.M. Теория и практика эволюционного моделирования. М.: Наука, 1991. - 206 с.
10. Вагин В.Н., Головина Е.Ю., Загорянская A.A., Фомина М.В. Достоверный и правдоподобный вывод в интеллектуальных системах // Под редакцией В.Н. Вагина, Д.А. Поспелова. М.: Физматлит, 2004. - 704 с.
11. Варшавский П.Р., Еремеев А.П. Методы правдоподобных рассуждений на основе аналогий и прецедентов для интеллектуальных систем поддержки принятия решений // Новости Искусственного Интеллекта, № 3, 2006. С. 39-62.
12. Вейнеров О.М., Самохвалов Э.Н. Проектирование баз данных САПР. -М.: Высшая школа, 1990. 144 с.
13. Венда В.Ф. Системы гибридного интеллекта М.: Машиностроение, 1990.-448 С.
14. Вендров A.M. CASE-технологии. Современные методы и средства проектирования информационных систем. М.: Финансы и статистика, 1998. -176 с.
15. Воинов A.B. Моделирование интуитивных рассуждений эксперта методами психосемантики и вывода с неопределенностью //Новости искусственного интеллекта №2, 1998. С. 5-7.
16. Гаазе-Рапопорт М.Г. Автоматы и живые организмы. Моделирование и поведение живых организмов. М.: Физматлит, 1961. - 224 с.
17. Гаррисон Г. Выбор по Тьюрингу. М.: Эксмо-Пресс, 1999. - 480 с.
18. Геловани В.А., Башлыков A.A., Бритков В.Б., Вязилов Е.Д. Интеллектуальные системы поддержки принятия решений в нештатных ситуациях с использованием информации о состоянии природной среды. М.: Эдито-реал УРСС, 2001.-304 с.
19. Глушков В.М. Введение в АСУ. М.: Техника, 1972. - 312 с.
20. Голицына O.A., Максимов Н.В. Базы данных. М.: Форум—Инфра, 2004. -554 с.
21. Горбань А.Н., Хлебопрос Р.Г. Демон Дарвина. Идея оптимальности и естественный отбор. М.: Наука, 1988. - 180 с.
22. Денисов Д.А. Интеллектуальная система дистанционной поддержки, ремонта, профилактики листовых офсетных печатных машин / Д.А. Денисов // Известия высших учебных заведений. Проблемы полиграфии и издательского дела №2. Москва. 2011. С. 50-53.
23. Денисов Д.А. Автоматизированная система контроля знаний операторов . листовых офсетных печатных машин / Д.А. Денисов, Д.А. Арсентьев // Известия высших учебных заведений. Проблемы полиграфии и издательского дела №5. Москва. 2011. С. 9-12.
24. Денисов Д.А. О принципах организации информации и поиске решений в системе по обслуживанию и ремонту листовых офсетных печатных машин / Д.А. Денисов // Вестник МГУП №11. Москва. 2010. С. 64-67.
25. Денисов Д.А. Алгоритм поиска способа устранения неисправности в экспертной системе по ремонту и обслуживанию листовых офсетных печатных машин /Д.А. Денисов // Вестник МГУП № 8. Москва. 2011. С. 189194.
26. Джонсон Н., Лион Ф. Статистика и планирование эксперимента в технике и науке: Методы обработки данных. // Пер. с англ., М.: Мир, 1980. -610 с.
27. Дюбуа Д., Прад А. Теория возможностей. Приложения к представлению знаний в информатике. // Пер. с фр. М.: Радио и связь, 1990. - 288 с.
28. Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов. М.: Наука, 1990. - 384с.
29. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. М.: Мир, 1976. - 165 с.
30. Заморин А.П., Марков A.C. Толковый словарь по вычислительной технике и программированию. М.: Русский язык, 1988. - 221 с.
31. Замулин A.B. Системы программирования баз данных и знаний. Новосибирск: Наука. Сибирское отделение, 1990. - 351 с.
32. Киппхан Г., Энциклопедия по печатным средствам информации. М.: МГУП, 2003.- 1280 с.
33. Кирсанов M. Н. Графы в Maple. M.: Физматлит, 2007. - 168 с.
34. Когаловский М.Р. Архитектура механизмов отображения данных в многоуровневых СУБД //Техника реализации многоуровневых систем управления базами данных. М.: ЦЭМИ АН СССР, 1982, с. 3-19.
35. Когаловский М.Р. Технология баз данных на персональных ЭВМ. М.: Финансы и статистика, 1992. - 224 с.
36. Коннолли Томас, Бегг Каролин. Базы данных. М.: Вильяме, 2003. - 1436 с.
37. Корнеев В.В., Гареев А.Ф., Васютин C.B., Райх В.В., Базы данных. Ин-теллектуальныая обработка информации. М.: Нолидж, 2001. - 976 с.
38. Макарова Н.В., Информатика. М.: Финансы и статистика, 2000. - 768 с.
39. Нильсон Н. Искусственный интеллект. Методы поиска решений. М.: Мир, 1973.-273 с.
40. Нильсон Н. Принципы искусственного интеллекта. М.: Радио и связь, 1985.-376 с.
41. Нестеренко М.В. Идеальный сервис мечта или реальность? Электронный ресурс. - Режим доступа: http://www.terraprint.ru/art/show/105.html
42. Ноткин Л.И., Искусственный интеллект и проблемы обучения. М.: Ком-Книга, 1999.- 126 с.
43. Ope О. Теория графов. М.: Наука, 1968. - 336 с.
44. Оскерко B.C. Современные СУБД. Мн.: БГЭУ, 2001. - 170 с.
45. Пенроуз Р. Новый ум короля. О компьютерах, мышлении и законах физики. М.: УРСС, 2005. - 400 с.
46. Попов Д.И., Попова Е.Д. Информационные технологии. Базы данных. -М.:МГУП, 2009.- 117 с.
47. Розенблатт Ф. Принципы нейродинамики. Перцептроны и теория механизмов мозга. М.: Мир, 1963. - 480 с.
48. Савинков В.М., Вейнеров О.М., Казаров М.С. Основные концепции автоматизации проектирования баз данных //Прикладная информатика. Вып.1. -М.: Финансы и статистика, 1982. с. 30-41.
49. Салий В. Н. Богомолов А. М. Алгебраические основы теории дискретных систем. — М.: Физико-математическая литература, 1997. 213 с.
50. Сойер Б., Фостер Д.Л. Программирование экспертных систем на Паскале. -М., Финансы и статистика, 1990. 191 с.
51. Трухаев Р. И. Модели принятия решений в условиях неопределенности. -М.: Наука, 1981.-258 с.
52. Ту Дж., Гонсалес Р. Принципы распознавания образов. М.: Мир, 1978. -414 с.
53. Уоссерман Ф. Нейрокомпьютерная техника: Теория и практика. // Пер. С англ. М.:Мир, 1992. - 240 с.
54. Шалютин С.М. Искусственный интеллект. М.: Мысль, 1985. - 199 с.
55. Шрейдер Ю.А., Шаров A.A. Системы и модели. М.: Радио и связь. 1982. - 152 с.
56. G. Hachtel, F. Somenzi. Logic Synthesis and Verification Algorithms. Colorado: Kluwer, 1996.-219 p.
57. Hoffman M., Shute D., Ebbers M. Advanced Workflow Solutions. New York: Redbooks IBM, 2010. - 141 p.
58. Составлен 15 сентября 2011 года1. Сомиссия в составе
-
Похожие работы
- Автоматизированная система поиска способов устранения неисправностей, возникающих в работе полиграфического оборудования
- Модели и алгоритмы интеллектуализации поиска неисправностей в системе автоматизированного контроля гибридных объектов
- Идентификация автоматизированных процессов печатного производства
- Методы и средства эффективности моделирования неисправностей цифровых устройств
- Поддержка поиска неисправностей в аппаратуре автоматики и телемеханики на основе обработки диагностической экспертной информации
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность