автореферат диссертации по энергетике, 05.14.03, диссертация на тему:Моделирование пространственного распределения примесей в парогенерирующих каналах оборудования АЭС и ТЭС

кандидата технических наук
Джахан Фарниа Голам Реза
город
Москва
год
2005
специальность ВАК РФ
05.14.03
Диссертация по энергетике на тему «Моделирование пространственного распределения примесей в парогенерирующих каналах оборудования АЭС и ТЭС»

Автореферат диссертации по теме "Моделирование пространственного распределения примесей в парогенерирующих каналах оборудования АЭС и ТЭС"

На правах рукописи

ДЖАХАН ФАРНИА ГОЛАМ РЕЗА

МОДЕЛИРОВАНИЕ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В ПАРОГЕНЕРИРУЮЩИХ КАНАЛАХ ОБОРУДОВАНИЯ

АЭС И ТЭС

Специальность 05.14.03 — Ядерные энергетические установки, включая проектирование, эксплуатацию и вывод из эксплуатации 05.14.14 — Тепловые электрические станции, их эйергетические системы и

агрегаты

Автореферат диссертации на соискание ученой степени кандидата технических наук

Москва - 2005

Работа выполнена на кафедре «Атомных Электрических Станции» Московского энергетического института (технического университета).

Научный руководитель

- доктор технических наук, профессор Горбуров Вячеслав Иванович Официальные оппоненты:

- доктор технических наук, профессор Кузма-Кичта Юрий Альфредович

- кандидат технических наук Хлебников Александр Александрович

Ведущая организация - Всероссийский научно- исследовательский институт атомных электростанций (ВНИИАЭС)

Защита диссертации состоится 15 июня 2005 г. в 14:00 в аудитории ж-313 на заседании диссертационного совета Д 212.157.07 при Московском энергетическом институте (техническом университете) по адресу: 111250, Москва, ул. Красноказарменная, д. 14

С диссертацией можно ознакомиться в библиотеке МЭИ (ТУ)

Отзыв на автореферат, заверенный печатью учреждения, в двух экземплярах просим направить по адресу: 111250, г. Москва, ул. Красноказарменная, д. 14, Ученый совет МЭИ (ТУ).

Автореферат разослан £ _2005 г.

Ученый секретарь

диссертационного совета Д 212 Л 5 7.07

к.т.н., профессор «=■

Лавыгин В.М.

}НОЩ

3

ОБШАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Введение

Актуальность темы диссертации. Обеспечение надежной работы и безопасности парогенераторов и кипящих реакторов энергоблоков АЭС требует оптимальной организации водного режима и знания нестационарных макро- и микрораспределения растворенных примесей. Оптимизация водного режима АЭС должна проводиться, исходя из задач повышения их безопасности, готовности и увеличения длительности межперегрузочного и межремонтного циклов. Одной из основных причин снижения надежности и безопасности оборудования электростанций является разрушение поверхностей теплообмена. Известно, что основной причиной разрушения является коррозия, а прочие факторы, такие как пережог труб, составляют относительно небольшую часть. Это относится как к тепловым, так и, в особенности, к атомным электростанциям, для которых коррозия часто оказывается практически единственной причиной. Локальное (микро) распределение примесей вблизи кипящих поверхностей оказывает заметное влияние на процесс образования отложений, коррозии, нейтронно-фиэические параметры ядерных реакторов, величину критической плотности теплового потока и такой важный показатель, как рН среды на стенке. Если концентрация на стенке хорошо растворимых в воде и плохо растворимых в паре примесей происходит на несколько порядков (а к ним относятся хлориды и сульфаты), то значение рН среды на стенке будет на 2-3 единицы меньше, чем в объеме. Локальное значение концентрации примесей вблизи теплопередающей поверхности в пределах вязкого подслоя может быть в 102

- 105 раз больше, чем концентрация в объеме. Наиболее существенные

отклонения показателей водного режима от ноф\ одных

СП

режимах работы. При эксплуатации парогенерирующих устройств (реакторы и парогенераторы АЭС, котлы тепловых электростанций и т.д.) в переменных режимах часто наблюдается значительное изменение концентрации примесей в теплоносителе из-за процесса хайдаут. Процесс хайдаут необходимо учитывать при разработке модели роста отложений на теплопередающих поверхностях твэлов кипящих реакторов.

Требования к безопасности и надежности работы ядерных реакторов повышаются с каждым годом. Не вызывает сомнений, что повышение безопасности может быть достигнуто только в результате полного и всестороннего исследования процессов, протекающих в ядерном реакторе. Однако процесс изменения концентрации примесей, особенно в пределах вязкого подслоя, в том числе и сильнопоглощающих, таких как борная кислота, в настоящее время практически не исследованы с точки зрения их влияния на нейтронно-физические характеристики и ядерной безопасности.

Таким образом, исследование процессов распределения концентрации примесей, изучение его связи с процессами образования отложений, коррозии и ядерной безопасностью, является важным и актуальным.

Цель работы :

- Разработка Однослойной модели пространственного распределения примесей при пузырьковом кипении.

- Разработка двухслойной модели пространственного распределения примесей при пузырьковом кипении.

- Создание алгоритмов и программного комплекса для расчета стационарного и нестационарного распределения концентрации растворенных примесей при однослойной и двухслойной моделях.

- Оценка толщины вязкого подслоя при кипении.

- Оценка толщины неразвитого турбулентного слоя при развитом пузырьковом' кипении.

Научная новизна:

1. Проведена оценка толщины вязкого подслоя при кипении.

2. Предложена двухслойная модель пространственного распределения примесей при пузырьковом кипении.

3. Проведена оценка толщины неразвитого турбулентного слоя при развитом пузырьковом кипении.

4. Расчетная модель стационарного и нестационарного одномерного распределения примесей при однослойной и двухслойной моделях.

5. Расчетная модель стационарного и нестационарного двумерного распределения примесей при однослойной и двухслойной моделях.

Практическая ценность. Предложена методика оценки толщины вязкого подслоя, в пределах которых концентрируются примеси при поверхностном кипении. На основе фундаментальных законов сохранения массы, « конвекции и диффузии », гидродинамики и характеристики турбулентности создан программный комплекс DELTA-C, позволяющий рассчитывать координаты точек начала кипения и начала развитого кипения, толщину вязкого подслоя при любых исходных данных, а также стационарное и нестационарное распределение примесей в парогенерирующих каналах. Практическая реализация полученных результатов заключается в прогнозировании поведения примесей в проектируемом и модернизируемом парогенерирующем оборудовании, для разработки оптимальной организации водопитания, продувки и ввода корректирующих растворов в действующих установках.

Апробация работы. Основные положения работы, результаты теоретических и расчетных исследований представлены: 6th International Conference on Nuclear Thermal Hydraulics, Operations and Safety «NUTHOS-6» (Nara, Japan,October 4-8, 2004.), Десятая и одиннадцатая международная научно-техническая конференция студентов и аспирантов "Радиоэлектроника, электротехника и энергетика" , 2-3 марта 2004г, 1-2

марта 2005г.

Публикации. Материалы, отражающие содержание диссертационной работы и полученные в ходе ее выполнения представлены 4 публикациями.

Структура и объем диссертации.

Диссертация состоит из введения, четырех глав, основных выводов и результатов и списка цитируемой литературы. Материал диссертации изложен на 152 страницах и содержит 52 рисунка и 5 таблиц.

Во введении обосновывается актуальность темы диссертации,

определяются цели и задачи исследований, приводится общая характеристика работы.

В первой главе проведен обзор исследования процессов массообмена и распределения концентрации примесей при пузырьковом кипении у поверхности нагрева. Знание основ модели распределения концентрации примесей позволяет предсказать возможности образования на поверхности нагрева отложений веществ, растворенных в теплоносителе. В настоящей работе на основе физико-математической модели распределения растворенных примесей в пределах вязкого подслоя разработан однослойный и двухслойный подход определения пространственного распределения примесей при пузырьковом кипении. Разработка двухслойной модели распределения концентрации примесей в условиях турбулентного вынужденного движения позволит также более полно изучить процессы хайдаута и образования отложений и коррозии теплообменных поверхностей. Сущность предложенной в настоящей работе модели состоит в описании на основе дифференциальных уравнений конвекции и диффузии процесса концентрирования примесей вблизи поверхности теплообмена. Более ранние гипотезы этого типа основывались на балансовых соотношениях между пограничным слоем и основным объемом теплоносителя. Существенными недостатками этих гипотез была невозможность адекватного описания

процессов диффузии, уноса с паром и конвекции с продольным движением жидкости. В результате, балансовые модели давали лишь некоторое качественное соответствие.

Проведена оценка толщины вязкого подслоя и толщины неразвитого турбулентного слоя. В качестве верификации метода оценки толщины вязкого подслоя при развитом пузырьковом кипении была применена модель микро- и макрослоя.

Анализ литературных данных показывает, что в настоящее время в отечественной и зарубежной литературе отсутствует общепризнанное описание механизма и физико-математическая модель распределения концентрации примесей при кипении, а также определение толщины вязкого подслоя при кипении. В то же время, имеются эмпирические и полуэмпирические описания для некоторых частных случаев, справедливые в сравнительно небольшом диапазоне параметров. Для имеющихся экспериментальных данных также характерен большой разброс значений. Все это подтверждает необходимость создания общей теории, включающей в себя как частные случаи те существующие гипотезы, которые являются наиболее обоснованными и экспериментально подтвержденными.

Во второй главе разработана однослойная модель распределения концентрации примесей при пузырьковом кипении в условиях турбулентного течения. При однослойной модели предполагается, что неоднородное распределение концентрации примесей может возникнуть только в пограничном слое в пределах вязкого подслоя и развитое турбулентное течение существует за пределами этого подслоя. На рис. 1 представлена однослойная модель распределения примесей.

Физико-математическая модель распределения растворенных примесей в пределах вязкого подслоя базируется на уравнениях «конвекции и диффузии» (законы сохранения) с учетом особенностей турбулентного двухфазного течения.

радиус трубы

грптща рп-шггого турбутапного течения

\

толщиа вячкого подслоя

«тур6ул<41тн0* -|ядр*1мтвва

ТеПЛОВОЙ ПОТОК

«0

О х

Рис. 1. Однослойная модель Получено общее однослойное уравнение, описывающее нестационарное распределение примесей

где с — массовая концентрация примесей, н> — вектор скорости жидкости, Д —суммарный коэффициент молекулярной и турбулентной диффузии, Кр — коэффициент распределения примесей между водой и паром, т—время

Для того чтобы отличать разные области в кипящем канале нужно определить координаты точек начала кипения и начала развитого кипения, а также зависимости этих точек от гидродинамических и термодинамических параметров. На рис. 2 изображен график, который показывает метод получения точки начала кипения и точки начала развитого кипения.

Получена координата точек начала кипения () и начала развитого кипения (?рк)

— + ЛУ с - У(ОсУс) - (1 - К„)(Уч>)с = О

(1)

¡1 V

/62

49

■р/

/62

(3)

где Г, - температура насыщения (°К); Гж -средняя температура жидкости (°К); ц- плотность теплового потока (кВт/м2); ч> - средняя скорость жидкости (м/с); Л- диаметр трубы (м); А- коэффициент теплопроводности (Вт/м.К); р'-плотность воды (кг/м3); А,- энтальпия насыщения (кДж/кг); -средняя энтальпия жидкости (кДж/кг).

тоиоюй яотак(<у

р*»ИТО« ХКГМЮМ

рк 0

а т, тв

ТвИМрЛТур» ПС-МрХКСОТИМй Н1гр«ЙЖ

Рис. 2. Определение координат точек начала кипения и начала развитого кипения

Определение распределения концентрации примесей в кипящих средах без оценки толщины вязкого подслоя вблизи поверхности нагрева невозможно. Для оценки толщины вязкого подслоя использована гидродинамическая аналогия теплообмена при турбулентном течении в

областях однофазной и кипящей сред. На рис.3, представлена зависимость толщины вязкого подслоя от давления и плотности теплового потока при развитом пузырьковом кипении.

Рис. 3. зависимость толщины вязкого подслоя от давления и плотности

теплового потока

Проведено сопоставление предлагаемой модели оценки толщины вязкого подслоя с моделью макро- и микрослоя. Как показано на рис. 4, на основе этой модели поверхность нагрева делится на 3 зоны: 1-зона сухого пятна (центр парообразования) 2- испаряющийся тонкий мениск жидкой пленки (микрослой) 3- макрослой. Плотность теплового потока на стенке состоит из двух составляющих: 1- теплового потока конвекцией через теплопроводную жидкую пленку (макрослой), ямак 2- теплового потока, идущего на непосредственное испарение жидкости в паровые пузыри, растущие на обогреваемой поверхности, цмик.

4= Чма*+ Чмик (4)

На основе толщины микрослоя и макрослоя получаем среднюю толщину <5, через которую проводится средняя плотность теплового

потока (с}). Сопоставление толщины вязкого подслоя с толщиной 5 дало удовлетворительные результаты.

В третьей главе разрабатывается двухслойная модель распределения концентрации примесей при пузырьковом кипении в условиях турбулентного течения. При однослойной модели неоднородное распределение концентрации примесей наблюдается только в пределах вязкого подслоя. Но, при наличии шероховатости или большой плотности пузырьков на поверхности нагрева, применение однослойной модели дает неудовлетворительные результаты. В таких случаях следует применить двухслойную модель, которая включает в себя вязкий подслой и неразвитый турбулентный слой.

На рис.5 представлена двухслойная модель распределения примесей. При двухслойной модели предполагается, что процесс кипение происходит только в пределах вязкого подслоя, а развитое турбулентное течение существует за пределами неразвитого турбулентного слоя. Для определения границы неразвитого турбулентного слоя необходимо рассматривать влияние шероховатости поверхности. Когда толщина вязкого подслоя и высоты выступов шероховатости становятся равными, условия в окрестности стенки меняются. Однако это не сказывается на законах трения в турбулентном ядре течения. В результате меняется только определение размеров пристенной области, которая является границей развитого

пар р

ч

Рис. 4. Схема течения жидкости в испаряющейся макропленке вблизи центра парообразования

турбулентного потока.

радиус трубы

граница развитого турбулентного течения

толщи вязкого подслоя

Чтрбулевпме ифощтп«

1«ШОВОЙ поток (ф

О X

.Атифф +Люр

XV

Рис. 5. Двухслойная модель

При пузырьковом кипении пузырьки меняют структуру потока у поверхности. Можно считать, что паровые пузырьки перед отделением от поверхности проявляют себя как шероховатость. Эквивалентная шероховатость пузырьков определяется с помощью экспериментов. Это подтверждает возможность использования аналогии между поверхностным кипением и течением в шероховатой трубе.

Отсюда следует, что скользящие вдоль стенки пузырьки воздействуют на течение подобно своеобразной шероховатости, эквивалентная высота которой может быть определена по формуле

0,2574, (5)

Где А,— эквивалентная высота выступов шероховатостей; с/„— средний диаметр пузырьков.

Профиль скорости в шероховатой трубе вблизи стенки принимает

логарифмический закон. Этот закон справедлив для пузырькового пограничного слоя. Таким образом, в расчетах использован логарифмический профиль скорости вблизи стенки.

(6)

где 1/+=— ; = у—; к— константа Кармана; В— константа; и. и

и,—динамическая скорость.

При режиме с полным проявлением шероховатости можно записать

— = 5,75+ 8,5 (7) и. к1

В случае появления пузырьков у поверхности нагрева при пузырьковом кипении встречаются различные условия у поверхности. Сопротивление, оказываемое шероховатой стенкой движению жидкости, зависит не только от формы и высоты элементов шероховатости, но и также от плотности распределения шероховатости, т.е. от числа элементов шероховатости, приходящихся на единицу площади, и, кроме того, от группировки этих элементов на поверхности.

Размер и плотность пузырьков у поверхности по длине кипящего канала меняется. Таким образом, эквивалентная шероховатость поверхности также меняется. На рис. 6 представлены различные слои, образующиеся у кипящей поверхности.

При неразвитом поверхностном кипении, количество пузырьков у поверхности мало и расстояние между ними значительное. В этом случае:

— При гладкой поверхности: ~ ¿>„

—При шероховатой поверхности, эквивалентная высота выступов выше толщины вязкого подслоя: д„ ~

— При развитом поверхностном кипении и гладкой поверхности:

6„ = 0,257</от

где ¿от — средний отрывной диаметр пузырьков

Рис. 6. Взаимное расположение слоев у кипящей поверхности 8„ -толщина вязкого подслоя; 8п -толщина пузырькового (шероховатого) слоя или неразвитого турбулентного слоя; 8Р1 - толщина развитого турбулентного слоя; 8Т - толщина турбулентного пограничного слоя.

В четвертой главе разрабатывается математическая модель и программный комплекс «ОЕЬТА-С» для расчета стационарного и нестационарного распределения концентрации примесей при однослойном и двухслойном подходе. Математическая модель базируется на фундаментальных законах сохранения массы, « конвекции и диффузии », гидродинамики и характеристик турбулентности. Для каждого из этих подходов получены системы дифференциальных уравнений. Для решения систем дифференциальных уравнений разработан целый ряд численных методов и алгоритмов. Среди разработанных методов для дискретизации и решения систем дифференциальных уравнений « конвекции и диффузии » выбран метод конечных объемов. В качестве граничных условий существует два подхода. В первом, принимается, что концентрации примесей в ядре потока постоянны. Такие условия наблюдаются при больших диаметрах

каналов (Ся -С0), где С„ — концентрация примесей в ядре потока и С0 —

концентрация примесей при входе в канал.

Во втором - концентрация примесей в ядре потока меняется по длине обогреваемого канала при постоянной плотности теплового потока

(Ся & С0). При таких случаях изменение концентраций примесей в ядре потока происходит вследствие процесса диффузии примесей из вязкого подслоя в ядро потока (рис. 7).

I.

Рис.7. Изменение концентрации примесей в ядре потока

Ядро расчетной модели написано на языке «МАТЪАВ 6.5» и «БГМиЫМК». Нестационарные двумерные уравнения конвекции и диффузии в однослойной и двухслойной моделях имеют вид

„ я„ уц

О

д2с Э2с1 :-- + — 1 +

дс х---

^дх2 дг2) у/(1 -(рУр'6 дх

1,74 + 21о^_

8с х— + дг

+ -<рУР'6

"Л дт

52С

дс -х---

3 и

(8.

$ -Г +-Г +—7-\----7

а*2 ¥{\-<р>Р'З дх ......

к л 1,74 + 2

дс х— +

V) а»

а)

8 с 8 с ц 8с

дх2 9г2) ^(1-рУр'сЬс

з и

^дс _дс дг дт

(Ю)

4, 1,74 + 214^-

ч

При концентрировании примесей в трещинах, включая как трещины в металле теплообменной поверхности, так и трещины в пористых отложениях, а также узких щелях, конвекция с продольным потоком жидкости отсутствует. Следовательно, достаточно рассматривать одномерное уравнение конвекции-диффузии. Использование двумерной модели необходимо для расчета распределения концентрации малорастворимых примесей. Результаты расчетов показывают, что с уменьшением коэффициентов распределения и диффузии, и диаметра канала концентрация примесей у стенки увеличивается.

На рис. 8 изображена зависимость концентрации примесей, в пределах вязкого подслоя, от давления. Как видно, с ростом давления максимальное

значение С/С0 снижается. Нужно отметить, что увеличение давления приводит к увеличению коэффициента распределения и уменьшению толщины вязкого подслоя. Изменение величины концентрации

растворенных примесей в ядре потока (СЯ^С0), вследствие процесса диффузии, приводит к увеличению этой величины в пределах вязкого подслоя. Результаты расчетов показывают, что максимальная относительная концентрация примесей в кипящих каналах с относительным диаметром (й?/2<5 = 250) приблизительно в полтора раза больше, чем при кипении в большом объеме (Ся = С0).

Рис 8 Зависимость концетрашя? Йк 9. Сравнение распределения примесей от дявяенш пршесей в декартовой и

щтпедяпеской системах координат при <{=400 кВт м2, 1>109»(,/«)<И)Л05 М. 5=40 шм

При диаметрах парогенерирующих каналов, характерных для кипящих реакторов и парогенераторов АЭС и ТЭС можно применить декартовую систему координат. Рис. 9 показывает, что при малых диаметрах каналов расхождение декартовой и цилиндрической модели растет с уменьшением растворимости в паре примесей.

Для решения нестационарных дифференциальных уравнений (8),(9),(10) создан динамический пакет в программе 81М1Л_ШК 4.0 (рис. 10). Таким образом, концентрации примесей во времени легко могут быть получены при любых значениях параметров в любой точке.

Рис. 10. Модель вШиШИС

Результаты численного решения стационарных двумерных уравнений конвекции и диффузии при условии (Ся ^ С0) представлены на рис. 11. Как видно, при увеличении продольной скорости жидкости максимальная концентрация примесей вблизи стенки канала растет.

Рис. 11. Двумерное распределение примесей при Я=400 кВт/м2; р=5 МПа;

=2,2.10"9; Е)=10-9м2/с; с1=0,01м

Выполнено экспериментальное исследование процессов концентрирования радиоактивной примеси 24Ыа на кипящем реакторе ВК-50. Используя экспериментальные данные и расчетные данные по средней относительной концентрации 24Ыа, из уравнения конвекции и диффузии, была получена толщина вязкого подслоя около 40 мкм. Это *

значение соответствует шероховатости отложений на поверхности твэлов. Таким образом, результаты эксперимента подтверждают применение двухслойной модели при наличии шероховатости на поверхности.

Оксп«рнм*я*ашо1» шпика) 1-те»птерттурп 2-дам*ии»; 5-прв дугах

4-мопдпгть

ВЫВОДЫ:

1. Разработана математическая модель распределения концентрации примесей при пузырьковом кипении. Модель описывает распределение примесей в слое вблизи кипящих поверхностей, в стационарных и нестационарных условиях.

2. Проведена оценка толщины вязкого подслоя при различных тепло-гидравлических параметрах и геометрических характеристиках, позволяющая определить концентрацию примесей в этом подслое.

3. Полученные результаты показывают, что локальное значение концентрации примесей вблизи теплопередающей поверхности в пределах вязкого подслоя может быть в 102 - 105 раз больше, чем концентрация в объеме.

4. Если концентрация на стенке примесей происходит на несколько порядков, то значение рН среды на стенке может быть на 2-3 единицы меньше (ПГ АЭС) или больше (барабанные котлы ТЭС), чем в объеме.

5. Локальное (микро) распределение примесей вблизи кипящих

поверхностей особенно при больших значениях (стт/ся ) может заметно влиять на процесс образования отложений, коррозии, кризиса теплообмена и величину критической плотности теплового потока.

6. Сопоставление предложенной модели гидродинамической аналогии теплообмена при поверхностном кипении с моделью микро - и макрослоя

20 Ш - Й 1 1 *

дало удовлетворительные результаты.

7. В процессе кипения пузырьки менян: РНБ

и определяют границу неразвитого т

естественную шероховатость. 2006-4

8. Показана взаимосвязь распределения г 5276

параметров в ядерных реакторах. Выявле

поглощающих нейтроны примесей на распределение нейтронного потока. Основное содержание диссертации изложено в следующих работах:

1. Горбуров В. И., Джахан Фарниа Г. Р Оценка толщины вязкого подслоя при кипении // Вестник МЭИ - 2004.- № 6,- С 112-118.

2. Джахан Фарниа Г. Р., Горбуров В. И. Оценка толщины вязкого подслоя и распределения концентрации растворенных примесей при кипении П 6№ Internationa! Conference on Nuclear Thermal Hydraulics, Operations and Safety «NUTHOS-6» Сборник докл. 4-8 Октября 2004 г.- Nara, Japan 2004,- 13 с. (на англ. яз.).

3. Джахан Фарниа Г. Р, Горбуров В. И. Оценка толщины ламинарного подслоя при кипении // 10-ая междунар. науч.техн. конф. студ. и аспир. Радиоэлектроника, электротехника и энергетика: Тез. докл. науч. техн. конф. 2-3 марта 2004г.- Москва 2004,- 1с.

4. Джахан Фарниа Г. Р, Горбуров В. И. Двухслойная модель распределения концентрации примесей и оценка границы развитого турбулентного слоя // 11-ая междунар. науч.техн. конф. студ. и аспир. Радиоэлектроника, электротехника и энергетика: Тез. докл. науч. техн. конф. 1-2 марта 2005г.- Москва 2005.- 1с.

Печ. Л. IЯ 5

Тираж too

Заказ. Ш

Типография МЭИ (ТУ), Красноказарменная ул., д. 13

Оглавление автор диссертации — кандидата технических наук Джахан Фарниа Голам Реза

Список обозначений.

Введение.

Глава 1. Постановка задачи и обзор литературы.

Глава 2. Однослойная модель распределения примесей при пузырьковом кипении в условиях турбулентного вынужденного движения.

2.1. Физико-математическая модель распределения растворенных примесей в пределах вязкого подслоя.

2.1.1. Закономерности распределения концентрации примесей в пределах вязкого подслоя.

2.2. Теплообмен при пузырьковом кипении в условиях турбулентного вынужденного движения.

2.3. Определение координат точки начала кипения и точки начала развитого кипения.

2.4. Определение коэффициент теплоотдачи при развитом и неразвитом кипении.

2.5. Метод оценки толщины вязкого подслоя при кипении.

2.6. Сопоставление предлагаемой модели оценки толщины вязкого подслоя с моделью макро- и микрослоя.

Глава 3. Двухслойная модель распределения примесей при пузырьковом кипении в условиях турбулентного вынужденного движения.

3.1.Влияние шероховатости поверхности при однофазном конвективном режиме.

3.2. Влияние шероховатости поверхности при пузырьковом кипении.

3.3. Оценка изменения геометрии и структуры шероховатости поверхности нагрева при появлении паровых пузырьков.

Глава 4. Математическая модель распределения примесей при поверхностном кипении.

-34.1 .Расчетная модель стационарного одномерного распределения примесей при однослойной и двухслойной модели.

4.1.1. Распределение примесей в пределах вязкого подслоя в цилиндрической системе координат.

4.2.Расчетная модель нестационарного одномерного распределения примесей при однослойной и двухслойной модели.

4.3.Расчетная модель стационарного двумерного распределения примесей при однослойной и двухслойной модели.

4.4.Расчетная модель нестационарного двумерного распределения примесей при однослойной и двухслойной модели.

4.5. Взаимосвязь распределения примесей и нейтронно — физических параметров ядерных реакторов.

4.6. Экспериментальное исследование процессов концентрирования радиоактивной примеси 24Na на кипящем реакторе ВК-50.

Выводы.

Введение 2005 год, диссертация по энергетике, Джахан Фарниа Голам Реза

Актуальность темы диссертации. Обеспечение надежной работы и безопасности парогенераторов и кипящих реакторов энергоблоков АЭС требует оптимальной организации водного режима и знания нестационарных макро- и микрораспределения растворенных примесей. Оптимизации водного режима АЭС должна проводиться, исходя из задач повышения их безопасности, готовности и увеличения длительности их межперегрузочного и межремонтного циклов. Одной из основных причин снижения надежности и безопасности оборудования электростанций является разрушение поверхностей теплообмена. Известно, что основной причиной разрушения является коррозия, а прочие факторы, такие как пережог труб, составляют относительно небольшую часть. Это относится как к тепловым, так и, в особенности, к атомным электростанциям, для которых коррозия часто оказывается практически единственной причиной. Локальное (микро) распределение примесей вблизи кипящих поверхностей оказывает заметное влияние на процесс образования отложения, коррозии, величину критической плотности теплового потока и такой важный показатель, как РН среды на стенке. Если концентрация на стенке хорошо растворимых в воде и плохо растворимых в паре примесей происходит на несколько порядков (а к ним относятся хлориды и сульфаты), то значение РН среды на стенке будет на 2-3 единицы меньше, чем в объеме. Локальное значение концентрации примесей вблизи теплопередающей поверхности в пределах вязкого подслоя л е может быть в 1(Г - 103 раз больше, чем концентрация в объеме. Наиболее существенные отклонения показателей водного режима от норм наблюдаются в переходных режимах работы. При эксплуатации парогенерирующих устройств (реакторы и парогенераторы АЭС, котлы тепловых электростанций и т.д.) в переменных режимах часто наблюдается значительное изменение концентрации примесей в теплоносителе из-за процесса хайдаут. Процесс хайдаут необходимо учитывать при разработке модели роста отложений на теплопередающих поверхностях твэлов кипящих реакторов.

Требования к безопасности и надежности работы ядерных реакторов повышаются с каждым годом. Не вызывает сомнений, что повышение безопасности может быть достигнуто только в результате полного и всестороннего исследования процессов, протекающих в ядерном реакторе. Однако процесс изменения концентрации примесей, особенно в пределах вязкого подслоя, в том числе и сильнопоглощающих, таких как борная кислота, в настоящее время практически не исследованы с точки зрения их влияния на нейтронно-физические характеристики и ядерной безопасности.

Таким образом, исследование процесса распределения концентрации примесей, изучение его связи с процессами образования отложений, коррозии и ядерной безопасностью является важной и актуальной.

Целью работы :

- Проведение оценки толщины вязкого подслоя при кипении.

- Проведение оценки толщины неразвитого турбулентного слоя при развитом пузырьковом кипении.

- Разработка однослойной модели пространственного распределения примесей при пузырьковом кипении.

- Разработка двухслойной модели пространственного распределения примесей при пузырьковом кипении.

- Создание алгоритмов и программного комплекса по названию DELTA-C для расчета стационарного и нестационарного распределения концентрации растворенных примесей при однослойной и двухслойной модели.

Научная новизна;

-91. Проведена оценка толщины вязкого подслоя при поверхностном кипении.

2. Предложена двухслойная модель пространственного распределения примесей при пузырьковом кипении.

3. Проведена оценка толщины неразвитого турбулентного слоя при развитом пузырьковом кипении.

4. Расчетная модель стационарного и нестационарного одномерного распределения примесей при однослойной и двухслойной моделях.

5. Расчетная модель стационарного и нестационарного двумерного распределения примесей при однослойной и двухслойной моделях.

Практическая ценность. Предложена методика оценки толщины вязкого подслоя, в пределах которых концентрируются примеси при поверхностном кипении. На основе фундаментальных законов сохранения массы, « конвекции и диффузии », гидродинамики и характеристики турбулентности создан программный комплекс DELTA-C, позволяющий рассчитывать координаты точек начала кипения и начала развитого кипения, толщину вязкого подслоя при любых исходных данных и также стационарное и нестационарное распределение примесей в парогенерирующих каналах. Практическая реализация полученных результатов заключается в прогнозирования поведения примесей в проектируемом и модернизируемом парогенерирующем оборудовании, для разработки оптимальной организации водопитания, продувки и ввода корректирующих растворов в действующих установках.

Публикации. В ходе работы над диссертацией опубликованы статья и тезисы докладов.

Содержание работы

Структура и объем диссертации.

Диссертация состоит из введения, четырех глав, основных выводов и результатов и списка цитируемой литературой. Материал диссертации изложен на 152 страницах и содержит 52 рисунка и 5 таблиц.

Заключение диссертация на тему "Моделирование пространственного распределения примесей в парогенерирующих каналах оборудования АЭС и ТЭС"

выводы

В работе создана и исследована однослойная и двухслойная модель пространственного распределения концентрации растворенных примесей при пузырьковом кипении. В работе также проведена оценка толщины вязкого подслоя при развитом и неразвитом пузырьковом кипении. Основные результаты работы заключаются в следующем.

1. Разработана математическая модель распределения концентрации примесей при пузырьковом кипении. Модель описывает распределение примесей в слое вблизи кипящих поверхностей в стационарных и нестационарных условиях.

2. Проведена оценка толщины вязкого подслоя при различных тепло-гидравлических параметрах и геометрических характеристиках, позволяющая определить концентрацию примесей в этом подслое.

3. Полученные результаты показывают, что локальное значепне концентрации примесей вблизи теплопередающей поверхности в пределах вязкого подслоя может быть в 102 - 105 раз больше, чем концентрация в объеме.

4. Если концентрация на стенке примесей происходит на несколько порядков, то значение рН среды на стенке может быть па 2-3 единицы меньше (ПГ АЭС) и или больше (барабанные котлы ТЭС), чем в объеме.

5. Локальное (микро) распределение примесей вблизи кипящих поверхностей особенно при больших значениях (стах/с>, ) может заметно влиять па процесс образования отложения, коррозии, кризиса теплообмена и величину критической плотности теплового потока.

6. Сопоставление предложенной модели гидродинамической аналогии теплообмена при поверхностном кипении с моделью микро - и макрослоя дало удовлетворительные результаты.

7. В процессе кипения пузырьки меняют структуру потока у поверхности н определяют границу неразвитого турбулентного слоя, увеличивая естественную шероховатость.

8. Показана взаимосвязь распределения примесей и нейтронио -физических параметров в ядерных реакторах. Выявлено влияние распределения сильно поглощающих нейтроны примесей па распределение нейтронного потока.

Библиография Джахан Фарниа Голам Реза, диссертация по теме Ядерные энергетические установки, включая проектирование, эксплуатацию и вывод из эксплуатации

1. Holl R.E. Transactions of the ASME.-1944.- V. 66, 5- C. 456-474.

2. Шкроб M.C., Прохоров Ф.Г. Водоподготовка и водный режим паротурбинных электростанций. — М.: Госэнергоиздат, 1961.

3. Class G. Zur Frage warmestromalhangiger salzablagerungen en seiderohren // Mitt. VGB.-l 962.-№ 7. S. 35-40.

4. Хлебников Д.Л. Пространственное распределение примесей в паро-генерирующих устройствах АЭС и ТЭС в стационарных и переходных процессах. Дпсс.канд. техн. наук. — М.: МЭИ, 2001.

5. Катковский С. Е. Процессы выброса прятания примесей в парогеперирующих устройствах АЭС и ТЭС. Афгореф. ДИСС.каид. Тех. паук.-МЭИ.-2002.

6. Macbeth R.V. Boiling on surface overlaid with a porous deposit: Heat transfer rates obtainable by capillary actions. — AEEW-R-711. Winlrith, 1971.

7. Катковский С. E., Горбуров В. И. Явления выброса и прятания примесей и их связь с иейтронно-физическими параметрами ядерных реакторов // Седьмая междунар. науч.-техн. конф. студентов и аспирантовггез. докл., т. 3. -М.: Изд-во МЭИ, 2001.-С. 166-167.

8. Allen Baum. Thermal-Chemical Interactions In Restricted Areas of Steam Generators, AIChE Symposium Series, Heat Transfer Pittsburgh, 257. —1987. -Vol. 83.-p. 97-102.

9. EPRI. Hideout return evaluation approach.—URL www.cpri.com.

10. Bignold GJ. Chemistry in Combined CycIc Units The National Power Experience Geoff // PowerPlant Chemistry.— 2000.— т. 6.— № 2.— URL http://64.65.41.1 1 1/on linc-pd ('/download-10-2001 .pdl".

11. Wood C.J. PWR Secondary Water Chemistry Guidelines. // EPRI Journal, 1993.— C. 38-41.

12. Стюшии H. Г. Новые результаты исследования теплообмена при кипении в трубах //ВКНю: Тепло и Массоперенос. -Т. 2. Минск. -1962. -С. 114-119.

13. Физические величины: справочник / Бабичев А.П., Бабушкина Н.А., Братковский A.M. и др.; под ред. И. С. Григорьева, Е. 3. Мейлихова — М.: Эпергоатомиздат, 1991.—1232 с.

14. Галин Н. М., Кириллов П.Л. Тепломассообмен (в ядерной энергетике). — М.: Эпергоатомиздат,1987. — 376 с.

15. Ландау Л.Д., Лифшиц Е. М. Гидродинамика. — М.: Наука, 1988. — 734 С.

16. Шлихтинг Г. Теория пограничного слоя. — М.: Наука, 1974.20. де Гроот С.Р., Мазур П. Неравновесная термодинамика. — М.: Мир, 1964.

17. Монин А.С., Яглом A.M. Статистическая гидромеханика, часть 1. — М.: Наука, 1965.-640 с.

18. Ягов В.В. Теплообмен при развитом пузырьковом кипении жидкостей// Теплоэнергетика. — 1988 . — № 2. —4 с.

19. Yagov, V.V. The principal mechanisms for boiling contribution in flow boiling heat transfer //Convective Flow Boiling. J. C. Chen. Teylor and Francis, 1996. —p. 175-180.

20. Yagov, V.V. The principal mechanisms for boiling contribution in flow boiling heat transfer //Convective Flow Boiling. J. C. Chen. Teylor and Francis, 1996. —p. 175-180.

21. Kirby D., Westwater J. Bubble and vapor behavior on heated horizontal plate during pool boiling near burnout// Chem. Eng/ Progr. Symp. Series. —1965. — V. 61.-№57.-p.238-248.

22. Van Ouwerkerk H. J. Burnout in pool boiling the stability of boiling mechanisms //Int. J. Heat Mass. Transfer.—1972.—V. 15.—№ 1. —p.25-37.

23. Chi-Liang Yu., Meister R. B. A study of nucleate boiling hear the peak heat flux through measurement of transient surface temperature// Int. J. Heat Mass. Transfer. -1977. -V. 20. -№ 8. p.827-840.

24. О взаимодействии паровых пузырей с зондом в двухфазных потоках/ Ф. Ф. Цыганок, 10. П. Джусов, Н. Н. Митяев, А. А. Грибов// Теплоэнергетика. -1979. -№ 9.-С. 50-53.

25. Белов С.И. Пористые металлы в машиностроении. М: машиностроение. -1981.-247 с.

26. Iida Y., Kabayashi К. Distribution void fraction above a horizontal heating surface in pool boiling// Bulletin JSME.-1969.-V. 12. p.283.

27. Bhat A. M., Saini J. S., Prakash R. Role of macro-layer evaporation in pool boiling at high heat flux// Inter. J. Heat Mass Transfer. -1986. -V. 29. p. 1953.

28. Rajavenski A. K., Saini J. S., Prakash R. Investigation of macrolayer thickness in nucleate pool boiling at high heat flux// Inter. J. Heat Mass Transfer. —1992. —V. 35. —№ 2.— p. 343.

29. Possible mechanisms of macrolayer formation/ Sadasivan P., Chappidi P. R., Unal C., Nelson R. A. // Eng. Foundation Conf. on Pool and External Flow Boiling. S. Barbara, CA. Varch 22-27.1992. p. 135-141.

30. Shoji M., Kuroki H. A model of macrolayer formation in pool boiling // Proc. 10th Int. Heat Transfer Conf. Brighton. 1994. V.S.P. 147-152.

31. Ягов В. В. Приближенная теория теплообмена и кризисов иузырьково кипения жидкостей/ Автор. Докт. Дисс. М.:МЭИ.1988.

32. Lay J. Н., Dhir V. К. A nearly thoritical model for fully developed nucleate boiling of saturated liquids// Proc. 10th Int. Heat Transfer Conf. Brighton. 1994. № 10. PB-17.p 105.

33. Стырикович М. А., Полонский В. С., Циклаури Г. В. Тепломассообмен и гидродинамика в двухфазных потоках атомных электрических станций. — М.: Наука, 1982.-370 с.

34. Cohen P. The chemistry of water and solution at high temperatures for application to corrosion in power systems.—Ermounville, 1972.

35. Cohen P. Heat and mass transfer for boiling in porous deposits with chimneys // Heat Transfer-Research and Design, AIChE Symp. -1974.-V. 70. № 138.

36. Cohen P. Heat and mass transfer in porous deposits with boiling. — WARD-5836, 1974.

37. Полонский В. С., Зуйков А. С., Леонтьев А. И., Стырикович М. А. Модель процесса концентрирования при кипении в капиллярно-пористых структурах.-ДАН СССР, 1978.-т.241.-№ 3.- С. 579-582.

38. Стырикович М. А., Леонтьев А. И., Малышенко С. П. О механизме переноса нелетучих примесей при кипении на поверхностях, покрытых пористой структурой.//ТВТ, 1976,-т. 15.-№5.- С. 998-1006.

39. Мамст В. А., Мартынова О. И. Процессы хайд-аут» (местного концентрирования) примесей котловой воды парогенераторов АЭС и их влияние па надежность работы оборудования // Теплоэнергетика. — 1993. — № 7, — С. 2-7.

40. Горбуров В.И. Гидродинамика двухфазных потоков в специфических условиях эксплуатации АЭС.—М.: Издательство МЭИ, 1999.-е. 120.

41. Harrington G. Hideout of Sodium Phosphates in Steam Generator Crevices // 25th CNS/CNA Annual Student Conference. — Hamilton, Ontario: McMaster University, 2000.

42. Манькина H. H. Исследование условий образования железоокисиых отложений // Теплоэнергетика.—1960. —№ 9. — С. 8-12.

43. Маиькипа Н. Н. условия образования отложений в присутствии ряда накипеобразователей и способы их предотвращения // Электрические станций.-1962.-№2.-С. 13-16.

44. Манькина Н. Н., Логинов М. Д., Сашина Т. А. Предотвращение образования медных накипей введением гексаметафосфата натрия// Теплоэнергетика,—1956. —№ 10. — С. 33-36.

45. Манькина Н. Н. накипеобразования в паровых котлах с многократной циркуляцией // Теплоэнергетика.—1958. —№12. — С. 12-18.

46. Краснов Л, M., Ещеркин В. М., Шмелев В. Е., Туртаев Н. П., Грачев С. А. Процессы концентрация растворенных примесей теплоносителя («хайд-аут ») на исследовательском реакторе ВК-50. // Теплоэнергетика. —2002. —№ 7. —С. 18-23.

47. Class G. Zur Frage Wrmestromabhengiger Salzablagerungen in Seiderohen. // Mitt. VGB—1962.—№ 80.-S. 35-40.61. . Левпч В.Г. Физико-химическая гидродинамика. —М.: Физматгпз, 1959.

48. Гиргидов А.Д. Турбулентная диффузия с конечной скоростью. — СПб.: Изд-во СПбГТУ, 1996. 260 с.

49. Авдеев А. А. Аналогия Рейнольдса для неразвитого поверхностного кипения в условиях вынужденного движения // Теплоэнергетика. —1982. — № 3. — С. 23-25.

50. Стырикович М.А., Мартынова О.И., Миропольский З.Л. Процессы генерации пара на электростанциях. — М.: Энергия, 1969. —312 С.

51. Водный режим тепловых электростанций. Под общ. Ред. Т. X. Маргуловой. — М.-Энергия, 1965.—383 с.

52. Кутепов А. М., Стерман JI. С., Стюшин Н. Г. Гидродинамика и теплообмен при парообразовании. -М.: Высшая школа.-1968. -448 С.

53. Жукаускас А. А. Конвективный перенос в теплообменниках. — М.: Паука, 1982.

54. Coy С. Гидродинамика многофазных систем. —М.: Мир, 1971.—536 С.

55. В. В. Ягов, Сафари Хамид. Определение условий закипания в потоке недогретой жидкости // вестник МЭИ —2003. — № 4. — С. 25-28.

56. Федоров J1. Ф., Рассохин Н. Г. Процессы генерации пара на атомных электростанциях. М.: Энергоатомиздат,1985. — 288 С.- 14871. Лабупцов Д. А., Ягов В. В. Механика двухфазных систем. М.: Издательство МЭИ, 2000.—374 е.: ил.

57. Ягов В. В. Научное наследие Д. А. Лабупцов и современные представления о пузырьковом кипении // Теплоэнергетика. — 1995.— № 3.— С. 2-10.

58. Hsu У. У. On the size range of active nucleation cavities on the heating surface //J. Heat Transfer.- 1962.-Vol. l.-№ 3.- P. 207-216.

59. Spatio-temporal analysis of nucleate pool boiling: identification of nucleate sites using non orthogonal empirical functions /Р. E. McSharry, J. H. Ellepola, von llardenbcrg e. a. // int. J. Heat Mass Transfer. -2002.-Vol. 45. № 1.- P. 237 252.

60. The physics of Boiling at Durnout/ T. G. Theofanous, J. P. Tu, T. N. Dinh e. a. //Center of Risk studies and safety University of California, Santa Barbara, Us. CRSS-02/02. February 14, 2002.

61. Аметистов E. В., Клименко В.В., Павлов Ю. М. Кипение криогенных жидкостей. —М.: Энсргоатомиздат, 1995.

62. Davis Е. J., Anderson G. Н. The incipience of nucleate boiling in forced convection flow // AIChE Journal. 1966. - Vol. 12. - № 4. - P. 774-780.

63. Справочник по теплообменникам. B2 т. Т. 1: Пер. с англ. / Под ред. Б. С. Пстухова, В. К. Шикова. —М.: Энергоатомиздат,1987.

64. Bowring R.W. Physical model based on bubble detachment and calculation of steam voidage in the subcooled region of a heated channel. OECD Halden Reactor Project Report HPR-10 (1962).

65. Григорьев В.А., Зорин B.M. Тепло и массообмен теплотехнический эксперимент справочник.— М.: Энергоиздат ,1982.

66. Bergles А.Е., Rohsenow W.M. The determination of forced convection surface boiling heat transfer // Paper 63-HT-22 presented at 6th national heat transfer conference of the ASME-AICHE, Boston,11-14 August.(1963).

67. Муравых А. И., Павлов Ю. M. К определению параметров начала кипении в трубах // ВКН.: Тепло и Массопереноса. -Т. 2. -Минск. -1962. -С. 114-119.

68. Григорьев В.А., Зорин В.М. Тепло и массообмен теплотехнический эксперимент справочник.— М.: Энергоиздат ,1982.

69. Yagov, V.V. The principal mechanisms for boiling contribution in flow boiling heat transfer //Proceeding of convective flow boiling, an international conference held at the Banff, Alberta, Canada. April 30-May, 1995.

70. Боришаиский B.M., Данилова Г.Н., Готовский M.A. Теплообмен и гидродинамика. — М.: Энергия—1977. — С. 54-71.

71. Pittner. Thickness of the laminar sublayer . http://w\vw.edstrom.com/ahoul us.elm growth factors. 1988.

72. Kumada Т., Sakashita H. Pool boiling heat transfer -II thickness of liquid macrolayer formed beneath vapor masses // Int. J. Heat mass transfer. — 1995. — Vol. 38.- №6. -P. 979-987.

73. He Y., Shoji M., Maruyama S. Numerical study of high heat flux pool boiling heat transfer // Int. J. heat & Mass transfer. 2001. - Vol. 44. - P. 2357-2373.

74. Кутаталадзе С. С. , Леонтьев А. И. Тепломассообмен и трепне в турбулентном пограничном слое. — М.: Энергоатомиздат, 1985. — 320 с.

75. Myeong- Gie Kang, Effect of surface roughness on pool boiling heat transfer// Int. J. Heat & Mass Transfer. Issue 22,15 November 2000. -V. 43.- p. 40734085.

76. Kandikar S. G. Critical heat flux in subcooled flow boiling- An assessment of current understanding and future directions for research// Multiphase Science and Technology. -2001 -V. 13.- p. 207-232.

77. Yu J., Momoki S., Koyama S. Experimental study of surface effect on flow boiling heat transfer in horizontal smooth tubes// Int. J. Heat & Mass Transfer. — 1999.- V. 42.- p. 1909-1918.

78. Takamatsu H., Momoki S., Fuji T. A correlation for forced convective boiling heat transfer for pure refrigerants in horizontal smooth tube// Int. J. Heat & Mass Transfer. 1993.-V. 36.-№ 13.- p. 3351-3360.

79. Cieslinski Janusz T. Nucleate pool boiling on porous metallic coatings// Experimental Thermal and Fluid Science. — 2002. — V. 25. — p. 557-564.

80. Авдеев А. А. Гидродинамика турбулентных течений пузырьковой двухфазной смеси// Теплофизика Высоких Температур. — 1983.— № 13. — том. 21.

81. Gabillet С., Colin С., Fabre J. Experimental study of bubble injection in a turbulent boundary layer// International Journal of Multiphase Flow . — 2002. — V. 28.- p. 553-578.

82. Moursali E. M.,Marie J. L., Bettaille J. AN upward turbulent boundary layer along a flat plate// Int. J. Heat & Mass Transfer. 1995. - V. 21. - p. 107-117.

83. Troshko A. A., Hassan Y. A. Law of the wall for two-phase turbulent boundary layers// Int. J. Heat & Mass Transfer. 2001. - V.4421. - p. 871 -875.

84. Захаров С. В. Модель кризиса теплоотдачи при пузырьковом кипении жидкостей в каналах при высоких приведенных давлениях. Афтореф. ДИСС.капд. Тех. паук.-МЭИ.-2003.

85. Альтшуль А. Д. Гидравлические сопротивления,— 2-е изд. Перераб. И доп. М.: Недра. -1982. -224 с.

86. Процессы концентрирования растворенных примесей теплоносителя (хайд-аут) па исследовательском реакторе ВК50/ Краснов А. М., Ещеркин В. М., Шмелев В. Е., Туртаев Н. П., Грачев С. А.// Теплоэнергетика. —2002. — №7.-С. 18-24.

87. Кузма-Кичта Ю. А. Методы интенсификации теплообмена— М.: Издательство МЭИ, 2001. —112с.

88. Maurus R.,Ilchenko V., Sattelmayer Т. Study of the bubble characteristics and the local void fraction in subcooled flow boiling using digital imaging and analyzing techniques// Experimental Thermal and Fluid Science. — 2002. — V. 26. -p. 147 155.

89. Bostjan Koncar, Ivo Kljenak, Borut Mavko, Modeling of local two-phase flow parameters in upward subcooled flow boiling at low pressure// Int. J. Heat & Mass Transfer. — 2004.

90. Unal H. C. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate// Int. J. Heat & Mass Transfer. 1976. - V. 19. - p. 643-649.

91. Young Min Kwor, Heung Chang, A mechanistic critical heat flux model for wide range of subcooled and low quality flow boiling// nuclear Engineering and Design- 1999. V. 188. - p. 27-47.

92. Levy S. Forced convection subcooled boiling- prediction of vapor volumetric fraction// Int. J. Heat & Mass Transfer. 1967. - V. 10. - p. 951-965.

93. Dix G. E. Vapor void fractions for forced convection with subcooled boiling at low flow rates, NEDO-10491, General Electric Company. — 1976.

94. Qi Sun, Ruichang Yang, Hua Zhao, Predictive study of the incipient point of net vapor generation in low-flow subcooled boiling// nuclear Engineering and Design- 2003. V. 225. - p. 249-256.

95. Fritz W. Berechnung des maximal volumes von dampfblasen// Phys. Z. 1935. -V. 36.- p. 379.- 152116. Relap5/M0DE 3.2.2 Gamma Code MANUAL, Volume IV : Models and Correlations, Scientech, INC. June, 1999.

96. Дьяконов В. Simulink 4. специальный справочник.— СПБ: Питер,2002. — 528 с.