автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.06, диссертация на тему:Методология создания автоматизированных систем обеспечения стабильности условий роста монокристаллов в электротермических установках

доктора технических наук
Юдин, Алексей Викторович
город
Рыбинск
год
2011
специальность ВАК РФ
05.13.06
Диссертация по информатике, вычислительной технике и управлению на тему «Методология создания автоматизированных систем обеспечения стабильности условий роста монокристаллов в электротермических установках»

Автореферат диссертации по теме "Методология создания автоматизированных систем обеспечения стабильности условий роста монокристаллов в электротермических установках"

005015745

Юдин Алексей Викторович

МЕТОДОЛОГИЯ СОЗДАНИЯ АВТОМАТИЗИРОВАННЫХ СИСТЕМ

ОБЕСПЕЧЕНИЯ СТАБИЛЬНОСТИ УСЛОВИЙ РОСТА МОНОКРИСТАЛЛОВ В ЭЛЕКТРОТЕРМИЧЕСКИХ УСТАНОВКАХ

Специальность 05.13.06 - Автоматизация и управление технологическими процессами и производствами (промышленность)

Автореферат диссертации на соискание ученой степени доктора технических наук

1 МАР 2012

Рыбинск-2011

005015745

Работа выполнена в федеральном государственном бюджетном образовательном учреждение высшего профессионального образования "Рыбинский государственный авиационный технический университет имени П. А. Соловьева".

Научный консультант

доктор технических наук, профессор Серебряков Сергей Павлович

Официальные оппоненты:

доктор технических наук, профессор Панфилов Юрий Васильевич

доктор технических наук, профессор Волков Дмитрий Иванович

доктор технических наук, доцент Курганов Сергей Александрович

Ведущая организация

Национал ьный исследовательский университет, Московский энергетический институт, г. Москва

Защита состоится 28 марта 2012 года на заседании диссертационного совета Д 212.210.04 в федеральном государственном бюджетном образовательном учреждение высшего профессионального образования "Рыбинский государственный авиационный технический университет имени П. А. Соловьева" по адресу: 152934, г. Рыбинск, Ярославская область, ул. Пушкина, 53, ауд. Г-237.

С диссертацией можно ознакомиться в библиотеке федерального государственного бюджетного образовательного учреждения высшего профессионального образования "Рыбинский государственный авиационный технический университет имени П. А. Соловьева".

Автореферат разослан 14 февраля 2012 г.

Ученый секретарь диссертационного совета

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы.

Из всего множества монокристаллов, составляющих, многообразие природных минералов, практическое распространение получили лишь некоторые из них. Объясняется это сложностью процессов кристаллизации и техническими трудностями, связанными с необходимостью точного соблюдения и обеспечения стабильности режима выращивания монокристаллов.

На формирование монокристалла существенное влияние оказывает форма фронта кристаллизации, так как рост кристалла всегда происходит в направлении, перпендикулярном фронту кристаллизации. Для снижения вероятности роста поликристалла необходимо создавать как можно более крутой градиент температур, то есть в каждой точке фронта кристаллизации осевая составляющая градиента должна преобладать над радиальной. Качество фронта кристаллизации принято оценивать по ряду параметров: максимальному прогибу, степени кривизны фронта, величине аксиального и радиального градиентов, скорости перемещения. Любая нестабильность условий роста вызывает изменение параметров фронта кристаллизации.

Таким образом, оптимальные условия для получения монокристалла создаются в том случае, когда обеспечивается плоский фронт роста в макроскопическом масштабе и скорость роста не превышает заданной величины. Существует четкая зависимость: чем выше требуется качество монокристалла - тем меньше должна быть скорость роста.

В то же время наметившаяся тенденция к увеличению размеров монокристаллов приводит к невозможности обеспечения оптимальных условий. Так, например, увеличение диаметра тигля с 300 до 600 мм за счет перераспределения градиентов приводит к прогибу фронта кристаллизации на 3 см.

Помимо искажения плоскостности фронта кристаллизации увеличение размеров тиглей ведет также и к ускорению роста монокристалла, так в направлении оси тигля наблюдается наибольшее переохлаждение расплава, которое тем больше чем больше его диаметр. Это приводит к превышению заданной скорости кристаллизации и увеличению вероятности возникновения дефектов. При превышении некоторого критического скорости перемещения фронта возможна потеря устойчивости процесса и переход к неуправляемой кристаллизации.

Таким образом, необходимость увеличения размеров получаемых монокристаллов приводит к увеличению размеров технологического оборудования, что влечет искривление фронта кристаллизации. В настоящее время наметилась тенденция к увеличению числа тепловых зон, такой подход позволяет за счет активного управления тепловыми зонами снизить степень кривизны фрон-

та кристаллизации. При этом возникает задача связного управления тепловыми зонами, то есть обеспечения требуемой точности поддержания технологических параметров при наличии возмущений от смежных зон нагрева.

Поскольку на практике спектр мощности является полигармоническим, то изменение температуры на фронте кристаллизации будет определяться не только теплотой, поступающей от нагревательного элемента, но и теплотой полученной за счет индуцированных токов. Вклад индукционного нагрева может быть весьма значительным, поскольку при высоких температурах большинство материалов становятся электропроводным, а токи в высокотемпературных установках достигают 5000 А. Высокотемпературный нагреватель, как правило, представляет собой решетчатую конструкцию из вольфрамовых прутков (около 12 штук). В непосредственной близости от прутка формируется переменное магнитное поле. Индуцированные в расплав токи при этом зависят прямо пропорционально от частоты, удельной электрической проводимости и магнитной проницаемости расплава. В существующих установках в режиме роста монокристаллов сапфира спектральный состав тока через нагреватель представляет собой убывающую функцию: 50 Гц - 2100 А, 150 Гц - 1050 А, 250 Гц - 392 А и так далее. Тогда на частоте первой гармоники спектра 50 Гц напряженность магнитного поля от одного прутка в непосредственной близости от нагревателя составит 292 А/м, а плотность индуцированного тока - 41 А/м2, что соответствует удельной мощности, выделяемой в расплаве в непосредственной близости от нагревателя - 17 Вт/м3. Аналогично для третьей гармоники 150 Гц: напряженность магнитного поля - 146 А/м, плотность тока - 35 А/м2, индуцированная мощность - 12 Вт/м3. Для пятой гармоники эти значения составят 54 А/м, 17 А/м2 и 3 Вт/м3 соответственно. При этом общая подводимая к расплаву мощность составляет примерно 25000 Вт/м".

Индуцированные мощности достаточно малы по сравнению с общей подводимой мощностью, но и требования к точности поддержания температуры на фронте кристаллизации очень высоки. Кроме того, высокочастотные составляющие в спектре мощности нагревателя по мере проникновения в расплав поглощаются в большей степени, чем низкочастотные, что приводит к неравномерному выделению индуцированной мощности в расплав и еще большему искривлению фронта кристаллизации. При этом неравномерность выделения индуцированной мощности возрастает с ростом диаметра тигля.

Если представить фронт кристаллизации многомерным термическим объектом, и предположить, что при питании постоянным током был обеспечен плоский фронт кристаллизации, то питание установки переменным током с приведенным выше спектральным составом приведет к искажению теплового поля с максимальной разницей температур 0,08 °С, что составляет более 30 % от допустимой ошибки по температуре (0,2 °С) и весьма существенно для рассматриваемых технологических процессов.

Таким образом, на методы регулирования мощности накладывается ограничение по спектральному составу тока через нагревательный элемент.

Данная работа направлена на решение актуальной проблемы современного машиностроения - совершенствование методов и средств автоматизированного управления технологическим процессом формирования монокристаллов с целью обеспечения оптимальных условий роста. Без решения этой проблемы дальнейшее увеличение размеров монокристаллов (с целью снижения себестоимости выпускаемых из них изделий) с сохранением эффективности производства не достижимо.

Цель работы. Разработка методологии обеспечения стабильности условий роста монокристаллов за счет совершенствования элементов системы автоматизации, применения современных алгоритмов управления на основе прогнозирования физических явлений, протекающих в электротермической установке, посредством математического моделирования. Основные задачи:

1. Анализ технологических процессов выращивания монокристаллов и особенностей технологического оборудования;

2. Разработка методов прецизионного регулирования мощности с учетом требований технологического процесса;

3. Разработка математических моделей прецизионных регуляторов мощности;

4. Разработка математических моделей многозонных термических объектов, как объектов управления в составе системы;

5. Синтез оптимальных систем автоматического управления с учетом особенностей технологических процессов и оборудования для выращивания монокристаллов.

Методы исследований. Для решения поставленных задач применены методы математического и компьютерного моделирования, построения алгоритмов и программ, теории автоматического управления, методы матричного и спектрального анализа, теория дифференциальных уравнений.

Достоверность и обоснованность полученных результатов подтверждается корректностью разработанных математических моделей, их адекватностью, использованием положений фундаментальных наук, корреляцией полученных теоретических результатов с данными эксперимента и результатами промышленной эксплуатации созданных систем. На защиту выносятся:

способ стабилизации скорости кристаллизации при наличии температурного дрейфа охладителя в литейных установках для получения монокристаллических отливок;

структура оптимального адаптивного регулятора скорости кристаллизации для установок с весовыми методами контроля.

результаты анализа влияния спектра индуцированной мощности на неравномерность температурного поля в расплаве и критерий оптимизации спектрального состава при регулировании мощности;

оптимизированные к задачам прецизионного регулирования мощности в установках выращивания монокристаллов структуры цифровых регуляторов напряжения;

матричные модели цифровых регуляторов напряжения на основе транс-форматорно-ключевых регулирующих элементов, оптимизированные для практически значимых реализаций силовых агрегатов установок выращивания монокристаллов;

оптимизированные математические модели многозонных термических объектов: обобщенная сеточная модель, модель с частичной управляемостью, модель с регулярными структурами;

методы и структуры оптимального управления многотонным термическим объектом «в большом» (перевод из одного состояния в другое);

корректирующие структуры для стабилизации температурного поля на фронте кристаллизации при взаимном влиянии зон и в условиях частичной управляемости.

Научная новизна исследований состоит в:

учете влияния спектра индуцированной в расплав мощности на стабильность фронта кристаллизации;

разработке сеточных моделей многозонных термических объектов, оптимизированных под задачи управления технологическими установками в режиме

реального времени;

разработке матричных моделей цифровых регуляторов напряжения на базе трансформаторно-ключевых рейдирующих элементов, оптимизированных под задачи прецизионного регулирования мощности с контролируемым спектральным составом в режиме реального времени;

синтезе оптимального закона управления многозонным термическим объектом на основе аналитического решения системы дифференциальных уравнений;

синтезе закона управления многозонным термическим объектом с прогнозирующей моделью для объектов с частичной управляемостью;

синтезе адаптивного регулятора скорости кристаллизации для установок

с весовьм методом контроля.

Практическая ценность диссертационной работы заключается в возможности использования в промышленности:

способа стабилизации скорости кристаллизации при наличии температурного дрейфа охладителя в литейных установках для получения монокристаллических отливок;

аналитических выражений, позволяющих рассчитать оптимальное управление многозонного термического объекта «в большом», обеспечивающее вывод технологического оборудования на заданный режим с минимальными затратами;

структуры системы автоматического управления с прогнозирующим управлением в условиях частичной управляемости;

структуры адаптивной системы автоматического управления для процессов направленной кристаллизации с весовым методом контроля.

программ анализа спектра мощности (на внутреннем языке МаНаЬ), построенных на основе функции селекции периодического интервала;

матричных моделей цифровых регуляторов напряжения на базе транс-форматорно-ключевых регулирующих элементов для типовых силовых трансформаторных структур;

структуры цифрового регулятора напряжения, обеспечивающей улучшение его регулировочной характеристики;

сеточных моделей многозонного термического объекта для анализа теплового режима электротермических установок;

Реализация результатов. Разработанное алгоритмическое и математическое обеспечение внедрено на ряде предприятий:

РУП «Завод «ОПТИК», г. Лида, республика Беларусь; СП ООО «Оптокристалл», г. Александров; ООО НПФ «Экситон», г. Ставрополь; ООО «Рыбинские Кристаллы», г. Рыбинск.

Результаты работы используются в учебном процессе на кафедре электротехники и промышленной электроники РГАТА имени П. А. Соловьева.

Апробация работы. Теоретические и практические результаты докладывались на научных семинарах и конференциях, таких как «XXI, ХХИ, XXIII, XXVI, XXIX Гагаринские чтения» (МГАТУ, г. Москва), «Проблемы определения технологических условий обработки по заданным показателям качества изделий», «Теплофизика технологических процессов», «Проблемы определения технологических условий обработки по заданным показателям качества изделий», «Моделирование и обработка информации в технических системах», «Новые материалы, прогрессивные технологические процессы и управление качеством в заготовительном производстве» (РГАТА, г. Рыбинск), втором международном практическом семинаре «Оборудование и технологии роста кристаллов - 2011 (ОТРК-2011) ОАО НИИ «Изотерм», Брянск.

Результаты исследований прошли экспертизу в рамках работы по контракту № 02.444.11.7049 по лоту № 1 «Выполнение научно-исследовательских, опытно-конструкторских и технологических работ молодыми учеными и преподавателями во время проведения стажировок в российских научно-образовательных центрах» (XVII очередь), по теме: РИ-111/001/006 «Повыше-

ние эффективности электротермических установок при производстве особо чистого кварцевого сырья», выполняемой в рамках федеральной целевой научно-технической программы «Исследования и разработки по приоритетным направлениям развития науки и техники» на 2002-2006 годы, а также в рамках III всероссийского конкурса молодых ученых, проводимого межрегиональным советом по науке и технологиям (октябрь 2011 г., г. Миасс).

Основные положения диссертации докладывались на заседании кафедры МТ-11 «Электронные технологии в машиностроении» МГТУ им. Н. Э. Баумана (выписка из протокола № 151 от 12 февраля 2010 г.) и кафедры промышленной электроники московского энергетического института (выписка из протокола № 8 от 13 апреля 2010 г.) где получили положительную оценку.

Публикации. По результатам исследований опубликовано более 50 работ: из них 30 научных статей, в т. ч. 19 в изданиях, рекомендованных ВАК, одна монография, 20 тезисов докладов, 1 авторское свидетельство, 4 патента, 1 свидетельство об отраслевой регистрации разработки.

Структура и объем диссертации. Диссертация состоит из введения, пяти глав, заключения, библиографического списка из 138 источников и двух приложений. Содержит 327 страниц, 17 таблиц, 94 рисунка.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, приведена постановка задачи и краткая аннотация содержания работы по разделам, дана оценка новизны, достоверности и практической ценности полученных результатов, сформулированы защищаемые положения.

В первой главе проведен анализ и классификация промышленных установок выращивания монокристаллов, рассмотрены основные требования к технологическим процессам. Сформулированы требования к построению математических моделей объектов управления.

Классификация установок содержит 4 группы: установки гидротермального синтеза; литейные установки направленной кристаллизации; установки для получения монокристаллов в газовой среде; установки для получения монокристаллов в вакууме. Анализ перечисленных классов установок показал, что количество зон нагрева в них ограничивается экономическими факторами. Для установки направленной кристаллизации монокристаллов из расплава требуется зона нагрева с мощностью 100 кВт, стоимость силового трансформатора такой мощности весьма существенна, поэтому установки на такую мощность имеют одну зону нагрева. Но и здесь наметилась тенденция к увеличению числа зон нагрева. Например, установка согласно [Пат. РФ 2 261 297, МПК7 С 30 В 15/00, 15/14,

15/20] имеет две зоны нагрева. В установках меньшей мощности количество зон нагрева увеличивается, в частности «Кристалл ЗМ» имеет три зоны нагрева. Еще большим числом тепловых зон характеризуются многозонные электропечи выпускаемые "НПП Теплоприбор" (Екатеринбург). Возможно изготовление печи с 36 независимыми зонами.

Существующие установки содержат многоканальные регуляторы, выработка управляющего воздействия которыми с учетом рассогласования только по одному каналу приводит к перерегулированию вследствие их взаимного влияния друг на друга. То есть, при выработке управляющего воздействия должны учитываться величины рассогласования и по другим каналам. В общем случае, необходимо учитывать влияние всех зон регулирования. Таким образом, выявлена тенденция к активному управлению тепловыми градиентами за счет увеличения числа зон регулирования.

Построение оптимальных регуляторов требует наличия моделей объектов управления. Для компьютерного моделирования наибольшее применение получил метод конечных элементов. Недостатком метода является избыточная сложность модели. Для практической реализации систем управления реального времени требуются модели, основанные на построении специальной сетки, узлы которой содержат датчики температуры и (или) нагревательные элементы. Такой подход позволит значительно ускорить анализ многомерного термического объекта.

Аналогичные требования предъявляются к построению моделей цифровых регуляторов переменного напряжения на базе трансформаторно-ключевых структур. Обосновано применение блочных матриц для реализации математических моделей регуляторов. Сокращение времени анализа позволяет производить оптимизацию управляющего кода регулятора непосредственно в ходе технологического процесса.

Для оценки оптимальности управления выработан критерий среднего уровня потерь (процент брака), основанный на предположении о том, что при температуре, соответствующей номинальному режиму, потери отсутствуют, и, кроме того, функция потерь возрастает с увеличением отклонения от номинальной температуры в меньшую сторону. В соответствии с этим, функция потерь в i-той зоне представлена в следующем виде:

z, = Jljsign^-e,.)! ък (ег -е j4 л, CD

V ' о .

где 0,- текущая температура, в,.„- номинальная температура, Т- время анализа, Ьк- коэффициент полинома аппроксимирующего функцию потерь, sign - функция выделения знака.

Во второй главе рассмотрены вопросы оптимизации структуры регулятора переменного напряжения для целей регулирования мощности в установках выращивания монокристаллов. Основные требования производства к регуляторам переменного напряжения приведены в табл. 1.

Таблица 1

Требования производства к регулятору переменного напряжения

Требования производства Свойства регулятора

Структурное совершенство кристалла Узкий спектр мощности

Стабильность параметров установки Цифровое управление

Высокий КПД установки Дискретное регулирование

При регулировании мощности обычно имеют место искажения формы напряжения, что ставит задачу оценки влияния этих искажений на стабильность фронта кристаллизации. Для решения этой проблемы выполнен анализ аспектов формирования напряжения в процессе регулирования мощности. Для удобства анализа предложено использование симметричной функции селекции периодического интервала, которая представляет собой логическую функцию от текущего времени и трех параметров, включающих период селектируемого интервала, его начальное значение и конечное значение. Исследованы основные свойства такой функции. С помощью данной функции проведен анализ спектрального состава мощности при различных способах формирования переменного напряжения в зависимости от кода амплитудного регулирования 2, количества нсварьируемых периодов 7 и кода управления временной вариацией X.

Структурное совершенство кристалла помимо технологических аспектов определяется также и шириной спектра мощности. Большое значение силы тока (до 5000 А) ставит требование минимума искажений формы напряжения в целях обеспечения условий минимума паразитных центров кристаллизации.

Для оценки уровня напряженности рассмотрены основные уравнения электромагнитного поля однородной среды. При условии, что напряженность электрического поля является гармонической функцией времени, уравнение для напряженности электрического поля имеет вид

(2)

где у - мнимая единица; р2 =жщ10Х/; X - удельная электропроводность, Ом'1 м'1; ц - относительная и ц0- абсолютная магнитная проницаемость; / -частота, Гц.

Для случая бесконечного однородного проводника, когда напряженность поля имеет лишь одну составляющую, направленную вдоль оси Ох, её амплитуда зависит только от координаты г, т. е.

Исходя из решения (3) напряженность поля от координаты z, при известной электропроводности среды X, плотность индуцированного тока будет определяться выражением

Jx(z,t) = ХЁх = ■кВер1еЛш~р:). (4)

Для удобства дальнейшего анализа используется безразмерный коэффициент преобразования амплитуды

= = (5)

"'Ом

где У0я- амплитуда колебаний на поверхности 2 = 0; Jm - амплитуда колебаний на некотором удалении от проводника; q = цц0 V2 параметр, характеризующий электромагнитную проводимость.

Для расплава оксида алюминия ЛА =50 Омчм~' и qA =0,31-10 . На рис. 1 приведено семейство зависимостей vy(/) для расплава оксида алюминия (сапфира) в диапазоне частот /=10-1000 Гц при различных значениях координаты 2. Рассматриваемый эффект аналогичен скин-эффекгу при условии, что в качестве проводника, в котором анализируется скин-эффект, выступает тигель с расплавом, при этом плотность индуцированных токов максимальна на периферии тигля (там, где находится прутковый нагреватель) и минимальна в его середине.

Рис. 1. Семейство зависимостей коэффициента преобразования амплитуды тока от частоты для расплава сапфира: 1 -2=0,1 м; 2 -2=0,2 м; 3 -2=0,3 м; 4-2=0,4 м; 5-2=0,5 м; 2- расстояние от проводника с током

Как видно из рис. 1, на частоте промышленной сети 50 Гц разница индуцированных в расплав токов на длине 0,5 м не превышает 5 %, в то время как уже на частоте третьей гармоники 150 Гц - разница достигает В %.

Поскольку для получения заданного температурного режима могут быть использованы напряжения различной формы, появляется возможность оптимизации управления электропечью по некоторым критериям, связанным со спектральными свойствами напряжения. При традиционном фазовом управлении, применяемом в существующих установках, когда 2=0, а амплитуда варьируемой составляющей —15 В, коэффициент гармоник составляет 61 %. Переход на комбинированное амплитудно-фазовое регулирование дает уменьшение коэффициента гармоник более чем в 3 раза, оптимизация кода управления при этом дает его уменьшение еще на 25 %.

На рис. 2 приведен пример оптимизации управляющего кода для случая, когда величина амплитудной составляющей 2 меняется в диапазоне от 5 В до 12 В, а амплитуда вольтодобавки, подверженной временной вариации, составляет 3 В.

I

ш

I

: с ■

(3

■ . V :. :.. 1 ......,;...! - ■;. ! ; ; : : : .';"" .'Г:. ' ! . .

.. V у |' " '. — "- ; 1 : ...... : ... 1 ' : ..... 1 V ' 1 ■ • . 1 V ■ : .1----- ......1__;" ","■—1—

0 0.5 1 > 1.5 | 2 ■ Фазовый угол) ; 2.5 рад 3 ^

1.5

Фазовый угол

Рис. 2. Оптимизация кода управления на уровне 8 вольт действующего значения напряжения при комбинированном регулировании: 1 -2=5 В; 2-2=6 В; 3-2=7 В; 4-2=8 В; 5-2=9 В; 6 -2=10 В; 7-2=11 В; 8 -2 В; Ъ -составляющая амплитудного регулирования

Основные ростовые процессы происходят при некотором фиксированном действующем напряжении на нагревателе. Для сапфирового производства этот уровень составляет 8 В. Как видно из рис. 2 действующему значению напряжения 8 В соответствуют три возможных сочетания кодов.

Форма напряжений для данных кодов приведена на рис. 3. При фазовом угле включения вольтодобавки 1,15 рад и 2=9 В коэффициент гармоник равен 17 %, при фазовом угле 1,72 рад и 2=10 В - 19 %, при фазовом угле 2,33 рад и

Рис. 3. Вариант формы напряжения для действующего значения 8 вольт:

1 - фазовый угол включения вольтодобавки 1,15 рад,

2 - фазовый угол включения вольтодобавки 1,72 рад,

3- фазовый угол включения вольтодобавки 2,33 рад.

Для задач выращивания монокристаллов, с учетом больших мощностей, наиболее эффективно применение цифровых регуляторов напряжения. Возможность реализации того или иного режима питания обеспечивается структурой цифрового регулятора напряжения.

В третьей главе дано формализованное описание процесса регулирования цифровым регулятором напряжения. Для обеспечения требований производства в части точности регулирования и узкого спектра разработан специальный класс цифровых регуляторов напряжения на основе трансформаторно-ключевых регулирующих структур. Разработаны методы анализа цифровых ре-1уляторов напряжения, оптимизированные для анализа специальных классов регуляторов.

Идеальный цифровой регулятор напряжения можно представить управляемым четырехполюсником. Под действием управляющего кода У в четырехполюснике происходит изменение коэффициента к передачи напряжения. По-

добное описание не дает приемлемых результатов для реальных условии эксплуатации. Реальному цифровому регулятору напряжения соответствует четырехполюсник с совокупностью дополнительных входов V, описывающих внешние факторы.

Зависимости параметров цифрового регулятора напряжения от внешних факторов носят сложный характер. Будем считать, что в процессе функционирования цифрового регулятора напряжения все внешние факторы изменяются относительно своих номинальных значений рю>/>2о» ■•• рто на незначительные величины. Воспользуемся линейным приближением зависимости коэффициента передачи от его параметров и заменим ее гиперплоскостью, проходящей через точку Р0 -[р10,Р2о>-Рто1- При этом получим приближенное соотношение

дР,

= *[Р0,У]+М(Г), (6)

где Шу) = (у-у \ _ абсолютное отклонение характеристики регули-

к дР дУ

рования.

Первый сомножитель представляет собой матрицу размера (1, т), элементы которой характеризуют приращение коэффициента передачи напряжения, обусловленное изменением соответствующего этому элементу параметра коэффициентов влияния на величину коэффициента передачи напряжения цифрового регулятора напряжения. Второй сомножитель представляет собой матрицу размера (т, д). При этом у-й элемент матрицы характеризует приращение ¡-го параметра цифрового регулятора напряжения, обусловленное единичным изменением /-го внешнего фактора. Третий сомножитель представляет собой матрицу-строку из <] элементов, каждый из которых характеризует приращение соответствующего этому элементу внешнего фактора.

Основным источником возмущений со стороны сети является несогласованное подключение или отключение потребителей. Рассмотрим схему замещения энергосети с N секциями нагрузок. В промышленных установках в качестве таких секций обычно выступают секционированные нагревательные элементы. Допустим, что произошло уменьшение числа потребителей, то есть сопротивление нагрузки получило приращение 48м. При этом величина относительного приращения напряжения после ряда преобразований:

Ду

^ 1 + ал,+бЙ¥

где - - Л— коэффициент нагрузки; гг - сопротивление источника, Ом;

ДЯ

Лу - номинальное сопротивление нагрузки, Ом; 5Клг = ——-отаоситель-

ное приращение сопротивления нагрузки; ДЯЛ. - абсолю тов приращение

сопротивления нагрузки, Ом.

Подключение нагрузок при независимой работе регуляторов по разным зонам носит случайный характер. Анализ показал, что несогласованная работа отдельных зон регулирования, питающихся от одного источника энергии при ад, =0,04 и N=16, с достаточной вероятностью (свыше 20 %) приводит к изменению питающего напряжения на величину до 3,5%. Полученная модель возмущения позволяет более достоверно оценить качество работы прецизионных регуляторов напряжения на стадии их проектирования.

Наибольшую сложность при исследовании дискретных регуляторов представляет анализ процессов в трансформаторно-ключевых регулирующих элементов, требующий совместного решения уравнений, составленных на основании закона электромагнитной индукции, закона полного тока и законов Кирхгофа для электрической и магнитной цепей. Формализация ее решения может быть осуществлена на основе метода объединенных матриц. При использовании этого метода трансформаторно-ключевые регулирующие элементы рассматривают в виде электромагнитной цепи, под которой понимают совокупность электрической и магнитной цепей, связанных в единую схему. Структурные особенности сформированных матриц зависят от принятой нумерации контуров и ветвей электрической и магнитной цепей. Удачная нумерация позволяет выделить в матрицах определенные блоки, имеющие конкретный физический смысл.

Особый интерес для анализа представляет разработка обобщенных моделей трансформаторно-ключевых регулирующих элементов с регулярными структурами и произвольным числом секций регулирования. В качестве примера был рассмотрен регулятор на основе трансформаторно-ключевых регулирующих элементов с коммутатором звездного типа в цепи первичной обмотки. Его схема изображена на рис. 4. Подобная схема соответствует типовому исполнению силового трансформатора с отводами первичной обмотки. Для данной схемы матрица ветвевых сопротивлений представлена в блочном виде

^ _ Кк<Г1П>(Х) 0</>,л+1> ^

5 0<я+1,«> (^И'<л.я>+ ^0<п,п>)

где йк~ матрица сопротивлений ключей; - матрица сопротивлений обмоток трансформатора; матрица дополнительных сопротивлений.

Контурно-ветвевую матрицу электрической связи ТЕЕ также целесообразно представить в блочном виде

[_°<и>

о.

'<п.1>

(9)

1,<1,п> '<1,1> .

где Н, ЬпО- соответственно единичная диагональная, нижняя треугольная и нулевая матрицы указанных размерностей. Символом 1 обозначена прямоугольная матрица, заполненная единицами.

Практический интерес также представляет схема цифрового регулятора напряжения на основе трансформаторно-ключевых регулирующих элементов, изображенного на рис. 5, с произвольным числом секций вторичной обмотки.

Для данной схемы матрица ветвевых сопротивлений представлена в блочном виде

п» КР<и,> *Л'<иЛ

В<п+2,2«+2>

(10)

где Л0 - матрица внутренних сопротивлений источников ЭДС; Л$ - матрица последовательных сопротивлений; ЯР - матрица параллельных сопротивлений; - матрица нагрузочных сопротивлений. В блочном виде контурно-ветвевая матрица имеет вид

\

Г

ЕЕ<л4 2,2п+2> =

'<1.]>

о

'<1,л>

о

Н< -1

'<1 ,п>

0< о

<1,я>

<«Л>

(И)

где Я - единичная диагональная матрица.

Е©

...... ■

щУ

2 „ ■; 5

| Г"1......: ; и+Щ о

I____>

Вн

Рис. 4. Схема регулятора с коммутатором звездного типа в цепи первичной обмотки

Уг П) |ГК«

Рис. 5. Схема регулятора с секционированной вторичной обмоткой

Существенным недостатком амплитудного способа регулирования является сложность обеспечения высокой точности при широком диапазоне регулирования. Повышение точности, достигаемое увеличением количества возможных состояний трансформаторно-ключевых регулирующих элементов, сопряжено с увеличением количества обмоток регулирования, числа управляемых ключевых элементов и усложнением схемы управления. Устранение указанного противоречия может быть достигнуто использованием времявариантиого регулирования, сущность которого заключается в совмещении принципов амплитудного регулирования с фазовым регулированием.

При времявариантном регулировании наблюдается существенная неравномерность регулировочной характеристики, обусловленная изменением коэффициента передачи трансформаторно-ключевых регулирующих элементов в фиксированные моменты времени, равномерно распределенные в каждом из полупериодов изменения напряжения сети. Вследствие этого приращения действующего значения выходного напряжения будут неодинаковыми. В начале полупериода они минимальные, а в его середине - максимальные.

Предложена структура цифрового регулятора напряжения, представленная на рис. 6, обеспечивающая равномерность регулировочной характеристики.

Рис. 6. Структура цифрового регулятора напряжения с улучшенной характеристикой

Он работает следующим образом. Из входного напряжения сети, с периодом Т умножитель 4 частоты формирует гармонический сигнал с частотой, кратной частоте напряжения сети и превышающей ее в 2я раз, где д - разрядность счетчика 6. Из этого сигнала формирователь 5 импульсов формирует прямоугольные импульсы той же частоты. Счетчик 6 осуществляет преобразо-

вание последовательности импульсов в двоичный код б. Этот код преобразователем кодов 10 преобразуется в код Я, который компаратором кодов 7 сравнивается с кодом К младших разрядов аналого-цифрового преобразователя 2.

Под действием изменяющегося кода б происходит дискретное изменение коэффициента передачи к трансформаторно-ключевых регулирующих элементов. Момент дискретного изменения определяется равенством кодов Н=У, а величина этого изменения - минимальным дискретным уровнем Дк, определяемым максимальным уровнем коэффициента передачи ктдг. и разрядностью т кода управления 2. Преобразователь кодов 7 запрограммирован таким образом, чтобы интервалы времени между смежными моментами переключения трансформаторно-ключевых регулирующих элементов уменьшались по мере приближения моментов переключения к середине каждого полупериода напряжения сети.

При этом для обеспечения равномерного приращения действующего значения выходного напряжения моменты времени &, переключения секций регулирования трансформаторно-ключевых регулирующих элементов должны определяться из соотношения

02).

где Т- период регулирования; разрядность счетчика; / - текущее дискретное состояние счетчика.

В четвертой главе разрабатываются сеточные модели многомерных термических объектов, необходимые доя эффективного управления технологическим процессом. Полученное на основе уравнения нестационарного теплового процесса матричное уравнение многозонного термического объекта имеет вид

СМ^+(Г-у+Г0)Г = Р + Г0Г0, (Б)

аI

где С - матрица теплоемкостей, Дж/кг °С; М- диагональная матрица, содержащая массы тепловых зон, кг; Г - вектор температур, °С; Г0 - вектор температур окружающей среды, °С; у - матрица тепловых проводимостей, Вт/°С; Р - вектор мощностей, (Вт); Г0 - тепловые проводимости относи/ я п п Л

тельно окружающей среды, Вт/°С; Г = <Иаи £У|,,2л2./'"5Ли./ •

ум )

Матричному уравнению многозонного термического объекта соответствует структура, изображенная на рис. 7.

Для удобства анализа часто необходимо рассмотрение температур перегрева зон относительно температуры окружающей среды. Тогда представим (13) в сокращенной форме

СМ — + Л© = Р@, (14)

£Й

где Л = (Г - у + Г0) - фундаментальная матрица многозошюго термического объекта, описывающая все взаимосвязи зон регулирования; © = Г - Г0 - вектор температур перегрева.

П

Рис. 7. Обобщенная структура многозонного объекта Особого рассмотрения заслуживает многозонный термический объект с двумя совокупностями зон: зонами термостатирования, в которых температуры поддерживаются постоянными, и зонами варьирования. При этом мощности, выделяемые в термостатированных зонах, считается постоянными. Для обозначений, связанных с этими зонами, использованы символы С а У соответственно.

Для подобных объектов уравнение многозонного термического объекта преобразуется к виду

= Ру -Кус^ссрс + К + лгслсслск К Полученное соотношение позволяет осуществлять анализ температурного процесса только в регулируемых зонах. Остальные зоны непосредственно в анализе не участвуют. Их влияние учитывается введением в модель матрицы дополнительных параметров связи.

Система уравнений, описывающих объект, имеющий п связанных между собой зон нагрева, с учетом влияния температуры окружающей среды описывается выражением:

CM^U dt

ZYu -T12

n

-Yav ЕУп

20 _ Yir.

~ Y/ii

П

" Yni - ZYn<

Г = P +

Yio Y20

vYno

(16)

Для объекта с регулярными струет-урами применимо допущение, что для всех I принадлежащих диапазону от 1 до и выполняется равенство:

У» =Ги Уо4=Уи=Уо- О7)

Тогда фундаментальная матрица многозонного термического объекта примет вид

Л =

Уо + yIM

ы -У

Уо + У£М i=t

- (я - 1>Г

-(и- 2)у

(18)

-(н-1)У (»-2)у Уо + yZI'-"]

¡=п

= 7„еуе(л) + y[Sd(n) + То(я)], где Sd(n) - диагональная матрица, составленная из функций целочисленных аргументов S(k,n) = ¿(/ ~ То(и)- Теплицева матрица; еуе(п) - функция генерации диагональной матрицы с единичными элементами размерности п (название функции позаимствовано из синтаксиса языка Matlab). Полученное выражение содержит операции над целочисленными аргументами, то есть значительно упрощаются и ускоряются математические вычисления, что крайне важно для реализации систем управления реального времени. Кроме того, экспериментальное определение параметров такого объекта производится с существенно меньшей вычислительной нагрузкой, поскольку определяются только два параметра у и -/„, независимо от размерности объекта.

Одной из проблем при управлении многозонным термическим объектом является учет влияния изменяющейся температуры внешней среды. Определим зависимость величины потенциального воздействия окружающей среды на объект, изображенный на рис. 8.

I 71,0

|Т£

У 1,2

1

у 2.1

У и-2,»м

п-1

Уп-М

Рис. 8. Потенциальное воздействие окружающей среды на многозонный термический объект Примером такой системы может служить внутренний объем автоклава. Как правило, внутри рабочего объема отсутствуют источники тепла. Нагреватели, находящиеся на внешних стенках автоклава, с помощью локальных регуляторов обеспечивают фиксированное значение температур стенки. Ведение процесса регулирования по внутренним термопарам дает более высокую точность, но при этом система управления становится чувствительной к возмущающим воздействиям со стороны окружающей среды. Чтобы оценить это воздействие, представим внутренний объем автоклава в виде каскада инерционных звеньев.

Для подобных объектов можно определить вектор температур

где

2 =

Гт„5 + 1

о

о о

-р„ +I

0 0

0

-Р.-.

Т„_25+1

о о

о о о

-«2

о о о

~р2

(19)

в - вектор-столбец

с тепловыми проводимостями у; II-матрица коэффициентов приведения мощности; т - постоянные времени для к-го узла; а - коэффициент передачи для к-ю узла к Ш-му; Р - коэффициент передачи для к-го узла к

к~ 1-му.

При питании зон нагрева многозонного термического объекта от транс-форматорно-ключевых регулирующих элементов возникает задача совместного анализа этих объектов. Введение матрицы селекции нагревателей 5Н (единичные элементы соответствуют номерам контуров, в которых размещены нагревательные элементы) в уравнения метода объединенных матриц позволяет связать воедино процессы анализа электромагнитной и электротермической цепей, согласно выражению:

СМ — + Л©

>я-

Разработанные дискретные математические модели многозонного термического объекта оптимизированы под задачи прогнозирующего управления, что дает возможность просчитывать оптимальное управление непосредственно в ходе технологического процесса.

В пятой главе решаются задачи стабилизации фронта кристаллизации. Качество управления фронтом кристаллизации напрямую определяет качество получаемого кристалла. При этом форма и стабильность фронта кристаллизации определяется двумя факторами: величиной и стабильностью температурного градиента и стабильностью скорости вытягивания кристалла из расплава.

В свою очередь весь комплекс задач по управлению градиентом можно разделить на две группы:

управление движением многозонного термического объекта в пространстве состояний в «большом», то есть значительные изменения температур с сохранением нужного значения градиента;

стабилизация градиента при воздействии на многозонный термический объект дестабилизирующих факторов.

Динамика большинства термических объектов достаточно хорошо описывается инерционным звеном первого порядка. При этом часто ставится задача форсированного перехода с одной температуры на другую. Автором разработан способ оптимального регулирования температуры с целью уменьшения величины перерегулирования и сокращения времени переходного процесса для многозонного термического объекта.

Требуется определить закон изменения во времени мощности P(t), поступающей в нагревательный элемент, для того, чтобы была получена температурная зависимость T{t), обеспечивающая за интервал времени т изменение температуры с заданного начального TN до заданного конечного Тк значений, при этом в момент достижения температурой конечного значения скорость ее изменения была бы равна нулю.

Сказанное эквивалентно системе уравнений:

Г(0) =

Дг) =

dT = 0.

dt (*t

Решение этой задачи найдено в классе экспоненциально-убывающих функций:

р(1) = Ае~ы + В, (22)

где А и В-векторы, значения которых должны быть определены, а величина коэффициента 8 определяется желаемой длительностью переходного процесса.

Решением системы (22) являются коэффициенты С, А, В

V [Тн-?*

А Тк-То (23)

В \ У 1 0 у

где ( Г

а-5 а

е"5'1 1

а-5 а

-5/ 8 0

5-е

а- константа, зависящая от тепловых свойств объекта. На рис. 9 приведен пример расчета оптимального управления по (22) и (23) для выхода с температуры Тн =1190 °С на температуру Тк =1200 °С за -с =600 секунд. Параметры многозонного термического объекта заданы произ-

Рис. 9. Пример реализации оптимального закона управления В автоклавах при ведении процесса только по внутренним термопарам суточные колебания температуры приводят к возникновению ошибки регулирования, для выборки которой системе автоматического регулирования требуется некоторое время. При этом переохлаждение раствора приводит к увеличе-

нию скорости кристаллизации и увеличению вероятности образования дефектов. Перегрев раствора не ведет к появлению дефектов, но увеличивает длительность технологического процесса. Анализ коэффициента потерь г согласно выражению (1) за 60 часовой технологический процесс выращивания кварца в автоклаве показал, что коэффициент потерь достигает 0,2 (20 % монокристаллов с дефектами). Значительный эффект повышения точности регулирования в этом случае достигается введением каскадного управления. На рис. 10 приведена каскадная система управления автоклавом.

Контур управления по внешним термопарам (устройство управления 1) настраивается исходя из инерционных свойств объекта нагреватель-стенка автоклава и характеризуется относительно высоким быстродействием. Это обстоятельство позволяет эффективно компенсировать возмущения со стороны температуры окружающей среды То. Контур управления по внутренним термопарам (устройство управления 2) настраивается в соответствии со свойствами объекта управления и, как правило, имеет постоянную составляющую времени процесса несколько часов. Это обстоятельство делает процесс управления по внутренним термопарам инерционным, что создает сложности при выводе объекта управления на режим. Каскадное управление позволило на порядок снизить величину ошибки регулирования и уменьшить коэффициент потерь до 0,04.

Рис. 10. Каскадная система управления многозонного термического объекта с частичной управляемостью

Отсутствие внутренних нагревателей делает объект частично управляемым. В этих условиях задачу описания модели можно упростить, перейдя к блочным моделям, содержащим управляемые и неуправляемые зоны. В развернутом виде эта система выглядит следующим образом:

A/,v©/.v +Л/о©о1Т = рш ^^

+ A our® out ~ роиг

Полученное из системы (24) аналитическое выражение позволяет рассчитать закон изменения мощностей во внешних зонах таким образом, чтобы получить требуемый закон изменения внутренних температур.

Для данного класса установок динамика процессов значительно отличается от динамики инерционного звена первого порядка. Это вызвано наличием дополнительной границы «преломления» теплофизических свойств. В результате динамика процесса описывается звеном второго порядка

W =-, КыКш-• (25)

Данная передаточная функция может быть представлена в виде линейного неоднородного дифференциального уравнения с постоянными коэффициентами

(26)

Полученное аналитическое решение для заданных условий (21) имеет вид, аналогичный (23), и позволяет рассчитать оптимальное управление «в большом» для подобных объектов.

В тех случаях, когда по техническим причинам нет возможности измерять температуру в зоне кристаллизации, нашли применение косвенные методы определения состояния фронта - по изменению веса кристалла. Высокая чувствительность системы к ошибке регулирования по весу обусловлена особенностью динамики процесса кристаллизации - объект управления является нелинейным.

В этом случае значительный эффект дает применение беспоисковой адаптивной системы регулирования с эталонной моделью, изображенной на рис. 11. В подобных системах управляющее воздействие разделено на две составляющие: постоянную, определяемую на основании эталонной модели, и переменную, определяемую следящей системой. Адаптер А на основании текущего значения массы М кристалла производит подстройку контура ПИД регулятора, а также на основании эталонной модели формирует некоторое постоянное значение скорости снижения мощности dPjdt, интегрирование которого интегратором И определяет постоянную составляющую сигнала управления.

Рис. 11. Структура регулятора скорости кристаллизации с беспоисковой адаптивной системой на основе прогнозирующей модели Структура адаптивного регулятора скорости кристаллизации с прогнозированием была внедрена на СП ООО «Оптокристалл». Результаты испытаний на установке класса «Омега» показали, что внедрение данной системы позволило избавиться от резких изменений напряжения на нагревателе при залипа-нии кристалла, обеспечило ведение процесса в автоматическом режиме по весу кристалла практически на всех стадиях роста.

При проектировании систем автоматического регулирования для многозонного термического объекта часто приходится сталкиваться с ситуацией, когда сепаратное управление является неэффективным вследствие взаимного влияния зон регулирования. Так, например, возмущение по температуре во второй зоне трехзошюго термического объекта приводит к возмущениям по смежным с ней зонам. Сепаратные каналы выбирают ошибку регулирования лишь спустя некоторое время, но не способны быстро отреагировать на возмущение.

Требование к корректирующему звену по мощности, приведенному на рис. 12, можно сформулировать следующим образом: возмущение, приходящее со стороны зоны Т2 через передаточную функцию коррекции должно быть приведено к входу Ь\ преобразованным таким образом, чтобы получить на выходе переходный процесс, совпадающий с процессом на выходе и для случая коррекции по температуре:Х,Г21=^,, то есть И'21 =РпЩ . Аналогично для воздействия возмущения второй зоны на третью: 1¥а = . Полученная на основании подобных рассуждений матрица коррекции по мощности приведена в табл. 2.

Таблица 2

Матрица Номер зоны Номер зоны

1 2 3

0 Рп/Ъ 1

0 2

Рьг^г 0 3

т<

<

V

А

. '4 к т2

Рис. 12. Структура коррекции по мощности

Монокристаллические отливки из никелевых жаропрочных сплавов, как правило, получают методом направленной кристаллизации (способ Бриджмена-Стокбаргера). Тигель или литейная форма с предварительно залитым расплавом постепенно перемещаются в температурном поле нагревателя из горячей зоны в зону охлаждения.

Однако поскольку процесс кристаллизации имеет относительно большую продолжительность, то температура охладителя заметно увеличивается, снижается аксиальный градиент, что приводит к изменению положения фронта кристаллизации по мере нагрева, как это показано на рис. 13, то есть к изменению скорости кристаллизации. Полученное выражение для расчета положения

фронта кристаллизации / позволяет синтезировать корректирующее звено:

_

(27)

-Та!

где I _ глубина погружения формы; - температура в зоне нижнего нагревателя , °С; Г ¿-температура ликвидуса сплава, °С; - температура в верхней части холодильника, °С.

Время

Рис. 13. Положение фронта кристаллизации

Корректирующее звено на основании закона изменения температуры верха литейной формы и температуры верха охладителя по (27) вычисляет положение фронта кристаллизации и скорость его дрейфа, что позволяет скорректировать скорость опускания формы.

Заключение. Анализ тенденций развития оборудования выращивания монокристаллов показал, что в этой сфере существует тенденция к увеличению размеров монокристаллов. Исследователи проявляют интерес к снижению уровня электромагнитного излучения в расплав, например за счет применения нагревателя специальной формы. Также увеличивается количество регулируемых тепловых зон. В результате проведенных исследований были получены следующие результаты:

1. Снижение уровня электромагнитного излучения в расплав не всегда может быть достигнуто путем изменения конструкции нагревателя. Значительный эффект дает снижение уровня искажения напряжения на нагревателе за счет разработки специального класса прецизионных регуляторов мощности на основе дискретно-регулируемых трансформаторных элементов.

2. Переход к амплитудному способу регулирования напряжения обеспечивает снижение уровня искажений до 3-х раз. Но реализация амплитудного способа регулирования сопряжена со значительными затратами. Более эффективна реализация времявариантного регулирования. В связи с этим предложена структура регулятора с функцией линеаризации, что позволяет снизить неравномерность регулировочной характеристики не менее чем на 30 %. Вве-

дение времявариантного регулирования позволило провести дополнительную оптимизацию по спектральному составу, что дает снижение уровня искажений еще не менее чем на 20 %. Оптимизация спектрального состава мощности нагрева обеспечивает снижение максимального отклонения температуры на фронте кристаллизации с 0,08 °С до 0,03 °С;

3. Выведено соотношение, позволяющее путем перебора всех комбинаций полной матрицы управления коммутацией определить оптимальную структуру, обеспечивающее максимальное количество дискретных уровней при заданном количестве силовых ключей.

4. Получено выражение, позволяющее связать воедино процессы анализа электромагнитной и электротермической цепей.

5. Полученные в работе матричные модели многозонных термических объектов основаны на построении специальной сетки, узлы которой содержат датчики температуры и (или) нагревательные элементы, и являются основой для построения систем оптимального управления.

6. На стадии затравления необходимо активное изменение состояния фронта кристаллизации в условиях ограничений. Для решения этой задачи на основе аналитического решения системы дифференциальных уравнений было получено выражение, позволяющее рассчитать оптимальный с точки зрения минимального времени переходного процесса и минимальной величины перерегулирования закон управления.

7. Запаздывание сигнала от внутренних термопар приводит к перерегулированию при выводе установки на режим роста. Расчет оптимального управления позволяет избежать перерегулирования. Кроме того, введение каскадного управления позволило на порядок снизить влияние изменения температуры окружающей среды, что позволило снизить величину критерия потерь с 20 % до 0,04 %.

8. Математическое моделирование и опыт практического внедрения показывают, что применение корректирующей структуры для связного объекта управления позволяет повысить стабильность температуры не менее чем в два раза.

9. Предложенная структура регулятора скорости кристаллизации с беспоисковой адаптивной системой на основе прогнозирующей модели позволяет стабилизировать скорость кристаллизации монокристалла сапфира с точностью 3 % в течение всего процесса роста, избавиться от резких изменений напряжения на нагревателе при залипании кристалла и повысить выход годных

пластин с одного кристалла на 12 %.

Полученные результата формируют основу для перехода технологического оборудования для прецизионных процессов выращивания монокристаллов на новый уровень обеспечения стабильности условий роста, и обеспечивают возможность дальнейшего увеличения размеров монокристаллов.

Список основных публикаций автора по теме диссертации

Монографии:

1. Юдин, А. В. Методология проектирования систем управления электротермическими установками выращивания монокристаллов: Монография. - М.: Машиностроение, 2010.- 211 с.

2. Юдин, А. В. Оптимизация цифровых регуляторов мощности к задачам энергообеспечения процессов направленной кристаллизации: Монография. - Рыбинск: РГАТА, 2009.-100 с.

Публикации в изданиях, рекомендованных ВАК:

1. Юдин, А. В. Анализ точностных характеристик фотометрического датчика толщины пленок [Текст] / А. В. Юдин, С. Э. Семенова // Датчики и системы: Ежемесячныйнаучн.-техн. ипроизв. журнал,Москва,№ 11,2001.-С. 44-46.

2. Юдин, А. В. О методологии выбора технических решений [Текст] / Н. Н. Севрюгин, А. В. Юдин, А. В. Кузнецов //Автоматизация и современные технологии, Москва, "Издательство "Машиностроение", № 3,2005 - С. 45-47.

3. Юдин, А. В. Оценка влияния нестабильности питающей сети при проектировании прецизионных регуляторов напряжения [Текст] / А. В. Юдин // Датчики и системы: Ежемесячный научн.-техн. и производств, журнал, Москва, №9,2007.-С. 19-21.

4. Юдин, А. В. Оптимизация метода объединенных матриц к задачам анализа трансформаторно-ключевых элементов с регулярными структурами [Текст]/ А. В. Юдин, Й. А. Иристу- Электричество: Ежемесячный теоретический и научно-практический журнал, Москва, № 8,2008. - С. 66 - 68.

5. Юдин, А. В. Компенсация опосредованного влияния в многозонных объектах управления [Текст] / А. В. Юдин // Автоматизация и современные технологии, № 6,2009.-С. 23 - 26.

6. Юдин, В. В. Моделирование процессов регулирования мощности в энергетических установках [Текст] / В. В. Юдин, А. В. Юдин, А. В. Манин // Вестник РГАТА им. П. А. Соловьева: сб. науч. тр. - Рыбинск, 2010. -№ 1 (16).-С. 151-156.

7. Лобацевич, К. JI. Объединенная модель электротермического процесса [Текст] / К. Л. Лобацевич, А. В. Юдин// Вестник РГАТА им. П. А. Соловьева: сб. науч. тр. -Рыбинск, 2010. -№ 1 (16).-С. 157-162.

8. Юдин, А. В. Математическое обеспечение процесса затравления АСУТП выращивания монокристаллов методом Чохральского [Текст] / А. В. Юдин // Вестник РГАТА им. П. А. Соловьева: сб. науч. тр. - Рыбинск, 2010. -№ 1 (16).-С. 163-166.

9. Серебряков, С. П. Расчет коррекции скорости погружения залитой литейной формы в расплавленный теплоноситель при производстве монокристал-

лических отливок [Текст] / С. П. Серебряков, А. В. Юдин // Тех пологая легких сплавов: научно-технический журнал - Москва, 2010, № 2 - С. 67-70.

10. Юдин, А. В. Анализ напряженности магнитного поля внутри высокотемпературного нагревателя [Текст] / ВЕСТНИК Рыбинской государственной авиационной технологической академии им. П. А. Соловьева: Сборник научных трудов. - Рыбинск, 2010. - № 3(18)- С. 199-205.

11. Юдин, А. В. Беспоисковая адаптивная система стабилизации скорости кристаллизации монокристаллов [Текст] / Юдин А. В., Лобацевич К. Л.// Автоматизация и современные технологии. - М: Машиностроение, 2010 г. -С. 23-26.

12. Юдин, А. В. Оценка искривления фронта кристаллизации в расплаве сапфира по спектральному составу мощности нагревателя[Гекст]//ВЕСТНИК Рыбинской государственной авиационной технологической академии им. П. А. Соловьева: Сборник научных трудов. - Рыбинск, 2011. - № 1 (19)- С. 136141.

13. Мании, А. В. Статический компенсатор реактивной мощности на базе маг-нито-вентильных элементов [Текст]/ А. В. Манин, А. В. Юдин, А. Н. Трошев, О. А. Москалева]// ВЕСТНИК Рыбинской государственной авиационной'технологической академии им. П. А. Соловьева: Сборник научных трудов. - Рыбинск, 2011. - № 1(19)- С. 117-122.

14. Юдин, А. В. Компенсация возмущений со стороны окружающей среды на систему управления многомерным термическим объектом // Электронный журнал «Труды МАИ». Выпуск № 42. (18 февраля 2011), www, in з i. ro/science/trud v ■

15. Юдин, А. В. Оптимизация структуры цифрового регулятора переменного напряжения на основе дискретно-регулируемого трансформатора [Текст]/. Справочник. Инженерный журнал, Москва, ОАО "Издательство "Машиностроение", №3,2011.-С. 44-47.

16. Юдин, А. В. Снижение статической ошибки регулирования скорости погружения литейной формы в расплавленный теплоноситель в установках высокоскоростной направленной кристаллизации [Текст]// Технология легких сплавов: научно-технический журнал - Москва, №2,2011.- С. 57-60.

17. Юдин, А. В. Электромагнитная модель многокомпонентного высокотемпературного нагревателя [Текст]// Вестник ИГЭУ, № 5,2011. - С. 30-32.

18. Юдин, А. В. Особенности регулирования мощности на вольфрамовом высокотемпературном нагревателе [Текст]// ВЕСТНИК Рыбинской государственной авиационной технологической академии им. П. А. Соловьева: Сборник научных трудов. - Рыбинск, 2011. - № 2(20), Часть 2. - С. 108-112.

19. Юдин, А. В. Линеаризация регулировочной характеристики цифрового регулятора мощности [Текст] //Научн.-техн. журнал "Вестник РГРТУ". № 4 (выпуск 38) 2011. Рязанский государственный радиотехнический университет.- С. 115-118.

Прочие публикации:

1. Юдин, А. В. Синтез оптимального закона управления блоком автоматического поддержания напряжения дуги [Текст] / А. В. Юдин, А. А. Белоглазов // Вестник РГАТА им. П. А. Соловьева: сб. науч. тр. - Рыбинск, 2003. - № 1 -2 (4-5).-С. 63-67.

2. Юдин, А. В. Эквивалентные преобразования электромагнитной цепи [Текст] / А. В. Юдин, А. В. Кузнецов // Вестник РГАТА им. П. А. Соловьева: сб. науч. тр.- Рыбинск, 2004,- № 1 - 2 (4 - 5).- С. 93 - 96.

3. Юдин, А. В. Энергетические соотношения в электромагнитных цепях [Текст]/ А. В. Юдин// Справочник. Инженерный журнал, Москва, "Издательство "Машиностроение", №11,2005.- С. 62-64.

4. Юдин, А. В. Блочная модель регулятора переменного напряжения с коммутацией вторичных обмоток [Текст]/ А. В. Юдин, Й. А. Иристу- Научн.-техн. журнал "Вестник РГРТУ". № 2 (выпуск 24) 2008. Рязанский государственный радиотехнический университет - С. 127 -130.

5. Юдин, А. В. Применение метода объединенных матриц для анализа цифрового регулятора напряжения[Текст) / А. В. Юдин, С. В. Маврин // Вестник РГАТА им. П. А. Соловьева: сб. науч. тр. - Рыбинск, 2007.-С. 114-120.

6. Юдин, А. В. Каскадное управление многозонными термическими объектами [Текст] / А. В. Юдин, В. М. Соснов // Вестник РГАТА им. П. А. Соловьева: сб. науч. тр. - Рыбинск, 2006 - С. 99-100.

7. Юдин, А. В. Моделирование теплового режима электротермических установок с регулярными структурами [Текст] / А. В. Юдин // Вестник РГАТА им. П. А. Соловьева: сб. науч. тр. - Рыбинск, 2006,- С. 101-105.

8. Юдин, А. В. Моделирование прецизионных регуляторов переменного напряжения с учетом параметров коммутационных структур [Текст]/ A.B. Юдин// Справочник. Инженерный журнал, Москва, ОАО "Издательство "Машиностроение", № 8(149), 2009- С. 59 - 61.

9. Пат. 2072550 Российская Федерация: МПК4 6 G 05 F 1/20. Стабилизатор переменного напряжения [Текст] / Юдин А. В.; заявитель и патентообладатель Рыбинский авиационный технологический институт; заявл. 29.03.94; опубл. 27.01.97, бюл. №3.

10. Пат 2339071 Российская Федерация, МПК7 6 G 05 F 1/20. Регулятор переменного напряжения [Текст] / Юдин А. В.; заявитель и патентообладатель ГОУ ВПО «РГАТА им. П. А. Соловьева».- №2007126880; заявл. 13.07.07 опубл. 20.11.08, бюл. №32.

Зав. РИО М. А. Салкова Подписано в печать 9.02.2012 Формат 60x84 1/16. Уч.-изд.л. 2,0. Тираж 100. Заказ 65.

Рыбинский государственный авиационный технический университет имени П. А. Соловьева

(РГАТУ имени П. А. Соловьева)

Адрес редакции: 152934, г. Рыбинск, ул. Пушкина, 53

Отпечатано в множительной лаборатории РГАТУ имени П. А. Соловьева

152934, г. Рыбинск, ул. Пушкина, 53

Оглавление автор диссертации — доктора технических наук Юдин, Алексей Викторович

Список сокращений и терминов

ВВЕДЕНИЕ

ГЛАВА 1. Анализ и классификация промышленных установок направлен- 38 ной кристаллизации

1.1 Установки гидротермального синтеза

1.2 Литейные установки направленной кристаллизации

1.3 Установки кристаллизации монокристаллов из расплава

1.3.1 Установки для получения монокристаллов в контроли- 48 руемой газовой среде

1.3.2 Установки для получения монокристаллов в вакууме

1.4 Обобщенные требования к системам управления установками 52 направленной кристаллизации

1.5 Критерии эффективности регулирования температурного поля

ГЛАВА 2. Оптимизация структуры регулирующего органа для целей на- 66 правленной кристаллизации

2.1 Способы формирования напряжения в регуляторах мощности

2.2 Анализ влияния спектра мощности тепловыделения на неста- 82 бильность температуры

2.3 Анализ влияния спектра индуцированной мощности на неста- 86 бильность температуры

2.3.1 Анализ распределения плотности тока индуцированного 86 одиночным проводником

2.3.2 Анализ распределения напряженности магнитного поля 102 системы параллельных проводников

2.4 Формализация процесса управления дискретным регулятором

2.4.1 Модели многокомпонентных регуляторов

2.4.2 Аддитивные и мультипликативные многокомпонентные 115 дискретные регуляторы

2.4.3 Оценка качества цифрового регулятора напряжения

2.5 Структурные особенности цифрового регулятора напряжения

2.6. Матричные модели коммутационных исполнительных структур

2.6.1 Эквивалентная схема коммутационных исполнительных 137 структур

2.6.2 Матричные модели типовых коммутационных исполни- 143 тельных структур

2.6.3 Соединения типовых схем коммутаторов

ГЛАВА 3. Моделирование цифровых регуляторов переменного напряже- 150 ния

3.1 Обобщенная модель цифрового регулятора напряжения

3.1.1 Идеальный цифровой регулятор напряжения

3.1.2 Реальный цифровой регулятор напряжения

3.2 Оценка фактора нестабильности питающей сети при проектиро- 156 вании прецизионных регуляторов напряжения.

3.3 Матричные модели дискретных регуляторов

3.3.1 Сущность метода объединенных матриц

3.3.2 Формирование топологических матриц трансформатор- 167 но-ключевых регулирующих элементов

3.4 Энергетические соотношения в электромагнитных цепях

3.5 Времявариантное регулирование

3.6 Времявариантный регулятор с улучшенной регулировочной ха- 188 рактеристикой

3.7. Распределение уровней напряжения в регуляторе мощности при 195 амплитудном регулировании

ГЛАВА4. Моделирование многомерных термических объектов

4.1 Линеаризация модели многомерного термического объекта

4.2 Анализ простейшего двухзонного термического объекта

4.3 Дискретная модель нестационарного теплового процесса

4.4 Моделирование многозонных термических объектов в форме 219 пространства состояний

4.5 Многомерные термические объекты с термостатическими зона- 220 ми

4.6 Моделирование теплового режима электротермических устано- 222 вок с регулярными структурами

4.7 Потенциальное воздействие на каскад инерционных элементов

4.8 Электромагнитная модель многокомпонентного высокотемпера- 231 турного нагревателя

4.9 Электротермическая цепь

ГЛАВА 5. Стабилизация фронта кристаллизации

5.1 Постановка задачи оптимального управления многозонным тер- 242 мическим объектом

5.2 Оптимальное управление многозонным термическим объектом с 247 прогнозирующей моделью

5.3 Оптимальное управление частично-управляемым многозонным 255 термическим объектом

5.4 Синтез корректирующих звеньев для динамической стабилиза- 266 ции градиента

5.5 Стабилизация скорости кристаллизации в литейных установках

5.6 Оптимизация управления вспомогательными технологическими 283 параметрами

5.7 Стабилизации скорости кристаллизации с помощью беспоиско- 287 вой адаптивной системы

5.3.1 Расчет статического оптимального управления

5.3.2 Расчет оптимального управления в динамике

Введение 2011 год, диссертация по информатике, вычислительной технике и управлению, Юдин, Алексей Викторович

Наметившаяся тенденция к увеличению размеров монокристаллов приводит к невозможности обеспечения оптимальных условий их роста при промышленном производстве. Данная работа направлена на решение актуальной проблемы современного производства монокристаллов - качество «больших» монокристаллов недостаточно высоко, полученные монокристаллы характеризуются высокой плотностью дефектов структуры, что сопряжено со значительными потерями от брака. Без решения этой проблемы дальнейшее увеличение размеров монокристаллов с сохранением эффективности производства не достижимо.

Работа посвящена разработке методов формализованного описания и алгоритмизации процессов энергообеспечения, оптимизации алгоритмов и имитационному моделированию многомерных термических систем.

Типовой технологический процесс выращивания монокристалла содержит ряд этапов:

- получение расплава (разогрев) (от 5 до 48 ч). Этот этап характеризуется невысокими требованиями к стабильности поддержания технологических параметров. Как правило, при разогреве производиться линейный подъем мощности. Особенностью данного этапа является перегрев расплава выше температуры роста с целью удаления легкоплавких примесей в расплаве;

- затравление (от 1 до 3 ч). Очень ответственный этап. Качество его выполнения определяет качество всего кристалла в целом. На данном этапе требуется выполнять достаточно быстрый переход от перегретого состояния расплава к температуре затравления, то есть температуре, обеспечивающей нужную скорость разращивания конуса монокристалла. На этом этапе часто возникают ошибки, связанные с слишком большим сбросом мощности оператором или слишком малым временем перехода в режим затравления. Все это требует разработки методов оптимального управления тепловым режимом;

- рост (от 20 до 150 ч). В данном режиме требуется обеспечение стабильных условий роста. При этом условия стабильности нарушаются по мере увеличения геометрических размеров монокристалла.

- охлаждение (от 20 до 48 ч). Этот этап не предъявляет особых требований к стабильности технологических параметров и не требует дополнительных средств автоматизации.

На формирование монокристалла существенное влияние оказывает форма фронта кристаллизации, так как рост кристалла всегда происходит в направлении, перпендикулярном фронту кристаллизации. Форма фронта кристаллизации зависит от способа нагрева и отвода тепла от растущего монокристалла. При вытягивании кристалла из расплава тепло отводится через растущий кристалл, и фронт кристаллизации при этом имеет выпуклую форму. Следует также учитывать, что практически в любом расплаве присутствуют примеси, а реальные процессы кристаллизации всегда связаны с относительно большими скоростями роста так, что равновесие между расплавом и растущим кристаллом не успевает устанавливаться, то есть оттесняемая от фронта кристаллизации примесь не успевает равномерно распределяться по расплаву и накапливается вблизи фронта кристаллизации. Это приводит к так называемому концентрационному переохлаждению. Такое явление возникает при недостаточно крутом градиенте температур в установке и приводит к переохлаждению расплава вблизи фронта кристаллизации, так как температура плавления слоя оказывается выше фактически существующего распределения температуры. В переохлажденной жидкости могут спонтанно возникать новые центры кристаллизации, в результате чего велика вероятность роста поликристалла. Во избежание этого необходимо создавать как можно более крутой градиент температур, то есть в каждой точке фронта кристаллизации осевая составляющая градиента должна преобладать над радиальной. Качество фронта кристаллизации принято оценивать по ряду параметров: максимальному прогибу, степени кривизны фронта, величине аксиального и радиального градиентов, скорости перемещения. Идеальным случаем является плоский фронт кристаллизации, ему соответствует нулевое значение прогиба, нулевое значение радиального градиента, бесконечный радиус кривизны.

Таким образом, оптимальные условия для получения монокристалла создаются в том случае, когда обеспечивается плоский фронт роста в макроскопическом масштабе и скорость роста не превышает заданной величины. Существует четкая зависимость: чем выше требуется качество монокристалла - тем меньше должна быть скорость роста.

В то же время наметившаяся тенденция к увеличению размеров монокристаллов приводит к невозможности обеспечения оптимальных условий. Так, например, увеличение диаметра тигля с 300 до 600 мм приводит за счет перераспределения градиентов к прогибу фронта кристаллизации на 3 см.

Помимо искажения плоскостности фронта кристаллизации увеличение размеров тиглей ведет также и к ускорению роста монокристалла, так в направлении оси тигля наблюдается наибольшее переохлаждение расплава, которое тем больше, чем больше его диаметр. Это приводит к превышению заданной скорости кристаллизации и увеличению вероятности возникновения дефектов. При превышении некоторого критического значения скорости перемещения фронта возможна потеря устойчивости процесса и переход к неуправляемой кристаллизации.

Таким образом, необходимость увеличения размеров получаемых монокристаллов приводит к увеличению размеров технологического оборудования, что влечет искривление фронта кристаллизации.

Объектом исследования в данной работе являются системы автоматического управления процессами выращивания монокристаллов.

Область исследования: теоретические основы и методы математического моделирования технологических систем и комплексов выращивания монокристаллов, функциональных задач и объектов управления и их алгоритмизация.

Предметом исследования являются способы автоматизации указанных процессов.

Целью данной работы является выработка комплекса мер, позволяющих снизить плотность дефектов структуры «больших» монокристаллов, повысить эффективность их производства за счет повышения скорости кристаллизации и снижения затрат энергии. Повышение эффективности достигается усовершенствованием отдельных элементов системы автоматизации, внедрением современных алгоритмов управления на основании прогнозирования физических явлений, протекающих в объекте автоматизации, посредством математического моделирования.

Для достижения поставленной цели в рамках данной научно-исследовательской работы решались следующие основные задачи:

1. Анализ технологических процессов выращивания монокристаллов, анализ факторов вызывающих повышение плотности дефектов структуры «больших» монокристаллов, анализ особенностей применяемого технологического оборудования;

2. Разработка методов прецизионного регулирования мощности, обеспечивающих снижение вероятности возникновения дефектов, за счет оптимизации спектра мощности;

3. Разработка математических моделей прецизионных регуляторов мощности;

4. Разработка математических моделей многозонных термических объектов (МТО) как объектов управления в составе системы;

5. Синтез оптимальных систем автоматического управления, обеспечивающих стабильные условия роста и снижение плотности дефектов структуры «больших» монокристаллов.

Методы исследования. Для решения поставленных задач применены методы математического и компьютерного моделирования, построения алгоритмов и программ, методы теории автоматического управления, методы матричного и спектрального анализа, теория дифференциальных уравнений.

Научная новизна исследований состоит в: учете влияния спектра индуцированной в расплав мощности на стабильность фронта кристаллизации; разработке сеточных моделей МТО, оптимизированных под задачи управления технологическими установками в режиме реального времени; разработке матричных моделей ЦРН на базе ТКРЭ, оптимизированных под задачи прецизионного регулирования мощности с контролируемым спектральным составом в режиме реального времени; синтезе оптимального закона управления МТО на основе аналитического решения системы дифференциальных уравнений; синтезе закона управления МТО с прогнозирующей моделью для объектов с частичной управляемостью; синтезе адаптивного регулятора скорости кристаллизации для установок с весовым методом контроля.

Практическая ценность диссертационной работы заключается в возможности использования в промышленности: программ анализа спектра мощности (на внутреннем языке МайаЪ) построенных на основе функции селекции периодического интервала (ФСПИ); матричных моделей ЦРН на базе ТКРЭ для типовых трансформаторных структур; структуры ЦРН, обеспечивающей повышение линейности его регулировочной характеристики; сеточных моделей МТО для анализа теплового режима электротермических установок; аналитических выражений, позволяющих рассчитать оптимальное управление МТО «в большом», обеспечивающее вывод технологического оборудования на заданный режим с минимальными искажениями фронта кристаллизации; структуры системы автоматического управления с прогнозирующим управлением в условиях частичной управляемости; структуры адаптивной системы автоматического управления для процессов выращивания монокристаллов с весовым методом контроля.

Из общего числа синтетических кристаллов около 10000 относятся к неорганическим веществам. Некоторые из них не встречаются в природе. Однако первое место занимают органические синтетические кристаллы, насчитывающие сотни тысяч разнообразных составов и вообще не встречающиеся в природе. С другой стороны, из 3000 кристаллов, составляющих многообразие природных минералов, искусственно удаётся выращивать только несколько сотен, из которых для практического применения существенное значение имеют только 20 - 30 (см. табл. 1). Объясняется это сложностью процессов кристаллизации и техническими трудностями, связанными с необходимостью точного соблюдения режима выращивания монокристаллов [1-9].

Синтетические кристаллы кварца получают в гидротермальных условиях. Маленькие «затравочные» кристаллы различных кристаллографических направлений вырезаются из природных кристаллов кварца. Хотя кварц широко распространён в природе, однако его природные запасы не покрывают нужд техники, кроме того, природный кварц содержит много примесей. Синтетические кристаллы кварца массой до 15 кг выращивают в автоклавах в течение многих месяцев, а особо чистые кристаллы (оптический кварц) растут несколько лет.

Таблица 1

Наиболее распространённые синтетические кристаллы

Название Химическая формула Методы выращивания Средняя величина кристаллов Области применения

Кварц БЮз Гидротермальный От 1 до 15 кг, 300x200x150 мм Пьезоэлектрические преобразователи, ювелирные изделия, оптические приборы

Корунд (сапфир) А1203 Методы Киропулоса и Чохральского, зонная плавка Стержни диаметром 20—40 мм, длиной до 2 м, були диаметром до 250 мм Приборостроение, часовая промышленность, ювелирные изделия

Кремний 81 Метод Чохральского От 100 г до 10 кг, цилиндры 300 мм х 500 мм Полупроводниковые приборы

Сапфир (корунд). Это один из наиболее твердых и прочных синтетических материалов. Мировой финансовый кризис подогрел внимание бизнеса и госсектора в развитых странах к энергоэффективным технологиям. Обозначился интерес к экономичным системам общего освещения — в том числе к системам на базе сверхярких светодиодов, основой которой являются подложки из корунда. Качество сапфира определяется количеством и типом дефектов.

Сорт Г. полностью бездефектный материал, в котором не допускаются включения, границы блоков, двойники, микропузыри и центры рассеяния;

Сорт 2: материал, в котором не допускаются включения, границы блоков и двойники; допускается наличие одиночных центров рассеяния в виде микропузырей размером <10 мкм, расположенных не ближе, чем на расстоянии 10 мм друг от друга;

Сорт 3: материал, в котором не допускаются включения, границы блоков и двойники; допускается наличие одиночных пузырей размером <20 мкм, расположенных не ближе, чем на расстоянии 10 мм друг от друга;

Сорт 4\ материал, в котором не допускаются включения, границы блоков и двойники; допускается наличие пузырей размером <20 мкм, расположенных не ближе, чем на расстоянии 2 мм друг от друга, а также скоплений пузырей (которые могут включать одиночные пузыри размером до 50 мкм) размером <200 мкм, расположенных не ближе, чем на расстоянии 10 мм друг от друга в объеме 20x20x20 мм3;

Сорт 5: материал, в котором не допускаются включения, границы блоков и двойники; допускается наличие пузырей размером <20 мкм, расположенных не ближе, чем на расстоянии 2 мм друг от друга, а также скоплений пузырей (которые могут включать одиночные пузыри, размером до 50 мкм) размером <500 мкм, расположенных не ближе, чем на расстоянии 5 мм друг от друга в о объеме 20x20x20 мм ;

Сорт 6: материал, в котором не допускаются включения, границы блоков и двойники, допускаются области скоплений пузырей размером >500 мкм.

Сорта 1-4 являются оптическими; сорта 5-6 рассматриваются как технические. Для оптических сортов не допускаются вариации цвета материала. Для технических сортов вариации цвета материала не контролируются. Дефекты материала в виде включений, границ блоков и двойников контролируются при помощи скрещенных поляризаторов.

Монокристаллы сапфира выращиваются на специальных ростовых установках различными методами, в настоящее время одним из широко распространённых методов для выращивания монокристаллов лейкосапфира является метод Киропулоса.

Ростовая установка для выращивания монокристаллов лейкосапфира методом Киропулоса в общем виде представляет собой высоковакуумную печь с резистивным нагревателем (обычно вольфрамовым), керамическими и молибденовыми экранами и водоохлаждаемым корпусом. В печь помещён тигель с поликристаллическим сырьём. Процесс выращивания заключается в расплавлении сырья и вытягивании расплава на затравочный монокристалл при снижении температуры расплава.

Качество получаемого монокристалла зависит от множества факторов, таких как чистота исходного сырья (необходимая чистота 99,999 %), материал керамических экранов, а также стабильность скорости кристаллизации монокристалла. Нарушение стабильности может привести к захвату примесей фронтом кристаллизации, а также к образованию спонтанных центров кристаллизации, что приведёт в конечном итоге к ухудшению качества получаемого монокристалла вплоть до получения поликристаллической були вместо монокристалла. Скорость кристаллизации зависит от температурного градиента фронта кристаллизации, по этому скоростью кристаллизации можно управлять непосредственно в процессе роста путём управления температурным градиентом фронта кристаллизации.

Метод выращивания и конструкция ростовой установки накладывают ограничения на визуальное наблюдение за процессом роста:

- диаметр растущего монокристалла соизмерим с диаметром тигля;

- фронт кристаллизации погружен в расплав;

- на тигле присутствует экран-пробка (фактически крышка с прорезями, почти полностью закрывающая поверхность расплава от наблюдателя).

Данные ограничения не позволяют наблюдать ни форму фронта кристаллизации в процессе роста, ни диаметр выращиваемого монокристалла. При этом измерение температуры фронта кристаллизации также наталкивается на ряд проблем, главная из которых - невозможность измерения необходимой температуры (порядка 2000 °С) с необходимой стабильностью (порядка 0,1 °С).

Производство монокристаллов лейкосапфира организовано на многих российских предприятиях. Монокристаллы лейкосапфира могут быть получены с использованием различных методов выращивания. Сравнительная характеристика монокристаллов, полученных с использованием различных методов выращивания, представлена в таблице 1.

Из таблицы видно, что из перечисленных методов лучшими характеристиками обладает метод Киропулоса, так как данным методом могут быть получены кристаллы большого диаметра с лучшим возможным качеством.

В настоящее время для установок по выращиванию монокристаллов лейкосапфира методом Киропулоса наблюдаются следующие тенденции модернизации: изменение (увеличение) теплового узла для выращивания монокристаллов большего размера; изменение количества тепловых зон; подбор формы и конструкции нагревателей для создания необходимого температурного поля в процессе роста; подбор материалов экранов, так же служащих для создания необходимого температурного поля.

Данные изменения в установках, безусловно, улучшают качество получаемых монокристаллов.

Несмотря на это, такие подходы обладают ограниченными возможностями. Большинство установок, используемых в производстве, разработаны в 60-х годах, и с тех пор претерпели незначительные изменения. В процессе выращивания монокристаллов, тем не менее, важную роль играет не только конструкция установок, но и следующие факторы:

- качество подводимой на нагреватель электрической мощности;

- автоматизация процесса выращивания.

Анализ организации производства на различных предприятиях, занимающихся выращиванием монокристаллов лейкосапфира методом Киропулоса показывает, что основным направлением исследований является подбор технологом режимов роста исходя из личного опыта. Несмотря на то, что такой подход даёт положительный результат, он обладает рядом существенных недостатков. В первую очередь данный подход субъективен и зависит от мнения обычно одного человека - технолога. При этом знания не формализованы и не структурированы. Как показывает практика, с уходом такого технолога с предприятия и в случае отсутствия других технологов сопоставимого уровня качество продукции может сильно ухудшиться, вплоть до начала производства брака. Также следствием отсутствия формализации знаний является сложность обучения новых операторов и технологов.

Анализ работ по выращиванию монокристаллов лейкосапфира методом Киропулоса показывает, что основные научные исследования и разработки можно разделить на несколько направлений: моделирование теплового поля ростовой установки в процессе выращивания монокристаллов лейкосапфира [10. .13]; вычисление оптимальных режимов выращивания [ 14. 19]; определение влияния на рост монокристалла дополнительных параметров, таких как вращение штока в процессе роста [20]; определение зависимости наличия дислокаций в монокристаллах в зависимости от условий роста [21]; внесение изменений в конструкцию частей ростовой установки [22.34].

Следует отметить, что в большинстве своём данные исследования проводятся не на ростовых установках, а на моделях. При этом не производится никаких исследований, связанных с алгоритмами управления данным технологическим процессом, а также с построением моделей вход-выход относительно информационных каналов, имеющихся на установке. Таким образом, обычно происходит попытка повторения результатов, построенных на идеальной модели, на реальной установке. Очевидно, что ростовая установка может отличатся от идеальной модели. Кроме этого, параметры ростовой установки меняются в процессе роста, что не учитывается в существующих идеальных моделях для расчёта температурных полей. Тем самым, рассчитанные на идеальной модели режимы оказываются неприемлемыми для реальных установок. В то же время, создание системы управления, которая обладала бы возможностью оценки состояния установки в течение ростового процесса, существенно повысило бы качество режима управления установкой. Подходы по моделированию температурного поля имеют существенный недостаток, который вытекает из применяемых математических инструментов. Так как для моделирования используется в основном метод конечных элементов, то моделирование само по себе является ресурсоёмким, с большой вычислительной нагрузкой, и такие модели не могут быть применены непосредственно в составе систем управления ростовыми установками.

Монокристаллический кремний получается выращиванием слитков из расплава кремния в кварцевых тиглях на специальную монокристаллическую затравку. После окончания процесса выращенный слиток подвергается механической обработке для придания ему заданной формы ( цилиндрической - для кремния электронного качества (диаметром 154 мм), псевдоквадратной -для кремния солнечного качества). В связи с растущими требованиями рынка по увеличению диаметров выращиваемых монокристаллов до 300 мм установки для получения слитков кремния постоянно модернизируются. В ходе модернизации увеличиваются размеры плавильной камеры, совершенствуется конструкция теплового узла.

Проблема имеет два основных аспекта:

1) Обеспечение качества энергообеспечения ЭТУ при снижении энергозатрат на производство;

2) Повышение качества регулирования технологических параметров, а, следовательно, и качества фронта кристаллизации.

Актуальность проведения исследований в рамках первого аспекта обусловлена высокой энергоемкостью производства. Мощность, потребляемая одной установкой, как правило, составляет 100 кВА и более, а длительность технологического цикла составляет от 1 до 3 недель.

Исполнительный орган должен обеспечить режим питания нагревательного элемента с амплитудой пульсаций температуры не более 0,2 °С. При этом для обеспечения высокого КПД и сопряжения с цифровыми системами управления передача энергии должна производиться дискретно. Кроме того, большинство процессов выращивания монокристаллов являются высокотемпературными. Это обстоятельство требует применение высокотемпературного нагревательного элемента, как правило, изготавливаемого из вольфрамового прутка.

Стабильность мощности на нагревателе может быть обеспечена стабильностью поддержания напряжения или непосредственной стабилизацией измеренного значения мощности. При этом стабилизация мощности имеет существенный недостаток: измеренное значение мощности зависит от температуры нагревателя. Температура нагревателя может изменяться в небольших пределах при изменении уровня вакуума в кристаллизаторе, изменения соотношения между объемом расплава и кристалла и прочих технологических факторов.

Ступенчатое увеличение напряжения на нагревателе приводит к ступенчатому увеличению мощности, но затем температура нагревателя и его сопротивление увеличиваются, что ведет к снижению мощности. Аналогично ступенчатое уменьшение напряжения на нагревателе приводит к ступенчатому уменьшению мощности, но затем температура нагревателя и его сопротивление уменьшаются, что ведет к увеличению мощности. То есть нагреватель «препятствует» изменению мощности. В результате время регулирования увеличивается и снижается качество стабилизации.

Еще более негативным фактором является резкое изменение питающего напряжения в моменты пикового потребления мощности. Это происходит, как правило, в утренние часы и выражается в падении напряжения на величину около 10 вольт в течении часа. Стабилизатор напряжения на нагревателе обеспечивает нужный уровень напряжения, но изменяет фазовый угол открытия тиристора и спектральный состав напряжения. Это приводит к резкому снижению уровня индуцированной в расплав мощности и уменьшению температуры расплава на поверхности. Уменьшение температуры приводит к росту измеренного значения мощности [35]. При работающем стабилизаторе мощности это приводит к уменьшению напряжения на нагревателе и еще большему охлаждению поверхности расплава. В результате возможно залипание кристалла на ранних стадиях роста.

В связи с этим стабилизаторы мощности не получили широкого распространения и в дальнейшем в работе будут рассмотрены только регуляторы мощности, стабилизирующие уровень напряжения на нагрузке.

Актуальность проведения исследований в рамках второго аспекта обусловлена прямой зависимостью качества продукции от качества поддержания технологического параметра (температуры или напряжения). Это связано с тем обстоятельством, что зависимость скорости роста от температуры является экспоненциальной, и при резком повышении скорости кристаллизации происходит захват примесей и ухудшение качества монокристалла в целом.

Для гидротермальных методов можно дать следующие оценки точности поддержания температуры, приведенные в табл. 2.

Таблица 2

Оценки точности поддержания температуры

Погрешность относительная, % Погрешность в °С, при рабочей температуре (600-1000)°С Оценка

5 ± (30 - 50) Плохо, но иногда приемлемо, например, в опытах по синтезу минералов

2 ±(12-20) Удовлетворительно, нижняя граница точности при исследовании минеральных равновесий 1 ±(6-10) Обычная точность

0,5 ±(3-5) Хорошая точность, подходит для большинства экспериментальных задач

0,3 ±(1-3) Идеальная точность, подходит для прецизионных измерений

0,1 ±(0,6-1) Мировые достижения

Распределение температур в кристаллизаторе формирует фронт кристаллизации. Качество управления фронтом кристаллизации напрямую определяет качество получаемого кристалла. При этом форма и стабильность фронта кристаллизации определяется тремя основными факторами: характер и сила магнитного поля воздействующего на расплав; возмущение на температуру в зоне кристаллизации со стороны соседних тепловых зон; возмущение на температуру в зоне кристаллизации со стороны питающей сети.

Все эти факторы тесно связаны. Изменение одного из них ведет к изменению остальных факторов. Это обстоятельство диктует требование управления всеми факторами в рамках единой структуры.

На формирование монокристалла существенное влияние оказывает форма фронта кристаллизации, так как рост кристалла всегда происходит в направлении, перпендикулярном фронту кристаллизации. Форма фронта кристаллизации зависит от способа нагрева и отвода тепла от растущего монокристалла.

При вытягивании кристалла из расплава тепло отводится через растущий кристалл и фронт кристаллизации при этом имеет выпуклую форму. Следует также учитывать, что практически в любом расплаве присутствуют примеси, а реальные процессы кристаллизации всегда связаны с относительно большими скоростями роста так, что равновесие между расплавом и растущим кристаллом не успевает устанавливаться, то есть оттесняемая от фронта кристаллизации примесь не успевает равномерно распределяться по расплаву и накапливается вблизи фронта кристаллизации. Это приводит к так называемому концентрационному переохлаждению. Такое явление возникает при недостаточно крутом градиенте температур в установке и приводит к переохлаждению расплава вблизи фронта кристаллизации, так как температура плавления слоя оказывается выше фактически существующего распределения температуры. В переохлажденной жидкости могут спонтанно возникать новые центры кристаллизации, в результате чего велика вероятность роста поликристалла. Во избежание этого необходимо создавать как можно более крутой градиент температур, то есть в каждой точке фронта кристаллизации осевая составляющая градиента должна преобладать над радиальной. Качество фронта кристаллизации принято оценивать по ряду параметров: максимальному прогибу, степени кривизны фронта, величине аксиального и радиального градиентов, скорости перемещения. Идеальным случаем является плоский фронт кристаллизации, ему соответствует нулевое значение прогиба, нулевое значение радиального градиента, бесконечный радиус кривизны. Любая нестабильность условий роста вызывает изменение параметров фронта кристаллизации.

Таким образом, оптимальные условия для получения монокристалла создаются в том случае, когда обеспечивается плоский фронт роста в макроскопическом масштабе и скорость роста не превышает заданной величины. Существует четкая зависимость: чем выше требуется качество монокристалла - тем меньше должна быть скорость роста.

В то же время наметившаяся тенденция к увеличению размеров монокристаллов приводит к невозможности обеспечения оптимальных условий. На рис. 1,а представлены результаты оценочного расчета распределения температур в тиглях диаметром 300 мм на двумерной модели, проведенного в пакете Partial Differential Equation Toolbox системы Matlab. При расчете задавались граничные условия Неймана с теплопроводностью 20 Вт/(м °С) и тепловым потоком 48000 Вт/м на боковых и нижней поверхностях. На верхней поверхности внешний тепловой поток отсутствует (отсутствует нагреватель) и теплопроводность задана на уровне 5 Вт/(м °С), что обусловлено наличием тепловых экранов. Распределение температур получено путем решения эллиптического дифференциального уравнения в частных производных метод конечных элементов. Аналогичным образом получено решение для распределения температур в тигле диаметром 600 мм, представленное на рис. 1,6. При расчете задавались те же граничные условия за исключением того обстоятельства, что для получения одинаковых значений температур тепловой поток от нагревателя увеличен до 50000 Вт/м. Анализ температурного поля в тигле показывает

-0,15 X, м--► +0Л5 ■■2140 х, м -► а) б)

Рис. 1. Оценочное распределение температур: а) в малом тигле (300 мм); б) в большом тигле (600 мм) Помимо искажения плоскостности фронта кристаллизации увеличение размеров тиглей ведет также и к ускорению роста монокристалла, так в направлении оси тигля наблюдается наибольшее переохлаждение расплава, которое тем больше чем больше его диаметр. Это приводит к превышению заданной скорости кристаллизации и увеличению вероятности возникновения дефектов. При превышении некоторого критического скорости перемещения фронта возможна потеря устойчивости процесса и переход к неуправляемой кристаллизации.

Таким образом, необходимость увеличения размеров получаемых монокристаллов приводит к увеличению размеров технологического оборудования, что влечет искривление фронта кристаллизации. В настоящее время наметилась тенденция к увеличению числа тепловых зон, такой подход позволяет за счет активного управления тепловыми зонами снизить степень кривизны фронта кристаллизации. При этом возникает задача связного управления тепловыми зонами, то есть обеспечение требуемой точности поддержания технологических параметров при наличии возмущений от смежных зон нагрева.

В установках гидротермального синтеза (автоклавах) наблюдается схожая ситуация. Для повышения производительности производства монокристаллов увеличивается высота автоклава, что ведет к неравномерности условий роста для монокристаллов в различных местах подвески. Это обстоятельство требует разделения автоклава на отдельно управляемые тепловые зоны и реализацию связного управления.

Поскольку на практике спектр мощности является полигармоническим, то изменение температуры на фронте кристаллизации будет определяться не только теплотой поступающей от нагревательного элемента, но теплотой полученной за счет индуцированных токов. Вклад индукционного нагрева может быть весьма значительным, поскольку при высоких температурах большинство материалов становиться электропроводным, а токи в высокотемпературных установках достигают 5000 А. Высокотемпературный нагреватель, как правило, представляет собой решетчатую конструкцию из вольфрамовых прутков (около

12 штук). В непосредственной близости от прутка формируется переменное магнитное поле, при этом для анализа было принято допущение, что излучающая часть нагревателя имеет длину 0,6 м (по высоте тигля).

Индуцированные в расплав токи в непосредственной близости от излучателя при этом зависят прямо пропорционально от частоты, удельной электрической проводимости и магнитной проницаемости расплава:

J = H-yj2nfk[i0[i , где wl

Н = —, А/м - напряженность магнитного поля, зависящая от силы тока /,

А, числа витков с током w и длины излучающей части проводника /, м;

- частота тока, Гц;

1 -1 -1

X - удельная электрическая проводимость, Ом м ; ц0- магнитная проницаемость вакуума, 4зг -10"7Гн/м; j.— относительная магнитная проницаемость среды. о

Удельная мощность (Вт/м ), выделяемая индуцированными токами при этом определяется выражением p(t) = U2(t), где J - плотность тока проводимости, А/м;

X - удельная электрическая проводимость, Ом ~'м

В существующих установках в режиме роста монокристаллов сапфира спектральный состав тока через нагреватель представляет собой убывающую функцию: 50 Гц - 2100 А, 150 Гц - 1050 А, 250 Гц - 392 А и так далее. Тогда на частоте первой гармоники спектра 50 Гц напряженность магнитного поля от одного прутка в непосредственной близости от нагревателя составит 292 А/м, а плотность индуцированного тока - 41 А/м, что соответствует удельной мощности, выделяемой в расплаве в непосредственной близости от нагревателя, 17 Вт/м3. Аналогично для третьей гармоники 150 Гц: напряженность магнитного поля - 146 А/м, плотность тока - 35 А/м, индуцированная мощность - 12 Вт/м3. Для пятой гармоники эти значения составят 54 А/м, 17 А/м и 3 Вт/м соответственно. При этом общая подводимая к расплаву мощность составляет примерно

25000 Вт/м3.

Индуцированные мощности достаточно малы по сравнению с общей подводимой мощностью, но и требования к точности поддержания температуры на фронте кристаллизации очень высоки. Кроме того, высокочастотные составляющие в спектре мощности нагревателя по мере проникновения в расплав поглощаются в большей степени, чем низкочастотные, что приводит к неравномерному выделению индуцированной мощности в расплав и еще большему искривлению фронта кристаллизации. При этом неравномерность выделения индуцированной мощности возрастает с ростом диаметра тигля.

Представим фронт кристаллизации многомерным термическим объектом с заданными тепловыми проводимостями между центрами выделения индуцированных мощностей, как это показано на рис.2,а. Предположим, что при питании постоянным током был обеспечен плоский фронт кристаллизации, при этом была достигнута удельная мощность 25000 Вт/м . Зоны 8 и 9 на рис. 2,а можно считать термостатированными, так как зона 8 соответствует поверхности расплава и определяется теплофизическими параметрами теплового узла (количеством тепловых экранов) не зависящими от индуцированных мощностей. Зона 9 соответствует днищу тигля и также определена условиями теплового баланса между элементами конструкции. При анализе, исходя из геометрии тигля, представленного на рис. 1,6, тепловые проводимости в радиальном направлении определялись через элементарные объемы размером 0,3x0,3x0,1 м, а в аксиальном - 0,1x0,1x0,3 м. Подробнее вопросы построения сеточных моделей многомерных термических моделей рассмотрены в главе 4.

Питание установки переменным током с приведенным выше спектральным составом приведет к искажению теплового поля, как это показано на рис.2,б. Максимальная разница температур на фронте кристаллизации достигает 0,08 °С, что составляет более 30 % от допустимой ошибки по температуре (0,2 °С) и существенно для рассматриваемых технологических процессов. а б

Рис. 2. Влияние индуцированных токов на фронт кристаллизации: а) сеточная модель теплового поля на фронте кристаллизации; б) искажение теплового поля индуцированными токами Пути решения проблемы предполагают разработку способов управления технологическими установками выращивания монокристаллов, обеспечивающих стабильность условий роста монокристаллов. Необходима разработка классов устройств и методов регулирования электрической мощности при условии соблюдения ограничений в части электромагнитной совместимости и качества электроснабжения. Анализ столь сложных систем требует наличия развитых математических моделей всех входящих в состав системы управления звеньев.

В частности, как показано в третьей главе, анализ ЦРН является сложной задачей, и для ее решения используется метод объединенных матриц. В свою очередь, решение задачи синтеза оптимального ЦРН распадается на ряд подзадач: это задача моделирования электромагнитных систем, задача анализа построения коммутационно-исполнительных структур. Реализация регулирующего органа требует выбора метода преобразования энергии, отвечающего условиям поставленной задачи. Различные методы и оценка их эффективности рассмотрены в первой главе. Реализация этих методов требует наличия соответствующих исполнительных структур. Однако требование к высокой точности регулирования приводят к необходимости увеличения дискретных уровней регулирования и, следовательно, усложняет схему ТКРЭ, увеличивая ее стоимость.

Наиболее простым и экономичным является способ регулирования мощности за счет искажения формы напряжения сети. Однако его использование для регулирования средних и больших мощностей порождает проблему электромагнитной совместимости. Искаженное напряжение представляет собой широкий спектр гармонических составляющих, распространяющихся по сети и вызывающих побочные воздействия, в частности они, увеличивают уровень потерь в работающем электрооборудовании, приводят к перегреву его обмоток, снижая ресурс.

Возможны различные варианты решение задачи. Например, за счет использования комбинированного управления ТКРЭ, при котором изменение мощности достигается частично за счет изменения уровня регулирования ТКРЭ, а частично за счет незначительного искажения формы напряжения (его регулируемого временного параметра). Техническая реализация этого метода, получившего название времявариантного регулирования, не представляет практической сложности, а выигрыш от его применения весьма существен.

Второй аспект проблемы повышения стабильности условий роста монокристалла охватывает самый широкий круг задач. Здесь и задачи, решаемые классической теорией систем автоматического регулирования и задачи согласованного управления.

Как правило, технологические установки имеют несколько управляемых зон, их число колеблется от 2 до 9 в зависимости от размеров ростовой камеры. Раздельное управление этими зонами не позволяет добиться желаемых точностей, поскольку влияние зон регулирования друг на друга достаточно велико. Это обстоятельство требует разработки методов согласованного управления.

Другим аспектом, который необходимо учитывать при проектировании систем управления ЭТУ является наличие большой величины запаздывания информации в контуре управления. Это связано с особенностью конструкции ЭТУ. Чаще всего регулирующая термопара располагается в центре технологической зоны, а нагреватель на корпусе автоклава. В связи с этим воздействие от нагревателя на внутреннюю термопару доходит с запаздыванием, иногда достигающим десятки минут. Это обстоятельство требует разработки методов каскадного управления применительно к многозонным ЭТУ.

Повышение эффективности трудно достижимо без решения одной из основных задач теории автоматического управления - оптимизации движения системы в «большом», то есть в разработке методов оптимального управления позволяющих переводить ЭТУ из одного состояния в другое с минимальным перерегулированием. Особенно данный режим актуален для этапа вывода установки на режим роста, когда не важен закон изменения температуры во времени.

Также должны быть предприняты специальные меры для увеличения выхода годных изделий. Это требование диктуется спецификой технологии выращивания монокристаллов, которая заключается в том, что система управления наряду с высокой чувствительностью к изменению состояния объекта должна обладать также и высокой устойчивостью к возмущениям и помехам. Кроме того, зачастую единственно достоверным показателем качества роста кристалла является скорость изменения веса. Все это требует включения в состав системы управления контура управления по вспомогательному критерию, в частности по скорости изменения веса.

Таким образом, задача повышения эффективности управления энергоемким термическим оборудованием, стоящая перед рядом промышленных предприятий, требует проведения комплекса теоретических исследований, программной проработки и машинного эксперимента. Полученные результаты позволят снизить уровень энергозатрат и повысить качество выпускаемой продукции.

Структура диссертации

В первой главе проведен анализ промышленных установок выращивания монокристаллов. Выделены 4 основные группы: - установки гидротермального синтеза;

- литейные установки направленной кристаллизации;

- установки для получения монокристаллов в контролируемой газовой среде;

- установки для получения монокристаллов в вакууме.

Несмотря на существенные различия, все рассмотренные установки имеют ряд общих характеристик, нуждающихся в оптимизации. В частности все перечисленные классы оборудования обладают высокой энергоемкостью и высокими требованиями к точности поддержания температуры. Кроме того, показано, что для высокотемпературных установок, регуляторы мощности помимо высокого к. п. д. должны обеспечивать формирование напряжения на нагревателе с контролируемым спектральным составом.

Анализ способов управления показал необходимость разработки алгоритмов оптимального управления на базе прогнозирующих моделей. Сформулированы требования к построению математических моделей процесса производства монокристаллических материал. Поскольку важнейшей характеристикой, определяющей качество процесса кристаллизации, является стабильность температурного поля в зоне кристаллизации, в заключение первой главы предложены критерии оценки качества регулирования температурного поля.

Во второй главе рассмотрены вопросы разработки способов высокоэффективного преобразования энергии, отвечающих требованиям электромагнитной совместимости оборудования с физико-химическими процессами при кристаллизации.

Для регулирования мощности используют разнообразные способы формирования переменного напряжения на нагрузке. При этом обычно имеют место искажения формы напряжения, что ставит задачу оценки влияния этих искажений на стабильность фронта кристаллизации. Для решения этой проблемы выполнен анализ аспектов формирования напряжения в процессе регулирования мощности. Для удобства анализа предложено использование функции селекции периодического интервала (ФСПИ) которая представляет собой логическую функцию от текущего времени и трех параметров, включающих период селектируемого интервала, его начальное значение и конечное значение. Исследованы основные свойства такой функции.

С помощью ФСПИ проведен анализ спектрального состава мощности. Показано, что при регулировании, использующем широтно-импульсную модуляцию, предпочтительнее использовать импульсы со скважностью, близкой к 0,5. В этом случае спектр напряжения убывает достаточно быстро. Еще быстрее убывает спектр мощности (в силу квадратичной зависимости). Поскольку для каждого конкретного уровня мощности в нагрузке могут быть использованы токи с различными спектральными составами, то, изменяя структуру управляющего кода, можно улучшать параметры регулирования, связанные со спектральным составом сформированного напряжения.

Одним из основных факторов, позволяющих не учитывать влияние спектрального состава на качество проходящих при выращивании монокристаллов процессов, считается наличие значительной тепловой инерции технологической установки. Оценка влияния спектра мощности тепловыделения на нестабильность температуры показала, что предельное значение точности установления температуры в условиях гармонической линеаризации процесса нагрева определяется отношением основной гармоники к постоянной составляющей спектра мощности. Промышленные электротермические установки имеют, как правило, большое значение постоянной времени, поэтому влияние спектра мощности на нестабильность температуры не велико.

Величина тока нагревательного элемента для установок выращивания монокристаллов весьма высока (около 5000 А). В связи с этим электромагнитные поля в расплаве также имеют высокую напряженность. Это порождает необходимость учета влияния спектрального состава мощности на плотность индуцированного тока. В рамках второй главы проведен анализ распределения плотности тока, индуцированного одиночным однородным проводником, в декартовой системе координат и в цилиндрической, которая в большей степени соответствует конструкции нагревателя. Поскольку для получения заданного температурного режима могут быть использованы напряжения различной формы, появляется возможность оптимизации управления электропечью по некоторым критериям, связанным со спектральными свойствами напряжения. В качестве критериев может выступать равномерность поля наведенных токов в жидкой фазе.

С точки зрения уровня высокочастотного электромагнитного излучения наилучшими показателями обладает источник постоянного тока. Но наличие диодов в выходных цепях существенно удорожает ЭТУ и снижает её КПД. Так, например, для реализации трехфазного источника постоянного тока на базе трансформаторов ТК-401 разрабатываемого ООО «Сектор» для установок выращивания лейкосапфира весом до 60 кг с максимальным током нагревателя 11 ООО А требуется 6 водоохлаждаемых диодов, включенных по схеме со средней точкой, с максимальных рабочим током не менее 3550 А. С учетом чередующегося режима работы диодов средняя мощность, выделяемая на диодах, может достигать 7 кВт. Учитывая, что стоимость одного диода составляет около 200 долларов, также существенно возрастает и стоимость установки.

Источники постоянного тока на основе высокочастотных инверторов в настоящее время на требуемые диапазоны токов серийно не выпускаются. Наиболее близкие к требуемым параметры имеют источники питания серии Сепе-БуБ [36], например ОЕ№0-1000-М1>ЗР400. Они обеспечивают ток до 1 кА с возможностью каскадирования. Но стоимость одного такого модуля гораздо выше источника на основе трансформатора и в настоящее время достигает 15000 долларов.

Таким образом, применение регуляторов переменного напряжения с контролируемым спектральным составом является оптимальным с точки зрения сочетания затрат на реализацию, КПД и улучшение условий роста монокристаллов. Для реализации такого источника необходимо введение класса цифровых регуляторов напряжения (ЦРН) на основе трансформаторных структур.

При формализации процесса управления многокомпонентным дискретным регулятором (МДР) выделены аддитивные и мультипликативные МДР. Разработаны модели их функционирования. Разработан критерий оценки качества ЦРН. Показано, что по своим структурным особенностям дискретно регулируемый элемент представляет собой объединенные общей схемой электрических соединений (СЭС) коммутационную исполнительную структуру (КИС) и совокупность нерегулируемых элементов. Проведен анализ обобщенной секционированной структуры ЦРН на основе ДРТ.

Разработаны модели КИС, основанные на матрице управления коммутацией (МУК). Разработана методика создания МУК для сложных ЦРН, при большом количестве полюсов КИС. Проанализированы матричные модели типовых КИС.

В третьей главе дано формализованное описание процесса регулирования ЦРН. Рассмотрены модели разной степени сложности. Идеальный ЦРН можно представить управляемым четырехполюсником. Под действием управляющего кода У в четырехполюснике происходит изменение коэффициента к передачи напряжения. Реальному ЦРН соответствует четырехполюсник с совокупностью дополнительных входов. Зависимости параметров ЦРН от внешних факторов носят сложный характер. Полученное при этом приближенное соотношение имеет три сомножителя.

Первый сомножитель представляет собой матрицу размера (1 ,т) элементы которой характеризуют приращение коэффициента передачи напряжения, обусловленное изменением соответствующего этому элементу параметра коэффициентов влияния. Второй сомножитель представляет собой матрицу размера (т, д). При этом у-й элемент матрицы характеризует приращение /-го параметра ЦРН, обусловленное единичным изменением 7-го внешнего фактора. Третий сомножитель представляет собой матрицу-строку из ц элементов, каждый из которых характеризует приращение соответствующего этому элементу внешнего фактора.

Основным источником возмущений со стороны сети является несогласованное подключение или отключение потребителей. Подключение нагрузок при независимой работе регуляторов по разным зонам носит случайный характер. Анализ показал, что несогласованная работа отдельных зон регулирования, питающихся от одного источника энергии, при отношении внутреннего сопротивления источника к сопротивлению одиночной нагрузки, равном 0,04 и числе зон равном 16, с достаточной вероятностью (свыше 20 %) приводит к изменению питающего напряжения на величину до 3,5%. Полученная модель возмущения позволяет более достоверно оценить качество работы прецизионных регуляторов напряжения на стадии их проектирования.

Также в третьей главе рассмотрены вопросы, посвященные построению матричных моделей (ЦРН) на основе трансформаторно-ключевых регулирующих элементов (ТКРЭ), разрабатываются методы анализа ЦРН, оптимизированные для анализа специальных классов регуляторов. Наибольшую сложность при исследовании дискретных регуляторов представляет анализ процессов в ТКРЭ, требующий совместного решения уравнений, составленных на основании закона электромагнитной индукции, закона полного тока и законов Кирхгофа для электрической и магнитной цепей. Формализация ее решения может быть осуществлена на основе метода объединенных матриц. При использовании этого метода ТКРЭ рассматривают в виде электромагнитной цепи, под которой понимают совокупность электрической (ЭЦ) и магнитной (МЦ) цепей, связанных в единую схему посредством обмоток, размещенных на стержнях МЦ и включенных в ветви ЭЦ.

Сложность модели определяется количеством компонентов и топологическими особенностями ЭЦ и МЦ. Структурные особенности сформированных матриц зависят от принятой нумерации контуров и ветвей ЭЦ и МЦ. Удачная нумерация позволяет выделить в матрицах определенные блоки, имеющие конкретный физический смысл. При этом появляется возможность получения универсальных блочных матриц, независящих от размерности исследуемых цепей.

Особый интерес для анализа представляет разработка обобщенных моделей ТКРЭ с регулярными структурами и произвольным числом секций регулирования. В качестве примера рассмотрен ТКРЭ с коммутатором звездного типа в цепи первичной обмотки. Подобная схема соответствует типовому исполнению силового трансформатора с отводами первичной обмотки.

Существенным недостатком методов регулирования, основанных на использовании гармонического РК, является сложность обеспечения высокой точности при широком диапазоне регулирования. Повышение точности, достигаемое увеличением количества возможных состояний ТКРЭ, сопряжено с увеличением количества обмоток регулирования, числа управляемых ключевых элементов. Устранение указанного противоречия может быть достигнуто использованием времявариантного регулирования (ВВР), сущность которого заключается в совмещении принципов амплитудного регулирования гармоническим компонентом с фазовым регулированием.

Неравномерность регулировочной характеристики при ВВР обусловлена тем обстоятельством, что изменение коэффициента передачи ТКРЭ происходит в фиксированные моменты времени, равномерно распределенные в каждом из полупериодов изменения напряжения сети. Вследствие этого приращение действующего значения выходного напряжения будут неодинаковыми. В начале полупериода они минимальные, а в его середине - максимальные. Автором предложена структура ЦРН, обеспечивающая равномерность регулировочной характеристики.

В четвертой главе разрабатываются сеточные модели многомерных термических объектов (МТО), необходимые для эффективного управления технологическим процессом.

Рассмотрен МТО с двумя совокупностями зон: зонами термостатирова-ния, в которых температуры поддерживаются постоянными, и зонами варьирования. Полученное соотношение позволяет осуществлять анализ температурного процесса только в регулируемых зонах. Остальные зоны непосредственно в анализе не участвуют. Их влияние учитывается введением в модель матрицы дополнительных параметров связи.

Полученное для системы уравнений, описывающих объект, имеющий п связанных между собой зон нагрева, выражение содержит операции над целочисленными аргументами, то есть значительно упрощаются и ускоряются математические вычисления, что крайне важно для реализации систем управления реального времени. Кроме того, экспериментальное определение параметров такого объекта производится с гораздо меньшей вычислительной нагрузкой, поскольку определяются только два параметра у и у0 независимо от размерности объекта.

Одной из проблем при управлении МТО является учет влияния изменяющейся температуры внешней среды. Примером такой системы может служить внутренний объем автоклава. Как правило, внутри рабочего объема отсутствуют источники тепла. Нагреватели, находящиеся на внешних стенках автоклава с помощью локальных регуляторов обеспечивают фиксированное значение температур стенки. Ведение по внутренним термопарам дает наиболее высокую точность, но при этом система управления становится чувствительно к возмущающим воздействиям со стороны окружающей среды. Чтобы оценить это воздействие внутренний объем автоклава представлен в виде каскада инерционных звеньев.

При питании зон нагрева МТО от ТКРЭ возникает задача совместного анализа этих объектов. Введение матрицы селекции нагревателей 8Н (единичные элементы соответствуют номерам контуров, в которых размещены нагревательные элементы) в уравнения метода объединенных матриц позволяет связать воедино процессы анализа электромагнитной и электротермической цепей.

Пятая глава посвящена разработке методов управления, обеспечивающих стабильность фронта кристаллизации. Качество управления фронтом кристаллизации напрямую определяет качество получаемого кристалла. При этом форма и стабильность фронта кристаллизации определяется двумя факторами: величиной и стабильностью температурного градиента и стабильностью скорости вытягивания кристалла из расплава.

В свою очередь весь комплекс задач по управлению градиентом можно разделить на две группы:

- управление движением многозонного термического объекта (МТО) в пространстве состояний в «большом», то есть значительные изменения температур с сохранением нужного значения градиента;

- стабилизация градиента при воздействии на многозонный термический объект дестабилизирующих факторов.

Динамика большинства термических объектов достаточно хорошо описывается инерционным звеном первого порядка. При этом часто ставиться задача форсированного перехода с одной температуры на другую. Рассмотрена реализация оптимального регулирования температуры с целью уменьшения величины перерегулирования и сокращения времени переходного процесса для однозонного термического объекта.

Для данного объекта требуется определить закон изменения во времени мощности Р({), поступающей в нагревательный элемент для того, чтобы была получена температурная зависимость 7(7), обеспечивающая за интервал времени т изменение температуры с заданного начального 7\/ до заданного конечного Тк значений, при этом в момент достижения температурой конечного значения скорость ее изменения была равна нулю. Решение этой задачи найдено в классе экспоненциально-убывающих функций. Результаты распространены на многомерный случай.

В условиях частичной управляемости, задачи формализации процесса описания модели можно упростить, перейдя к блочным моделям, содержащим управляемые и не управляемые зоны. Для данного класса установок динамика процессов значительно отличается от динамики инерционного звена первого порядка. Это вызвано наличием дополнительной границы «преломления» теп-лофизических свойств. В результате динамика процесса описывается звеном второго порядка. Полученное аналитическое решение для заданных условий имеет аналогичный вид и позволяет рассчитать оптимальное управление «в большом» для подобных объектов.

В тех случаях, когда по техническим причинам нет возможности измерять температуру в зоне кристаллизации нашли применение косвенные методы определения состояния фронта - по изменению веса кристалла. Высокая чувствительность системы к ошибке регулирования по весу обусловлена особенностью динамики процесса кристаллизации - объект управления является не линейным. В этом случае значительный эффект дает применение беспоисковой адаптивной системы регулирования с эталонной моделью. В подобных системах управляющее воздействие разделено на две составляющие: постоянную определяемую на основании эталонной модели и переменную, определяемую следящей системой.

При проектировании систем автоматического регулирования для МТО часто приходится сталкиваться с ситуацией, когда сепаратное управление является не эффективным вследствие взаимного влияния зон регулирования. Так, например, возмущение по температуре в одной зоне МТО приводит к возмущениям по смежным с ней зонам. Сепаратные каналы выбирают ошибку регулирования лишь спустя некоторое время, но не способны быстро отреагировать на возмущение. Сформулированы требования к корректирующему звену по мощности. Полученная матрица коррекции по мощности позволяет компенсировать возмущения со стороны смежных зон.

Монокристаллические отливки из никелевых жаропрочных сплавов, как правило, получают методом направленной кристаллизации (способ Бриджмена-Стокбаргера). Тигель или литейная форма с предварительно залитым расплавом постепенно перемещаются в температурном поле нагревателя из горячей зоны в зону охлаждения. Поскольку процесс кристаллизации имеет относительно большую продолжительность, то температура охладителя заметно увеличивается, что приводит к снижению аксиального градиента. Это, в свою очередь, приводит к изменению положения фронта кристаллизации по мере нагрева охладителя, то есть к изменению скорости кристаллизации. Полученное выражение для расчета положения фронта кристаллизации позволяет синтезировать корректирующее звено. Введение корректирующего звена в состав системы управления скоростью погружения формы позволяет стабилизировать скорость кристаллизации отливки.

Следует отметить, что рядом исследователей проводились разработки в смежных областях. Так д. т. н., профессор Санкт-Петербургского государственного института точной механики и оптики Мирошник И. В. внес большой вклад в развитие метода согласованное управление многоканальными объектами применительно к управлению промышленными роботами. Академик Тихонов А. Н. ввел в машиностроение метод обратных задач, применительно к металлургии. Основы синтеза трансформаторно-ключевых исполнительных структур были заложены представителем украинской научной школы д. т. н. Липковским К. А., (Институт электродинамики ПАН Украины, Киев) и развиты д.т.н., проф. РГАТУ им. П. А. Соловьева Юдиным В. В. в метод объединенных матриц.

Заключение диссертация на тему "Методология создания автоматизированных систем обеспечения стабильности условий роста монокристаллов в электротермических установках"

Выводы и результаты по главе 5

1. При синтезе оптимального закона управления МТО необходимо учитывать, что такие объекты являются частично-управляемыми, то есть регулирование энергии осуществляется только в части тепловых зон. В связи с этим предложен способ управления, основанный на нахождении минимума взвешенного среднеквадратического отклонения температур.

2. Разработанный с целью уменьшения величины перерегулирования и сокращения времени переходного процесса способ оптимального регулирования температуры для многозонного термического объекта позволяет переводить МТО из одного состояния в другое с минимальными искажениями фронта кристаллизации.

3. В автоклавах при ведении процесса только по внутренним термопарам суточные колебания температуры приводят к возникновению ошибки регулирования. Введение каскадного управления позволило на порядок снизить величину ошибки регулирования.

4. Разработан способ, позволяющий в динамике стабилизировать температурный градиент в условиях наличия сильного взаимного влияния зон нагрева.

5. Полученное выражение для расчета положения фронта кристаллизации при получении монокристаллических отливок из никелевых жаропрочных сплавов позволяет синтезировать корректирующее звено.

6. Предложен способ стабилизации скорости кристаллизации при управлении по скорости прироста веса монокристалла с использованием беспоисковой адаптивной системы (БАС). Это позволило избавиться от резких изменений напряжения на нагревателе при залипании монокристалла, обеспечило ведение процесса в автоматическом режиме по весу практически на всех стадиях роста.

299

ЗАКЛЮЧЕНИЕ

Проведенное исследование показало, что общим подходом к решению проблемы производства «больших» монокристаллов является выработка комплекса мер, обеспечивающих стабильные условия роста. Для этого решено ряд задач:

1. Проведен анализ тенденций развития оборудования выращивания монокристаллов. Он показал, что исследователи проявляют интерес к снижению уровня электромагнитного излучения в расплав, например за счет применения нагревателя специальной формы. Также увеличивается количество регулируемых тепловых зон. Анализ режимов энергоснабжения показал, что питание установки переменным током несинусоидальной формы (фазовое тиристорное регулирование) приводит к искажению теплового поля индуцированными токами. Максимальная разница температур на фронте кристаллизации достигает 0,08 °С, что составляет более 30 % от допустимой ошибки по температуре (0,2 °С) и весьма существенно для рассматриваемых технологических процессов;

2. Разработаны методы прецизионного регулирования мощности, обеспечивающие снижение количества дефектов, за счет оптимизации спектра мощности. Необходимость разработки таких методов связана с тем, что снижение уровня электромагнитного излучения в расплав не всегда может быть достигнуто путем изменения конструкции нагревателя. Значительный эффект дает переход к амплитудному способу регулирования, обеспечивающему снижение уровня искажений до 3-х раз. Реализация амплитудного способа регулирования сопряжена со значительными затратами на силовые ключи. Более эффективна реализация времявариантного регулирования. При времявариантном регулировании реализуется квантование, как по времени, так и по уровню. Здесь требуется обеспечить линейный закон регулирования мощности. Для этого предложена структура регулятора, с функцией линеаризации. Предложенная структура ЦРН позволяет снизить неравномерность регулировочной характеристики при ВВР не менее чем на 30 %. Введение ВВР позволило провести дополнительную оптимизацию по спектральному составу, что дает снижение уровня искажений еще не менее чем на 20 %.

Важно отметить, что возможность практической реализации того или иного режима питания обеспечивается структурой ЦРН. По своим структурным особенностям ЦРН представляет собой объединенные общей схемой электрических соединений коммутационную исполнительную структуру и совокупность нерегулируемых элементов. Предложенный алгоритм формирования полной матрицы управления коммутацией позволяет снизить вероятность ошибки при анализе цифрового регулятора напряжения, за счет полного перебора всех возможных комбинаций матрицы управления коммутацией. Выведено соотношение, позволяющее путем перебора всех комбинаций МУК определить оптимальную структуру, обеспечивающую максимальное количество дискретных уровней при заданном количестве силовых ключей;

3. Разработаны математические модели прецизионных регуляторов мощности. Наибольшую сложность при их исследовании представляет анализ процессов, требующий совместного решения уравнений, составленных на основании закона электромагнитной индукции и законов Кирхгофа для электрической и магнитной цепей. Формализация решения может быть осуществлена на основе метода объединенных матриц. Значительный эффект при этом дает представление математических моделей в форме блочных матриц, для типовых коммутационно исполнительных структур.

4. Очень часто питание нагревательных элементов производится от одного источника, выполненного в виде трансформатора с отводами обмотки. При этом зоны нагрева оказывают друг на друга влияние через общий источник, что приводит к дополнительной нестабильности температуры, которую необходимо учитывать для прецизионных термических процессов. Получено выражение, позволяющее связать воедино процессы анализа электромагнитной и электротермической цепей. Это позволяет автоматизировать процесс проектирования прецизионных регуляторов температуры, учесть влияние параметров трансформаторно-ключевых структур на температурный режим ЭТУ, снизить вероятность ошибки при конструировании силовых энергетических установок ЭТУ;

5. Разработаны математические модели многомерных термических объектов (МТО). Типовым МТО является секционированный нагреватель ЭТУ. Такой нагреватель позволяет управлять тепловыми градиентами в процессе роста. В то же время наличие нескольких связанных между собой тепловых зон создает трудности для построения систем автоматического управления. При разработке математических моделей подобных термических объектов используются различные подходы. Для компьютерного моделирования наибольшее применение получил метод конечных элементов. В основе метода лежит разбиение всей области анализа на простейшие «конечные» элементы. В качестве недостатка такого подхода можно указать избыточное количество конечных элементов. Полученные в работе матричные модели основаны на построении специальной сетки, узлы которой содержат датчики температуры и (или) нагревательные элементы, и являются основой для построения систем оптимального управления. Такой подход позволил значительно упростить и ускорить анализ МТО, что позволяет применять предложенные модели в составе САУ реального времени.

Часто МТО представляет собой регулярную структуру, то есть, нагревательные элементы и датчики температуры следуют с определенным шагом. Полученные выражения для МТО с регулярными структурами содержат операции над целочисленными аргументами, то есть значительно упрощаются и ускоряются математические вычисления, что крайне важно для реализации систем управления реального времени.

Одной из проблем при управлении МТО является учет влияния изменяющейся температуры внешней среды. Как правило, внутри рабочего объема отсутствуют источники тепла. Нагреватели, находящиеся на внешних стенках кристаллизатора с помощью локальных регуляторов обеспечивают фиксированное значение температур стенки. Чтобы оценить воздействие температуры окружающей среды на динамику процессов во внутреннем объеме МТО может быть представлен в виде каскада инерционных звеньев. Это дает возможность его дальнейшего анализа традиционными методами теории автоматического управления;

6. Произведен синтез оптимальных систем автоматического управления для ряда особенно ответственных этапов производства. На стадии «затравления» необходимо активное изменение состояния фронта кристаллизации в условиях ограничений по времени и длине вытяжки. Для решения этой задачи на основе аналитического решения системы дифференциальных уравнений было получено выражение, позволяющее рассчитать оптимальный закон управления. Применение аналитического решения системы дифференциальных уравнений для МТО при оптимальном управлении (при движении системы «в большом») позволяет получить устойчивый и практичный способ реализации.

7. При выводе МТО на режим роста запаздывание сигнала от внутренних термопар в автоклаве приводит к существенному перерегулированию. При этом особенностью эксплуатации МТО является то обстоятельство, что затравочные монокристаллы устанавливаются перед началом тех процесса и при выводе на режим подвергаются температурным воздействиям. Расчет оптимального управления позволяет избежать перерегулирования. Кроме того, при изменении температуры окружающей среды происходит отклонение температур внутри на величину до 0,8 °С. Введение каскадного управления позволило на порядок снизить влияние изменения температуры окружающей среды, что, в свою очередь, позволило снизить величину критерия производственных потерь с 20 % до 0,04 %.

8. Процессы в многозонном объекте регулирования характеризуются многообразием взаимных влияний. В общем можно считать что возмущение, приложенное к одной из зон, приводит к возмущениям на остальные зоны через совокупность непосредственных (от зоны к зоне) и опосредованных (через последовательность зон) связей. Математическое моделирование и опыт практического внедрения показывают, что применение корректирующей структуры для управления МТО с сильной связью зон, позволяет повысить стабильность температуры не менее чем в два раза.

9. В тех случаях, когда по техническим причинам нет возможности измерять температуру в зоне кристаллизации, нашли применение косвенные методы регулирования, например, по весу монокристалла. Характерными причинами возмущений со стороны датчика веса являются несовершенство механических частей системы измерения веса и тепловые дрейфы электронных систем измерения веса. Возмущения, вызванные этими причинами, как правило, носят случайный и долговременный характер, что не позволяет эффективно осуществлять их подавление фильтрами. При этом требования к настройке канала регулирования при весовом контроле носят противоречивый характер. Система регулирования должна обеспечивать достаточно быструю реакцию на отклонение скорости изменения веса от заданного значения, но при этом не реагировать на случайные изменения в показаниях датчика веса. Предложенная структура регулятора скорости кристаллизации с БАС на основе прогнозирующей модели позволяет избавиться от резких изменений напряжения на нагревателе при залипании кристалла и повысить выход годных элементов с одного кристалла на 12 %.

Разработанная методология содержит набор методов и способов, применение которых позволит снизить плотность дефектов структуры «больших» монокристаллов, повысить эффективность их производства за счет повышения скорости кристаллизации и снижения затрат энергии. Полученные результаты формирует основу для перехода технологического оборудования для прецизионных процессов роста монокристаллов на новый уровень эффективности.

Библиография Юдин, Алексей Викторович, диссертация по теме Автоматизация и управление технологическими процессами и производствами (по отраслям)

1. Шубников, А. В. Как растут кристаллы Текст. /А. В. Шубников, М. Д., 1935.- 135 с.

2. Штернберг, А. А. Кристаллы в природе и технике Текст. / А. А. Штернберг, -М., 1961.- 120 с.

3. Таиров, Ю. М. Технология полупроводниковых и диэлектрических материалов Текст./ Ю. М. Таиров, В. Ф. Цветков М.: Высшая школа, 1990423 с.

4. Мильвидский, М. Г. Получение совершенных монокристаллов полупроводников при кристаллизации из расплава: IV Всесоюзное совещание по росту кристалловТекст. / М. Г. Мильвидский, В. Б. Освенский, Ер., 1972, ч. 2, С. 50.

5. Багдасаров, X. С. Проблемы синтеза крупных тугоплавких оптических монокристаллов, IV Всесоюзное совещание по росту кристалловТекст. / X. С. Багдасаров Ер., 1972, ч. 2, С. 6.

6. Тимофеева, В. А. Выращивание иттриево-железистых гранатов из растворов — расплавов на точечных затравках в динамическом режимеТекст. / В. А. Тимофеева, И. Б. Дохновский, «Кристаллография», 1971, т. 16, в. 3,С. 616.

7. Панфилов, Ю. В. Анализ технологии вакуумного формирования сверхтонких пленок Текст./ Микросистемная техника, 2001, № 1, С. 5.

8. Панфилов, Ю. В. Модернизация вакуумного оборудования микроэлектроники для нанесения упрочняющих покрытий Текст./ Упрочняющие технологии и покрытия, 2006, № 1, С. 50-52.

9. Панфилов, Ю. В. Нанотехнология в инженерии поверхности Текст./ Справочник, Инженерный журнал с приложением, 2007, № 1, С. 14-23.

10. Demina, S.E. Use of Numerical Simulation for Growing High Quality Sapphirei

11. Багдасаров, X. С. Высокотемпературная кристаллизация из расплава Текст. / X. С. Багдасаров. М.: ФИЗМАТЛИТ, 2004. - 160 с. -ISBN 5-9221-0482-9.

12. Пат. 2261296 Российская Федерация: МПК7 С30В15/14. Устройство для выращивания монокристаллов из расплава Текст. / В.И. Амосов; опубл. 27.09.2005.

13. Пат. 2341593 Российская Федерация: МПК7 С30В11/00. Установка кристаллизации расплава лейкосапфира Текст. / М. Д. Скубилин, А. В. Письменов; опубл. 20.12.2008.

14. Пат. 2355830 Российская Федерация: МПК7 С30В15/00. Способ выращивания монокристаллов сапфира Текст. / Б. М. Синельников, А. Ю. Игнатов, С. В. Москаленко; опубл. 20.05.2009.

15. Пат. 2361020 Российская Федерация: МПК7 С30В17/00. Устройство для выращивания тугоплавких монокристаллов Текст. / Е. А. Гарибин, А. А. Александрович, И. А. Миронов, С. Н. Соловьев; опубл. 10.07.2009.

16. Пат. 2388852 Российская Федерация: МПК7 С30В15/34. Монокристалл сапфира, способ его изготовления (варианты) и используемое в нем плавильное устройство Текст. / Д. У. Лочер, С. Э. Занелла, Р. Л. мл. Маклин, X. И. Бэте; опубл. 10.05.2010.

17. Пат. 2009114547 Российская Федерация: МПК7 С30В15/34. Способ и установка для выращивания монокристалла сапфира с ориентацией в С-плоскости Текст. / В. Татарченко, Д. Д. Кристофер, С. А. Танелла, Д. В. Лочер, Ф. Пранади; опубл. 27.10.2010.

18. Пат. 84020 Российская Федерация: МПК7 С30В15/00. Установка для выращивания монокристаллов, например сапфиров Текст. / В. Ю. Буряк, Ю. В. Дарковский; опубл. 27.06.2009.

19. Пат. 85904 Российская Федерация: МПК7 С30В15/00. Устройство для выращивания монокристаллов Текст. / В. Ю. Жвирблянский, Н. С. Шканаев, А. И. Кольцов; опубл. 20.08.2009.

20. Пат. 88678 Российская Федерация: МПК7 С30В15/14. Устройство для выращивания монокристаллов сапфира Текст. / И. Н. Зайцев, Ю. М.-Л. Стерник; опубл. 20.11.2009.

21. Пат. 2 261 297 Российская Федерация, МПК7 С 30 В 15/00, 15/14, 15/20. Способ выращивания монокристаллов из расплава методом Амосова Текст. / Амосов В. И.; опубл. 27.09.2005, бюл. № 27.

22. Скрипов, В. П. Спонтанная кристаллизация переохлажденных жидкостей. Текст./Скрипов В. П., Коверда В. П./. М.: Наука, 1984.- 232 с.

23. Васильев, Д. М. Физическая кристаллография Текст. / Д. М. Васильев. -М.: Металлургия, 1981. 4.1. - 248 с.

24. Полетаев, В. А. Технология автоматизированного производства лопаток газотурбинных двигателей Текст./ В. А. Полетаев, Волков Д. И. М.: Машиностроение, 2006. - 252 с.

25. Шалин, Р. Е. Монокристаллы никелевых жаропрочных сплавов/Р.Е. Шалин, И.Л. Светлов, Е.Б. Качанов и др. М.: Машиностроение, 1997. - 336 с.

26. Texas Engineering Extension Service: Semiconductor Processing Overview; The Electronics Training Program; 2000.

27. Карпухин, В. В. Технология материалов электронной техники Текст./ В. В. Карпухин, И. А. Соколов, Г. Д. Кузнецов. М.:«МИСИО>, 1995.- С. 267-343.

28. Ежовский, Ю. К. Физико-химические основы технологии полупроводниковых материалов Текст./ Ю. К. Ежовский, О. В. Денисова.-СПб.: СЗТУ, 2005.-80 с.

29. Багдасаров, X. С. Высокотемпературная кристаллизация из расплаваТекст./ X. С. Багдасаров. М.: ФИЗМАТЛИТ, 2004. - 160 с. -ISBN 5-9221-0482-9.

30. Лисиенко, В.Г Высокотемпературные технологические процессы и установки Текст./ Под ред. Лисиенко В.Г. Минск: Высшая школа, 1988. -320 с.

31. Битюцкая, Л. А. Эффекты неравномерной кристаллизации ионных кристаллов, индуцированные импульсным магнитным полем. Текст./ Л. А. Битюцкая , Е. С. Машкина, В. В. Крячко [и др.]; Письма в ЖТФ, 2002, том 28, вып. 13.

32. Жвавый, С. П. Моделирование процессов плавления и кристаллизации монокристаллического кремния при воздействии наносекундного лазерного излученияТекст./ Жвавый С. П./ Журнал технической физики, 2000, том 70, вып. 8.

33. Абдукадырова, И. X. Радиационно-термические стимулированные эффекты в монокристаллах корундаТекст./ И. X. Абдукадырова. // Письма в ЖТФ, 2003, том 29, вып. 5.

34. Пат. 2 056 463 Российская Федерация, МПК6 С30В15/00, С30В29/20 Способ выращивания тугоплавких монокристаллов Текст. / Мусатов М. И.; заявитель и патентообладатель Мусатов М. И. .- №5048031/26; заявл. 03.04.1992; опубл. 20.03.1996, бюл. № 26.

35. Бесекерский, В. А. Теория систем автоматического регулирования Текст. / В. А. Бесекерский, Е. П. Попов. М.: Наука, 1975. - 768 с.

36. Солодовников, В. В. Основы теории и элементы систем автоматического регулирования Текст./ В. В. Солодовников, В. Н. Плотников, А. В. Яковлев //М., Машиностроение, 1985. -536 е.,ил.

37. Выскуб, В. Г. Прецизионные цифровые системы автоматического управления. Текст./ В. Г. Выскуб, Б. С. Розов, В. И. Савельев М.: Машиностроение, 1984. - 136 с.

38. Автоматическое управление электротермическими установками А. М. Кручинин, К. М. Махмудов, Ю. М. Миронов и др.; Под ред. А. Д. Свенчанского. М.: Энергоатомиздат,1990. - 416 с.

39. Шеваль, В. В. Двухзонные следящие системы Текст./ В.В. Шеваль, Е.И. Дорохов, С.А. Исаков, В.И. Земцов и др.- М.: Энергоатомиздат, 1984. -88 с.

40. Мирошник, И. В. Согласованное управление многоканальными системами. Текст./ И. В.Мирошник -Л.:Энергоатомиздат.Ленингр.одт-ние,1990.-128 с.

41. Пухов, Г. Е. Синтез многосвязных систем управления по методу обратных операторовТекст./Г. Е. Пухов. -М.,"Наука", 1978. -120 с.

42. Белов, Л. И. Автоматизированная система контроля технологических параметров тепличного комбината//Современные технологии автоматизации. Текст./Л. И. Белов, 1997-№ 4.-С. 53-56.

43. Растригин, Л. А. Статистические методы поиска. Текст./ Л. А. Растригин -М.,Наука, 1968.-376 с.

44. Растригин, Л. А. Автоматная теория случайного поиска. Текст./ Л. А. Растригин, К. К. Рипа, Рига,:3инатне, 1973.-344 с.

45. Мирошник, И. В. Теория автоматического управления. Линейные системы Текст./ И. В. Мирошник СПб.: Питер, 2005. - 336 с.

46. Шилин, Г. Ф. Рабочие процессы систем с внутренним тепловыделением. Текст. / Г. Ф. Шилин, С. И. Барсуков М.: Высшая школа; 1990 -130 е.: ил.

47. Тамм, И. Е. Основы теории электричества Текст.- М.: Наука, 1976 616 с.

48. Таблицы физических величин. Справочник. М/. Атомиздат, 1976 г, С. 755757.

49. Позняк,И. В. Исследование удельного электрического сопротивления расплава оксида алюминия (А1203) Текст. / И. В. Позняк, А. Ю. Печенков, А. Н. Шатунов, А. И. Максимов// Журнал научных публикаций аспирантов и докторантов Курск, 2007.

50. Кириллов, И. Р. Полностью двумерная модель для анализа характеристик линейного цилиндрического индукционного насоса. // Журнал технической физики Текст./ И. Р. Кириллов, Д. М. Обухов, 2005, том 75, вып. 8.

51. Липковский, К. А. Трансформаторно ключевые исполнительные структуры преобразователей переменного напряжения Текст./ Киев: Наукова думка, 1983. - 216 с.

52. Миловзоров, В. П. Дискретные стабилизаторы и формирователи напряжения Текст. / В. П. Миловзоров, А. К. Мусолин. М.: Энергоатомиздат, 1986. - 248 с.

53. Юдин, В. В. Применение логического анализа описания технических объектов для их классификации Текст. / В. В. Юдин Рыбинск: РАТИ, 1986. - 9 с. - Деп. в ВИНИТИ. 15.11.1997, № 2318-В97.

54. Пат. 2072550 Российская Федерация, МПК7 6 С 05 Г 1/20. Стабилизатор переменного напряжения Текст. / А. В. Юдин; заявитель и патентообладатель РАТИ- 94010668/07; заявл. 29.03.1994, опубл. 27.01.97, бюл. № 3.

55. А. с. 1758800 СССР, МКИ Н 02 М 5/257. Устройство для регулирования переменного напряжения Текст. / Черных Ю. А., Юдин А. В., Юдин В. В. (СССР).-№4880714; заявл. 11.11.1990, опубл. 30.08.1992, Бюл. № 32.

56. А. с. 1456989 СССР, МКИ в 05 Р 1/20. Регулятор переменного напряжения Текст. / Малков Б. Б., Юдин В. В. (СССР).-№3778514; заявл. 09.08.1984, опубл. 07.02.1989, Бюл. № 5.

57. А. с. 1686414 СССР, МКИ в 05 Г 1/20. Стабилизатор переменного напряжения Текст. / Юдин В. В., Горшечников В. А. (СССР).-№4656663; заявл. 23.01.1989, опубл. 23.10.1991, Бюл. № 39.

58. А. с. 1628050 СССР, МКИ в 05 Е 1/20. Стабилизатор переменного напряжения Текст. / Юдин В. В. (СССР).-№4641943; заявл. 12.12.1988, опубл. 15.02.1991, Бюл. № 6.

59. А. с. 1668973 СССР, МКИ С 05 Г 1/20. Стабилизатор переменного напряжения Текст. / Юдин В. В., Фавстов А. И. (СССР).-№4623251; заявл. 20.12.1988, опубл. 07.08.1991, Бюл. № 29.

60. Малков, Б. Б. Стабилизатор переменного напряжения Текст. / Б. Б. Малков, Ю. Н. Сухарев, Л. А. Ветчанин, В. В. Юдин // Приборы и техника эксперимента. 1987. - № 4. - С. 210-211.

61. Кузнецов, А. В. Критерии развития технических объектов Текст. /А. В. Кузнецов; Рыбинская государственная авиационная технологическая академия. Рыбинск, 1999. - 21 с. - Деп. в ВИНИТИ 10.11.1999, № 3317-В99.

62. Юдин, В. В. Оптимизация выбора технико-экономических решений Текст. / В. В. Юдин, А. В. Кузнецов // Гагаринские чтения: мат. XXVI Междунар. науч. конф.: в 2 ч. М.: РГТУ им. К.Э. Циолковского, 2000. - Ч. 1. - С. 156.

63. Кузнецов, А. В. Анализ открытых систем с помощью обобщенной методики усреднения параметров Текст. / А. В. Кузнецов // Экономика, статистика, информатика: мат. II межвузовск. науч.-практ. студенч. конф. Ярославль: МУБиНТ, 2001. - С. 96-98.

64. Юдин, В. В. Системный подход при оптимизации преобразователей параметров электрических сигналов Текст. / В. В. Юдин, А. В. Кузнецов //

65. Методы и средства измерений: мат. III Всеросс. науч.-техн. конф. Н.Новгород: ВВО АТН РФ, 2001. - С. 1.

66. Батищев, Д. И. Принятие оптимальных решений в экономических исследованиях Текст. / Д. И. Батищев. Горький: Горьковский госуниверситет, 1982. - 108 с.

67. Юдин, В. В. Разработка и обобщение экономических критериев эффективности, используемых в промышленности Текст. / В. В. Юдин, А.

68. B. Кузнецов // мат. XXVI конф. мол. уч. и студентов. Рыбинск: РГАТА, 1999.-С. 23-24.

69. Юдин, В. В. Критерии оптимизации структуры регулятора комбинированного типа Текст. / В. В. Юдин, А. В. Кузнецов, И. В. Осипов // Сборник трудов молодых ученых. Рыбинск: РГАТА, 2000. - С. 193-196.

70. Кузнецов, А. В. Оптимизация технического объекта по критерию надежности Текст. / А. В. Кузнецов // Туполевские чтения: мат. IX Всеросс. науч.-техн. конф. студентов: в 2 т. Казань: Изд-во КазГТУ, 2000. - Т. 2.1. C. 106.

71. Юдин, А. В. Усредненные параметры дискретно регулируемых трансформаторов Текст. / А. В. Юдин, А. В. Кузнецов // Вестник РГАТА им. П. А. Соловьева: сб. науч. тр. Рыбинск, 2004. - № 1-2. - С. 83-87.

72. Гмурман, В. Е. Руководство к решению задач по теории вероятностей и математической статистике Текст. М.: Высш. шк.,2001. - 400 с.

73. Юдин, В. В. Расчет линейных электромагнитных цепей методом объединенных матриц Текст./ журнал «Электричества) №7, 1987, С. 67-75.

74. Короткое, А. С. Символьный анализ дискретно-аналоговых цепей с переключаемыми конденсаторами Текст. / А. С. Короткое, С. А. Курганов, В. В. Филаретов // журнал «Электричества». № 4, 2009, С. 37-46.

75. Курганов, С. А. Схемно-алгебраическое моделирование и расчет линейных электрических цепей / С. А. Курганов, В. В. Филаретов. Ульяновск: УлГТУ, 2005.-319 с.

76. Реальная производительность ГПУ при решении задач Электронный ресурс.- Лаборатория Параллельных информационных технологий НИВЦ МГУ-http://gpu.parallel.ru/performance.html

77. Химич, А. Н. Исследование блочно-циклических алгоритмов на семействе кластеров скит.// Проблеми програмування.Текст./ А. Н. Химич, А. В. Попов, Т. В. Чистякова, О. В. Рудич, Т. А. Герасимова.- 2006, № 2-3-188К 1727-4907.

78. Юдин, А. В. Энергетические соотношения в электромагнитных цепях Текст./ А. В. Юдин;// Справочник. Инженерный журнал, Москва, ОАО "Издательство "Машиностроение", №11, 2005.- 37 с.

79. Белоглазов, А. А. Повышение эффективности автоматического регулирования электропечи сопротивления методом временной вариации мощности. Текст.: дис. . канд. техн. наук : 05.13.07: Рыбинск, 1998.-170 с. РГБ ОД, 61:04-7/1034.

80. Соболев, А. В. Повышение точности регулирования температурного поля путем совершенствования алгоритма управления многозонным термическим объектом. Текст.: дис. . канд. техн. наук : 05.13.06 : Рыбинск, 2004.-159 с. РГБ ОД, 61:04-5/2023.

81. Плохотников, К. Э. Математическое моделирование и вычислительный эксперимент. Методология и практикаТекст./ К. Э. Плохотников. -2003280 с.

82. Сабоннадьер, Ж.-К. Метод конечных элементов и САПР: Пер. с францТекст./ Ж. -К. Сабоннадьер, Ж.-Д. Кулон.-М.: Мир, 1989.-190 е., ил. ISBN 5-03-000488-2

83. Дьяконов, В. А. MATLAB. Анализ, идентификация и моделирование систем. Специальный справочникТекст. / В. А. Дьяконов, В. П. Круглов. -Спб.: Питер, 2002.-448 с.:ил.

84. Немцов М. В. Справочник по расчету параметров катушек индуктивности. 2-е изд., перераб. и доп. - М.: Энергоатомиздат, 1989. -192 е.: ил., ISBN 5-283-00534-8

85. Башарин, A.B. Примеры расчета автоматизированного электропривода на ЭВМ Текст. / А. В. Башарин, Ю. В. Постников, Энергоатомиздат, 1990 -512с.

86. Квакернаак, X. Линейные оптимальные системы управления Текст. / X. Квакернаак, Р. Сиван, М. Мир, 1977 650с

87. Тихонов, А. Н. Математическое моделирование технологических процессов и метод обратных задач в машиностроенииТекст./ А. Н. Тихонов, В. Д. Кальнер, В. Б. Гласко -М.: Машиностроение, 1990.- 264 с.

88. Москвша, С. М. Проблеми оптимЬацп управлшня технолопчним процессом виготовлення цегли // Вюник ХНУТекст./ С. М. Москвша, Д. О. Ковалюк. 2005. - № 5 - С. 121-125.

89. Жученко, А. I. Оптимальне керування процесом випалювання керам1чно1 цегли // Автоматизащя виробничих процеавТекст./ А. I. Жученко, I. В. Ярощук. 2002. - № 2(15). - С. 45-50.

90. Голшко, I. М. Моделювання динам1чного режиму пщзони випалювання // Автоматизащя виробничих процес1вТекст./ I. М. Голшко, Ю. О. Остапенко. 1999. - № 1/2 - С. 40-44.

91. Адлер, Ю. П. Планирование эксперимента при поиске оптимальных условий Текст. / Ю. П. Адлер, Е. П. Маркова , Ю. В. Громовский. М.: Наука, 1976. -380 с.

92. Моисеев, Н. Н. Методы оптимизации Текст. / Н. Н. Моисеев,Ю. П. Иванилов, Е. М. Столярова. М.: Наука, 1978. - 351 с.

93. Цыпкин, А. А. Методы оптимизации автоматических систем Текст.; под ред. А. А. Цыпкина. М.: Энергия, 1972. - 368 с.

94. Хрусталев, М. И. Оптимизация и численные методы в задачах радиоэлектроники и экономики Текст./ М. И. Хрусталев, Т. И. Короткова, Т. А. Летова [и др.]. М.: МАИ, 1989. - 78 с.

95. Моисеев, Н. Н. Элементы теории оптимальных систем Текст. /Н. Н. Моисеев. М.: Наука, 1974. - 229 с.

96. Рыбаков, A.B. Оптимизация в задачах идентификации логико-вероятностных моделей риска // Автоматика и телемеханикаТекст. / А. В. Рыбаков, Е. Д. Соложенцев. 2003. - № 7. - С. 51-63.

97. Полак, Э. Численные методы оптимизации. Единый подход Текст./ Полак. М.: Мир, 1974. - 378 с.

98. Трауб, Дж. Общая теория оптимальных алгоритмов Текст. / Дж. Трауб, X. Вожняковский. М.: Мир, 1983. - 384 с.

99. Пропой, А. И. Элементы теории оптимальных дискретных систем Текст. / А. И. Пропой. М.: Наука, 1973. - 210 с.

100. Волгин, Л. Н. Принцип согласованного оптимумаТекст. /. М.: Сов.радио. 1977. -144 с.

101. Воеводин, В. В. Матрицы и вычисления Текст. / В. В. Воеводин, Ю. А. Кузнецов. М.: Наука. 1984. -320 с.

102. Сингх, М. Системы ¡декомпозиция , оптимизация и управление Текст. / М. Сингх, А. Титли. М.Машиностроение, 1986.-496 е., ил.

103. Кручинин, A.M. Автоматическое управление электротермическими установками.//Текст. / А. М. Кручинин, К. А. Махмудов, Ю. М. Миронов и др. М.: Энергоатомиздат, 1990, 416 с.

104. Мирошник, И. В. Согласованное управление многоканальными системами Текст. / И. В. Мирошник. Л.:Энергоатомиздат.Ленингр.одт-ние,1990.-128 с.:ил.

105. Пухов, Г. Е. Синтез многосвязных систем управления по методу обратных операторов Текст. / Г. Е. Пухов, М.,"Наука", 1978. -120 с

106. Крутько, П. Д. Обратные задачи динамики управляемых систем: Линейные моделиТекст. / П. Д. Крутько. М.:Наука, 1978.

107. Тепломассообмен в литейном производстве: Сборник задач и упражнений по курсу. Составитель А.А. Шатульский. Ярославль, РАТИ 1991. - 44 с.

108. Dias F.M., Antunts A., Mota, A.M. Additive internal model control: an application with neural models in a kiln // IEEE. 2002. - № 2. - P. 1612-1617.

109. G.C. Joyce, D.T.J. Hurle et Q.QA.E. Vaughan, "Novel Development of the Weighing Method for Automatic Czochralski Crystal Growth of Semiconductors", Journal of Crystal Growth 132,1 (1993).

110. Курлов, В. H. Управление формой и свойствами профилированных кристаллов сапфира в процессе их выращивания : дис. д-ра техн. наук: 05.02.01: Черноголовка, 2003.- 238 с. РГБ ОД, 71:04-5/563.

111. Соболев, О. С. О применении методов искусственного интеллекта в системах управления // Промышленные АСУ и контроллеры Текст. / О. С. Соболев. 2003. - № 12. - С. 35-37.

112. Адаптивные системы автоматического управления сложными технологическими процессами. Под. ред. Н. М. Александровского. М.: Энергия, 1973. -272 с.

113. Левин, Р. Л. Практическое введение в технологию искусственного интелекта и экпертных системТекст. / Р. Л. Левин. М.: Финансы и статистика, 1990. - 239 е.: ил.

114. Петров, Б. Н. Системы автоматического управления объектами с переменными параметрами: Инженерные методы анализа и синтеза Текст. / Б. Н. Петров М.Машиностроение, 1986. -256 с.:ил.

115. Юдин, A.B. Анализ точностных характеристик фотометрического датчика толщины пленок Текст./ А. В. Юдин, С. Э. Семенова; Датчики и системы: Ежемесячный научно-технический и производственный журнал, Москва, № 11, 2001.- с. 44^16.

116. Пат. 2 067 625 Российская Федерация, МПК6 С30В15/28 Способ управления диаметром монокристаллов, выращиваемых способом чохральского с жидкостной герметизацией при весовом контроле Текст. / Сатункин Г. А.; опубл. 10.10.1996, бюл. № 7.