автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Математическое моделирование сегментации рынка с использованием двухуровневого подхода
Автореферат диссертации по теме "Математическое моделирование сегментации рынка с использованием двухуровневого подхода"
На правах рукописи
Шенкао Тимур Мухамедович
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СЕГМЕНТАЦИИ РЫНКА С ИСПОЛЬЗОВАНИЕМ ДВУХУРОВНЕВОГО ПОДХОДА
05 13 18 - Математическое моделирование, численные методы и комплексы программ
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата физико-математических наук
ООЗ 1БО*э (С.
Ростов-на-Дону - 2007
003160572
Работа выполнена на кафедре прикладной математики Карачаево-Черкесской государственной технологической академии
Научный руководитель
доктор физико-математических наук, профессор Перепелица Виталий Афанасьевич
Официальные оппоненты
доктор физико-математических наук, профессор Павлов Игорь Викторович
Ведущая организация Ростовский государственный экономический
Защита диссертации состоится " 1 " ноября 2007 г в 11-00 часов на заседании диссертационного совета К 212 208 04 по физико-математическим и техническим наукам в Южном Федеральном Университете по адресу 344090, г Ростов-на-Дону, пр Стачки 200/1, корпус 2, ЮГИНФО ЮФУ, к 206 С диссертацией можно ознакомиться в Зональной научной библиотеке ЮФУ по адресу г Ростов-на-Дону, ул Пушкинская, 148
кандидат физико-математических наук, профессор Ерусалимский Яков Михайлович
университет "РИНХ'
Автореферат разослан
Ученый секретарь
диссертационного совета, д ф -м н„ доцент
Муратова Г В
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность темы. Математическое моделирование является важнейшим инструментом познания окружающего мира Особенностью развития математического моделирования на современном этапе является то, что оно все больше используется для исследования социально-экономических объектов, явлений и процессов Одним из таких объектов является сегментация рынка
В современную эпоху, эпоху глобализации, для того, чтобы добиться успеха фирме (компании, организации, предприятию) недостаточно производить продукцию (или оказывать услуги) высокого качества необходимо знать и учитывать потребности покупателей, их желания, возможности Однако, потребители в своей массе разнородны разные покупатели имеют различные потребности, интересы, характеризуются различными признаками (возраст, пол, доход и т п)
Сешентация рынка, важнейший этап и фундамент любого маркетингового исследования, заключается в разделении потребителей на группы (сегменты) так, чтобы покупатели внутри группы обладали примерно одинаковыми потребностями и характеристиками На основе полученного разбиения рынка на сегменты разрабатываются маркетинговые стратегии, модели, позволяющие фирме более полно использовать свои конкурентные преимущества, максимально эффективно использовать имеющиеся ресурсы
Для сегментации рынка необходимы исходные данные Отличительными особенностями таких данных являются многомерность, т е каждый исследуемый объект характеризуется некоторым набором признаков, разнотипность (признаки измерены по разным шкалам) и неточность (неполнота) данных Многомерность, разнотипность и неполнота данных значительно усложняют их обработку и анализ, затрудняют процесс разработки модели сегментации рынка Поэтому особенно актуальной становится разработка модели исходных данных, позволяющая учесть особенности данных
Для проведения сегментации чаще всего используются следующие методы дискриминантный анализ (параметрические и непараметрические методы), различные алгоритмы кластерного анализа, гибкая сегментация многоступенчатые методы и т д Однако, существующие подходы обладают значительными недостатками 1) серьезные ограничения, налагаемые на исходные данные (обязательное отсутствие или, наоборот, присутствие корреляций, подчиненность нормальному или другому распределению и т п ), 2) чувствительность к неполноте, к шуму в исходных данных, 3) невозможность выполнения на практике теоретических допущений, заложенных в вышеупомянутых методах, что влечет за собой малоизученные ошибки, 4) большая роль эксперта на некоторых стадиях проведения сегментации (особенно в кластерном анализе, гибкой сегментации, многоступенча1ых методах), 5) для большинства методов требуется однотипность данных и т д
Для преодоления вышеперечисленных обстоятельств в диссертационном исследовании разработан двухуровневый подход к математическому моделированию сегментации рынка На нижнем уровне моделирования исходные данные (разнотипные и неточные) преобразуются к виду, удобному для использования на верхнем уровне Задача сегментации на верхнем уровне моделирования определяется как задача многокритериальной дискретной оптимизации
Таким образом, математическое моделирование сегментации рынка в условиях многокритериальности и неопределенности данных с использованием двухуровневого подхода является актуальной проблемой
Степень разработанности проблемы Сегментация рынка как раздел маркетинга подробно исследуется в работах Котлера Ф , Ламбена Ж Ж , Голуб-кова Е П , Макдоналда М , Данбара Я
На нижнем уровне моделирования сегментации рынка строится модель разнотипных и неточных данных, позволяющая проводить сегментацию согласно выбранным критериям, описывать выделенные сегменты и получать классифицирующую функцию с учетом неполноты и неточности исходных данных Методы обработки разнотипных данных рассматривались Лбовым Г С , Загоруйко Н Г , Миркиным Б Г , подходы к построению нечетких классификаций - в работах Руспини Э Г , Рьера Т , Леунга И
При моделировании сегментации на верхнем уровне используется аппарат теории многокритериальной дискретной оптимизации, которая получила развитие в работах ученых Емеличева В А , Гимади Э X , Перепелицы В А , Колоко-лова А А , Гирлиха ЭX , Ковалева ММ и др В настоящей диссертационной работе для проведения сегментации предложены приближенные эффективные (полиномиальные) алгоритмы покрытия интервально взвешенного графа звездами Разработка и исследование таких алгоритмов в настоящее время находится на начальной стадии развития
Объектом исследования диссертационной работы является сегментация рынка как важнейшая задача маркетинга, решение которой позволяет компании (фирме, предприятию, организации) получить конкурентное преимущество и в результате добиться успеха
Предмет исследования: построение математической модели сегментации рынка и разработка математических алгоритмов сегментации
Цель и задачи исследования. Целью диссертационного исследования является построение двухуровневой модели сегментации рынка, разработка алгоритмов сегментации, позволяющих находить разбиение на сегменты в условиях разнотипности и неточности исходных данных, а также создание программного комплекса, реализующего разработанные алгоритмы В соответствии с целью необходимо решить задачи
- разработать схему двухуровневого моделирования сегментации рынка,
- разработать на нижнем уровне модель исходных данных,
- построить на верхнем уровне теоретико-графовую модель задачи сегмента-
ции как многокритериальной задачи с вектором критериев специального вида (в том числе с интервальными весами ребер), исследовать свойства задачи сегментации,
- разработать приближенные полиномиальные алгоритмы (включая доказательство их асимптотической точности либо статистической эффективности) для решения задачи сегментации как многокритериальной задачи покрытия графа звездами, в том числе и с интервальными данными,
- разработать способы описания полученных сегментов с учетом неполноты и неточности информации, построить классифицирующую функцию,
- разработать программный комплекс, позволяющий проводить сегментацию рынка с учетом двухуровневого подхода к моделированию сегментации рынка
Методы диссертационного исследования основываются на использовании аппарата теории графов, методов теории сложности дискретных задач, аппарата интервального исчисления, теории алгоритмов с оценками и теории вероятностного анализа алгоритмов, дискретного анализа, методов теории нечетких множеств и нечетких отношений
Основные результаты диссертационной работы соответствуют пункту 1 "Паспорта специальности 05 13 18 - Математическое моделирование, численные методы и комплексы программ" "Разработка новых математических методов моделирования объектов и явлений, перечисленных в формуле специальности"
Научная новизна заключается в следующем
1 Разработан двухуровневый подход к математическому моделированию сегментации рынка, в рамках которого исследуемая задача сводится к многокритериальной (с вектором критериев специального вида) задаче покрытия взвешенного графа звездами, в том числе и с интервальными весами Исследованы свойства задачи сегментации рынка
2 Разработаны приближенные полиномиальные методы для проведения сегментации рынка в случае интервальных данных, т е алгоритмы покрытия интервальновзвешенного графа звездами Доказаны достаточные условия их асимптотической точности либо статистической эффективности
3 При моделировании сегментации рынка усовершенствованы 1) методы представления разнотипных исходных данных в булевом пространстве,
2) методы описания закономерностей сегментов, полученных с помощью разработанных алгоритмов сегментации, путем построения системы булевых функций
4 Результатами моделирования сегментации рынка являются разбиение на сегменты и классифицирующая функция Для рассматриваемой модели сегментации рынка разработан метод построения классифицирующей функции
5 Для проведения сегментации рынка разработан программный комплекс, описанный в приложениях, который позволяет проводить унификацию разнотипных исходных данных, полученных из анкет покупателей, проводить
сегментацию рынка алгоритмами, построенными в диссертации, получить классифицирующую функцию Достоверность полученных результатов подтверждается строгими математическими формулировками и доказательствами с использованием аппарата теории графов, теории вероятностей, теории нечетких множеств, интервального исчисления и теории вычислительной сложности алгоритмов, а также сравнением с результатами, уже описанными в существующей литературе Положения, выносимые на защиту;
1 Концепция двухуровневого подхода к математическому моделированию сегментации рынка, где на нижнем уровне моделирования рассматриваются методы построения унифицированной модели данных, позволяющей преодолеть разнотипность исходных данных, а на верхнем уровне - моделирование сегментации как многокритериальной экстремальной задачи, в том числе и с интервальными данными
2 Полиномиальные асимптотически точные алгоритмы, построенные для проведения сегментации при подходе post hoc и реализованные в программном комплексе
3 Полиномиальные статистически эффективные методы, реализованные в программном комплексе, предназначенные для моделирования сегментации рынка при подходе a priory в интервальной и многокритериальной постановках
4 Усовершенствованные методы унифицированного булева представления исходных данных и описания закономерностей сегмента в виде булевой функции
5 Метод построения классифицирующей функции, являющейся результатом математического моделирования сегментации рынка, на основе разделения рынка на нечеткие сегменты
Практическая значимость определяется двухуровневым подходом к моделированию сегментации рынка, который дает возможность проводить сегментацию в ситуации, когда исходные данные разнотипны и неточны Приближенные алгоритмы проведения сегментации полиномиальной вычислительной сложности позволяют получать разбиение на сегменты за приемлемое время Разработанный подход позволяет существенно автоматизировать процесс сегментации и минимизировать участие экспертов-маркетологов в проведении сегментации рынка
Апробация работы. Результаты диссертации докладывались и обсуждались на 7-м Международном симпозиуме "Математическое моделирование и компьютерные технологии" (Кисловодск, 2005), на 4-й Международной научно-практической конференции "Проблемы регионального управления, экономики, права и инновационных процессов в образовании" (Таганрог, 2005 г ), на 6-й региональной научно-практической конференции "Рациональные пути решения социально-экономических и научно-технических проблем региона"
(Черкесск, 2006), на 17-й Международной конференции по применению компьютерных технологий и математики в архитектуре и гражданском строительстве (Веймар, Германия, 2006), на IX Международной конференции "Интеллектуальные системы и компьютерные науки" (Москва, 2006), на 3-й Международной конференции "Нелокальные краевые задачи и родственные проблемы математической биологии, информатики и физики" (Нальчик, 2006), на Всероссийском симпозиуме "Математические модели и информационные технологии в экономике" (Кисловодск, 2007 г ), на научных семинарах кафедры прикладной математики Карачаево-Черкесской государственной технологической академии
Отдельные результаты работы вошли в отчеты по гранту Российского фонда фундаментальных исследований, проект № 06-01-00020а "Структурирование, выявление несоответствий и прогнозирование эволюционных дискретных процессов и систем при наличии долговременных корреляций"
Материалы по теме диссертационного исследования были использованы в курсах лекционных и семинарских занятий по дискретной математике, экономической кибернетике в Карачаево-Черкесской государственной технологической академии
Публикации. Материалы диссертации отражены в 10 публикациях 4 статьи, из которых 2 в изданиях ВАК, 6 тезисов докладов Общий объем публикаций составляет 5,75 печ л , из которых автору принадлежит 4,0 печ л
Вклад автора в работе в [2] заключается в постановке проблемы, в [3] - в доказательстве труднорешаемости задачи сегментации, в работе [6] - доказательство неразрешимости задачи сегментации с помощью алгоритмов линейной свертки критериев, в работе [7] - алгоритм покрытия графа звездами, в [9] - доказательство полноты интервальных задач на графах
Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, списка литературы, 8 приложений Основной текст диссертации (без учета приложений) составляет 164 страницы, содержит 8 таблиц, 4 рисунка, библиография насчитывает 126 наименований В приложениях содержится 13 рисунков и 1 таблица
СОДЕРЖАНИЕ РАБОТЫ Во введении обосновывается актуальность темы диссертации, сформулированы цель и задачи диссертационной работы, научная новизна и практическая значимость, указаны основные положения, выносимые на защиту
В первой главе дано определение сегментации рынка, вводятся необходимые понятия из области маркетинга Для задачи сегментации рынка характерны множественность критериев сегментации, неточность и разнотипность данных, неоднозначность при описании сегментов, порождаемая неопределенностью параметров задачи В результате проведенного анализа определено, что
существующие методы сегментации делятся на 2 категории 1) методы a priory (известна гипотеза сегментации1, примерное количество сегментов) и 2) методы post hoc (гипотеза сегментации перед проведением исследования неизвестна) Существующие методы сегментации обладают рядом недостатков и дают лишь частичную возможность учета выделенных факторов неопределенности и требований специального вида, предъявляемых к получаемым решениям Отсюда вытекает необходимость разработки двухуровневого подхода к моделированию сегментации рынка
В главе формализуется понятие сегментации, рассматривается связь между задачей сегментации и классификацией Было определено, что существующие методы классификации не позволяют учесть все условия, возникающие при постановке задачи сегментации, и все требования, предъявляемые к получаемому решению Поэтому в главе рассматривается двухуровневый подход к математическому моделированию задачи сегментации, приводится его общая схема, в рамках которой на нижнем уровне проводится моделирование исходных данных, а на верхнем - разработка алгоритмов сегментации На верхнем уровне используется теоретико-графовая модель сегментации рынка как многокритериальной задачи покрытия взвешенного графа звездами, в том числе и с интервальными данными
При подходе а рпогу математическая постановка многокритериальной задачи сегментации формулируется на двудольном графе G = (V,,V,,E), \V\ = m и
\v,\ = i, ш<1 Вершины v, е V,, i =],т, поставлены во взаимнооднозначное соответствие предъявленным видам товара Вершины v,eV2,j=l,/, поставлены во взаимнооднозначное соответствие потребителям Каждое ребро es Е графа G = (V,, V,, с) взвешено числами w, (е), v = l,N, где веса wit(e) отражают собой критерии потребительской пригодности 1-го типа товара для покупателей из группы j , О < w„(e) < 1, v = 1,N , ее £
Допустимым решением формулируемой на двудольном графе G = (V,,V,,E) задачи сегментации является всякая такая его часть (или подграф) \ = (к1, V,, £"r), V,1 с Vt, £tc£ графа G = (V1,V,,£), каждая компонента связности которой (которого) представляет собой либо некоторое ребро ее Е, либо (h +1) -вершинную звезду, he{ 1,2, ,/}, центром которой является некоторая вершина v, е V, и ребра которой образуют множество Ех, ¡е{ 1,2, ,т} Вводится также ограничение, связывающее количество п] покупаемых потребителями единиц I -го типа товара и минимально допустимое количество к, экземпляров товара тгого типа, при котором его производство (или реализация) оказывается экономически выгодным
1 Макдоналд М Данбар я Сегментирование рынка практическое руководство - М Дело и Сервис, 2002 -288 с
2>,2*,, (1) где центр v, e V', / = i,m и объединение YV2*(v,)= V2 При этом неравенство (1) не
i>eV*
учитывается для вершин v, € (v, \ V/)
На множестве всех допустимых решений (МДР) X = X(G)={x} определена векторная целевая функция (ВЦФ)
F(x) = {F,(X),F2(X), (2)
состоящая из N критериев весового вида MAXSUM
F„(х) = £wv(х) -> max , v = IN , (3)
кЕ,
и одного критерия комбинаторного вида
F/v+,(jc) = |vjt|^max, (4)
отражающего разнообразие номенклатуры, т е количество типов (товара), которые целесообразно производить или продавать ВЦФ (2)-(3) определяет собой в МДР X паретовское множество (ПМ) X , состоящее из всех паретовских оп-тимумов (ПО) х е X В диссертационном исследовании рассматривается алгоритмическая проблема нахождения полного множества альтернатив (ПМА)
В реальных условиях значения весов и>„(е), v = l,N , имеют приближенный характер Для отражения неопределенности подобного рода в математической модели используется интервальное представление данных Пусть известны минимально возможное w'(e) и максимально возможное w2(e) значения признака сегментации w{e), тогда вес ребра ее. Е представляется в виде интервала w(e) = [wi(e),w2{e)], wl(e)<w2(e)
Интервальная задача сегментации определяется как задача покрытия двудольного графа G = (y1,V2,E) h-звездами, he{2,3, ,/}, для однокритериального (N = 1) случая Каждое ребро ее Е графа G взвешено интервалом w(e) = {w\e),w2(<?)], w'(e)< w2(e) Допустимое решение формулируемой на двудольном графе G = (vj,v2,£) интервальной задачи сегментации определяется аналогично многокритериальному случаю На МДР X определена векторная целевая функция, отражающая интервальное задание весов
f(*)=H4|V,<|}, (5)
состоящая из весового критерия вида MAXSUM
w(x)= ]Гw(e) max , (6)
«=F,
где w(e) = [wl(.e),w2(e)], w'(e) < w2 (й), W'(x)= £ w'(e), I = 1,2 , И ОДНОГО критерия KOM-
бинаторного вида (аналогичного (4))
| VV| -» max , (7)
отражающего разнообразие номенклатуры товара
При подходе post hoc задача сегментации рассматривается на полном графе Вершины полного графа соответствуют потребителям, а веса ребер полного графа определяются как степени близости потребителей, вычисленные с помощью коэффициента Жаккара J =--- а - число пар значений компонент
(а + b + с)
векторов х,у вида х, =1, v, = I, b - число пар значений компонент х,,у, векторов х, у вида х, =1, у, = 0, с - число пар значений компонент хх, у, векторов х,у вида х = 0, yt =1, d- число пар значений компонент х,,у, векторов х,у вида х, = 0, у, = 0 Решением задачи сегментации в случае post hoc, как и в случае а рпогу, является покрытие графа звездами
Допустимым решением формулируемой на полном графе G = (V,E) задачи сегментации является всякая такая его часть (или подграф) x = (v, Ел), Ела,Е графа G = (V Е), каждая компонента связности которой (которого) представляет собой либо некоторое ребро ее Е, либо А -вершинную звезду, центром которой является некоторая вершина v, s V
Критериями качества в этом случае являются весовой критерий
- X wтах
се/ ,
и комбинаторный критерий количества звезд в покрытии
F2 = |л] -» max (9)
В интервальном случае задача сегментации post hoc формулируется на графе G = (Y,E) Каждое ребро ее Е графа G взвешено интервалом w(e)=[w\e),w'(e) 1, w'(e}< w2(e) Допустимым решением в этом случае является такой остовный подграф л- = (V, Е,), Е, с Е, в котором каждая компонента связности представляет собой А -вершинную звезду На МДР X - {х} определена максимизируемая интервальная целевая функция (ИЦФ)
ах, (10)
reí,
где при вычислении интервальнозначной функции W(x)=[W\x), W2(x)] осуществляется классическое суммирование интервалов w(e) =[w\x),w2(x)]e Q
где
¿=1,2 (11)
Решением интервальной задачи является такой элемент х° е X , при котором ИЦФ (10) достигает максимального значения
Во второй главе рассматривается нижний уровень моделирования задачи сегментации, который подразумевает построение математической модели исходных данных В главе построена математическая модель наблюдения в виде булева протокола наблюдения На основе этой математической модели строит-
ю
ся взвешенный граф, веса ребер которого получены с использованием коэффициента Жаккара
Для моделирования сегментации рынка на нижнем уровне рассматривается представление данных, полученных в результате наблюдения, в табличном виде (протокол наблюдений)
Определение 1 Шкалой 5 называется конечное или бесконечное множество значений, которое может принять некоторая переменная р Шкалирование есть отображение возможных состояний переменной X на множество значений шкалы Р X
Пусть набор признаков рх,р,, ,р„ характеризует исследуемый объект наблюдения Тогда каждому признаку р,, / = 1,« ставится в соответствие переменная, называемая предметной переменной р', 1 = 1, и Каждой предметной переменной р', 1 = 1,л, соответствует некоторая шкала измерений 5 (предметная шкала) Множество предметных переменных р', ¡ = 1,«, порождает множество предметных шкал
= и (12)
Декартово произведение шкал (12) 5,,5,, ,5, образует предметное пространство объекта наблюдения
1У = 51х5;,х х5„ (13)
При решении задачи сегментации необходимо получить не только разбиение множества потребителей на сегменты, но классифицирующую функцию, позволяющую распределять потребителей по сегментам В диссертационной работе под классификацией понимается отображение Р V/ С предметного пространства V/ пространство классификаций С, или, согласно (13) Р 5,х52х х 5„ С, где вид классифицирующей функции Р определяется предметным пространством явления При разнотипности предметных шкал в задаче сегментации становится затруднительным решение вопроса о выборе вида классифицирующей функции Р Для решения этой проблемы используется представление всех данных в унифицированном виде, т е при 5 = ^=5,= =5„ получаем Р Я"-»С Определяется формальное преобразование предметного пространства V/ в пространство унифицированного булева представления Реализация унифицированного представления является двух-этапной На первом этапе, на основании исходных данных, строится стандартная предметная таблица протокола На втором этапе табличное представление сводится к унифицированному булевому представлению, которое и служит моделью данных Для этого рассматривается задача булева разложения признака Дан признак р, для измерения которого определена шкала измерения 5, т е определено отображение Пусть А = {а1 }'=; - конечное множество и за-
п
дано отображение / Для булева разложения признака рассматривается
семейство предикатов {<?,(х)}^,
il, если / (х) = aJ е,(х) = \ , ",еА
' [О, если f(x)* а/ '
Каждый предикат проверяет равенство значения функции / от измеренного по шкале S значения признака р определенному элементу множества А Семейство предикатов Е определяет собой отображение Е А -» Вг, которое определено правилом £(а )=(0Д ,1. ,0), где В' - булево пространство Булевым
j
разложением признака р называется суперпозиция отображений Е и / Eof S В' Для булева разложения стандартной предметной таблицы протокола наблюдения для каждого предметного признака р, измеренного по шкале S, выбирается композиция отображений Eof Построенная таким образом таблица является булевым протоколом L наблюдения
Результатом моделирования на нижнем уровне является либо двудольный взвешенный граф G(V:,V,,E) (сегментация a priory), либо полный взвешенный граф G{v,E) (сегментация post hoc), веса ребер которых получены на основе булева протокола наблюдения L с использованием коэффициента Жаккара Вершины графа ставятся во взаимнооднозначное соответствие строкам булевого протокола L, а ребру <? = (v,,v,) присваивается вес, равный коэффициенту Жак-кара, т е вычисляется мера близости вершин v, и v В случае интервальных
данных веса ребер представляют собой интервалы, каждый из которых содержит вес соответствующего ребра для точного случая
В третьей главе рассматривается верхний уровень моделирования задачи сегментации на базе теоретико-графового подхода Исследованы свойства задачи сегментации, в том числе и для интервального задания весов, доказывается труднорешаемость задачи сегментации в интервальной и многокритериальной постановках, разрабатываются приближенные алгоритмы полиномиальной вычислительной сложности, приводится обоснование достаточных условий их асимптотической точности либо статистической эффективности Были получены следующие результаты
Теорема 1 При N>2 проблема нахождения ПМА задачи сегментации с ВЦФ (2)-(3) является труднорешаемой
Следствие 1 Интервальная задача сегментации с ВЦФ (5)-(7) является труднорешаемой
Отсюда возникает необходимость в разработке малотрудоемких приближенных алгоритмов решения задачи сегментации
В главе используется эквивалентность интервальной задачи сегментации и производной двукритериальной задачи Эта эквивалентность дает возможность проводить единое исследование алгоритмических проблем задачи сегментации
как для векторного представления, так и для интервального представления критерия качества
Среди методов отыскания паретоопгимальных решений векторных задач, те элементов хеХ, наиболее распространены алгоритмы линейной свертки критериев (AJICK) Доказывается неразрешимость задачи сегментации в интервальной и многокритериальной постановках с помощью алгоритмов линейной свертки критериев Применение AJICK дает возможность получить только аппроксимацию искомого множества решений поставленной задачи в интервальной и многокритериальной постановках
Теорема 2 Интервальная задача сегментации с учетом неравенства (1) и ИЦФ (6) неразрешима с помощью AJICK
Теорема 3 Многокритериальная задача сегментации с условием (1) и ВЦФ (2)-(4) неразрешима с помощью АЛСК
Для решения задачи сегментации при подходе post hoc используется алгоритм а Исходная информация на входе алгоритма а состоит из описания п -вершинного 1-взвешенного полного графа G = (V,Е) и заданного множества типов звезд Н ={A|,/i,, Ah h-J™" Алгоритм заключается в разбиении графа
G = (V,E) на подграфы G,=(v,,£,), ¡ = l,h, из которых строится набор двудольных графов Gh. = (vh,'/, £",(,), i = l,A-i, в каждом двудольном графе выделяется совершенное паросочетание Объединение всех полученных паросочетаний образует h-дольный остовной подграф G' = (V,,V2, , Vh_^Vh,E'), который представляет собой допустимое решение ~(v,E])e X (покрытие графа звездами) рассматриваемой задачи на полном графе
Лемма 1 Допустимое решение л*, полученное в результате применения алгоритма а к 1-взвешенному полному графу, является оптимальным по критерию (9)
Пусть А - монотонно возрастающая последовательность чисел ar, r = \,R на отрезке [a,b\, а =а, aR=b, а> 0, M(n,R,A) - множество полных п-вершинных 1-взвешенных графов, ребрам которых приписаны веса wie) е А при фиксированных параметрах п, R, A, <p{ri) - произвольная, сколь угодно медленно растущая функция, д>(п) <*> сростом Gr(A) - вероятностный и-вершинный полный граф, в котором его произвольному ребру е приписывается вес w(e) = ar, «, е А с вероятностью р, согласно распределению вероятностей
_ R Г /1 ДЧ
{Pl.P.. .РкЬ Рг >0, r = l,R, Y,Pr =!. fr = Цр>'
где jr - интегральная функция распределения, j„ = О
Теорема 4 Если распределение весов ребер графа G,, (А) удовлетворяет не-
^ nb - с „
равенству >—^-- < —, то с вероятностью Р > 1 - оа, о„ —> 0 при п °° реше-
ri ' -fr <Р
ние х,, полученное с помощью алгоритма а, является асимптотически точным При этом вычислительная сложность этого алгоритма т(а)<о(п2)
В главе предложен асимптотически точный алгоритм а, для интервальной задачи сегментации post hoc Предварительно каждому ребру исходного интер-вальновзвешенного графа G = (V,E) присваивается значение линейной свертки значений границ его весового интервала, а затем находится допустимое решение Алгоритм а, является модификацией алгоритма а для случая интервальных весов ребер
Асимптотическая точность алгоритма а, доказана аналогично обоснованию асимптотической точности базового алгоритма а Пусть ребра графа G = (V,E) взвешены интервалами из множества интервалов £2={wr}, w, ={w'r,w;}, те для ребра ееЕ его вес wr(<r)=[w'(e),wj(e)}, w'(e) = w', w,(e) = w; При фиксированном Л = (Л,,Л2) к элементам w, =[wl,w;]e £i применяется операция преобразования их в линейную свертку (JTC) w,(A)=Axwlr r=l,R Через
ПA={w,,w,, ,wr, ,ivfi} обозначено упорядоченное по возрастанию множество iwM)}> ' а через GR(ilA ) - вероятностный и-вершинный полный граф, в котором всякому его ребру приписывается вес ЛС w(e)-wr ей' с вероятностью рг согласно распределению вероятностей (14)
Теорема 5 Если распределение вероятностей (14) для весов ребер графа
GK(ax) удовлетворяет неравенству g ^ -у -— < ' * ^ 2
то с вероятностью Р > 1 - Su, 8п —> О при п ->°° решение х,, полученное с помощью алгоритма а,, является асимптотически точным При этом вычислительная сложность этого алгоритма г(ат,) < О(п')
Для задачи сегментации в многокритериальной и интервальной постановках (подход a priory) предложены алгоритмы а, и аА, являющиеся статистически эффективными
Для задачи сегментации в многокритериальной постановке предложен алгоритм аг множество вершин второй доли V, разбивается на подмножества У2",
|wI = m, « = 1,л, п-— Для каждого подмножества строится двудольный
1 " 1 m
граф С =(vl,v2,,£"), где множество Е' состоит из ребер, у каждого из которых концевая вершина v, е V, и концевая вершина \>J е V2 В результате имеется последовательность двудольных графов G' =(v,,K,',£"), s=l,п Затем в каждом графе G' находится совершенное паросочетание Е'0 с Е" Алгоритм завершается построением остовного подграфа ха = {yt,V2,ExJ, множество ребер которого
По определению алгоритма а, остовной подграф является допустимым решением задачи покрытия данного графа G звездами
В алгоритме а, используется вспомогательный алгоритм а, нахождения решения задачи о совершенном паросочетании в N -критериальной постановке на двудольном графе с критериями вида (3)
Пусть G(N,2m,R) - множество всех N -взвешенных двудольных 2т- вершинных графов G-(V,,V2,E) с равномощными долями jv,| = |v,| = т, у которых каждое ребро ее Е взвешено числами wv(e)&{а,,а,, ,л,(}, v~\,N, <р(п) - произвольная, сколь угодно медленно растущая функция <р(п) —> ~ с ростом п -»
Лемма 2 Если R* <———, то для почти всех двудольных графов In 2 т + ср
Ge G{N,2m,R) алгоритм а, находит ПМА задачи о совершенных паросочетани-ях с ВЦФ (1), (3), причем |х°| = 1 и сложность нахождения ПМА т(а,) = 0(т,/_)
Обозначим через j(m,l,R,N) множество /V -взвешенных двудольных графов G = (V^V^E), с мощностями долей |v,|=m, |V,| = J, l=mn, в каждом из которых всякому ребру eeF приписаны веса w„(e)e{a{,a2, ,ак}, v=l,N
Теорема 6 Если R" < ——— и I = 0(т), то для почти всех графов
lti2m + f>
Gs J(m,l,R,N) алгоритм аг находит ПМА задачи сегментации с ВЦФ (2)-(4), причем ПМА является одноэлементным |х°| = 1 и сложность его нахождения т(«2)<о(т"2/)
Для решения интервальной задачи сегментации в главе предложен приближенный двухуровневый алгоритм «4
Обозначим через J(m,l,R) множество 1-взвешенных двудольных графов G-(Vt,V2,E) с мощностями долей = |V,| = /, l = mn, у которых каждому ребру е е Е приписан вес w(e), представляющий собой интервал из множества интервалов i2={wr}, wr(e)=[w'r(e),w,(e)], w'r(e)£w?(e), r=l,R, где элемент является максимальным
Теорема 7 Если R < —-—, то для почти всех графов G <= J(m,L R) ал1 оритм In 1 + <р
а4 находит ПМА задачи покрытия полного интервальновзвешенного графа звездами с ИЦФ (6), причем ПМА является одноэлементным |*"| = 1 и сложность его нахождения r(a4)= o{lsn)
В четвертой главе исследуется метод построения аналитической записи закономерностей полученных сегментов в виде булевой функции, проводится построение нечетких законов сегментов и классифицирующей функции (с учетом неполноты информации) с использованием методов нечеткой классификации
Если на некотором булевом протоколе наблюдения задано разбиение на сегменты сз(с,,с , ,СГ), то строки этой таблицы группируются по принадлежности к определенному сегменту В результате получаются булевы протоколы сегментов Булев протокол сегмента С1 является таблицей истинности для булевой функции Ф, сегмента С, от К переменных
.'к).
областью определения которой является предметное пространство IV, а областью истинности является множество векторов булевого протокола сегмента Синтезирована булева формула для функции Ф, с использованием стандартной процедуры алгебры логики для записи совершенной дизъюнктивной нормальной формы (СДНФ)
Ф, = <р, V <р, V \г<рт1, (15)
где каждое слагаемое <рх , X = \,т,, представляет собой такое произведение
=г, л?, л л^л у = 1,Я, (16)
Булева функция Ф = ф(г, , ,г(() вида (15)-(16), имеющая таблицей истинности булев протокол сегмента С,еС, У = 1,К, является приближенным булевым законом сегмента в случае реального наблюдения (неполноты данных)
Неполнота информации в протоколе реального наблюдения влечет за собой неполноту сегмента С1, У =1,У Для преодоления неполноты сегмента вводятся понятия й -окрестности вектора булева пространства В", с1 -расширения сегмента С, и операции расширения сегмента С, После построения области расширения сегмента С,на основе базовых векторов сегмента {с), получается дополнительное множество элементов этого сегмента Объединение дополнительного множества элементов сегмента и множества элементов сегмента представляется как нечеткий сегмент С,(с1), для описания которого как нечеткого множества для каждого элемента необходимо определить значение функции принадлежности /-/, характеризующей степень принадлежности элемента к сегменту С,(</) В качестве значения функции принадлежности и для произвольного вектора Ь берется значение модифицированного коэффициента
Ем,
Жаккара = -'■--г (к1 - количество одинаковых строк в прото-
коле, которые соответствуют г -му вектору)
/1(Ь) = 7{Ь,а) (17)
Для векторов пространства в" определена функция принадлежности (17) к заданному сегменту С.}(с1) В результате получена матрица М,(с1), состоящая из значений функции принадлежности вектора пространства заданному сегменту С, и!), и построена булева таблица Л -расширения сегмента С,, называемая бу-
левым протоколом <1 -расширения сегмента CJ Булев протокол сI -расширения сегмента С, является таблицей истинности для булевой функции Ф, сегмента С, от /? переменных Ф, = Ф,(г,,/„ ,г;,), областью определения которой является предметное пространство №, а областью истинности является множество векторов булевого протокола с1 -расширения сегмента С] Синтезируемая булева формула для функции Ф1 с использованием стандартной процедуры алгебры логики для записи СДНФ имеет вид
Ф, = V <рг V V <рх V \/(рт , (18)
где каждое слагаемое <рх, Х- , является произведением вида (16)
Определение 2 Нечеткий закон сегмента Н, есть композиция двух отношений В" -ч>С,<7/), где Ф - булева функция сегмента, двойка (#л,М,(сО) — нечеткое отношение подобия, в" - Я-мерное пространство, М, (с/) - функция принадлежности, связанная взаимнооднозначным соответствием с точками пространства В", С,(с1) - с/ -расширение области сегмента С,
Элементы матрицы взаимнооднозначно соответствуют векторам
конечного булева пространства В* Всем элементам матрицы, являющимся базовыми векторами рассматриваемого сегмента С,, соответствуют значения " 1 0" Весовые коэффициенты равны "О 0" для подмножества векторов с пустыми с1 -окрестностями Остальные векторы пространства Вл получат значения весов в интервале 0 0 < ц < 1 0 При построении нечетких множеств матрица М ](<Г) рассматривается как функция принадлежности элемента пространства В" к данному сегменту
Определение 3 Классифицирующая функция на булевом пространстве В" определяется системой отношений К.Д, ,/?,, где К, - нечеткий закон го сегмента, который представляет собой композицию двух отношений Ф, о{вн,М 1 (¿Г)) в" ->С]Ц), где Ф, - булева функция сегмента, М, Ы) - функция принадлежности в виде матрицы, связанной взаимнооднозначным соответствием с точками пространства В*
В заключении приведены основные результаты, полученные в диссертационной работе
В приложении приведено описание программного комплекса, результаты применения разработанных алгоритмов к исходным данным, полученным в результате анкетирования респондентов, проведенного с целью исследования рынка мобильных телефонов
СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ
1 Шенкао Т М Фрактальный анализ временного ряда потребительских расходов Карачаево-Черкесской республики // Сборник научных трудов 7-й Международного симпозиума "Математическое моделирование и компьютерные технологии" - Кисловодск КИЭП, 2005 - С 45-48
2 Шенкао Т М , Тебуева Ф Б Теоретико-графовая модель сегментации рынка по видам продукции // Сборник 4-й Международной научно-практической конференции "Проблемы регионального управления, экономики, права и инновационных процессов в образовании" (8-10 сентября 2005 г) - Т 2 - Таганрог Изд-во ТИУиЭ, 2005 -С 172-175
3 Шенкао Т М , Перепелица В А , Тебуева Ф Б Исследование многокритериальной постановки теоретико-графовой задачи сегментации на двудольном графе // Известия высших учебных заведений Северо-Кавказский регион Серия Естественные науки -2005 -Приложение№11 -С 48-56
4 Шенкао Т М Векторное квантование и задача сегментации // Материалы 6-й региональной научно-практической конференции "Рациональные пути решения социально-экономических и научно-технических проблем региона" (17-18 апреля 2006 г) - Часть 1 -Черкесск КЧГТА, 2006 - С 71-73
5 Шенкао Т М Двухуровневый подход к моделированию одной задачи из области сегментирования рынка - Деп в ВИНИТИ 11 07 2006, № 918-В2006 -40 с
6 Shenkao Т М , Perepehtsa V А , Tebueva F В Solvability exploration of segmentation problem with linear convolution algorithms // Proceedings of the 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering (July 12-14, 2006) - Weimar, Germany -2006 - 13 p - http //euklid baumg um-weimar de/papers php9lar>g=en&what=9
7 Шенкао T M , Тебуева Ф Б Алгоритмы с оценками для дискретной задачи сегментации II Материалы IX Международной конференции "Интеллектуальные системы и компьютерные науки" (23-27 октября 2006 г ) - Т 1, часть 2 - М Изд-во механико-математического факультета МГУ, 2006 - С 271274
8 Шенкао Т М Исследование вычислительной сложности теоретико - графовой задачи сегментации // Материалы 3-й Международной конференции "Нелокальные краевые задачи и родственные проблемы математической биологии, информатики и физики" - Нальчик НИИ ПМА КБНЦ РАН, 2006 -С 320-322
9 Шенкао Т М , Перепелица В А , Тебуева Ф Б О вычислительной сложности интервальных задач на графах // Известия высших учебных заведений Северо-Кавказский регион Серия Естественные науки - 2006 - Приложение №12 - С 18-30
10 Шенкао ТМ Моделирование данных в задаче классификации // Сборник научных трудов Всероссийского симпозиума "Математические модели и информационные технологии в экономике" (19-20 апреля 2007 г ) - Т 2 -Кисловодск КИЭП, 2007 - С 81-84
Отпечатано в типографии ООО «ВУД» 344010, Ростов-на-Дону, ул Красноармейская, 157 Тел (863) 2-64-38-77 Тираж I ОСЬкз Пл О 5Заказ № 77
Оглавление автор диссертации — кандидата физико-математических наук Шенкао, Тимур Мухамедович
Введение
Глава 1. СЕГМЕНТАЦИЯ РЫНКА: МАТЕМАТИЧЕСКАЯ МОДЕЛЬ 11 И МЕТОДЫ ПРОВЕДЕНИЯ
1.1. Сегментация рынка: основные понятия
1.2. Методы сегментации рынка
1.3. Сегментация рынка и классификация
1.4. Двухуровневый подход к моделированию сегментации рынка 32 как основное направление диссертационной работы
1.5. Математическая модель сегментации рынка
1.6. Выводы к главе
Глава 2. МОДЕЛИРОВАНИЕ НИЖНЕГО УРОВНЯ ЗАДАЧИ 43 СЕГМЕНТАЦИИ
2.1. Исходные данные для задачи сегментации
2.2. Протоколы наблюдений
2.3. Преобразование к унифицированному виду: булева модель 53 данных
2.4. Результаты моделирования нижнего уровня
2.5. Выводы к главе
Глава 3. МОДЕЛЬ ВЕРХНЕГО УРОВНЯ: АЛГОРИТМЫ РЕШЕНИЯ 67 ЗАДАЧИ СЕГМЕНТАЦИИ
3.1. Вычислительная сложность задачи сегментации
3.2. Задача сегментации и алгоритмы линейной свертки критериев
3.3. Алгоритмы с оценками: основные определения
3.4. Асимптотически точные алгоритмы решения задачи 89 сегментации и их обоснование
3.4.1. Алгоритм для сегментации post hoc
3.4.2. Алгоритм для интервальной сегментации post hoc
3.5. Статистически эффективные алгоритмы решения задачи 114 сегментации и их обоснование
3.5.1. Алгоритм для многокритериальной задачи сегментации
3.5.2. Алгоритм для интервальной задачи сегментации
3.6. Выводы к главе
Глава 4. НЕЧЕТКАЯ СЕГМЕНТАЦИЯ И ПОСТРОЕНИЕ 133 КЛАССИФИЦИРУЮЩЕЙ ФУНКЦИИ
4.1. Булево представление сегментов
4.2. Нечеткая сегментация
4.3. Классифицирующая функция для задачи сегментации рынка
4.4. Выводы к главе 4 149 Заключение 151 Список литературы 154 Приложения
Введение 2007 год, диссертация по информатике, вычислительной технике и управлению, Шенкао, Тимур Мухамедович
Актуальность темы. Математическое моделирование является важнейшим инструментом познания окружающего мира. Особенностью развития математического моделирования на современном этапе является то, что оно все больше используется для исследования социально-экономических объектов, явлений и процессов. Одним из таких объектов является сегментация рынка.
В современную эпоху, эпоху глобализации, для того, чтобы добиться успеха фирме (компании, организации, предприятию) недостаточно производить продукцию (или оказывать услуги) высокого качества: необходимо знать и учитывать потребности покупателей, их желания, возможности. Однако, потребители в своей массе разнородны: разные покупатели имеют различные потребности, интересы, характеризуются различными признаками (возраст, пол, доход и т.п.).
Сегментация рынка, важнейший этап и фундамент любого маркетингового исследования, заключается в разделении потребителей на группы (сегменты) так, чтобы покупатели внутри группы обладали примерно одинаковыми потребностями и характеристиками. На основе полученного разбиения рынка на сегменты разрабатываются маркетинговые стратегии, модели, позволяющие фирме более полно использовать свои конкурентные преимущества, максимально эффективно использовать имеющиеся ресурсы.
Для сегментации рынка необходимы исходные данные. Отличительными особенностями таких данных являются многомерность, т.е. каждый исследуемый объект характеризуется некоторым набором признаков, разнотипность (признаки измерены по разным шкалам) и неточность (неполнота) данных. Многомерность, разнотипность и неполнота данных значительно усложняют их обработку и анализ, затрудняют процесс разработки модели сегментации рынка. Поэтому особенно актуальной становится разработка модели исходных данных, позволяющая учесть особенности данных.
Для проведения сегментации чаще всего используются следующие методы: дискриминантный анализ (параметрические и непараметрические методы), различные алгоритмы кластерного анализа, гибкая сегментация, многоступенчатые методы и т.д. Однако, существующие подходы обладают значительными недостатками: 1) серьезные ограничения, налагаемые на исходные данные (обязательное отсутствие или, наоборот, присутствие корреляций, подчиненность нормальному или другому распределению и т.п.); 2) чувствительность к неполноте, к шуму в исходных данных; 3) невозможность выполнения на практике теоретических допущений, заложенных в вышеупомянутых методах, что влечет за собой малоизученные ошибки; 4) большая роль эксперта на некоторых стадиях проведения сегментации (особенно в кластерном анализе, гибкой сегментации, многоступенчатых методах); 5) для большинства методов требуется однотипность данных и т.д.
Для преодоления вышеперечисленных обстоятельств в диссертационном исследовании разработан двухуровневый подход к математическому моделированию сегментации рынка. На нижнем уровне моделирования исходные данные (разнотипные и неточные) преобразуются к виду, удобному для использования на верхнем уровне. Задача сегментации на верхнем уровне моделирования определяется как задача многокритериальной дискретной оптимизации.
Таким образом, математическое моделирование сегментации рынка в условиях многокритериальное™ и неопределенности данных с использованием двухуровневого подхода является актуальной проблемой.
Степень разработанности проблемы. Сегментация рынка как раздел маркетинга подробно исследуется в работах Котлера Ф., Ламбена Ж.Ж., Го-лубкова Е.П., Макдоналда М., Данбара Я.
На нижнем уровне моделирования сегментации рынка строится модель разнотипных и неточных данных, позволяющая проводить сегментацию согласно выбранным критериям, описывать выделенные сегменты и получать классифицирующую функцию с учетом неполноты и неточности исходных данных. Методы обработки разнотипных данных рассматривались Лбовым
Г.С., Загоруйко Н.Г., Миркиным Б.Г., подходы к построению нечетких классификаций - в работах Руспини Э.Г., Рьера Т., Леунга И.
При моделировании сегментации на верхнем уровне используется аппарат теории многокритериальной дискретной оптимизации, которая получила развитие в работах ученых: Емеличева В.А., Гимади Э.Х., Перепелицы В.А., Колоколова А.А., Гирлиха Э.Х., Ковалева М.М. и др. В настоящей диссертационной работе для проведения сегментации предложены приближенные эффективные (полиномиальные) алгоритмы покрытия интервально взвешенного графа звездами. Разработка и исследование таких алгоритмов в настоящее время находится на начальной стадии развития.
Объектом исследования является сегментация рынка как важнейшая задача маркетинга, решение которой позволяет компании (фирме, предприятию, организации) получить конкурентное преимущество и, в результате, добиться успеха.
Предмет исследования: построение математической модели сегментации рынка и разработка алгоритмов сегментации.
Целью исследования является построение двухуровневой модели сегментации рынка, разработка алгоритмов сегментации, позволяющих находить разбиение на сегменты в условиях разнотипности и неточности исходных данных, а также создание программного комплекса, реализующего разработанные алгоритмы.
В соответствии с целью необходимо решить задачи:
- разработать схему двухуровневого моделирования сегментации рынка;
- разработать на нижнем уровне модель исходных данных;
- построить на верхнем уровне теоретико-графовую модель задачи сегментации как многокритериальной задачи с вектором критериев специального вида (в том числе с интервальными весами ребер), исследовать свойства задачи сегментации;
- разработать приближенные полиномиальные алгоритмы (включая доказательство их асимптотической точности либо статистической эффективности) для решения задачи сегментации как многокритериальной задачи покрытия графа звездами, в том числе и с интервальными данными;
- разработать способы описания полученных сегментов с учетом неполноты и неточности информации, построить классифицирующую функцию;
- разработать программный комплекс, позволяющий проводить сегментацию рынка с учетом двухуровневого подхода к моделированию сегментации рынка.
Методы диссертационного исследования основываются на использовании аппарата теории графов, методов теории сложности дискретных задач, аппарата интервального исчисления, теории алгоритмов с оценками и теории вероятностного анализа алгоритмов, дискретного анализа, методов теории нечетких множеств и нечетких отношений.
Основные результаты диссертационной работы соответствуют пункту 1 "Паспорта специальности 05.13.18 - Математическое моделирование, численные методы и комплексы программ": "Разработка новых математических методов моделирования объектов и явлений, перечисленных в формуле специальности".
Научная новизна заключается в следующем.
1. Разработан двухуровневый подход к математическому моделированию сегментации рынка, в рамках которого исследуемая задача сводится к многокритериальной (с вектором критериев специального вида) задаче покрытия взвешенного графа звездами, в том числе и с интервальными весами. Исследованы свойства задачи сегментации рынка.
2. Разработаны приближенные полиномиальные методы для проведения сегментации рынка в случае интервальных данных, т.е. алгоритмы покрытия интервальновзвешенного графа звездами. Доказаны достаточные условия их асимптотической точности либо статистической эффективности.
3. При моделировании сегментации рынка усовершенствованы: 1) методы представления разнотипных исходных данных в булевом пространстве;
2) методы описания закономерностей сегментов, полученных с помощью разработанных алгоритмов сегментации, путем построения системы булевых функций.
4. Результатами моделирования сегментации рынка являются разбиение на сегменты и классифицирующая функция. Для рассматриваемой модели сегментации рынка разработан метод построения классифицирующей функции.
5. Для проведения сегментации рынка разработан программный комплекс, описанный в приложениях, который позволяет проводить унификацию разнотипных исходных данных, полученных из анкет покупателей, проводить сегментацию рынка алгоритмами, построенными в диссертации, получить классифицирующую функцию.
Практическая значимость полученных результатов определяется двухуровневым подходом к моделированию сегментации рынка, который дает возможность проводить сегментацию в ситуации, когда исходные данные разнотипны и неточны. Приближенные алгоритмы проведения сегментации полиномиальной вычислительной сложности позволяют получать разбиение на сегменты за приемлемое время. Разработанный подход позволяет существенно автоматизировать процесс сегментации и минимизировать участие экспертов-маркетологов в проведении сегментации рынка.
Обоснованность и достоверность научных положений, выводов и рекомендаций обеспечивается корректным применением аппарата теории графов, теории вычислительной сложности алгоритмов, математического аппарата нечеткой и интервальной математики, теории вероятностей, а также сравнением с уже известными результатами дискретной оптимизации.
На защиту выносятся следующие положения: 1. Концепция двухуровневого подхода к математическому моделированию сегментации рынка, где на нижнем уровне моделирования рассматриваются методы построения унифицированной модели данных, позволяющей преодолеть разнотипность исходных данных, а на верхнем уровне - моделирование сегментации как многокритериальной экстремальной задачи, в том числе и с интервальными данными.
2. Полиномиальные асимптотически точные алгоритмы, построенные для проведения сегментации при подходе post hoc и реализованные в программном комплексе.
3. Полиномиальные статистически эффективные методы, реализованные в программном комплексе, предназначенные для моделирования сегментации рынка при подходе a priory в интервальной и многокритериальной постановках.
4. Усовершенствованные методы унифицированного булева представления исходных данных и описания закономерностей сегмента в виде булевой функции.
5. Метод построения классифицирующей функции, являющейся результатом математического моделирования сегментации рынка, на основе разделения рынка на нечеткие сегменты.
Апробация результатов исследования. Результаты исследования и его положения докладывались и получили положительную оценку на следующих конференциях и симпозиумах, проводимых различными академическими учреждениями и высшими учебными заведениями России и зарубежья:
- на 7-м Международном симпозиуме "Математическое моделирование и компьютерные технологии" (Кисловодск, 2005);
- на 4-й Международной научно-практической конференции "Проблемы регионального управления, экономики, права и инновационных процессов в образовании" (Таганрог, 2005 г.);
- на 6-й региональной научно-практической конференции "Рациональные пути решения социально-экономических и научно-технических проблем региона" (Черкесск, 2006);
- на 17-й Международной конференции по применению компьютерных технологий и математики в архитектуре и гражданском строительстве (Веймар, Германия, 2006);
- на IX Международной конференции "Интеллектуальные системы и компьютерные науки" (Москва, 2006);
- на 3-й Международной конференции "Нелокальные краевые задачи и родственные проблемы математической биологии, информатики и физики" (Нальчик, 2006);
- на Всероссийском симпозиуме "Математические модели и информационные технологии в экономике" (Кисловодск, 2007 г.);
- на научных семинарах кафедры прикладной математики Карачаево-Черкесской государственной технологической академии.
Отдельные результаты работы вошли в отчеты по гранту Российского фонда фундаментальных исследований, проект № 06-01-00020а "Структурирование, выявление несоответствий и прогнозирование эволюционных дискретных процессов и систем при наличии долговременных корреляций". Материалы по теме диссертационного исследования были использованы в курсах лекционных и семинарских занятий по дискретной математике, экономической кибернетике в Карачаево-Черкесской государственной технологической академии.
Публикации. Материалы диссертации опубликованы в 10 публикациях: 4 статьи, из которых 2 в изданиях ВАК, 6 тезисов докладов. Общий объем публикаций составляет 5,75 печ.л., из которых автору принадлежит 4,0 печ.л. Вклад автора в работе [87] заключается в доказательстве труднорешаемости задачи сегментации, в [88] - доказательство полноты интервальных задач на графах, в работе [98] - алгоритм покрытия графа звездами, в [99] - постановка проблемы, в работе [123] - доказательство неразрешимости задачи сегментации с помощью алгоритмов линейной свертки критериев.
Объем и структура работы. Диссертация состоит из введения, четырех глав, заключения, списка литературы, 8 приложений. Основной текст диссертации (без учета приложений) составляет 164 страницы, содержит 8 таблиц, 4 рисунка, библиография насчитывает 126 наименований. В приложениях содержится 13 рисунков и 1 таблица.
Заключение диссертация на тему "Математическое моделирование сегментации рынка с использованием двухуровневого подхода"
4.4. Выводы к главе 4
В данной главе исследуется метод построения аналитической записи закономерностей сегмента в виде булевой функции от признаков сегментации, а также методы построения нечеткой сегментации и определения классифицирующей функции для задачи сегментации (с учетом неполноты информации).
1. Разработан метод описания закономерностей сегмента в виде булевой функции в форме СДНФ с использованием булевой модели данных, построенной на нижнем уровне моделирования. Представление закономерностей в виде СДНФ позволяет решать проблему простой интерпретации на языке предметной области полученных результатов сегментации и описания объектов в виде привычных для человека логических высказываний.
2. Получили дальнейшее развитие методы нечеткой классификации применительно к задаче сегментации:
- разработан метод построения нечеткого сегмента в виде й - расширения сегмента с функцией принадлежности в виде матрицы;
- разработан метод описания закономерностей нечеткого сегмента в виде булевой функции;
- разработан метод построения нечеткой сегментации в виде покрытия булева пространства нечеткими сегментами;
- разработан метод построения классифицирующей функции, что позволяет проводить сегментацию рынка в условиях неполноты данных, описывать закономерности построенных сегментов (в том числе и нечетких), а также определять степень принадлежности каждого потребителя к каждому из noli строенных сегментов.
ЗАКЛЮЧЕНИЕ
В диссертационном исследовании разработан двухуровневый подход к моделированию задачи сегментации рынка, для которой являются характерными многокритериальность и неопределенность исходных данных. Были получены следующие результаты.
1. Проведен анализ существующих методов сегментации рынка, определены их недостатки; изучены свойства исходных данных для проведения сегментации (разнотипность, неточность, неполнота). Для удовлетворения всех требований, предъявляемых к исходным данным и получаемым решениям, предложен комплексный двухуровневый подход к решению задачи сегментации.
2. Разработан двухуровневый подход к математическому моделированию задачи сегментации. Двухуровневость моделирования означает на верхнем уровне непосредственное моделирование задачи сегментации, при этом входные данные для модели верхнего уровня моделируются на нижнем уровне.
В рамках моделирования нижнего уровня:
- разработана булева модель разнотипных данных на основе усовершенствования методов булева представления признаков, измеренных по различным шкалам;
- разработан метод определения матрицы весов ребер графа для теоретико-графовой модели верхнего уровня на основе дальнейшего развития методов обработки исходной информации.
В рамках моделирования верхнего уровня:
- построена теоретико-графовая модель задачи сегментации с вектором критериев специального вида как многокритериальной задачи покрытия звездами взвешенного графа;
- исследованы свойства задачи сегментации в многокритериальной и интервальной постановках: оценка вычислительной сложности задачи и разрешимость этой задачи алгоритмами линейной свертки критериев;
- исследована эффективность разработанных приближенных алгоритмов решения многокритериальной задачи покрытия взвешенного графа звездами, в том числе с интервальными весами, и доказаны достаточные условия их асимптотической точности, статистической эффективности.
3. Впервые получены оценки сложности и разрешимости задачи сегментации (подход a priory):
- труднорешаемость задачи сегментации в приведенной постановке по шкале оценок вычислительной сложности "полиномиальность - NP-трудность - труднорешаемость";
- неразрешимость задачи сегментации в интервальной и многокритериальной постановках с помощью алгоритмов линейной свертки критериев.
4. Доказана полиномиальная вычислительная сложность разработанных приближенных алгоритмов решения многокритериальной задачи покрытия взвешенного графа звездами, в том числе с интервальными весами. Впервые доказаны достаточные условия статистической эффективности разработанных алгоритмов решения многокритериальной задачи (с вектором критериев специального вида) покрытия звездами двудольного графа, в том числе с интервальными весами. Впервые доказаны достаточные условия асимптотической точности разработанных алгоритмов решения многокритериальной задачи (с вектором критериев специального вида) покрытия звездами полного графа, в том числе с интервальными весами.
5. Получили дальнейшее развитие методы описания закономерностей сегмента (класса) в аналитическом виде как булевой функции в форме СДНФ на базе булевой модели данных, разработанной на нижнем уровне.
6. Получили дальнейшее развитие методы нечеткой классификации применительно к задаче сегментации:
- разработан метод построения нечеткого сегмента в виде d - расширения сегмента с функцией принадлежности в виде матрицы;
- разработан метод описания закономерностей нечеткого сегмента в виде булевой функции;
- разработан метод построения классифицирующей функции на основе разделения рынка на нечеткие сегменты. 7. С учетом двухуровневого подхода к моделированию задачи сегментации рынка и разработанных алгоритмов создан программный комплекс, позволяющий сегментировать рынок по результатам анкетирования. Проведены вычислительные эксперименты с использованием разработанного программного комплекса на основе данных, полученных по результатам анкетирования, предпринятого с целью исследования рынка мобильных телефонов. Для исследуемого рынка получены разбиение на сегменты и классифицирующая функция.
Библиография Шенкао, Тимур Мухамедович, диссертация по теме Математическое моделирование, численные методы и комплексы программ
1. Айвазян С.А., Бухштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Классификация и снижение размерности. Справочное издание / Под ред. С.А. Айвазяна. М.: Финансы и статистика, 1989. - 607 с.
2. Алексеев A.A. Маркетинговые исследования рынка услуг: Учеб. пособие. -СПб.: Изд-во СПбУЭФ, 1998. 345 с.
3. Алефельд Г., Херцбергер Ю. Введение в интервальные вычисления. М.: Мир, 1987.-356 с.
4. Алон Н., Спенсер Дж. Вероятностный метод: учебное пособие. М.: БИНОМ. Лаборатория знаний, 2007. - 320 с.
5. Алтунин А.Е., Семухин М.В. Модели и алгоритмы принятия решений в нечетких условиях. Тюмень: Изд-во ТюмГУ, 2000. - 352 с.
6. Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. М.: Мир, 1979 - 536 с.
7. Ащепков Л.Т., Косогорова И.Б. Минимизация квадратичной функции с интервальными коэффициентами // Журнал вычислительной математики и математической физики. 2002. - Т.42, №5. - С.654-664.
8. Барболина Т.Н., Емец O.A. Полностью целочисленный метод отсечения для решения линейных условных задач оптимизации на размещениях // Журн. вычислительной математики и математической физики. 2005. -Т. 45, №2. -С. 254-261.
9. Баум Д., Коваленко И.Н. Графовые модели коммуникации мобильных устройств в зонах доступа // Кибернетика и системный анализ. 2003. -№5. -С.107-121.
10. Березин И.С. Маркетинг и исследование рынка. М.: Русская деловая литература, 1999.-416 с.
11. Береснев В.Л., Гимади Э.Х., Дементьев В.Т. Экстремальные задачи стандартизации. Новосибирск: Наука, 1978. - 333 с.
12. Борисов А.Н., Крумберг O.A., Федоров И.П. Принятие решений на основе нечетких моделей: примеры использования. Рига: Зинатне, 1990. - 184с.
13. Бочарников В.П. Fuzzy-технология: Математические основы. Практика моделирования в экономике. СПб.: "Наука" РАН, 2001. - 328 с.
14. Вайнцвайг М.Н. Алгоритм обучения распознаванию образов "Кора" // Алгоритмы обучения распознаванию образов / Под ред. В.Н. Вапник. М.: Советское радио, 1973.-С. 110-116.
15. Вентцель Е.С., Овчаров JI.A. Теория вероятностей. М.: Наука, 1969. -368 с.
16. Волконский М.А., Еганян Г.К., Поманский А.Б. О множестве эффективных точек в линейных многокритериальных задачах // Сиб. матем. журн. 1983. - Вып. 24, №2. - С. 9-17.
17. Вощинин А.П., Сотиров Г.Р. Оптимизация в условиях неопределенности. -Изд-во МЭИ (СССР); "Техника" (НРБ), 1989.-224 с.
18. Гимади Э.Х., Глебов И.И., Перепелица В.А. Алгоритмы с оценками для задач дискретной оптимизации // Проблемы кибернетики. М.: Наука, 1975.-Вып. 31.-С. 35-42.
19. Гирлих Э., Ковалев М.М., Кравцов М.К., Янушкевич O.A. Условия разрешимости векторных задач с помощью линейной свертки критериев // Кибернетика и системный анализ. 1999. - №1. - С. 81-95.
20. Гнеденко Б.В. Курс теории вероятностей. М.: Эдиториал УРСС, 2001. -320 с.
21. Голубков Е.П. Сегментация и позиционирование // Маркетинг в России и за рубежом. 2001. - №4. - С. 124-137.
22. Горелик В.А., Ушаков И.А. Исследование операций. М.: Машиностроение, 1986.-312 с.
23. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи.-М.: Мир, 1982.-416 с.
24. Данилов Д.А., Жиглявский А.А.(ред.) Главные компоненты временных рядов: метод "Гусеница". СПб.: СПбГУ, 1997. - 308 с.
25. Дебок Г., Кохонен Т. Анализ финансовых данных с помощью самоорганизующихся карт. -М.: АЛЬПИНА, 2001. 317 с.
26. Донец Г.А. Решение задач о сейфе на (0,1)-матрицах // Кибернетика и системный анализ. 2002. - № 1. - С. 98-104.
27. Дубров A.M. Компонентный анализ и эффективность в экономике. М.: Финансы и статистика, 2002. - 352 с.
28. Дюран Б., Оделл П. Кластерный анализ. М.: Статистика, 1977. - 128 с.
29. Емеличев В.А., Кравцов М.К., Янушкевич O.A. Разрешимость векторной траекторной задачи на "узкие места" с помощью алгоритма линейной свертки // Доклады Академии наук Беларуси. 1996. - 40, №4. - С. 29-33.
30. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Наука, 1990. - 384 с.
31. Емеличев В.А., Перепелица В.А. К вычислительной сложности дискретных многокритериальных задач // Изв. АН СССР. Техн. кибернетика. -1988.-№1,-С. 85-87.
32. Емеличев В.А., Перепелица В.А. О некоторых алгоритмических проблемах многокритериальной оптимизации на графах // Журн. вычисл. математики и мат. физики. 1989. - Т. 29, №2. - С. 171-183.
33. Емеличев В.А., Перепелица В.А. Сложность дискретных многокритериальных задач // Дискретная математика. 1994. - Вып. 1,6. - С. 3-33.
34. Загоруйко Н.Г. К вопросу об определении понятия "закономерность" // Вычислительные системы. 1979. - Вып. 79. - С. 3-6.
35. Загоруйко Н.Г. Прикладные методы анализа данных и знаний. Новосибирск: Изд-во Ин-та математики, 1999. - 270 с.
36. Зайченко Ю.П. Исследование операций: нечеткая оптимизация: Учеб. пособие.-Киев: Выщашк., 1991. 192 с.
37. Закревский А. Д. Алгоритмы синтеза дискретных автоматов. М.: Наука, 1971.-512 с.
38. Занг В.-Б. Синергетическая экономика. Время и перемены в нелинейной экономической теории. М.: Мир, 1999. - 335 с.
39. Зозулев B.C. Сегментация рынка. М.: Наука, 1990. - 384 с.
40. Зыков A.A. Основы теории графов. М.: Наука, 1987. - 384 с.
41. Ивченко Г.И., Медведев Ю.И. Математическая статистика. М.: Наука, 1984.-248 с.
42. Калмыков С.А., Шокин Ю.А., Юлдашев З.Х. Методы интервального анализа. Новосибирск: Наука, Сибирское отделение, 1986.-224 с.
43. Кандель А., Байатт У.Дж. Нечеткие множества, нечеткая алгебра, нечеткая статистика // Труды американского общества инженеров радиоэлектронщиков. - 1978. - Т. 6. - С. 37-61.
44. Каня A.A. Мера возможности, нечеткое доверие и некоторые свойства нечетких преобразований // Нечеткие множества и теория возможностей. Последние достижения. / Под ред. Р.Р. Ягера. М.: Радио и связь, 1986. -С. 264-279.
45. Каспшицкая М. Ф., Сергиенко И.В. Некоторые вычислительные аспекты задачи кластеризации // Кибернетика. 1983. - №5. - С. 1-5.
46. Кемени Дж., Снелл Дж., Томсон Дж. Введение в конечную математику. -М.: Изд-во иностранной литературы, 1963. 486 с.
47. Ким Дж.-О., Мьюлер Ч.У., Клекка У.Р. и др. Факторный, дискриминант-ный и кластерный анализ. -М.: Финансы и статистика, 1989. 215 с.
48. Киселев М., Соломатин Е. Средства добычи знаний в бизнесе и финансах // Открытые системы. 1997. - №4. - С. 41-44.
49. Ковалев М.М. Дискретная оптимизация (целочисленное программирование). М.: Едиториал УРСС, 2003. - 192 с.
50. Колчин В.Ф. Случайные графы. М.: ФИЗМАТЛИТ, 2004. - 256 с.
51. Коршунов А.Д. Основные свойства случайных графов с большим числом вершин и ребер // Успехи математических наук. 1985. - Т. 40, №1(241). -С. 107-173.
52. Котлер Ф. Маркетинг менеджмент. СПб: Питер, 2005. - 800 с.
53. Кравцов М.К. Неразрешимость задач векторной дискретной оптимизации в классе алгоритмов линейной свертки критериев // Дискретная математика. 1996. - Т. 8, №2. - С. 89-96.
54. Кравцов М.К., Дичковская С.А. Асимптотический подход к решениюмногокритериальной трехиндексной планарной проблемы выбора // Кибернетика и системный анализ. 2004. - №3. - С. 24-29.
55. Кретов И.И. Маркетинг на предприятии. М.: Финстатинформ, 1994. -I 250 с.
56. Кристофидес Н. Теория графов. Алгоритмический подход. М.: Мир, 1978.-432 с.
57. Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика. М.: Горячая линия-Телеком, 2001. - 382 с.
58. Кузнецов В.П. Интервальные статистические модели. М.: Радио и связь, 1991.-352 с.
59. Ламбен Ж.Ж. Стратегический маркетинг. Европейская перспектива. -СПб.: Наука, 1996. XV + 589 с.
60. Лбов Г.С. Методы обработки разнотипных экспериментальных данных. -Новосибирск: Наука, 1981. 160 с.
61. Лбов Г.С., Старцева Н.Г. Логические решающие функции и вопросы статистической устойчивости решений. Новосибирск: Изд-во Ин-та математики, 1999. -212 с.
62. Левин В.И. Интервальная непрерывная логика и ее применение в задачах управления // Известия РАН. Теория и системы управления. 2002. - №¡1. -С. 138-145.
63. Леоненков А. В. Нечеткое моделирование в среде MATHLAB и fuz-zyTECH. СПб.: БХВ - Петербург, 2003. - 736 с.
64. Леунг И. Разделение на торговые зоны в нечетких условиях // Нечеткие множества и теория возможностей. Последние достижения. / Под ред. P.P. Ягера. М.: Радио и связь, 1986. - С. 339-349.
65. Литвак Б.Г. Экспертная информация: методы получения и анализ. М.: Радио и связь, 1982. - 184 с.
66. Любищев A.A. Системность и организуемость // Труды по знаковым системам. Ученые записки Тартуского ун-та (семиотика). Тарту, 1977. -Вып. 9.-С. 33-47.
67. Макдоналд M., Данбар Я. Сегментирование рынка: практическое руководство. М.: Дело и Сервис, 2002. - 288 с.
68. Максишко Н.К. Анализ эффективности алгоритма координатного подъе1. Ч)ма для задачи о цепях. Докл. АН УССР. Сер. А. Физ.-мат. и техн. науки. 1990,№7.-С. 77-80.
69. Малинецкий Г.Г., Потапов А.Б. Нелинейность. Новые проблемы, новые возможности // Новое в синергетике. Загадки неравновесных структур. -М.: Наука, 1996.-С. 165-190.
70. Математическая теория планирования эксперимента / Под ред. С.М. Ермакова. М.: Наука, 1983. - 392 с.
71. Махмутова Г.С., Махмутов И.И. Анализ и классификация методов сегментации рынка // Маркетинг в России и за рубежом. 2005. - №1. - С. 35-46.
72. Мейен C.B. Таксономия и мерономия // Вопросы методологии в геологических науках. Киев: Наукова думка, 1977. - С. 149-168.
73. Миркин Б.Г. Группировки в социально-экономических исследованиях: методы построения и анализа. -М.: Финансы и статистика, 1985.-223 с.
74. Мотышина М.С. Методы и модели маркетинговых исследований: Учеб. пособие. СПб.: Изд-во СПбУЭФ, 1996. - 330 с.
75. Нечеткие множества в моделях управления и искусственного интеллекта / Под ред. Д.А. Поспелова. М.: Наука, 1986. - 312 с.
76. Овчинников C.B., Рьера Т. О нечетких классификациях // Нечеткие множества и теория возможностей. Последние достижения. / Под ред. P.P. Ягера. М.: Радио и связь, 1986. - С. 100-113.
77. Орлов А.И. Прикладная статистика. -М.: Экзамен, 2004. 656 с.
78. Орлов А.И. Теория принятия решений. М.: МарТ, 2004. - 656 с.
79. Орловский С.А. Проблемы принятия решений при нечеткой исходной информации. М.: Наука, 1981. - 200 с.
80. Панова Н.С., Шрейдер Ю.А. О знаковой природе классификации. Научно-техническая информация. Сер. 2. - 1974. -№12. - С. 23-32.
81. Панова Н.С., Шрейдер Ю.А. Принцип двойственности в теории классификации. Научно-техническая информация. Сер. 2. - 1975. - №10. -С. 10-24.
82. Пападимитриу X., Стайглиц К. Комбинаторная оптимизация. Алгоритмы и сложность. -М.: Мир, 1985. 512 с.
83. Перепелица В. А. Асимптотический подход к решению некоторых экстремальных задач на графах // Проблемы кибернетики. М.: Наука, 1973. -Вып. 26.-С. 291-314.
84. Перепелица В.А., Сергеева Л.Н. Исследование неразрешимости с помощью алгоритма свертки 3-невырожденных дискретных многокритериальных задач // Кибернетика и системный анализ. 1996. - №2. - С. 71-77.
85. Перепелица В.А., Сергиенко И.В. Исследование одного класса целочисленных многокритериальных задач // Журн. вычисл. матем. и мат. физики. 1988. - Т. 28, №3. - С. 400-419.
86. Перепелица В.А., Тебуева Ф.Б., Темирова Л.Г.Структурирование данных методами нелинейной динамики для двухуровневого моделирования. -Ставрополь: Ставропольское книжное издательство, 2006. 284 с.
87. Перепелица В.А., Тебуева Ф.Б., Шенкао Т.М. О вычислительной сложности интервальных задач на графах // Известия высших учебных заведений. Северо-Кавказский регион. Серия Естественные науки. 2006. -Приложение №12. - С. 18-30.
88. Подиновский В.В., Ногин В.Д. Парето-оптимальные решения многокритериальных задач. М.: Наука, 1982. - 256 с.
89. Попов Е.В. Сегментация рынка // Маркетинг в России и за рубежом. -1999.-№2.-С. 11-17.
90. Резниченко Б.А. Практика сегментирования // Маркетинг в России и за рубежом. 2003. - №6. - С. 47-54.
91. Рубинштейн М.И. Оптимальная группировка взаимосвязанных объектов. -М.: Наука, 1989.- 167 с.
92. Руспини Э.Г. Последние достижения в нечетком кластер-анализе // Нечеткие множества и теория возможностей. Последние достижения. / Под ред. P.P. Ягера.-М.: Радио и связь, 1986.-С. 114-132.
93. Рутковская Д., Пилиньский М., Рутковский JI. Нейронные сети, генетические алгоритмы и нечеткие системы. М.: Горячая линия - Телеком, 2004.-452 с.
94. Сергиенко И.В. Математические модели и методы решения задач дискретной оптимизации. Киев: Наук. Думка, 1988. - 472 с.
95. Сигорский В.П. Математический аппарат инженера. Киев: Техника, 1977.-768 с.
96. Стиранка А.И. Решение кластерной задачи большой размерности в нечеткой постановке // Кибернетика. 1991. - № 1. - С. 116-121.
97. Фор Р., Кофман А., Дени-Папен М. Современная математика. М.: Мир, 1966.-271 с.
98. Шапот М. Интеллектуальный анализ данных в системах поддержки принятия решений // Открытые системы. 1998. - №1. - С. 30-35.
99. Шенкао Т.М. Векторное квантование и задача сегментации // Материалы 6-й региональной научно-практической конференции "Рациональные пути решения социально-экономических и научно-технических проблем
100. У региона" (17-18 апреля 2006 г.). Часть 1. - Черкесск: КЧГТА, 2006. - С.71.73.
101. Шенкао Т.М. Двухуровневый подход к моделированию одной задачи из области сегментирования рынка. Деп. в ВИНИТИ 11.07.2006, № 918-В2006. -40 с.
102. Шенкао Т.М. Моделирование данных в задаче классификации // Сборник научных трудов Всероссийского симпозиума "Математические модели и информационные технологии в экономике" (19-20 апреля 2007 г.). -Т. 2. Кисловодск: КИЭП, 2007. - С. 81-84.
103. Шиханович Ю.А. Введение в современную математику. М.: Наука, 1965.-376 с.
104. Шрейдер Ю.А., Шаров A.A. Системы и модели. М.: Радио и связь, 1982.- 152 с.
105. Яблонский C.B. Введение в дискретную математику. М.: Наука, 1986. -384 с.
106. Amir A. and Lindenbaum M. A generic grouping algorithm and its quantitative analysis // IEEE Trans. Pattern Analysis and Machine Intelligence. -1998.-Vol. 20, №2.-P. 186-192.
107. Brandenburg F.J. Graph Clustering I: Cycles of Cliques // Proceedings of Graph Drawing'97, LNCS 1353. 1997. - P. 43-84.
108. Breslow L.A., Aha W. Simplifying decision trees: a survey // Knowledge En-¥ gineering review. 1997. - Vol. 12, №.1. - P. 1-40.
109. Davis K. Management communication and the grapevine // Harvard Business Review. 1993. - Vol. 31. - P. 43-49.
110. Dubes R.C. Cluster analysis and related issues // Handbook of Pattern Recognition and Computer Vision / C.H. Chen, L.F. Pau and P.S.P. Wang (eds.). -Singapore; New Jersey; London; Hong Kong: Word Sci. Publ. Co. Pte. Ltd. -1995.-P. 3-32.
111. Emelichev V.A., Perepelitsa V.A. Complexity of Vector Optimization Problems on Graphs // Optimization. 1991. - Vol. 22. -P. 903-918.
112. Gordon A.D. Classification. Boca Raton: Chapman & Hall / CRC, 1999.
113. Green P., Carroll J., and Goldberg S. A general approach to product design optimization via conjoint analysis // Journal of Marketing. 1981. - Vol. 43, No. 3 (Summer 1981).-P. 17-37.
114. Green P. and Srinivasan V. Conjoint analysis in consumer research: Issues and outlook // Journal of Consumer Research. 1978. - Vol. 5, September 1978.-P. 103-123.
115. Jain A.K., Dubes R.C. Algorithms for clustering data. New Jersey: Prentice Hall, 1989.-334 p.
116. Marchand M., Shawe-Taylor J. Learning with the set covering machine // Proc. 18th International Conf. On Machine Learning. Morgan Kaufmann: San Francisco, CA. - 2001. - P. 345-352.
117. Marshall P. and Bradlow E.T. A Unified Approach to Conjoint Analysis Models // Journal of the American Statistical Association. 2002. - Vol. 97, №459.-P. 674-682.
118. Perepelitsa V.A. and Kozina G.L. Interval Discrete Models and Multiobjec-tivity. Complexity Estimates // Interval Computations. 1993. - №1. - P. 5159.
119. Stijn van Dongen. A cluster algorithm for graphs // Technical Report INS-R0010, National Research Institute for Mathematics and Computer Science in the Netherlands. Amsterdam, May 2000.
120. Yakovlev A.G. Classification Approach to Programming of Localizational (Interval) Computations // Interval Computations 1992. - Vol. 1. - P. 61-84.
121. Zadeh L.A. Similarity Relations and Fuzzy orderings // InforSci. 1971. -Vol.3.-P. 177-200.
122. Результаты анкетирования населения для проведения моделирования сегментации рынка мобильных телефонов
123. Пол: муж □ жен □ Возраст (вписать):
124. Телефон для вас это в первую очередь: быть как все, не отличаться от дру-гихп необходим для бизнеса □ часть облика, элемент престижа □ развлечение □ средство общения □ другое □
125. Цена, руб. (на момент покупки): до 3000 □ 3000-6000 □ 6001-12000 □ 12001-18000 □ выше 18001 □
126. Цвет: металлик □ черный □ белый □ красный □ разноцветный □ серый □ золотистый □ другой цвет □
127. Производитель: Alcatel □ BenQ-Siemens □ Nokia □ Motorola □ LG □ Fly
128. Panasonic □ Pantech □ Philips □ Samsung □ Sony-Ericsson □ другой
129. Размер: миниатюрный □ маленький □ средний □ большой □ очень большой □
130. Как Вы выбрали телефон: выбрал(а) сам(а) □ по совету друзей □помог продавец □ увидел(а) в журнале, кино, на ТВ, в рекламе □ другое □
131. Тип корпуса: классический □ раздвижной □ раскладушка □ ротатор □ другое □
132. Возможность установки карты памяти: есть □ нет □
133. Полифонические мелодии: есть □ нетп11. Смартфон: да □ нет □
134. Цветной экран: есть □ нетп 23. Калькулятор: есть □ нет □
135. Встроенная камера: есть □ нетп 24.Будильник: есть □ нетп
136. Встроенная вспышка: есть □ нет □ 25.Игры: есть □ нетп
137. Запись видеоклипов: есть □ нетп 26. Java-приложения: есть п нетп
138. Голосовой набор: есть □ нетп 27.Модем: есть п нетп
139. МРЗ-мелодии: есть п нетп 28.Bluetooth: есть п нета
140. Редактор мелодий: есть □ нетп 29.GPRS: есть п нетп
141. Диктофон: есть п нет п 30. Инфракрасный порт: есть п нет п
142. Радиоприёмник: естьп нетп 31.MMS: есть п нетп
143. МРЗ-проигрыватель: есть п нет п 32. Сменные панели: естьп нетп
144. Органайзер/календарь: есть п нет □ 33. Виброзвонок: есть п нет п
145. Использование в качестве USB-накопителя: да п нетп
146. В телефоне Вы больше всего цените (можно выбрать несколько вариантов): надежность □ стиль п многофункциональность п удобство □ дороговизну □ наличие мультимедиа □
147. Особые характеристики, ваше мнение, мысли, пожелания о телефоне (впишите сами):
-
Похожие работы
- Разработка и исследование методов сегментации изображений на основе многомерных цепей Маркова
- Двухэтапные алгоритмы фильтрации и сегментации цветных изображений
- Алгоритмы сегментации изображений и их применение при создании автоматических систем распознавания объектов
- Теоретические основы развития систем автоматизации технологических процессов контурной сегментации изображений
- Сегментация слабоконтрастных изображений гистологических объектов
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность