автореферат диссертации по геодезии, 05.24.01, диссертация на тему:Исследование и разработка комплекса инженерно-геодезических работ для проектирования мелиоративной системы

кандидата технических наук
Аль Рамадан Абдулразак Джасем
город
Москва
год
1992
специальность ВАК РФ
05.24.01
Автореферат по геодезии на тему «Исследование и разработка комплекса инженерно-геодезических работ для проектирования мелиоративной системы»

Автореферат диссертации по теме "Исследование и разработка комплекса инженерно-геодезических работ для проектирования мелиоративной системы"

:й"-ЖГЕ?СТВО науки, высшей школы и технической. шжгики рф

хскобский ордена ленина 'лнститут инженеров геодезии, аэрофотосъемки и картографии

На правах рукописи УЛК.328.48:62£.5

аль раг/ЛДАН абдулразак джасе.1

^следование разработка комплекса иеенегзэ-геодззкеских работ ш проектирований жешгкт.зш систзй

Специальность 05.24.01 - Геодезия

Автореферат диссертации на соискание ученой, степени кандидата технических наук

Москва 1592

'/■ ^ Л

/V . >• I

("»с? ГСГ!ЙШ

а -.Г,И

I !,'-,<! Л

] диссертаций

Работа выполнена н дена Ленина института ртографии

кафедре прикладной инженеров геодезии,

геодезии Московского аэрофотосъемки и

Научный руководитель - доктор технических наук, профессор

Ш5СКУШВ М.Е.

Официальные оппоненты: доктор технических наук, профессор

БАТРАКОВ Ю.Г.

кандидат технических наук, доцент 1Ш1АПАК В.В.

Ведущая организашя Московский центральный трест хяке-

иерно-строительных изысканий

Защита диссертации состоится "17" _июня_ 1992е

_часов на заселении специализированного совета в Мо-

сочском ордена Ленина институте инженеров геодезии, аэрофотосъ-«ки и картографии по адресу: Москва, К-64, Гороховский пер., 4, гд.321.

С диссертацией можно ознакомиться в библиотеке МИИГАиК Автореферат разослан " I ¿Г " /И^сУ/ 1992 г.

?еный секретарь -тепиализированного совета

МОНАХОВ В.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Сирийская Арабская Республика (САР) пр< имущественно аграрная страна. На ее территориж имеются большие запасы полезных ископаемых и обширные площади полупустыни, коте рые могут служить базой для широкого освоения целинных земельш массивов. Болыше водоэнергетические ресурсы позволяет орошать огромные просторы неосвоенных земель.

Орошаемое земледелие является основным видом мелиорации Сирии. В делом, однако, возможности развития орошения пока ч1 используются в САР далеко не полностью. Поэтому правительство плакирует сиро комасштабнук мелиорацию земель в ближайшем будутп как основное направление развития народного хозяйства. Это дел; ет проблем освоения новых пахотных земель путем гх мелиорации весьма актуальной. Следовательно, весь комплекс работ, связанн! с проблемой мелиорации, включая и комплекс геодезических работ которые сопровождают проектирование и строительство мелиоративных систем на всех этапах, являются также актуальными.

Целью работы является совершенствование и повышение эффек вности комплекса инженерно-геодезических работ, выполи ¿мых пр изысканиях для проектирования мелиоративных систем на основе и ченгя теоретического и практического опыта советских спецналис и с учетом особенностей местных условий Сирии.

Основные задачи исследований. Исследован, разработан и пр читан на модели проект плановой геодезической сетр Угловые из: рения на всех пунктах триангуляции, на ходовых и узловых пункт полигонометрии прелусморено выполнять по программе "отдельного угла между парой смежных направлений". Показано, что такая про рамиа в сравнении с программой "во всех комбинациях" менее тру емкая, а в сравнении с программой "круговых приемов" позволяет

представить направления в виде одного ряда независимых измерений до их уравнивания на станциях.

Научная новизна работы. Впервые в практике прикладной геодезии рекомендовано на всех пунктах тргангуляции угловые измерения выполнять по программе "отдельного угла между парой смежных направлений". При этом угловые измерения на станциях не уравнивать с той целью, чтобы вычисленные и неуравненные на станциях углы можно было представить в виде одного ряда независимых друг от друга и некоррелированных измерений. Разработан и сформулировав более обобщенный принцип однородности измерений и результатов их оценки, согласно которому функция, ее ошибка и погрешности, составлявшие эту ошибку, должны иметь не только одинаковую размерность, но при этом должны быть коллинеарны. На основе этого принципа получены строгие формулы оценки точности координат конечного пункта полигонометрического хода произвольной формы с учетом неравенства и неравноточностж длин сторон и неравноточности угловых измерений.

Практическая ценность. Результаты проведенных исследований позволяют сирийским специалистау технически грамотно разрабатывать проекты схем инженерно-геодезг.ческих измерений, исходя из заданной точности конечных результатов и с учетом специфики условий САР.

Результаты исследований до оценке точности координат конечного пункта полигонометрического хода любой формы с неравными и неравноточными длинами сторон и с неравноточными углами поворота имеют самостоятельное практическое значение и могут быть использованы геодезистами, работающими в области строительства мелиоративных систем.

Апробация работы. Основное положение диссертации докладывалось на: научно-технических конференциях студентоэ, аспирантов и

молодых ученых МИИГАиК 1990, 1991 гг., на 1 конференции изыскателей объединения "Гидропроект", г.Солнечногорск, 1990 г. Подготовлена и сдана в редакцию журнала "И-вестия вузов. Геодезия и аэрофотосъемка" одна научная статья для опубликования.

Результата исследований внедрены в учебный процесс на кафедре прикладной геодезии МИИГАяК и в госбюджетной научной тематике.

Структура и объем работа. Диссертация состоит из введения, четырех глав и заключения. Страниц основного текста 156, таблиц

34 , рисунков 31 , приложений 3, список литературы из наименований на русском и иностранных языках.

содержание работы

Во введении обоснована актуальность темы для Сирийской Арабской Республики и определены основные направления, цели и задачи исследований, сформулированы нуждающиеся в решении научные задачи и показано их структурное расположение в диссертации.

I. Общие сведения об исследуемом объекте. В этом разделе диссертационной работы приведены общие сведения об исследуемом объекте, рассмотрены физико-географические особенности района изысканий и ,го местоположение. Район мелиоративного строительства расположен в северо-восточной части Сирии на левом берегу р.Евфрат в полупустынном климатическом поясе, на всей шющада преобладает равнина. Здесь имеются достаточно благоприятные почвенно-климатические условия для развития мелиоративных работ.

В целях научно-обоснованного подхода к вопросу обеспечения хозяйства страны геодезическими работами необходимо должным образом учитывать специфические физико-географические особенности территории района мелиорации. В разделе подробно рассмотрены факторы, влиящие на производство топографо-геодезических работ в изучаемом районе, основным яз которых является рельеф, климат, почва (грунты) .

- б -

Рельеф. Поверхность района в основном равнинная и представ-а высотами 500 - 550 м над уровнем Средиземного моря.

Климат. Характерной особенностью климата района является кий контраст жаркого и сухого воздуха. Б разделе подробно дставлено распределение максимальных, минимальных и средних ператур для района мелиоративного строительства.

Почвы. Почвы играют основную роль в процессе мелиорации, пому требуется знать все характеристики почв. Особое внимание лено сведениям о мелиорации, в частности, орошению и осушению.

2. Краткий обзор современных методов построения планового геодезического обоснования

При изучении богатейшего опыта построения плановых геодези-:ких сетей мною было сосредоточено внимание как на применяемых ■граммах угловых измерений, так и на способах последующих обра-'ок результатов на станциях и в общей схеме. При этом для удоб-ia все широко применяемые программы угловых измерений были мной ¡овно разделены на две группы. К первой из них отнесена програ-i "отдельного угла" и ко второй - программа "направлений". К ^грамме отдельного угла относятся ее две разновидности: а) "от-[ьного угла между парой смежных направлений на станции." (наблю-ше пары смежных направлений на ходовых пунктах полигснометрии)

"отдельных утлов во Есех комбинациях пар направлений "(^углоЕ исех комбинациях^). Программа направлений - это измерение всех фавлений в одной группе. К этой программе относятся две es ра-'Вйдности: а) собственно "направлений" и б) "круговых приемов" юсоб Струве). Полученные доброкачественные угловые измерения 1чале (до уравнительных вычислений в общей схеме измерений) обя-'ельно уравнивают на станциях и представляют их в конечном сче-в виде одного ряда равноточных направлений, имеющих на всех 1ктах общей сети один и тот хе вес. После этого угловые измеое-

ния уравнивают в общей схеме, т.е. определяют поправки к направлениям (уравнивание по направлениям) или к углам (уравнивание ш углам)>

Независимо от применяемой программы к непосредственным угле вым измерениям относятся направления

(2.

при положении "крут лево" (КЛ =/ ) и

"//Ч-^Л (2.

при положении "круг право" (КП = ^). В формулах (2.1) и (2.2) <Г/ - малый угол, который коллимационная плоскость трубы теодол> та составляет с вертикалом начального направления при идеально 1 чной установке алидады на отсчет по лимбу, равный нулю; и ¿2 отсчеты по лимбу и микроскопу, взятые после каждого следующего друг за другом совмещения изображений штрихов при одном точном наведении трубы на наблюдаемый предмет. По непосредственным изме рениям (2.1) и (2.2) на левый Л и правый П предметы вычисляют т бо углы

^ = "Л (2.

в полуприемах, а по ним среднее арифметическое значение угла

= 12. из одного ( /77 = I) приема, либо направления

из одного приема на левый и правый предметы соответственно, ь по ним и угол

/К (2.

также, как и угол (2.4), из одного приема. При обоснованной необ ходимости повышения точности направлений (2.5) или углов (2.4), (2.6) угловые наблюдения выполняют несколькими приемами и образу

ют в конечном счете соответствующие средние а-рмймгпгейские вели чины

Следовательно, не только углы (2.3), (2.4), (2.6) и (2.8), но и направления (2.5) и (2.7) являются функциями непосредственно измеренных величин (2.1) и (2.2).

Отметим, что угловые измерения вида (2.7), вычисляемые в результате применения программы круговых приемов, после уравнивания их на станции оказываются зависимыми друг от друга. Зависимыми становятся и углы с/З/л./п . вычисляемые по уравненным на станции направления.'.:. Углы вида (2.8) в случае применения программы "во всех чомбинациях" после их уравнивания на станции также оказываяь тся зависимыми, а представляемые по ним направления в виде одного равноточного ряда также являются зависимыми. И только лишь углы вида (2.8), получаемые на ходовых лунктах полигонометрии из наблюдений по программе отдельного угла между парой смежных направлений, являю' ¿я независимыми друг от друга. После уравнивания на станциях, как отг/ечено выше, угловые и другие измерения уравнивают в обще:" схеме без учета или учетом корреляционной зависимости.

Названные выше программы угловых измерений и способы первичной обработки применяют и во всех случаях построения плановых инженерно-геодезических сетей без каких-либо существенных изменений

При изучении теория и опыта построения полигонометрических сетей сгущения было обращено внимание на вопросы оценки точности элементов Г (функций) схем измерений. Необходимость выполнения названной опенка, как известно, возникает в основном в двух случаях: I) при разработке проектов схем измерений и 2) при анализе

(2.7)

или

(2.8)

.результатов выполненных измерений. Как первая, так и вто^. .-.десь названные оценки являются важными.

Оценке точности геодезических измерений и из функций в пол£~ гонометрических сетях уделялось и уделяется большое внимание советскими и зарубежными учеными и практиками. К ним относятся А..С. Чеботарев, Н.Н.Лебедев, И.И.Купчинов, Б.А/Литвинов, В.Г.Конусов, В.Г.Селиханович, А.В.Маслов, Ю.И.Маркузе, Ю.Г.Батраков и многие другие. Что же-касается выполняемых априорных оценок, то здесь по мнению диссертанта имеются отдельные неточности, обусловленные, главным образом, применением нестрогих формул. К ним относятся известные формулы вида

или = * > (2-9)

по которым принято вычислять среднюю КЕадратическую "ошибку положения пункта". И это несмотря на то, что положение пункта С на плоскости ХОУ однозначно определяется дв^я функциями /* = <2Г/ и ~• зависящими от одних и тех же независимых аргументов: углов ^/В поворота и длин сторон.

В свободном полигонометрическом ходе,строго вытянутом в направлении С?с равными и равноточными длинами /5*сторон с равноточными углами поворота средние квадратические ошибки и координат и ^^ конечного пункта /Р хода при-

нято вычислять по соответствующим строгим формулам:

< -/-^¿у-^ . С2ЛС!

(2.н)

После подстановки значений и » взятых из стро-

гих формул (2.10), (2.11), в приближенную формулу (2.9), получают

М2^ -<• (2.12)

* У3 ¿Г

Если свободный полигонометрический ход произвольной формы с ¡равными и неравноточными длинами $ сторон и с неравноточны-1 углами поворота, то приближенную формулу, по которой вы-юляют "ошибку положения пункта" записывают так

Л*2* • (2.13)

другие аналогичные формулы, полученные на основе формулы (2.9).

На основе выполненного в диссертации анализа формул (2.9) -2.13) сделаны следующие основные замечания:

а. В каждой из строгих формул (2.10) и (2.11) правые и левые асти имеют одинаковую размерность и по своему направлению на пло-кости Х0У совпадают с направлением соответствующей координа-ной оси. Величины ошибок и зависят как от ориенти-ования отдельно взятой стороны /5/ , так и от ориентиро-ания С^у/7 замыкающей /^ хода. Вместе с тем в строгих форму-ах не учтены неравноточности длин г!>/ сторон и углов по-орота хода.

б. В нестрогих формулах вида (2.12) или (2.13), полученных

а основе формулы (2.9), первые и вторые члены правых частей хо-я и имеют попарно одинаковую размерность, тем не менее они по воему направлению взаимно перпендикулярны. Величина Л/ на за-исит от ориентирования

сторон и от замыкающей хо-

а. И в этих форг/улах не учтены неравноточности длин сторон углов поворота хода.

в. Первый член правой частя формулы вида (2.13) ошибочный, ак как он представлен в виде суммы квадратов ошибок длин

, имеющих в ходе произвольной формы различную ориентировку.

Согласно рекомендациям СНнП 1.02.07. 87 угловые измерения на эдовых пунктах полигонометрии производятся по программе отдельно угла, а на узлоеых пунктах - по программе круговых приемоЕ.

Вследствие чего углы на ходовых пунктах оказываются независимыми, а углы на узлах зависимыми друг от друга. Несмотря на это, уравнивание измерений в общей схеме выполняют без учета отмеченного, следуя традиционному требованию действующей инструкции.

Из всего вышеизложенного вытекают следующие актуальные научные и практические задачи, которьГе предстоит решить в диссертационной работе.

I. Учитывая большой опыт советских геодезистов, особенности физико-географических условий и размер площади района под мелиорацию, а также сжатые сроки полевых работ в полупустынном регионе, разработать проекта схем плановой и высоткой топографической съемки в масштабе I : 5 ООО с Ас - 0,5 м.

¿.Элементы (целевые функции) разрабатываемых схем следует определять, исходя из соответствующих требуемых (заданных) допусков -/Зр точности, изложенных в нормативных документах и с учетом потребностей проектировщиков, строителей и эксплуатационников. К таким целевым функциям , например в схеме плановой инженерно-геодезической основы, обычно относятся слабоопределяемые: координаты .¿2^- или пункта ; приращения или Луу координат; д лна (горизонтальное проложение) стороны сети или расстояние ¿. ¿у между пунктами; дирекционный или горизонтальный угол .

5. Схемы инженерно-геодезических .. прений отличаются друг от друга многообразием своих форм, содержанием я размерами, от кс торых зависят весовые характеристики -//Р^г перечисленных выше элементов ^ . Вычисляемые величины ^'/^г не всегда удовлетвор* ют требованиям действующих инструкций. Поэтому разработка проектг схем инженерно-геодезических измерений и оценка точности элементов этих схем являются актуальными.

4. При проектировании схем инженерно-геодезических измерений

.важное значение приобретает правильное установление весов угловых н- линейных измерений. Это связано с практически правильным выбором измерения, вес которого принимается: равным единице.

5. Анализ результатов угловых измерений показал, что:

а) только величины (2.1) и (2.2) являются непосредственно измеренными; они - равноточные и независимые друт от друта в каждой программе угловых измерений;

б)- все другие результаты (направления и углысУ^ ) являются функциями величин (2.1) и (2.2);

в) уравнивание угловых измерений на станциях приводит к получению уравненных и потому зависимых друг от друга углов или направлений;

г) угловые измерения, выполненные на пунктах по программе отдельного угла между парой смежных направлений, оказываются независимыми друт от друга.

6. В локальных схемах инженерно-геодезических измерений,включающих в себя ограниченно малое число пунктов (например, геодезический четырехугольник, центральная система, цепочка треугольников и др.), отсутствуют трудности совместного уравнивания результатов за условия станций и условия сети. В связи с этим возникает необходимость выполнения исследований, результаты которых подтвердят правомерность совместного уравнивания ила же отвергнут это предложение.

7. Известные формулы вида (2.9), положенные в основу вывода приближенных формул, таких как (2.12) - (2.13), нуждаются в научной проверке.

3. Проект схемы плановой инженерно-геодезической основы топографической съемки. Оценка проекта

Вначале данного раздела диссертации приведены известные основные понятия о частных системах координат на плоскости, таких как

.декартова прямоугольная и полярная, применяемых в прикладной геодезии, и подчеркнуто, что положение пункта I (рис.1) на плоскости однозначно определяется лишь парой чисел

яг> ^ ас'ну, (3. т)

в декартовой прямоугольной и также парой чисел

(3.2)

в полярной системах

1 С*

(3.3)

У

Ри'с.1. Ортогональные проекции продольной и попереч-

ной - ¿3погрешностей на координатные оси Точность положения пункта на плоскости также характеризуется соответствующей парой допустимых интервалов дог рия

где и ¿¿Яб?/- ортогональные проекции продольной

(в направлении линии Щ) и поперечно?, ¿¿¿^'¿¿Я,/?

погрешностей соответственно линейных и угловых измерений на одну и ту же координатную ось ОХ абсцисс; ¿/л^ъ - также ор-

тогональные проекции продольной -¿я, и поперечной погре-

шности тех же линейных и угловых измерений, но уже на координатную ось 0У ординат в системе плоских прямоугольных координат. Как видно, все члены в пределах каюшй из формул (5.3) имеют не только одинаковую размерность, но по своему направлению параллель-

I направлению соответствующей координатной оси. На основании отменной особенности сформулирован принцип однородности: элемент-■ ^ _схемы_инжеш ерн о-г ео д^ез ич ескл х^змер^ний^ его ошлбка_-^/-_ А также_составлясщи£ эт£ опшбку_пог£ешности_однород^ых т. е. _они_ !еют одлнаков^^азмерностъ_и_коллинегуэны

А так как координаты СС и у и их ошибки Л ¿с и >парно неоднородны, то и формулы вида (2.9) следует признать грого необоснованными. К тому же в правых частях этих формул, 1к уже отмечено выше, содержатся суммы квадратов двух функций, висящих от одних и тех же аргументов, что противоречит извест-эму положению математики и ТМОГИ.

Учитывая размер площади и формы участка мелиорации, особен-эсти климатических условий региона САР, а также пользуясь опытом иженерно-геодезических работ, выполняемых в СНГ строго в соотве-зтвии с требованиями, изложенными в действующих нормативных доку-энтах, в диссертации разработан проект общей схемы плановой и вы-этной основы топографической съемки в масштабе I : 5 ООО и /?с = 0,5м. Схему плановой основы рекомендовано развивать в две сту-эни. Первая ступень - триангуляция и вторая - ходы полигономет-т. В качестве съемочной геодезической сети предусмотрены теодо-ятные ходы.

Проектируемая общая схема инженерно-геодезических измерений а изучаемом объекте мелиоративного строительства должна удозлет-эрять как техническим, так и экономическим требованиям. К техни-зским относится требуемая. (заданная) точность., представлен^ в ви-э формулы

(3.4)

не ^ й - соответственно заданный допуск точности и

актический предельный интервал доверия к оцениваемому- элементу схемы измерений; £ - коэффициент, зависящий от принятой

.вероятности; - средняя квадратическая ошибка единицы веса,

характеризующая собой методику измерений; - величина об-

ратного веса уравненного элемента.

Зная оцениваемый элемент /* схемы и заданный допуск точности его определения и определив из оценки проекта величину ¿/¿^ обратного веса, можно, пользуясь известной формулой

[////>'' (3.5:

предвычислить искомую ±/и- . Из (3.5) следует, что чем меньше

> тем больше предвычисляемая -/и и потому проще окажется методика измерений. Уменьшение же величины , как правило, не обходится без увеличения объема измерений.

С учетом требования действующей инструкции, предъявляемого к величинам предельных ошибок

= * ¿я- - - < (0,2-5000) = 100 см (3.6;

координат е£* е у пунктов съемочной сети по отношению к пунктам старших ступеней общей схемы, предвычислены (при коэффициенте # = 2,5) каждой ступени:

в допусках: 7 см, см, см;(3,

в средних квадратичйских интервалах доверия (при t =2,5): ^^ 5,8 см, 14,7 см и * 36,7 см. (3.8:

На рис.2 представлен проект схемы триангуляции (первая ступень), состоящей из Л пунктов. Из них пункты 10 и II - опорные с исходными координатами, выраженными в местной условной системе. Координаты остальных девяти определяемых пунктов, полученные графически с плана масштаба I : 25 ООО, приняты в качестве параметров. Схема измерений составлена из 15 треугольников, в которой занумеровано 34 внутренних и 10 внешних равноточных и независимые друг от друга углов. В схеме предусмотрено два базиса:

. Наибольшую длину = 6,1 км имеет сторона ЙП, на-

Рис.2. Схема триангуляции (первая ступень) на участке мелиорации

именыпую = 2075 м. Угловые измерения рекомендовано выпол-

нять на всех пунктах по программе отдельного угла между парой смежных направление. Вычисленные значения углов из /Я = 6 приемов на каждой станции рекомендуется не уравнивать за условие станции.

Для совместной оценки проекта за условия станций у. за условия сети в качестве единицы веса было принято непосредственное измерение вида (2.1) и (2.2). В таком случае ошибка 3/У. , входящая в формулы (3.4) и (3.5), будет представлен

-V* - ^ - (5.9)

соответственно ошибкой непосредственно измеренных направлений / , или сшибкой /Я^^угла :лз одного приема. 3 таком случае всем независимым друг от друга угламиз ^ - е приемов, неуравненным на станции, приписан вес/^^ = 6, а вес

А, = юоо.

V

В результате выполненной строгой оценки параметрическим способом с помощью ЭВМ по программе , разработанной автором, была получена матрица О весовых коэффициентов, из диагональных элементов котороГ- выбраны наибольшие Р^'^/^е = 204,8 (мм/с)2 и О/У = 503,2 (мм/с)2 для пункта 4. После подстановки в форму-

/ 2 ду (3.5) найденвой максимальной величины = 503,2 (мм/с)

обратного веса ординаты ^ пункта 4 первой ступени и значения

заданного допуска ДО мм с учетом, что / = 3, предвы-

числена средняя квадратическая ошибка

147/3 1/503,2 = 2.1". (ЗЛО)

утла ¿З/пже из шести приемов угловых измерений.

Вторая ступень общей схемы плановой сети представлена двенадцатью одиночными несвободными полигонометркческими ходами произвольной формы в двумя системами ходов с одной узловой точкой каждая. Наибольшая длина хода около II км с числом сторон равным 15. Ллины ходов мевду опорным пунктом и узловой течкой не пре-

вышают 2/3 предельно допустимой.

' О С

Приближенные значения координат «2Г/ и пунктов ходов получены графически с плана масштаба 1:25 ООО. Угловые измерения как на ходовых, так и на узловых пунктах рекомендуется выполнять по программе отдельного угла между парой смежных направлен;:?. Это позволит вычислить независимые значения всех углов.

Линейные измерения будут выполнены светодальномером типа СТ5 "Блеск". Средняя квадратическая ошибка лУТ?^^ длины , из одного ( 2 =1) приема определяется по формуле

+ 5-#-Ю~6) мм.

Учитывая, что вес у длины из одного приема опре-

деляется по формуле /2, * Л*. ^, рекомендуе.-.: в качестве единицы веса линейных измерений принять длину = 2-06265 из одного приема. В таком случае

= (5 + 5-206265• 10_€) г ± 6,03 №. = (З.П)

Следовательно, вес ^^/^в, = (6,03/с,03)2 = I (с/ли)2.

Как отмечено выше (см.раздел 2), проектирование пелнгономет-рических ходов и сетей обязательно сопровождается оценкой точности уравненных элементов X7 схема свободного пэлигонзметрического хода. При этом ставится задача вычисления ошибок , и, коорди-

¿7 Ж*

1Т СС^, и особенно конечного пункта Аг хода, а иногда

вычисления продольной и поперечной ошибки полярных координат

того же пункта. Поэтому в работе, исходя из принпипа_одно-)дности дается подробный и более строгий вывод формул, по кото-ш рекомендуется вычислять ошибки и ^^^ координат и конечного пункта Л,/ свободного хода произвольной формы с эравными и неравноточными длинами сторон и с неравноточными угла-1 поворота. Ниже в качестве примера приведены эти формулы.

I. На рис.3 показан свободный полигонометрический ход произ-эльной формы с неравными и неравноточными длинами сторон и

л

о/

Рис.3. Свободный полигонометрический ход произвольной формы

не равно точными углами поворота. Ошибки -¿/¿р^ и -Лу^,, коорди-ат <£>-' и ^^ конечного пункта ^ в таком ходе представлены фо-чулами общего вида:

^-¿и'(3-13)

це ошибка един' веса, т.е. угла из одного прр-

■/.а. Сомножители, стоящие в квадратных скобках, представляют собой

еличины и обратных весов соответствующих ко-

сдинат *

^(3.14)

Принятый здесь символ вместо ¿Р отличается содержанием едкий веса:с» - это число непосредственно измеренных величи] о!)? Ъ1 ("^пример, направления / , А> , угла^„, длины

с в е-

гдес^ - обратный вес длины 0г=г стороны из. 2 приемов линей 2- ^_,

ных измерений; - число приемов угловых измерений; / =

= (Юб/206265")2 « 23,504 с-2 - постоянное число.

3 процессе проектирования ходов необходимые вычисления рекомендуется выполнять в таблице (табл.1). Это делает решение задачв наглядным, позволяет вводить целенаправленные дополнительные изме рения и тем самым управлять проектированием.

Таблица I

Ход Я 9. Вычисление величин си обратных весов

П У и к Г г* •' ч 1 Координаты.км £ Ж ¿г?

СГу-СС; Г1.Г-ЛГ X*,

и - 39.6Й0 62. р,т +Т ,85П +Т , 930 I 338. \1Ж1 80 А Ж1 ТВ, т -ис 0 г

т т 62.300 +1 Л 40 ,2Т0

/1 ' | *И§3 62 895 +0,210 +0 045 -Т 615 * С. от 76.26 0.342 : ли 61^4 1,846- снщ 1,864

Ь 1!41.09Ь !1 <*о!б95 63.200 63 .ООО" +0.435 +0.835 Л .310 +1.510 1 т 141,97 246,41 0,9^4 0.4ТЙ 0,533 2.Т94 15.е Т6,Г е.<

91 ,71 1,916

В I!4Т.005 63.710 +0.525 -ко, воп 66 41 1,3.42 3,792 15,043 1.819 ТГ84Г

/С 41,530 64.510 I 55 ,7с;

7,033 /'/о, ЗМ 809355 13616 16^

Зеличкны с^г и с5/у можно вычислить помощью ЗЕМ по программе, разработанной с участием автора. этого достаточно знат

о

а) координаты с2/ и ¿- пунктов хода; б) номера углов/^ поворота я их веса /^з ; в) номера длин сторон и их веса. у льтатъ счета выводятся на печать в э;:де аналогичной таблицы.

2. В свободном полигонометрическом ходе произвольной формы (рис.4) продольную * Л ¿¿.у и поперечную ошибки полярных

координат и ¿У*' конечного пункта У' с учетом принятых нг

рисунке обозначений вычислим по формуле о5цего вида:

-(з.и

(зле

где 4*- ¿^е • ^г-г , 2 , /7?/ и - то же, что и в формулах (3.12)-(3.14). Сомножители, стоящие в квадратных скобках, представляют собой величины и обратных весов

соответствующих полярных координат 0 > т.е.

^ ^ (ЗЛ7)

' ;а .......

Рис.4.К выводу формул (3.15) и (3.16)

3. Если в свободном полигонометрическом ход? произвольной формы известны длины и дирекционные углы всех его сторон (линейно-азимутальный ход), то искомые ошибки и - Лг/^, адординат ¿С*" и у*' конечного пункта рекомендуется вы-шслять по следующим формулам общего вида:

- (зл5}

^ ^г^Щ'^&^/мМ (3.19)

де

ошибка дирегапшнного угла с//.

/7?* У

вычислен-

огэ по результатам гироскопического ориентирования в одном ~ I) пуске. Например, для гиротеодолита ГИ-БЗ средняя квадратичес-

ая ошибка

/Г? „- Г

находится в интервале от 5" до 8", или в

реднем можно принять ^¿^..,=¿6,5 что вполне соответствует рг-енству (3.11); г г , ^ и <? _ те ке> что и £

формулах (3.12)-(3.14); и - приращения абсцисс

и ординат между смежными пунктами хода. Сомножители, стоящие в квадратных скобках - это величины и обратных ве-

сов координат и ^^ конечного пункта, т.е.

(3.20)

К достоинствам формул (3.12).(3.13),(3.15),(3.16),(3.18), (3.19) относится прежде всего то, что в них ошибка р единицы веса вынесена за скобки, вследствие чего каждой из формул придан известны'/, из ТЖГ'Л вид: у^/Р^ . При этом величина

предстаьлена двумя слагаем;:.!;', из которых первый характеризует качество схемы линейных, а второй - угловых измерений. Что окажется положительным для принятия правильных решений в пропессе разработки проекта схемы полигонометрических ходов.

Б заключительных подразделах третьего раздела представлены результаты оценки весовых характеристик с^г и с^ координат пунктов всех ходов (вторая ступень). Ш найденных значений выбрана наибольшая сЯ^ = 32,59 (мм/с)^. После подстановки в (3.5)

значен' .: заданного (3.7) допуска г- *- 357- мм, £ =3

?

и Ыа? ■ = 32,59 (мм/с) г.редвычислена ошибка л1/??. ^20". Иг анализа найденной /77а ? 20" (точность угловых измерений в те-одолктном ходе) и предвн* енной (ЗЛО) £ =-2" сделан вы-

вод о необходимости совместно г оценки проекта схем первой (триангуляция) и второй (полигонометрия) ступеней, £ля этого решено воспользоваться идеей, предложенной советским ученым-геодезистом профессором А.И.Дурневым, согласно которой при совместной обработке полигонометрические ходы (вторая ступень) будут выполнять роль дополнительных измерений в схеме триангуляции (перзая ступень). Реализация такого решения облегчается тем, что углевые измерения на пунктах схем обоих ступеней будут выполнены по прогрзк-

е "отдельного угла между парой смежных направлений". Это позво-ило представить угловые и линейные измерения в виде синого ряда езависимых и некоррелированных величин.

В результате совместной оценки получены наиболь^е величины: = 241,25 (мм/с)2 для абсциссы пункта 4 тргангулядии

= 243,83 (мм/с)2 для абсциссы ¿Гд^, пункта 140 полиго-ометрии относительно опорных пунктов 10 и II (см.рис.2). Далее ользуясь формулой (5.5 ) предвычислены + я

И 7,8", что, как известно, отвечает требованиям к точности уг-овых измерений в схеме триангуляции 4 класса и в ходах полигоно-етрии 1 разряда соответственно.

4. Высотная геодезическая основа топографической съемки на мелиорируемом участке. Опенка точности элементов схемы

К построению высотной геодезической основы, создаваемой на частке под проектирование оросительных систем, обводнения земель, ельскохозяйственксго водоснабжения, строительства гидротехкичес-их сооружений и выполнения других мероприятий предъявляются по-ышенные требования точн _:ти отметок реперов, пунктов и точек съе-эчной основы. Чтобы уверенно удовлетворять этим требованиям, не-Зходимо, во-пер5ых, разработать схему высотных измерений, охва-ызающую все пункты плановой основы и точки съемочной сети, во-горых, правильно обосновать соответствующий класс точности высо-зых измерений а, з-третьих, выполненные разработки осуществить натуре с учетом местных условий САР.

Следуя такому основному положению в диссертации разработан зоект схемы высотной геодезической основы, состоящей из трех сту-эней. Ходы первой ступени суммарной протяженностью около 70 зм ;едусмотрено прокладывать по пунктам триангуляции; а ходами вто-)й ступени суммарной длиной 135 км охватить все пункты полигоно-

■метрии. Б результате общая схема нивелирных ходов сказалась представленной 17-в замкнутыми полигонами малых размеров.

Согласно требованиям СШзП 1.02.07.87 "средние погрешности высот пунктов (точек)... не должны превышать на равнинной местности 0,1 высоты сечения рельефа", т.е. при ¿с - 0,5 ы

4 0,Г500 = 50 мм относительно опорных реперов. Приняв коэффг циент =2,5, найдено: в допусках: 5 мм.-^Лг' 16 i 47 мм; (4.1)

в средних квадратических ошибках, приняв £ =2,5:

2,5 мм; 6,3 ми; *П8,8 мм. (4.2)

В результате исследований по обоснованию класса точности высотных измерений, удовлетворяющего предвычисленным допускам (4.1) и (4.2) в запроектированной схеме нивелирных ходов было установлено: по ходам схемы первой ступени рекомендуется III класс, а по ходам второй ступени - 1У класс.

ЗАКЛЮЧЕНИЕ

Выполненные в диссертации исследования и разработки позволяют сделать следующие основные выводы и рекомендации.

1. Угловые измерения, выполненное по программе "круговых прр емов", после исправления их поправками из-за незамыкания горизонта, оказываются зависимыми и неравноточными.

2. Уравнивание угловых измерений на станциях приводит их к зависимости друг от друга. Рекомендуется на пунктах инженерно-геодезических сетей угловые измерения не уравнивать. Это позволит представить угловые, линейные и азимутальные измерения в общей схеме в виде независимых и некоррелированных величин.

3. Рекомендовано в плановых сетях инженерно-геодезического назначения угловые измерения выполнять по программе "отдельного угла меязду смежными направлениями". Такая программа в сравнении с программой "во всех комбинациях" менее трудоемкая, позволяет пол^

.чить независимые углы различной наперед известной (заданной) точностью.

4. Разработан принцип однородности в оценке точности инженерно-геодезических измерений, который сформулирован так: "результат измерений, его ошибка Л^ и составляющие эту ошибку погрешности признаются однородными лишь в том случае, если они имеют не только одинаковую размерность, но при этом коллинеарны".

5. На основе принципа "однородности" обоснована ошибочность формул, выражающих "ошибку положения пункта" одним числом. Выведены строгие формулы, по которым рекомендовано вычислять ошибки координат конечного пункта Л'/ свободного линейно-утлового или линейно-азимутального полигонометрического хода произвольной формы, учитывающие неравенство и неравноточность длин сторон и не-равноточность углов поворота.

6. Исследован способ совместной обработки неравноточных измерений, выполненных в схемах двух старших ступеней плановой и высотной основ топографической съемки.