автореферат диссертации по радиотехнике и связи, 05.12.13, диссертация на тему:Исследование характеристик системы мониторинга сетей связи следующего поколения
Автореферат диссертации по теме "Исследование характеристик системы мониторинга сетей связи следующего поколения"
005053189
На правах рукописи
ТАРАСОВ ДМИТРИЙ ВИТАЛЬЕВИЧ
ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК СИСТЕМЫ МОНИТОРИНГА СЕТЕЙ СВЯЗИ СЛЕДУЮЩЕГО ПОКОЛЕНИЯ
Специальность: 05.12.13 — Системы, сети и устройства телекоммуникаций
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата технических наук
Санкт-Петербург -2012
1 1 0ИТ 2012
005053189
Работа выполнена в Санкт-Петербургском университете телекоммуникаций им. проф. М.А.Бонч-Бруевича на кафедре сетей связи.
Научный руководитель: Кучерявый Андрей Евгеньевич
доктор технических наук, профессор
Официальные оппоненты: Костин Александр Алексеевич
доктор технических наук, профессор, СПбГУТ им.проф. М.А.Бонч-Бруевича,
начальник департамента международных научно-технических проектов;
Пяттаев Владислав Олегович кандидат технических наук, Северо-Западный филиал ОАО "ГИПРОСВЯЗЬ", заместитель директора филиала по научной деятельности
Ведущая организация: ООО "НТЦ Севентест", С.Петербург
Защита состоится « » ^ 2012 г. в часов на
заседании диссертационного совета Д.219.004.02 при Санкт-Петербургском университете телекоммуникаций им. проф. М.А.Бонч-Бруевича по адресу: 191186, Санкт-Петербург, наб. р. Мойки, 61.
С диссертацией можно ознакомиться в библиотеке университета. Отзыв на автореферат заверенный печатью учреждения, просим выслать по вышеуказанному адресу на имя секретаря диссертационного Совета.
Автореферат разослан« 2012 г.
Ученый секретарь диссертационного совета ^
кандидат технических наук, доцент
Харитонов В.Х.
1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. Концепция сетей связи следующего поколения NGN (Next Generation Network), регламентированная в рекомендациях Сектора Стандартизации телекоммуникаций Международного Союза Электросвязи (МСЭ-Т), предоставляет оператору возможность организации на сети неограниченного числа услуг. Такая характеристика NGN с одной стороны чрезвычайно привлекательна для операторов и пользователей, а с другой стороны требует нового подхода к внедрению и эксплуатации NGN и ее фрагментов. В последнее время общепризнанным является тот факт, что особое внимание для обеспечения эффективного внедрения и эксплуатации следует уделять тестированию и мониторингу. Задачи тестирования и мониторинга в NGN породили даже новую стратегическую проблему, так называемую глобальную совместимость, под которой понимается совместимость технических средств, услуг, классов и параметров качества обслуживания.
Одной из наиболее сложных задач в рамках обеспечения глобальной совместимости является тестирование и мониторинг видеотрафика. Видеотрафик, являясь по природе самоподобным, играет всё большую роль при внедрении услуг NGN. В работе исследуются особенности видеотрафика для NGN, в которой услуги по передаче видео реализуются в основном на базе технологии IPTV.
Системным вопросам построения NGN посвящены работы Б.С.Гольдштейна, А.Е. Кучерявого, Н.А.Соколова, Г.Г.Яновского, А.Б. Васильева, АЛ. Цуприкова, JI.3. Гильченка и др. В достаточной степени на сегодняшний день развита теория и практика тестирования технических средств NGN. Что же касается системы мониторинга NGN как таковой, то до последнего времени практически отсутствовали как системные решения по ее разработке, так и исследования характеристик, в том числе оценивания параметров мониторинга по результатам измерений, рациональных значений интервалов агрегирования данных при обработке результатов измерений и т.д. Усугубляет ситуацию с решением проблем мониторинга NGN и то, что трафик в сетях связи следующего поколения приобрел ярко выраженный характер самоподобия, что особенно присуще видеотрафику и его основной составляющей — трафику IPTV. Последнее требует углубленного изучения характеристик трафика IPTV и разработки соответствующих методов его адекватного представления по результатам измерений.
Цель работы. Целью диссертационной работы является разработка архитектуры системы мониторинга NGN и исследование ее характеристик, в том числе и для мониторинга трафика IPTV.
Для достижения поставленной цели в диссертации последовательно решаются следующие задачи:
- анализ развития сетей связи общего пользования при внедрении концепции NGN,
- анализ функциональных архитектур NGN и IMS и предоставления услуг IPTV на основе рекомендаций и проектов рекомендаций МСЭ-Т,
- разработка архитектуры системы мониторинга NGN на базе проведенного анализа,
- анализ параметров качества обслуживания, в том числе для IPTV, подлежащих мониторингу в NGN,
- разработка методологии оценки параметров качества обслуживания для системы мониторинга NGN,
- разработка метода оценки параметра Херста для трафика IPTV в системе мониторинга NGN,
- экспериментальные исследования различных по длительности фрагментов трафика IPTV,
- определение рационального интервала агрегирования данных при мониторинге трафика IPTV,
- исследование характеристик обслуживания измеренного трафика, модельного трафика на основе метода ON/OFF и модельного трафика на основе обратного вейвлет преобразования в системе G/M/1.
Методы исследования. Поставленные в диссертации задачи решены с использованием методов теории вероятностей, математической статистики, теории массового обслуживания и вейвлет преобразований.
Научная новизна диссертационной работы заключается в следующем:
1. Разработана архитектура системы мониторинга NGN с учетом эволюционного характера развития сети и комплексного использования как инвариантных по отношению к техническим средствам NGN подсистем, так и зависимых от них.
2. Разработан метод оценки джиттера посредством формирования вариационного ряда с последующим симметричным его урезанием. Определено необходимое число испытаний для оценки задержки и джиттера, а также функции правдоподобия и математические ожидания объема выборки при использовании для оценивания метода последовательного анализа.
3. Доказано асимптоматическое самоподобие трафика IPTV и на основе полученной по результатам экспериментальных исследований зависимости параметра Херста от интервала агрегирования определено рациональное значение интервала агрегирования данных для систем мониторинга NGN.
4. Предложено для сравнения различных аппроксимаций трафика IPTV, а также его измеренных реализаций, использовать характеристики процесса обслуживания такого трафика — среднюю длину очереди и функцию распределения длины очереди — в системе G/M/1.
5. Доказано, что существующий метод создания модельного трафика ON/OFF может не обеспечивать адекватного представления трафика IPTV, в то время как при использовании обратного вейвлет преобразования модельный трафик с достаточной для практики степенью точности отображает реальный трафик IPTV.
Практическая значимость работы. На основе полученных в работе результатов разработана рекомендация МСЭ-Т Q.3902 «Параметры мониторинга при внедрении технических средств NGN на сетях связи общего пользования», а также в исследовательском периоде 2009-2012 г.г. открыт новый вопрос Q.9/11 «Параметры мониторинга для протоколов NGN». Полученные результаты использованы также при разработке рекомендации МСЭ-Т Q.3925 "Виды потоков трафика, которые должны быть сгенерированы на модельной сети для тестирования параметров QoS для речи, данных и видео". Результаты диссертационной работы внедрены в учебный процесс в СПб ГУТ.
Апробация работы. Основные результаты работы докладывались и обсуждались на 62-ой Научно-технической конференции, посвященной Дню Радио (17 апреля 2007г., С-Петербург), 64-ой Научно-технической конференции, посвященной Дню Радио (21 апреля 2009г., С-Петербург), Международной конференции NEW2AN (18-22 сентября 2009г.), С-Петербург, заседаниях 11-ой Исследовательской комиссии МСЭ-Т (23-27 апреля 2007г., Женева, 19-23 января 2008г., Сеул, 26-30 апреля 2010г., Женева, 11-15 июня 2012г., Женева), а также на заседаниях кафедры.
Публикации. Основные научные результаты диссертации опубликованы в 18 печатных работах, в том числе одной книге и 12 вкладах в МСЭ-Т.
Структура и объем работы. Диссертация состоит из введения, четырех глав и заключения. Работа изложена на 136 страницах, в том числе 36 рисунков и список литературы из 102 наименований.
Личный вклад автора. Все результаты диссертационной работы получены автором самостоятельно.
На защиту выносятся следующие основные положения:
- эволюционная архитектура системы мониторинга NGN с комплексом инвариантных и неинвариантных по отношению к техническим средствам подсистем обеспечивает решение задач мониторинга в сетях связи следующего поколения,
метод оценки джиттера с его определением посредством симметричного усечения вариационного ряда,
- асимптотическое самоподобие трафика IPTV, рациональное значение интервала агрегирования данных в системе мониторинга NGN,
- для адекватного представления трафика IPTV лучше использовать обратное вейвлет преобразование (MWM метод), чем классический метод ON/OFF.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении сформулированы цель и задачи диссертационной работы.
В первой главе диссертационной работы проведен анализ функциональных архитектур NGN и IMS, а также разработана архитектура системы мониторинга NGN.
Анализ функциональной архитектуры NGN и IMS осуществлен на базе набора рекомендаций МСЭ-Т. При этом, по результатам анализа установлена эволюционная суть рассмотренных архитектур, хотя и базирующихся на принципах пакетной коммутации, но учитывающих и взаимодействие с существующими элементами сети связи общего пользования как цифровыми, так и аналоговыми. Функциональная архитектура IPTV, например, вообще предусматривает в качестве одного из вариантов реализацию услуги IPTV на сетях, не достигших уровня NGN.
Принцип эволюционности является одним из основных при разработке архитектуры системы мониторинга NGN. Исходя из сказанного, разделы первой главы, посвященные разработке архитектуры системы мониторинга, начинаются с анализа системы мониторинга ОКС №7. Далее в главе анализируются возможности подсистемы мониторинга протокола SIP, которая так же, как и ОКС №7, инвариантна по отношению к производителю технических средств NGN, и подчеркивается подобие функций, выполняемых при мониторинге ОКС №7 в цифровых сетях и SIP в пакетных.
Однако, сложность собственно NGN требует использования всех рациональных подходов к созданию системы мониторинга NGN. Поэтому, при разработке ее архитектуры предусмотрено использование как решений инвариантных по отношению к техническим средствам, так и для ряда подсистем для сбора информации использованы решения производителей. Завершается глава рассмотрением разработанной автором архитектуры системы мониторинга NGN, рекомендуемой ныне МСЭ-Т как типовой.
Во второй главе подробно проанализированы параметры качества обслуживания в NGN. В основе набора параметров качества обслуживания в NGN лежат параметры, определенные в рекомендациях МСЭ-Т Y.1540 и Y.1541. Приводятся численные характеристики параметров и их соответствие классам обслуживания в NGN. Обращается внимание на параметры качества передачи речи и подчеркивается переход от субъективных методик к объективным (R-фактор), что стало возможным после проведения масштабных статистических исследований.
Следующая часть главы посвящена особенностям параметров качества обслуживания для видеопотоков. Действительно, видеотрафик является самоподобным. Кроме того, при оценке качества обслуживания, например для услуги IPTV, помимо объективных параметров, таких как задержка,
джиттер и т.д., появляется и множество субъективных: от эмоционального восприятия пользователем того или иного фильма до параметров длительности выбора контента. В МСЭ-Т предложено для оценки качества при предоставлении видеоуслуг использовать новую метрику - качество восприятия (QoE — Quality of Experience), которая также рассмотрена в главе.
Такой подход требует не ограничиваться параметрами из рекомендаций серии Y МСЭ-Т и ввести дополнительно иные, более информативные параметры при мониторинге видеопотоков в NGN. Таким параметром может быть параметр Херста, широко применяющийся как функционал при рассмотрении самоподобных процессов, использование которого в целях мониторинга видеопотоков подробно исследуется в главе 4.
В третьей главе разработана методология оценки параметров мониторинга NGN.
Задача оценки параметров мониторинга сети связи состоит в практическом получении достаточно достоверных значений ряда параметров, отражающих качество функционирования сети. Параметры мониторинга сети являются случайными величинами, их оценки должны давать достаточно полное представление об этих величинах. Целью получения оценки некоторого параметра может быть необходимость знать его истинное значение (или диапазон значений) для дальнейшего использования, например, в задачах планирования и проектирования сетей связи, второй целью может быть подтверждение или опровержение того, что истинное значение данного параметра соответствует некоторому значению (нормативному значению). В зависимости от целей получения оценок, можно выделить две подзадачи:
- получение оценок, которые с определенной достоверностью описывают параметры функционирования;
проверка параметра функционирования на соответствие установленному нормативному значению.
Для решения первой подзадачи требуется получение точечных или интервальных оценок параметров функционирования. В качестве таких оценок могут быть использованы оценки математического ожидания, дисперсии, коэффициент корреляции, доверительные интервалы при заданном уровне доверительной вероятности.
Для решения второй задачи требуется установить соответствие истинного значения некоторому заданному нормативному значению. Для этой цели могут быть использованы статистические критерии проверки гипотез.
В качестве исходных данных, как для первой, так и для второй подзадачи используются результаты измерений значений исследуемого параметра. Объем этих данных определяет достоверность получаемых результатов. Поэтому при оценке параметров функционирования и проверке гипотез на их соответствие нормативным значениям необходимо
определение требуемого объема измерений, который бы позволил их оценить с заданной достоверностью.
Среди параметров функционирования NGN можно выделить группу параметров, характеризующих возможность того или иного события. К таким событиям можно отнести: потерю пакета, ошибку данных в пакете, отказа в доступе.
Кроме того, распространенными параметрами функционирования NGN являются задержка доставки IP пакета (IPTD) (время доставки пакета) и джиттер (IPDV) (разброс времени доставки пакета).
Задержка доставки пакета является одним из основных параметров, характеризующих качество обслуживания трафика. Превышение задержки выше некоторого значения может приводить к снижению качества предоставления услуг связи. Величина задержки доставки пакета является случайной и характеризуется распределением вероятности и его параметрами. В рекомендации Y.1541 IPTD определяется как верхняя граница среднего значения. Такое определение можно интерпретировать как верхнюю границу доверительного интервала для оценки математического ожидания.
Разброс времени доставки пакета или джиттер (IPDV) является второй важной характеристикой качества обслуживания трафика. Для ряда услуг, в первую очередь потоковых, например VoIP, чрезмерный разброс задержки вызывает снижение качества предоставления услуги из-за возникновения ощутимой задержки реакции собеседника или "пропадания" частей слов и фраз. Поэтому данная величина также должна соответствовать некоторой норме, установленной для данного класса обслуживания.
В Y.1541 приведены разъяснения относительно значения и определения IPDV, основной смысл которых состоит в том, что данная величина должна отражать возможный разброс времени доставки пакета в сети связи. Однако, при этом не дается однозначного определения как самой величины IPDV, так и методов ее оценки по результатам измерений. Согласно Y.1541 разброс времени задержки может определяться как на основе оценки временных интервалов, так и на основе оценки квантилей распределения задержки.
Так, при определении IPDV на основе временных интервалов разброс времени доставки пакета будет определяться как
II'DV = IPTDMix - IPTDkUN , (1)
где IPTDmx - максимальное значение задержки, полученное на коротком интервале времени.
При определении IPDV на основе квантилей распределения задержки эта величина определяется как разница между верхним и нижним квантилями распределения:
1РйУ = П'ГО,т -1РТи1(пт , (2)
где 1РТйит]< - верхний квантиль распределения 1РТО, полученного по
результатам измерений;
1РТВижт - нижний квантиль распределения П'ТО, полученный на
интервале измерений.
Графическая интерпретация данного определения приведена на рис.1. На приведенном рисунке /(х)1П1> - функция плотности распределения времени доставки пакета, ¡РТ1)ишш и 1РТйиррЕЯ - нижний и верхний квантили распределения /(х);;то соответственно.
Вероятность того, что величина задержки д- лежит в пределах 1РТОишш <х< 1РТОгтт! и равна 1 -а, это эквивалентно тому, что величина разброса задержки не превышает величины ¡РТОигпи - 1РТПшут с вероятностью 1 -а. Величина задержки меньше величины 1Р'Ю1(тт или
превышает 1РТ01:т:я с вероятностью у. /(Х)п'т
Рис. 1 - Определение ¡РйУ на основе квантилей распределения задержки.
Такая интерпретация разброса задержки позволяет характеризовать не только величину разброса, но и его вероятностный характер. Вероятность
того, что разброс задержки не превысит величины 1РИУ будет определяться как
В целях контроля соответствия разброса задержки нормативному значению удобнее пользоваться последним ее определением, т.е. определением через квантили распределения задержки.
Практическая оценка 1РйУ может быть получена следующим образом. Пусть проводятся п измерений величины задержки х, в результате которых получают выборку х = {х[,х2,...,хп}. Далее полученная выборка упорядочивается по возрастанию величины х^ ¡=1,К,п, в результате получают упорядоченную выборку (вариационный ряд) х = 7,,.где 5?, <?2 <...<хп. Из полученной выборки исключается т начальных и
последних значений. При этом т - это доля значений из выборки равная ,
где а, заданная нормативом вероятность. То есть
где готй() - операция округления до целого значения.
Выборка принимает вид {*|+„,,*2+т.....*„_,„}. Тогда оценка 1РОV может
быть получена как 1РОУ = хп_т - х1+т.
Проверка соответствия полученной оценки установленной норме П'ОУ < 1Р01'и заключается в проверке гипотезы Я0, состоящей в том, что вероятность попадания величины задержки х в интервал [71+т, ?„_„,] действительно равна 1 -а.
В главе определены значения необходимого числа испытаний для оценивания потерь, задержки и джиттера, а также функции правдоподобия и математические ожидания объема выборки при использовании для оценивания метода последовательного анализа.
Четвертая глава посвящена разработке методов оценки параметров мониторинга для 1РТУ.
Измерения 1РТУ трафика показали, что ему присущи некоторые особенности, которые отличают его от, скажем, традиционного трафика телефонной сети. Трафик 1РТУ является самоподобным и для его оценки оценок 1РТБ и 1РБУ может оказаться недостаточно.
В диссертации для исследования трафика 1РТУ предложено использовать параметр Херста и вейвлет-анализ.
р(х < 1РйУ)= ¡Дх) 1РТГ1<1х .
(3)
(4)
Для исследования характеристик трафика 1РТУ были проведены его измерения на модельной сети. Анализу были подвергнуты потоки пакетов на уровне ИГР, т.е. фактически трафик [РТУ.
Фрагмент минимальной длины составил 60с и включал в себя 6863 кадра, каждый длиной 1356 бит. По результатам обработки данных были найдены оценки параметра Херста и автокорреляционная функция.
Л
На рис.2 приведена зависимость log
D(x)
от log m, которая для
измеренных значений оказывается почти линейной. Естественно, что при этом и оценка параметра Херста Н=0.48 близка к 0.5. Однако, значение параметра Херста Н=0.48 указывает на антиперсистентный характер потока, что вызвано очень малой длиной фрагмента фильма.
lodM 0 1 ОД
-з
0.5
> ^^ О
1.5
Рис.2. Нормализованная дисперсия для фрагмента длительностью 60 с.
На рис. 3 приведена автокорреляционная функция (АКФ) для измеренного трафика. Отметим, что значение параметра Херста Н=0.48 характеризует поток как очень близкий к простейшему, то АКФ на рис. 3 не соответствует АКФ простейшего потока.
О 10 20 30 40 50
к
Рнс.З. АКФ измеренного трафика.
Еще более наглядно это видно из сравнения рис.4 и рис.5, на которых приведены сравнительные характеристики вейвлет преобразований для простейшего потока и для измеренного соответственно. Цветовая гамма на рис.4 и рис.5 при максимальном насыщении соответствует минимальному значению коэффициентов вейвлет-преобразования, а при минимальном -наоборот.
Итак, при малом значении длительности фрагмента 1РТУ поток является антиперсистентным.
Рис.4. Вейвлет преобразование для простейшего потока.
Рис.5. Всйвлет преобразование для измеренного трафика при длине фрагмента
фильма 60 с.
Далее проанализируем 45-минутный фрагмент того же фильма при различных значениях интервала агрегирования данных. На рис.6 приведена зависимость значения оценки параметра Херста от длины интервала агрегирования. Как видим, для 60 секундного фрагмента было недостаточно данных для возможности использования интервалов агрегирования в 50000 мс и выше. Можно сказать, что трафик 1РТУ является асимптотически самоподобным и для достаточно малых фрагментов самоподобие не проявляется.
Зависимость рис.6 имеет хорошее практическое применение. Действительно, для систем мониторинга 1РТУ можно рекомендовать значение интервала агрегирования данных не менее 5с.
0.Í 0-Í
0.5----
X
0 4----__-
0-3----
0.2--
0.1--
о -г—-———-i-р-
О 20000 40000 60000 60000 100000
№те рвал arpe гироаания мс
Рие.6. Зависимость опенки параметра Херега от интервала агрегирования.
На рис.7 и рис.8 показаны реализации трафика при интервалах агрегирования (ai) ЮОмс, ЮООмс, ЮОООмс, ЮООООмс для измеренного трафика и модельного соответственно (фрагмент 45 минут). Модельный трафик получен путем обратного преобразования с помощью метода MWM.
О 0.5 1 1.5 2 2.5
а\ = 100 мс
О 0.5 1
1.5 2 2.5 х 10в
а = 1000 мс
6000 4000 2000
ГТ
О 0.5 1 1.5 2 2.5
О 0.5 1 1.5 2 2.5
а\ = 10000 мс а1 = 100000 мс
Рис. 7. Измеренный трафик при различных интервалах агрегирования.
1 1
1-1 || : 1
1 I 1 1, ||| ы ¡ННЦц И Л | ¡и .1Й1
III > 1 ! :■![' 1 ШИШ
10000 8000 6000 4000 2000
- 1 ч Г р
V I г
1
О 0.5 1 1.5 2 2.5
а\ = 10000
а\ = 100000 мс
Рис. 8. Модельный трафик на основе для различных интервалов
агрегирования.
Средние значения интервалов времени между поступлением пакетов и средние значения интенсивности потока пакетов достаточно близки. В первом случае измеренное среднее значение интервала времени составило 11=0,0109 мс, а во втором - (2=0,0112мс. Для средней интенсивности потока пакетов соответствующие значения равны а 1=91,74 пакетов/с и а2=89,29 пакетов/с.
На рис.9 приведены автокорреляционные функции для измеренного и модельного потоков. АКФ определены следующим образом:
г (к) = -У-7---
для измеренного потока и
«к) = ±((* +I)2" - 2-к2" +(к-1)2")
для модельного.
(5)
(6)
АКФ 4
1
1
ч-^ л ^.Л .. .А г
^ V -V 1 41 к-4 ■■■ —
■
;
1
-А
"ТС,'^ -А-4 -4 -9
Рис.9. АКФ для измеренного и модельного потоков.
Линейные зависимости
Д(*")
О«
от 1о§(ш) приведены соответственно
на рис.10. Оценка параметра Херста в обоих случаях близка к Н=0.8.
log
D(xMy
, ад,
log
Дх)
Н = 0.78 log m
Измеренный поток
Н = 0.7S Модельный поток
log m
Рис.9. Линейные зависимости для коэффициента Херсга.
Подобны и вейвлет преобразования для измеренного и модельного потоков, приведенные на рис.10.
Рис. 10. Вейвлет преобразования для измеренного и модельного потоков.
Далее с помощью метода ON/OFF был создан создадим поток трафика со значением близким к Н = 0.8 параметра Херста. На рис. 11 приведено вейвлет преобразование для такого трафика, которое существенным образом отличается от вейвлет преобразований, показанных на рис.10.
Рнс.11. Вейвлет преобразование для ON/OFF трафика.
Для численного анализа сравнения различных потоков с близкими значениями параметра Херста, но полученных различными способами, в работе предложено проанализировать их обслуживание системой G/M/1, изображенной на рис.12.
г = 10 мс
X{t) X(t) X(t)
( т
v У
Рис.12. Система G/M/1.
На рис. 12 X(t) - измеренный трафик, X(t) - модельный трафик на основе обратного вейвлет преобразования, X(t) — модельный трафик на основе метода ON/OFF. Соответствующие результаты (распределение длины очереди и ее среднее значение) представлены на рис. 13, 14, 15.
ц»
lb ttm.
L = 209
Рис. 13. Распределение длины очереди для измеренного трафика.
и»
Ь = 212
Рис. 14. Распределение длины очереди для модельного трафика на основе обратного вейвлег преобразования.
и»
hi eIIr и..
¿ = 126
Рис. 15. Распределение длины очереди для трафика, созданного методом
ON/OFF.
Анализ данных рис. 13, 14, 15 показывает, что для измеренного трафика и модельного трафика на основе обратного вейвлет преобразования средняя длина очереди приблизительно одинакова, в то время как для модельного трафика на основе метода ON/OFF (при близких значениях параметра Херста) средняя длина очереди меньше почти в два раза.
ЗАКЛЮЧЕНИЕ.
Основные результаты данной работы сводятся к следующим положениям:
1. Одним из важнейших свойств развития сетей связи общего пользования является эволюционность, необходимая в настоящее время при начале внедрения концепции NGN и одного из вариантов ее реализации -IMS. Система мониторинга, являющаяся необъемлемой частью сетей связи, естественным образом эволюционируют вместе с сетью, что отображается в системе мониторинга NGN в виде как подсистемы ОКС №7, так и подобной ей подсистемы мониторинга SIP.
2. Принципиально иная сложность NGN по сравнению с цифровой сетью требует при сохранении эволюционного характера развития системы мониторинга использовать при ее построеннии не только инвариантные по отношению к техническим средствам (производителям) подсистемы, но и зависимые от технических средств (производителей).
3. Система мониторинга NGN создается, в основном, на базе пассивных методов мониторинга, поскольку реальное масштабное внедрение активных методов мониторинга затруднено в связи с необходимостью мониторинга в NGN, в том числе и самоподобного трафика IPTV.
4. Разработана архитектура системы мониторинга NGN, принятая и рекомендованная к настоящему времени МСЭ-Т.
5. Разработана методология оценки параметров мониторинга NGN. При этом рассмотрены две основные подзадачи: получение оценок, которые с определенной достоверностью представляют параметры функционирования, и проверка на соответствие установленному нормативному значению. Определено необходимое число испытаний при использовании фиксированной выборки, функции правдоподобия и математическое ожидание числа испытаний при использовании последовательного анализа для параметров мониторинга NGN.
6. Предложено для практических целей при оценке джиттера использовать его определение через квантили распределения задержки. Разработан метод оценки джиттера посредством формирования вариационного ряда с последующим симметричным его урезанием.
7. Определено необходимое число испытаний при использовании фиксированной выборки, функция правдоподобия и математическое
ожидание числа испытаний при использования последовательного анализа для мониторинга параметра Херста.
8. Доказано асимптотическое самоподобие трафика IPTV и на основе полученной по результатам экспериментальных исследований зависимости параметра Херста от интервала агрегирования определено рациональное значение интервала агрегирования данных для систем мониторинга NGN.
9. Предложено для сравнения различных аппроксимаций трафика IPTV, а также его измеренных реализаций, использовать характеристики процесса обслуживания такого трафика — среднюю длину очереди и функцию распределения длины очереди — в системе G/M/1.
10. Доказано, что существующий метод создания модельного трафика ON/OFF не обеспечивает адекватного представления трафика IPTV, в то время как при использовании обратного вейвлет преобразования модельный трафик с достаточной для практики степенью точности отображает реальный трафик IPTV.
По материалам диссертации опубликовано 18 печатных работ. Результаты внедрены в рекомендации МСЭ-Т и учебный процесс СПб ГУТ, что подтверждается соответствующими актами внедрения.
Список публикаций по теме диссертации.
1. Д.В. Андреев, Д.В. Тарасов, А.Е. Кучерявый. Модельные сети для тестирования технических средств сетей связи следующего поколения. Рекомендация Q.3900. Электросвязь, №12, 2007 (из перечня ВАК).
2. А.Б. Васильев, Д.В. Андреев, Д.В. Тарасов, А.Е. Кучерявый. Тестирование технических средств NGN. М., ЦНИИС, 2008.
3. Д.В. Тарасов, А.И. Парамонов, А.Е.Кучерявый. Особенности видеотрафика для сетей связи следующего поколения. Электросвязь, 2010 (из перечня ВАК).
4. Д.В. Тарасов, Д.В.Андреев, А.Е. Кучерявый. Рекомендации МСЭ-Т по тестированию технических средств NGN. (тезисы доклада). 62-я Научно-техническая конференция, посвященная Дню Радио. Труды конференции. Апрель 2007. С.-Петербург, издательство СПб ГЭТУ «Л ЭТИ».
5. Д.В. Тарасов, А.И, Парамонов, А.Е. Кучерявый. Система мониторинга NGN и мониторинг значений параметра Херста. 64-я Научно-техническая конференция, посвященная Дню Радио. Труды конференции. Апрель 2009г. С-Петербург, издательство СПБ ГЭТУ «ЛЭТИ».
6. D. Tarasov, А. Paramonov, А. Koucheryavy. The Video Streaming Monitoring in the Next Generation Networks. 9th International Conference NEW2AN 2009. Proceedings. Springer, LNCS 5764.
7. D. Tarasov, A. Koucheryavy. Draft Recommendation Q.tt3 "Distribution of Tests and services for NGN technical Means Testing in Model and Operator Networks". ITU-T, COM 11-D89-E. Geneva, 23-27 January, 2006.
8. D. Tarasov, A. Koucheryavy. Draft Recommendation Q.tt3 "Distribution of Tests and services for NGN technical Means Testing in Model and Operator Networks". ITU-T, COM 11-D132-E. Geneva, 24-28 July, 2006.
9. D. Tarasov, A. Koucheryavy. Draft Recommendation Q.tt3 "Distribution of Tests and services for NGN technical Means Testing in Model and Operator Networks". ITU-T, COM 11-C13-E. Geneva, 23-27 April, 2007.
10. D. Tarasov, D. Andreev, A. Koucheryavy. Proposals of new questions under study for 2009-2012 Study Period from Q.8/11 responsibilities. ITU-T, COM 11-C108-E. Seoul, Korea, 16-23 January, 2008.
11. D. Tarasov, D. Andreev, A. Koucheryavy. New Recommendation draft Q.3904 "The Scenarios, list and types of tests for TM local and NUT testing for IMS on the Model Network". ITU-T, COM11-C8-E. Geneva, 19-23 January, 2009.
12. D. Tarasov, D. Andreev, A. Koucheryavy. New Recommendation draft Q.3905 "The Scenarios, list and types of tests for TM local and NUT testing for IPTV on the Model Network". ITU-T, COM11-C9-E. Geneva, 19-23 January, 2009.
13. D. Tarasov, D. Andreev, A. Koucheryavy. New Recommendation draft Q.3906 "The Scenarios, list and types of tests for TM local and NUT testing for Wireless Broadband on the Model Network". ITU-T, COM11-C10-E. Geneva, 19-23 January, 2009.
14. D. Tarasov, D. Andreev, A. Koucheryavy. New Recommendation draft Q.3915 "Types and list of NGN services that could be tested (TS1) on the model network". ITU-T, COM11-C11-E. Geneva, 19-23 January, 2009.
15. D. Tarasov, D. Andreev, A. Koucheryavy. New Recommendation draft Q.3916 "Testing scenarios, tests list and types for NGN (TS1) basic call and supplementary services". ITU-T, COM11-C12-E. Geneva, 19-23 January, 2009.
16. D. Tarasov, D. Andreev, A. Koucheryavy. New Recommendation draft Q.3917 "Testing scenarios, tests list and types for NGN (TS1) streaming services". ITU-T, COM11-C13-E. Geneva, 19-23 January, 2009.
17. D. Tarasov, D. Andreev, A. Koucheryavy. New Recommendation draft Q.3918 "Testing scenarios, tests list and types for NGN (TS1) streaming services". ITU-T, COM11-C13-E. Geneva, 19-23 January, 2009.
18. D. Tarasov, D. Andreev, A. Prokopiev, A. Koucheryavy. Proposals on Classes and Parameters of Quality of Service (QoS) for Sensor Networks Extending Recommendation Y.1541. ITU-T, CON13-C11-E. Geneva, 1923 January, 2009.
Подписано к печати 28.06.2012.
Объем 1 печ.л., тираж 80 экз., заказ № 123
Тип. СПбГУТ, 191186, СПб, наб.р. Мойки, 61
Оглавление автор диссертации — кандидата технических наук Тарасов, Дмитрий Витальевич
Сокращения и обозначения.
Введение.
1. Разработка принципов построения системы мониторинга для NGN.
1.1 Функциональная архитектура NGN.
1.2 Функциональная архитектура IMS.
1.3 Функциональная архитектура IPTV.
1.4 Система мониторинга ОКС №7.
1.5 Параметры мониторинга для сети сигнализации SIP.
1.6 Система мониторинга IP сетей.
1.7 Архитектура NMS.
1.8 Выводы.
2. Параметры качества обслуживания в NGN.
2.1. Качество обслуживания в сетях с коммутацией пакетов.
2.2 Качество передачи речи.
2.3. Особенности мониторинга для видеопотоков.
2.4. Параметры для обеспечения требований QoE при передаче видеопотоков.
2.5. Выводы.
3. Разработка методов оценки параметров мониторинга NGN.
3.1 Общая постановка задачи.
3.2 Оценка параметров мониторинга NGN на основании выборки фиксированного объема.
3.2.1 Интервальная оценка.
3.2.2 Проверка гипотезы.
3.3 Задержки и джиттер.
3.4 Оценка параметров функционирования NGN с использованием последовательного анализа.
3.4.1 Принцип получения оценок на основе последовательного анализа.
3.4.2. Первый вариант применения последовательного анализа.
3.4.3. Второй вариант применения последовательного анализа.
3.4.4. Доля потерь и иные подобные параметры.
3.4.5. Использование последовательного анализа для оценки задержки и джиттера.
3.5 Сравнение метода с фиксированным размером выборки и последовательного анализа.
3.6 Выводы.
4. Разработка методов оценки параметров мониторинга для IPTV.
4.1 Общие положения по оценке параметров мониторинга для IPTV.
4.2. Объем выборки при измерении параметра Херста.
4.2.1. Фиксированный размер выборки.
4.2.2. Последовательный анализ.
4.3. Вейвлет анализ.
4.4. Оценка трафика IPTV на основе вейвлет преобразования.
4.5 Выводы.
Введение 2012 год, диссертация по радиотехнике и связи, Тарасов, Дмитрий Витальевич
Концепция сетей связи следующего поколения NGN (Next Generation Network) [16,17,21,23], регламентированная в рекомендациях Сектора Стандартизации телекоммуникаций Международного Союза Электросвязи (МСЭ-Т), предоставляет оператору возможность организации на сети неограниченного числа услуг. Такое свойство NGN с одной стороны чрезвычайно привлекательно для операторов и пользователей, а с другой стороны требует нового подхода к внедрению и эксплуатации NGN и ее фрагментов. В последнее время общепризнанным является тот факт, что особое внимание для обеспечения эффективного внедрения и эксплуатации оборудования и услуг связи следует уделять тестированию [2,3,8,10] и мониторингу [35]. Проблемы обеспечения глобальной совместимости, под которой понимается совместимость, как технических средств, так и услуг, классов и параметров качества обслуживания породили задачи тестирования и мониторинга в NGN [50].
Одной из наиболее сложных задач в рамках обеспечения глобальной совместимости является тестирование и мониторинг видеотрафика. Видеотрафик, являясь по природе самоподобным [33], играет всё большую роль при внедрении услуг NGN. Далее в работе будут рассмотрены особенности видеотрафика для NGN, в которой услуги по передаче видео реализуются в основном на базе технологии IPTV. В основе изучения особенностей трафика IPTV в данной работе лежат результаты измерений, проведенных на модельной сети.
Особая важность проблем тестирования и мониторинга технических средств NGN определяется следующим:
1. Увеличение номенклатуры выпускаемого оборудования вследствие роста доли применяемого программного продукта в создании технических средств электросвязи, а также большей открытости рынка
2. Сокращение сроков разработки и внедрения новых услуг.
3. Отставание процесса стандартизации от процессов разработки и внедрения, увеличение доли корпоративной нормативной документации;
4. Увеличение стоимости мониторинга и тестирования по сравнению с сетями с коммутацией каналов из-за большей сложности применяемого оборудования.
Системным вопросам построения, тестирования и мониторинга NGN посвящены работы Б.С.Гольдштейна, А.Е. Кучерявого, Н.А.Соколова, А.Б. Васильева, В.О.Пяттаева, A.JI. Цуприкова и др. В достаточной степени на сегодняшний день развита теория и практика тестирования технических средств NGN. Что же касается системы мониторинга NGN как таковой, то до последнего времени практически отсутствовали как системные решения по ее разработке, так и исследования характеристик, в том числе оценивания параметров мониторинга по результатам измерений, рациональных значений интервалов агрегирования данных при обработке результатов измерений и т.д. Усугубляет ситуацию с решением проблем мониторинга NGN и то, что трафик в сетях связи следующего поколения приобрел ярко выраженный характер самоподобия, что особенно присуще видеотрафику и его основной составляющей - трафику IPTV. Последнее требует углубленного изучения характеристик трафика IPTV, что возможно осуществлять на модельной сети, и разработки соответствующих методов его адекватного представления по результатам измерений. Важно также отметить, что в последние годы Сектор стандартизации Международного Союза Электросвязи при анализе проблем мониторинга IPTV концентрирует внимание не только на мониторинге собственно технических средств, но и на возможности мониторинга контента IPTV.
С учетом изложенного, целью диссертационной работы является разработка архитектуры системы мониторинга NGN и исследование ее характеристик, в том числе и для мониторинга трафика IPTV.
Для достижения поставленной цели решаются следующие задачи:
- анализ развития сетей связи общего пользования на этапе реализации концепции NGN,
- анализ функциональных архитектур NGN и IMS и предоставления услуг IPTV на основе рекомендаций и проектов рекомендаций МСЭ-Т,
- разработка архитектуры системы мониторинга NGN на базе проведенного анализа,
- анализ параметров качества обслуживания, в том числе для IPTV, подлежащих мониторингу в NGN,
- разработка методов оценки параметров качества обслуживания для системы мониторинга NGN,
- разработка метода оценки параметра Херста для трафика IPTV в системе мониторинга NGN,
- экспериментальные исследования различных по длительности фрагментов трафика IPTV,
- определение рационального интервала агрегирования данных при мониторинге трафика IPTV,
- исследование характеристик обслуживания измеренного трафика, модельного трафика на основе метода ON/OFF и модельного трафика на основе обратного вейвлет преобразования в системе G/M/1.
Поставленные задачи решены с использованием методов теории вероятностей, математической статистики, теории массового обслуживания и вейвлет преобразований.
Научная новизна диссертационной работы заключается в следующем:
1. Разработана архитектура системы мониторинга NGN с учетом эволюционного характера развития сети и комплексного использования как инвариантных по отношению к техническим средствам NGN подсистем, так и зависимых от них.
2. Предложено для практических целей при оценке джиттера использовать его определение через квантили распределения задержки. Разработан метод оценки джиттера посредством формирования вариационного ряда с последующим симметричным его урезанием.
3. Доказано асимптоматическое самоподобие трафика IPTV и на основе полученной по результатам экспериментальных исследований зависимости параметра Херста от интервала агрегирования определено рациональное значение интервала агрегирования данных для систем мониторинга NGN.
4. Предложено для сравнения различных аппроксимаций трафика IPTV, а также его измеренных реализаций, использовать характеристики процесса обслуживания такого трафика - среднюю длину очереди и функцию распределения длины очереди - в системе G/M/1.
5. Доказано, что существующий метод создания модельного трафика ON/OFF не обеспечивает адекватного представления трафика IPTV, в то время как при использовании обратного вейвлет преобразования модельный трафик с достаточной для практики степенью точности отображает реальный трафик IPTV.
Практическая значимость работы. На основе полученных в работе результатов разработана рекомендация МСЭ-Т Q.3902 «Параметры мониторинга при внедрении технических средств NGN на сетях связи общего пользования», а также в исследовательском периоде 2009-2012 г.г. открыт новый вопрос Q.9/11 «Параметры мониторинга для протоколов NGN».
Полученные результаты использованы также при разработке рекомендации МСЭ-Т Q.3925 "Виды потоков трафика, которые должны быть сгенерированы на модельной сети для тестирования параметров QoS
13 для речи, данных и видео".Результаты диссертационной работы внедрены в учебный процесс в СПб ГУТ.
Апробация работы. Основные результаты работы докладывались и обсуждались на следующих научно-технических конференциях:
- 62-ой Научно-технической конференции, посвященной Дню Радио, 17 апреля 2007г., С-Петербург,
- 64-ой Научно-технической конференции, посвященной Дню Радио, 21 апреля 2009г., С-Петербург,
- Международной конференции NEW2AN, 18-22 сентября 2009г., С-Петербург,
- заседаниях 11-ой Исследовательской комиссии (23-27 апреля 2007г., Женева, 19-23 января 2008г.,Сеул).
Публикации. Основные научные результаты диссертации опубликованы в 19 печатных работах, в том числе одной книге и 12 вкладах в МСЭ-Т.
Структура и объем работы. Диссертация состоит из введения, четырех глав и заключения. Работа изложена на 136 страницах, содержит 36 рисунков и список литературы из 102 наименований.
Заключение диссертация на тему "Исследование характеристик системы мониторинга сетей связи следующего поколения"
Основные результаты данной работы сводятся к следующим положениям:
1. Одним из важнейших свойств развития сетей связи общего пользования является эволюционность, необходимая в настоящее время при начале внедрения концепции NGN и одного из вариантов ее реализации - IMS. Система мониторинга, являющаяся необъемлемой частью сетей связи, естественным образом эволюционируют вместе с сетью, что отображается в системе мониторинга NGN в виде как подсистемы ОКС №7, так и подобной ей подсистемы мониторинга SIP.
2. Принципиально иная сложность NGN по сравнению с цифровой сетью требует при сохранении эволюционного характера развития системы мониторинга использовать при ее построеннии не только инвариантные по отношению к техническим средствам (производителям) подсистемы, но и зависимые от технических средств (производителей).
3. Система мониторинга NGN создается, в основном, на базе пассивных методов мониторинга, поскольку реальное масштабное внедрение активных методов мониторинга затруднено в связи с необходимостью мониторинга в NGN, в том числе и самоподобного трафика IPTV.
4. Разработана архитектура системы мониторинга NGN, принятая и рекомендованная к настоящему времени МСЭ-Т.
5. Разработана методология оценки параметров мониторинга NGN. При этом рассмотрены две основные подзадачи: получение оценок, которые с определенной достоверностью представляют параметры функционирования, и проверка на соответствие установленному нормативному значению. Определено необходимое число испытаний при использовании фиксированной выборки, функции правдоподобия и математическое ожидание числа испытаний при использовании последовательного анализа для параметров мониторинга NGN.
6. Предложено для практических целей при оценке джиттера использовать его определение через квантили распределения задержки. Разработан метод оценки джиттера посредством формирования вариационного ряда с последующим симметричным его урезанием.
7. Определено необходимое число испытаний при использовании фиксированной выборки, функция правдоподобия и математическое ожидание числа испытаний при использования последовательного анализа для мониторинга параметра Херста.
8. Доказано асимптотическое самоподобие трафика IPTV и на основе полученной по результатам экспериментальных исследований зависимости параметра Херста от интервала агрегирования определено рациональное значение интервала агрегирования данных для систем мониторинга NGN.
9. Предложено для сравнения различных аппроксимаций трафика IPTV, а также его измеренных реализаций, использовать характеристики процесса обслуживания такого трафика - среднюю длину очереди и функцию распределения длины очереди - в системе G/M/1.
10. Доказано, что существующий метод создания модельного трафика ON/OFF не обеспечивает адекватного представления трафика IPTV, в то время как при использовании обратного вейвлет преобразования модельный трафик с достаточной для практики степенью точности отображает реальный трафик IPTV.
По материалам диссертации опубликовано 18 печатных работ. Результаты внедрены в рекомендации МСЭ-Т и учебный процесс СПб ГУТ, что подтверждается соответствующими актами внедрения.
Заключение
Библиография Тарасов, Дмитрий Витальевич, диссертация по теме Системы, сети и устройства телекоммуникаций
1. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения //УФН. 1996. - Т. 166. - № 11. - С. 1145-1170.
2. Д.В. Андреев, Д.В. Тарасов, А.Е. Кучерявый. Модельные сети для тестирования технических средств сетей связи следующего поколения. Рекомендация Q.3900. Электросвязь, №12, 2007.
3. Д.В.Андреев, Д.В.Тарасов, А.Е.Кучерявый. Рекомендации МСЭ-Т по тестированию технических средств NGN. 62-я Научно-техническая конференция, посвященная Дню Радио. Труды конференции. Апрель 2007. С.-Петербург, издательство СПб ГЭТУ «ЛЭТИ».
4. Дж. Бендат, А. Пирсол. Прикладной анализ случайных данных. М. «Мир», 1989 г.
5. A.A. Боровков Математическая статистика. Оценка параметров, проверка гипотез. М. «Наука», 1984 г.
6. А. Вальд. Последовательный анализ. М., Физметгиз, 1960.
7. А.Б. Васильев, С.П. Соловьёв, А.Е. Кучерявый. Системно-сетевые решения по внедрению технологии NGN на Российских сетях связи. Электросвязь, № 3, 2005.
8. А.Б. Васильев, Д.В. Андреев, Д.В. Тарасов, А.Е. Кучерявый. Тестирование технических средств NGN. М., ЦНИИС, 2008.
9. А.Б.Васильев. А.Е.Кучерявый. Технология NGN как основа внедрения универсальной услуги. Материалы 9-ой Международной конференции "Региональная информатика". СПб, 22-24 июня, 2004.
10. А.Б.Васильев. Оценка качества обслуживания при тестировании. 61-я Научно-техническая конференция, посвященная Дню Радио. Труды конференции. Апрель 2006. С.-Петербург, издательство СПб ГЭТУ «ЛЭТИ».
11. Б.Л. Ван Дер Варден. Математическая статистика. М., «Издательство иностранной литературы», 1960 г.
12. Г.В. Вемян. Передача речи по сетям электросвязи. М. Радио и связь, 1985.
13. Е.С. Вентцель, J1.A. Овчаров. Теория случайных процессов и ее инженерные приложения. М., «Высшая школа», 2000 г.
14. Б.Г. Володин, М.П. Ганин, И .Я. Динер, Л.Б. Комаров, A.A. Свешников, К.Б. Старобин. Сборник задач по теории вероятностей, математической статистике и теории случайных функций. М. «Наука», 1965 г.
15. И.И. Гихман, A.B. Скороход, М.И. Ядренко. Теория вероятностей и математическая статистика. Киев, «Вища школа», 1979 г.
16. А.Б. Гольдштейн, Б.С. Гольдштейн. SOFTSW1TCH//Cn6.: BHV-2006
17. Б.С. Гольдштейн, H.A. Соколов, Г.Г. Яновский. Сети связи. Учебник для ВУЗов // СПб.: БХВ-Петербург, 2011.
18. А.Я. Городецкий, B.C. Заборовский. Информатика. Фрактальные процессы в компьютерных сетях. Учебное пособие. Издательство СПбГТУ, Санкт-Петербург, 2000 г.
19. И.А. Зюльков. Самоподобные свойства трафика систем с повторными вызовами. Воронежский государственный университет, Вестник ВГУ, Серия физика, математика, 2002, №1.
20. П.В. Козлов, Б.Б. Чен. Вейвлет-преобразования и анализ временных рядов. http://\v\v\v.krsu.cdu.kg/vestnik/2QQ2/v2/al 5.html
21. А.Е. Кучерявый, J1.3. Гильченок, А.Ю. Иванов. Пакетная сеть связи общего пользования. «Наука и техника», С.-Петербург, 2004.
22. А.Е. Кучерявый, JI.3. Гильченок-. Системы коммутации пятого поколения. «Электросвязь», №3, 2005.
23. А.Е. Кучерявый, A.JI. Цуприков. Сети связи следующего поколения. Центральный научно-исследовательский институт связи (ЦНИИС), Москва, 2006.
24. А.Е. Кучерявый, A.A. Станкевич. Пакетная сеть связи общего пользования. Дифференцирование услуги. ГУТ, СПб, учебное пособие, 2004.
25. А.Е. Кучерявый, A.A. Станкевич, А.Ю. Иванов. Протоколы SIP и SIP-Т. ГУТ, СПб, учебное пособие, 2005.
26. Е.А. Кучерявый. А.Е. Кучерявый. Современный инструментарий для исследований в области телекоммуникаций. 62-я Научно-техническая конференция, посвященная Дню Радио. Труды конференции. Апрель 2007. С.-Петербург, издательство СПб ГЭТУ «ЛЭТИ».
27. А.Е. Кучерявый, А.И. Парамонов, Е.А. Кучерявый. Сети связи общего пользования: тенденции развития и методы расчета. Центральный научно-исследовательский институт связи (ЦНИИС), Москва, 2008.
28. Е.А. Кучерявый. Управление трафиком и качество обслуживания в сети Интернет. Наука и техника, С.-Петербург, 2004.
29. Е.А. Кучерявый, Я. Харью, А.Е. Кучерявый. Особенности структуры сети с коммутацией пакетов и гарантированным качеством обслуживания абонентов. International Conference "Intelligent Network 2000". Proceedings, Moscow, 2000.
30. Е.А. Кучерявый, А.Е. Кучерявый, Я. Харью. Качество обслуживания в сетях Интернет. «Электросвязь», №1, 2002.
31. Б.С. Лившиц, А.П. Пшеничников, А. Д. Харкевич. Теория телетрафика. М., Связь, 1979 г.
32. Сонечкин Д.М., Даценко Н.М., Иващенко H.H. Оценка тренда глобального потепления с помощью вейвлетного анализа // Изв. РАН. Физика атмосферы и океана. 1997. - Т.ЗЗ. - № 2. - С. 184-194.
33. Д.В. Тарасов, А.И. Парамонов, А.Е.Кучерявый. Особенности видеотрафика для сетей связи следующего поколения. Электросвязь, 2009.
34. Д.В. Тарасов, Д.В.Андреев, А.Е. Кучерявый. Рекомендации МСЭ-Т по тестированию технических средств NGN. (тезисы доклада). 62-я129
35. Научно-техническая конференция, посвященная Дню Радио. Труды конференции. Апрель 2007. С.-Петербург, издательство СПб ГЭТУ «ЛЭТИ».
36. Д.В. Тарасов, А.И, Парамонов, А.Е. Кучерявый. Система мониторинга NGN и мониторинг значений параметра Херста. 64-я Научно-техническая конференция, посвященная Дню Радио. Труды конференции. Апрель 2009г. С-Петербург, издательство СПБ ГЭТУ «ЛЭТИ».
37. Б.С. Цыбаков. Модель телетрафика на основе самоподобного случайного процесса. М: «Радиотехника», 1999 г., №5.
38. М.А. Шнепс Шнеппе. Интернет-телефония: протокол SIP и его применение. М., Макс-Пресс, 2002.
39. Г.Г. Яновский. IP Multimedia subsystem: принципы, стандарты и архитектура. Вестник связи №3, 2006.
40. A.S. Adjemov, А.Е. Koucheryavy, S.P. Soloviev, I.G. Mazine. SSN7 Testing on a Russian Network. XVI ISS, Proceedings. September 21-25, Toronto, Canada, 1997.
41. Mark E.Crovella, Azer Bestavors. Self-Similarity in Wide Web Traffic: Evidence and Possible Causes. IEEE/ACM Transaction on Networking, Vol 5, Number 6, December, 1997.
42. J. Delaney. The Use of SIP in Communication Network. Journal of Communication Network, v.l, p.l, April-June 2002.
43. V.K. Gurbani, R. Jain. Transport Protocol Consideration for Session Initiation Protocol Networks. Bell Labs Technical Journal. №9 (1), 2004.
44. Gary N. Higginbottom. Perfomance Evalution of Communication Networks. Artech House, 1998.
45. By David Heath, Sidney Resnick and Gennady Samorodnitsky How System Performance Is Affected By The Interplay Of Averages In A Fluid Queue With Long Range Dependence Induced By Heavy Tails The Annals of Applied Probability 1999, Vol. 9, No. 2, 352(375}.
46. Kihong Park SelfSimilar Network Traffic: An Overview Walter Willinger Information Sciences Research Center:, AT&T LabsResearch, Florham Park, NJ
47. A.Koucheryavy, A.Paramonov. Simulation method for telephone operators group performance analysis. VITEL 2000, Proceedings. October 16-17, Ljubljana, Slovencia.
48. A.Koucheryavy, Yim Chu-Hwan, Gilchenok L, Moiseev S. Overlay IPOP-network for Russia PSTN. The 2nd International Conference on Advanced Communication Technology. ICACT-2000. Proceedings, Muju Resort, Korea. February 16-18, 2000.
49. A.Koucheryavy, Y.Koucheryavy. A. Vasiliev, S. Soloviev. The Public Packet-Switched Network with Guarented QoS Based on DiffServ Domain Hierarchy. ICACT' 2006, Proceedings, 20-22, February, Phonenix Park, Korea.
50. A.Koucheryavy, L.Gilchenok, V. Piattaev. New solutions for the rural telecommunication development. International Telecommunication Union. Telecom World Forum, Forum Proceedings, Geneva, 12-18 October, 2003.
51. A. Koucheryavy, Networks Interoperability. The 11th ICACT Proceedings. Phoemix Park, Korea, Feb. 15-18,209.
52. Y.Koucheryavy, Moltchanov D., Harju J. A Top-Down Approach to VoD Traffic Transmission Over DiffServ Domain Using the AF PHB Class, IEEE ICC'2003, Anchorage, Alaska, USA, May 2003.
53. Y.Koucheryavy, D. Moltchanov, J. Harju. Analytical Estimation of EF PHB Service Parameters for Aggregated MPEG Traffic, in Proc. of the 16th Nordic Teletraffic Seminar, NTS'02, Espoo, Finland, August 2002.
54. Y.Koucheryavy, D. Moltchanov, J. Harju. Atop-Down Approach to VoD Traffic Transmission Over DiffServ Domain Using the AF PHB Class, in Proc. of the IEEE International Conference Communications, ICC'-03, Anchorage, Alaska, USA, May 2003.
55. K.O. Lee. Reference Model of Broadband convergence Network in Korea. Yoint ZNIIS-ETRI Seminar. ETRI, Korea, 18 January, 2008.
56. Shaesub Lee. Key Feature of ITU-T NGN and future vision. ITU-D/ITU-T Seminar on Standardization and Development of Next Generation Network for Arab Region. Manama (Bahrain), 29 April-2 May 2007.
57. V. Petroff. Self-Similar Network Traffic: From Chaos and Fractals to Forecasting and QoS NEW2AN, St. Petersburg, Russia.
58. Recommendation P.10/G.100. Amendment 1. Detinition of Quality of Experience (QoE). ITU-T, Geneva, January, 2007.
59. ITU-T Recommendation Q.3901. "Distribution of tests and services for NGN technical means testing in model and operator networks", 2008.
60. Recommendation G.107. The E-model, a computational model for use in transmission planning. ITU, 2005.
61. Recommendation P.800. Methods for subjective determination transmission quality. ITU, 1996.
62. Recommendation P.800.1 Mean Opinion Score (MOS) terminology. ITU, 2006.
63. Recommendation Q.752. Monitoring and measurements for Signalling System №7 networks. ITU-T, Geneva, June, 1997.
64. Recommendation Q.3900. Methods of testing and model network architecture for NGN technical means testing as applied to public telecommunication networks. Geneva, ITU-T, September, 2006.
65. Recommendation Q.3902. Operational parameters to be monitored when implementing NGN technical means in public telecommunication networks. Geneva, ITU-T, January, 2008.66.
-
Похожие работы
- Исследование и разработка методов анализа нагрузки ОКС ╣ 7 в сетях мобильной связи второго и третьего поколения
- Разработка метода анализа показателей качества обслуживания сигнальных сообщений в гибридных сетях с коммутацией каналов и пакетов
- Повышение скорости передачи данных в сетях GSM на принципах когнитивного радио
- Планирование сотовых сетей радиосвязи CDMA 2000 при работе в режиме мобильного Интернета
- Исследование и разработка архитектур перспективных вычислительных гридов и интеллектуальных энергосетей
-
- Теоретические основы радиотехники
- Системы и устройства передачи информации по каналам связи
- Радиотехника, в том числе системы и устройства телевидения
- Антенны, СВЧ устройства и их технологии
- Вакуумная и газоразрядная электроника, включая материалы, технологию и специальное оборудование
- Системы, сети и устройства телекоммуникаций
- Радиолокация и радионавигация
- Механизация и автоматизация предприятий и средств связи (по отраслям)
- Радиотехнические и телевизионные системы и устройства
- Оптические системы локации, связи и обработки информации
- Радиотехнические системы специального назначения, включая технику СВЧ и технологию их производства