автореферат диссертации по химической технологии, 05.17.08, диссертация на тему:Гидродинамика, массо- и теплообмен в гетерогенных газожидкостных системах на контактных устройствах колонных аппаратов

доктора технических наук
Размолодин, Лев Петрович
город
Санкт-Петербург
год
1992
специальность ВАК РФ
05.17.08
Автореферат по химической технологии на тему «Гидродинамика, массо- и теплообмен в гетерогенных газожидкостных системах на контактных устройствах колонных аппаратов»

Автореферат диссертации по теме "Гидродинамика, массо- и теплообмен в гетерогенных газожидкостных системах на контактных устройствах колонных аппаратов"

-^аняя-Патарбурский тэхнояогпчаокий ннотитут

ВДРОДПШША, МАСС О- И ШШООШЕН В ГЕТЕРОГЕННЫХ

шовдкоатшх системах на нонтактшх готШотвлх

колиш аппаратов

05.17.08 - Прсцаесы'п аппарата. ;2шмаово£1 гзхяояогяп

Авторэфзраг

дасеаргацпп га ооповапгм учапсЗ стеши доктора гохилчооик иаув

На правах рулолиоп

CaHKV-IiOToptív

Работ1 В1 толнена в Ярославском политехническом институте.

Официальные оппоненты:

Доктор технических наук, профессор ХОЛПАНОВ Леонид Петрович

Доктор технических наук, профессор ГРИГОРЯН Леон Гайкович

Доктор технических наук, профессор СОЛОМАХА Геннадий Петрович

Ведущая организация: НПО "Ярсинтез" г.Ярославль

Защита диссертации состоится Як £ Н1992 г.

на заседании специализированного совета Д 063.25.02 в Санкт-Петербургской технологическом институте.по адресу: 198013,Ч-анкт-Петербург, Загородный пр.49.

С диссертацией можно ознакомиться в библиотеке Санкт- : Петербургского технологического института.

Замечания и отзывы о раб^ч просим направлять в одном вкэемпляое по адресу: 198013, Санкт-Петербург, Загородный пр. 49, Санкт-Петербургский технологический институт, Ученый Совет. .

Автореферат разослан ¡6"

1992 г.

Ученый секретарь специализированного совета, к.т.н., догент

В.П.Исаког

« Общая характеристика работы : - Актуалыюсть_пдобл£Мы. Важнейшей задачей в области технических наук является разработка теоретических основ химической технологии, что требует фундаментальных исследований в области химии и химической технологии, создания новых технологических процессов, усовершенствования и интенсификации существующих процессов химической технологии.

В различных отраслях народного хозяйства широко используются абсорберы, дистилляторы, ректификаторы, ферментаторы, в которых реализуется движение газо(паро)-жидкост-ных систем в барботажннх слоях с целью осуществления гидромеханических, ыассообменных,■теплообменных, химических, биохимических процессов. Это оборудование достаточно сложно в изготовлений и транспортировке, имеет высокую металлоемкость, а протекающие в нен процессы требуют больших затрат электрической, тепловой и механической энергии. С другой стороны эти процессы отличаются сложностью теорети-, ческого описания, обусловленной взаимным влиянием гидро-• динамических, диффузионных, теплообменных и химических

процессов, многообразием перерабатываемых веществ различ-. них по своим физико-химическим свойствам, разнообразием конструкций контактных устройств колонных аппаратов, различными требованиями к качеству получаемой продукции. Все это обуславливр^т высокую техническую организация проведения этих процессов, что в конечном итоге ставит задачу повышения надежности и точности их расчета. В то же время существующие методы расчета тепломассообменной колонной аппаратуры не отвечают современным требовгчияи и могут приводить к ошибкам в определении эффективности работы тарелок до 30-50%.

Это объясняется тем, что в общем случае образующаяся на контактных устройствах в результате противоточного движения по колонне фаз газожидкостная система не поддается строгому анализу. Она представляет собой стохастическую структуру, в которой трудно•выделить отдельный, геометрически правильный элемент на котором происходит единичный физический процесс, поддающийся строгому описанию.

Это явилсзь причиной того, что методы расчета тепло-и массообмена в барботачнсм слое строились *т базе теории

подобия !' анализа размерности, рассматривающие барботажный. слой как единое целое. Состояние современного уровня раз-Л1тия научных основ инженерной химической технологии, гидромеханики гомогенных сред, аэротермодиффузии, показывает, что совершенствование методов расчета процессов переноса в химической технологии можно базировать на основе системного подхода с использованием методов механики сплошной ере-,' Ди, элементов теории турбулентности, статистической механики. Одни:: .з условий реализации такого подхода является детерминизация структуры барботажного слоя, создание на контактных устройствах таких газожидкостных систе?', когда в них имеются чередующиеся ячейки правильной геометрической формы, например, пузырьки газа /пара/, на'которых протекает элементарный физический процесс. Организация таких структур с малой дисперсией пузырьков по размерам и высокой мх однородностью является сложной технологической задачей и может быть решена на базе комплексного «юдхода.

В работах М.Э.Аэрова, Б.В.Дильмана, И.П.Мухленопа и др. авторов показано, что стандартные контактные устройства колпачковые, ситчатне,¿> - образные, клапанные, провальные в пределах скоростей газа от 0,7 до 3,5 м/с работают в струйном и пенном режимах и отличаются существенной неоднородностью га^ожидкчетного слоя. Тшс, М.М.Вевиоров-ский при продувке метанола, этайола, д..зтилирданной водб -азотгч в колонне сечечием 70x70 ' и, и высотой 1,15 м с р*е-шеткой с отверстиями диаме-рсм 0,25 до 4,8 мм и свободным сечением от 3,04 до 11,4?, получил, что при среднем диаметре пузырька 3.06 мм среднеквадратютое отклонение их составляет 0,36 мм, асимметрия и экцэсс эмпирической кривой распределения соответственно составляет 1-0,47 и +0,176. Там же показано, что имеет място существенная неоднородность гг/зырьков по размерам но ьнсоте слоя. Ы.Э.Агфов в своих работах установил, что на такого рода контактных устройствах кмеет место сильная зависимость газосодерглания, величины удельной кг>;.;фазной поверхности от скорости газа г. аппарате и высоты гагогскдкостнсго слоя. Кр'мп влего, работа таких контактных устройств сопровождается коалеспенциеР пузьфьков, раскачкианием слоя, образованием крупных газб-жидкостных пихрой с замкнуи-ли циркуляционными зонами, ко-

торые, в своя очередь, способствуют обратному перемешиЁшг:), С целью устранения сипеуказашялс недостатков, достгао-ния на контактном уетроГстве газоки^нозтиой система с

упорядоченной

рзгуллрноч,

структурой были разработаны контактные устройства риз Л, на которые получены авторские сии-, дегельства. Основной ¡к особенностью япляетсл то, что они способствует, турбулизации гаост.ид-костного слоя за счет одномерного и двумерного воздействия гга нег-о. сшскаят обратное пореко-аипанне, гиледстзпн того, • что турбулизация ссуп<,ест-; вляетсл й локально;? .зоне барбстакного слоя, улзнь-шаэг ясалесцонццо и д:!о-■П перс

■ Рис.1

(порога распределения пу-йтлрысоэ по>разборам ¡5 временам г гзбыпапнл, упо-' личинам я 1,5 раза пж-;фаячуп поверхность. На |рлс.2 лсз:а?а}П1 "скспсртт-;г.:он?апып:э функции рас-(прздолошгя ггугирькоч по '¡зммзрйм на прсвалыюН ;,?лрзл::<з л аналогично;! но опа'2! гпрэдтор^стипсм . рпраб^тслноЛ ::сис;ру;:цлл проглльнсЯ тарелки с тур-Iбулизаторами п?ш I "г".

:ИП Г-О.З СМП15р:Г!2С;1:!0

'«р..*1 -и .то изкзизшгэ газо-

''■-Л Оарботампго "лол иь ;-ру аппара-

та, снятые на высоте слоя 95 мм. Анализ кривых по распределению и газосодержани* показывает, что на тарелках разработанной конструкции существенно в 2,2 раза уменьшается дисперсия распределения пузырьков по размерам, уменьшается, неоднородность газосодержанил по сечению аппарата и увеличивается однородность барботажного слоя. Относительное содержание пузырьков малого диаметра в барботажном слое увеличивается, а большого, которые вносят основной вклад в снижение эффективности работы тарелки, уменьшается. С цолыо исследования эффективности работы контактного устройства с турбулизаторами пены была выполнена опытная проверка его работы на комбинате теплоизоляционных изделий в системе абсорбции фенолов и фенолформчльдегидов из дымовых газов. Абсорбционный аппарат диаметром 300 мм, с одной контактно"! ступенью был установлен в системе очистки отходящих газов. Испытанию были подвергнуты три типа контактных устройств: Провальная тарелка с диаметром отверстий 3,2 мм и свобод-^шм сечением 11$ и контактные устройства конструкции 1иа" И I "г" с соответствующими свободными сечениями и размерами пластин ^урбуяизаторов 55x25 т, диаметром отверстий в них 3 мм и числом 40 шт. Замеру подвергались расход дымо-рых газоз <? , температура I к концентрация фенолов в дымовых разах С , которые состарили:£ = 2,12* 10^ * 1,48*10 £ = 40°С, С=31 мг/м^. Экспериментальны исследования показали, что при использовании обычной провальной тарелки эффективностью улавливания составляет 50-55$, тарелки с турбулизаторами I "а" 60-65$, конструкции 1 "г" 80$.

Таким образом, очевидна технологическая целесообраз- ' иость в упорядоченной структуре барЗотажного слоя с помощью разработанных контактных устройств. С другой стороны регулярная структур барботояшого слоя позьоляет применить новую методологию в изучении тепло- и гсссообменных процессов протекающих в них, основанную на базе системного подхода.

В работе на базе глубокого физического анализа процессов, протекающих в барботажном слое, который должен включать строгую постановку и решение задачи движения газожид-ьостной системы, теоретического анализа процессов переноса на уровне единичного включения дисперсной фазы в барботажном слоэ с регулярной его структурой с последующим исполь-

зованием полученных впадений'для потоков массы и энергии

- . .. ...... •.......

боа

Ш

та

•ч 'Ч

/ / / "л / д 73

\ * \

ч АЧ ул ч

/а \ М > ■ / ■ч

Г [ч

f

—^ /

у- —11 \ 2

/ \ N

/ ч

—'и

¿-ИеЬОММ, 3-£г|0(>1М «Нел гиамМ^У^-С/-; — г« турвчлиздтороо ---& тчРвчлизяУоряма

Рис. 2

а

а- £ГУЯвУЛиЭАТ0рЛПИ

Рио. з

при"построении математической модели в целом для слоя, предпринята попытка создания надежной инженерной методики расчета процессов абсорбции и ректификации, разработки новых конструкций контяктных устройств с регулярной структурой, образующегося на них барботажн лч> слоя, новых высокоэффективных колонных массообменных аппаратов, систем автомафического управления процессом ректификации, позволяющих экономить тепловую энергии.

Работа связана с выполнением координационного плана АН СССг1 по теоретическим осьовам химической технологии на 1986-1990 г.г. (раздел 2.27.1.2.35) и отраслевой программой "Минудобрение" СССР (гос.рег. }? 01.86.0023867) на . К36-1990 г.г.

Дель_раб_оты._ Построение математической модели гидродинамики газодидхостной системы на контактных устройств .х колонных ректификационных и абсорбционных аппаратов, построение математической модели процессов абсорбции и ректификации в барботажном слое с целью создания надежно*, ин-кенерной методики расчета эффективности контактного устройства и колонных аппаратов для отих процессов, разработка НОВЫХ высокоэффективных конструкций НС". ;;тных устройств колонных аппаратов, разработка способов упр-а>.<г;н.,л: процессом ректификации.

ЦМ'-ЩУЕ. Ц0Ш1зн;у £аботы_С£С£авлки? _ результаты теоретических исследований движения газожидкостной сисуеш в барботаяном слое, результаты теоретико-экспериментальных исследований движения газа внутри единичного включения -пузырька газа (пара) на этапах образования его па оадор-стш: контактного устройства и при движении в слое жидкости, ¿¿-.тематические модели, учитывающие молекулярный и турбулентный механизм переноса вещества внутри пузырька газа (пара) в период его образования и при движении в слое кпд-кости, математические модели массообглена пузырька пара с жидкостью при соизмеримых фазовых сопротивлениях с учете:.; теплового влияния на массообмен, математическая модель ыассообмена в барботажном слоа процессов абсорбции и ректификации, метод расчета ¡энергии диссипации в барботажном слое, конструкции контактных устройств с туриулнзаторагди газо.-идкостного слоя, позаолгдщимк увеличить ЛС.~,вилшос'гь слоя и интенсифицировать тбпли- к массообмзн в нем, способы автоматического упраиления процессом пектификации, позволяющие проводить' (Л'С в оптимальном режклз.

Лг^Х'Е^'^Д—^Д^"!;»— Разработана катодюкч&сх&я ыодоль к прогрела, расчэта, позволяете оценивать оорзд-{¡эчнь,^ пробили скорсги деглснкя газа и жидкости в барбо-тш.;нсм слои, разработана к:ь':с;;г:аа и программе расчета фе;:тиЕностп работл »хорзлкк для процессов кассообазна при абсорбции и ри.гфяйцт!, создан пакет прогрел для рсе--:зта абрсрЗичодек и •рюнфжьциошшх процессов к принят дал практического использования г.с ЕШВКСЗР. Еапогчои расчот колонны К~1 стабиль'З'.цл:; н абсорбционной

колонны для погл&ржш СОр ка «¿моиш; 1':.эо» на НЯНПЗ. Разработана конст-уицж стги&ят&торй лоип п пирона иг ЯШ1 для процесса д:?.!ОВ1>' тс-■он, £шшиг:*& реконструк-

ция абсорбера окислов азутс. ш. НЗ "СсоОсд::^ труд", поз-воляу-дад снизить '.ссн^лрх^к о.<пглов азота а вгЛ5рос«шх газах до саиитарпше по^у. Рй:; рас; отел рлд конструкций контакт! а устроЯств, улкугл авторсгги'лн свидгтсл^стваыи , цозволявщкз оа счет интенсивной турбулкзацип газс;гл:дчост-ного слоя поеагкк» эффективность их работы, которые в настоящее время внедряются в производство. Разработаны способы управления процессом ректификации, защищенные авторскими

свидетельствами. Общий экономический эффект от разработок составляет 873,8 тыс.руб. . '

Ап£<м5пт]ия 8эаботы^_ Основные положения и результаты р^-'боты докладывались и обсуждались на 1У Всесоюзном семинаре "Совершенствование агрегатов производства азотной кислота" (г.Харьков, 1988), на У Всесоюзной научно-технической конференции молодых конструкторов и исследователей химического машиностроения (Северодонецк, 198о), на Ш всесоюзном -совещании по проблеме "Абсорбция газов" (Таллин, 1987), на Всесоюзной научной конференции "Повышение эффективности, совершенствование процессов и аппаратов химических производств" (Харьков, 1985), на I Всесоюзном совещании по проблеме "Абсорбция газов" (Чирчик, 1979),-на 1,11 Всесоюзной студенческой конференции (Казат, 1982, 1983), на Всесоюзном совещании "Повышения эффективности и надежности машин и аппаратов б основной химии" (Суки, 1989), на Ш и 1У Всесоюзных конференциях по проблемам турбулентных течений (Жданов, 1968, 1988), на Всесоюзной школо-семинаре "Сов- . ременные проблемы тепло- и массообмена в химической технологии" (Звенигород, 1988, 1991), на Всесоюзном семинаре по проблемам механики, технологии и экологии (Москва, 1989), на Ш Всесоюзной научно-технической конференции "Создание ' к внедрение современных аппаратов с активными гидродинамическими режимами для текстильной промышленности" (Москва, 1989), на межвузовских семинарах "Теоретические основы механики сплошных сред" (Ярославль, 19°5, 1987), на научно-технических конференциях Ярославского политехнического института 1979-1990 годов.

Пу^ликашш^ Материалы изложенныэ в диссертации нашли отражение в 32 опубликованных статьях и тезисах конфчрен-. ций, получено 7 авторе.их свидетельств на изобретения,.

Объем оаботы^ Диссертация из"о;.;ена на 316-страницах, содержит 81 рисунок, 8 таблиц и включает ведение, семь глав, выводы, список использованной литературы, включающий 264 наименования, приложения, справки, акты, подтверждающие практическое использование результатов исследований.

ОСНОВНОЕ СОДЁШАНИЯ ^АБОТЫ

Во_в^едении и пе£в£й_главе_ освещено состояние проблемы, выполнена разработка вопросов теории и практики ^идро-

динамики, тепло- и массопереноса в барботажных слоях и ■поставлена задача исследования. . •

Эффективность работы колонных аппаратов с барботажны-слоями во многом определяется гидродинамической обстановкой на контактных устройствах, Общим для всех их является то, что наиболее эффективная их работа достигается при условии образования на них упорядоченных пнных структур, в ( • Которых массообмен протекает на олементарном включении пузырьке гп'р (пара). Поэтому методология исследования эффективности раСчты барботежного слоя должна базироваться ;на*изучении физических процессов протекающих на пузырьке 'газа (пара) с последующим распространением-полученных результатов на барботажный слой и колонну в целом. Очевидно, .что методика процесса исследования должна базироваться не 'системном подходе. В отличие от существующих приемов, в основе которых лежит теория подобия, рассматривавшая бар-бе татный слой как единый объект,' данный подход лозволяет создать структуру обще? математической модели массоибмена в бербота^нск ело.! с о о v п о тст вугащуа описании массообмена между сплошной и дисперсной фазами. Она включает решение следующих задач. Описание гидродинамики и массообмена на единичном включении, которая в езою очередь распадается на внутреннюю ч сне имз. Задачу переноса полученных резуль- ■ татов на барботшдшй слой, рзшадыую осредтюнгчто тро- . бует определения функп"л!< распределения пузырьков по раз;;з~ рил и гремош! пробивания v Сарботагноа слое. Задачу нахождения осрчцнж осредиетопл: терактерпстик бирбстгстюго • слоя, например, полеП осродн&нну;: скоростей газа и яодкоетн.

В связи п пгдоеонмкд проакализирог.ант подходы к исследованию гздр6д!П!^лш:г. гаао;лщг:остнш! елеген. Наибольший интерес на продсгашьис которно О'азируются на фундпмонталыпя: продсасшлэшшх о двкконки неоднородных гетерогенных ei»ovcu. Их. цогло разбить на дьа класса. В одном из нгх валошга эд«.-"1 шкан^и сплотках сред, сформулированное в работах Л.К.Седосг», Р.П.Ннгттулкма, Х.А.Глхуатулшш, в друге;,? —"сгр^гтическсй кетти;:и.

Характерной особенностью движения гетерогенных систем является то, что оно является турбулентным. В работах В.М.Маккавеева, М.А.Великансла, Ю.А.Бу.?вича, Г.И.Барснбла-

тта, Е.П.Медника и др. выполнен детальный анализ особенности турбулентного движения твердых частиц в сплоим см по« токе газа ьли жидкое:и. Однако использование результатов/ этих работ для описания течения газожид::остных систем в барботажном слое . не является оправданным.

Большую перспективу при исследовании движения гетерогенных потоков с дисперсншч частицами имеют методы ста- -тистической механики. В роботах В.П.Мясникова, В.А.Циба-рова, Ю.Г.Чеснокова, Г.Н.Кравцова приведены решения кинетического уравнения движения взвешенных частиц в кипящем ., слое, что позволило ыШти тензор напр^ений, вектора потоков энергии хаотического движения дизпессннх частщ, а так. же учесть влияние дополнительных факторов: полидисперснос-' ти, вращения частиц,, тепло- и мьссообнен, химические п.ряп~ • радения. , ' , .

Попытка 'использования статистического подхода для. "описания движения газожидкссткьг' систем сделана в работах С.Р.Богданова, Л.П.Размолодина, Ю.Г.Чеснокова, М.О.Прото-» дьпконова и П.Г.Романков где в качестве исходного было .использовано уравнение" типа Фоккера-Планка. Однако решзнко' задачи нахождения усроднепных "Характеристик барбота'шого , слоя в такой постановке является весьма приблияенн е,- Оче-1-видно, решение ее в настоящее время леяит на путях иомп—. лексного подхода с использованием механики движения сплошных сред и полуэмпиричеекой теории турбулентности, что выполнено в данной работе. :

Анализ состояния вопроса о репюнии задачи тепло-мае--сообщена единичное включения со сплоигоЛ срадой показал, чг;о он в большей степени разработай .для тспло-:лассооб:.:ена капли, движущейся в яндкостн. Длл пуоирька газа (пара) с глупостью в настоящее время в оточсстпсинсИи зарубзянгч-литературе известны лишь отдельно частлпэ рггэнил зтоЯ задачи. Очевидно, этого но достаточно ды »построения полной модели пассооб'лена на уровно единичного вклэчонгя дис-, перепой фазы в диапазоно Пзплз'кзмйнггащогося от 0 дол>э . сто обусловлено тем, что реяэшп талой задачи тртбуег информации о характере точения готз. внутри пуйнрька как на этапе образовенпя его на отверстия гопт^тлого устройства, так и на этапе движения в гчцкосм, что ябг.л-;од1г.10' для ..'

»

залыкания уравнения конвективной диффузии, описывающего перенос целевого компонента внутри пузырька. Применение .существующих моделей, описывающих тепло-массообмен внутри единичных пузырьков, в тем числе авторов Ньюмена и Крониг-Бринка язляется не вполне корректным, т.к. для пузырьков допущения этих моделей яеляготся противоречивыми либо не выполняются.

В настоящее время отсутствует решение задачи массооб-ыена при движении пузырька ггза (пара) с жидкостью с учетом влияния тепловых эффектов и турбулэнтного движения фаз. Решения ее даст возможность построить физическую оодержа-т<?льнув математическую модель массообмена в барботажном слое, наметить пути конструирования высокоэффективных контактных устройств и систем автоматического управления ректификационными процессами.

В0_в£0£0£ главе диссертации проведены исследования по определению осредненных полей скоростей газовой и жчдкой фе.зц\в барботажном слое. Математическая модель движения газожидкостной систем построена прч следующих допущениях:

а) газогпдкостная система представляется сплошной средой со взаимопроникающими континуумами гаа-~пдкое.ть,

б) газожидкостная система представляет собой высоко-турбулизироьанную жидкость,

в) фазы газожвдкостной системы несжимаемы.

С учетом этих допущений для мгновенных (актуальных) значений параметров киздого континуума системы записывается уравнением типа Навье-Стокса и неразрывности:

Ш£1&4 ШШи-п М&и+Шйц.- о, 01 Их{ ' и Ьх, '

где {ц - сила мекфазного взаимодействия, представляемая как . 1'и1....){ъ\с-ь'и)

Разлагая актуальные значения параметров на их средние >! (^с) I (М и п"льсационнъ-е составляющие ^ , 11}, £

р'1 р1 подставляя их в (I), проведя осреднения по Рейнольдсу

и соответствующие преобразования получено:

Зти дга уравнения описывают движение газожидкостной системы в барботежюи слое. Однако для определения кско;.г-г:: величин, к которым относятся (*> необходимо замк-

нуть подученную систему уравнений и объяснить физический' с:шсл следующих членов:

напряжения, возникающие з барботпшюм слой з результате турбулентного двизвнпя ¡газ. Связь "лгфу 'турбулентнши напряжениями на слое и срэдней скоростью движения лучше всего описывается усоаораенстзовакной гипотезой Прандтля, а связь между турбулонТкши напря-гениями,- икепцими место ■внутри газовых и жидких ио;ТеГг-' з баро'отажноч злой и средними скоростями движения в них фаз физически болэз отвечает первоначальной гипотеза Прандтля. Уравнения '2) с учетом стзаиного ¿то преобразуются я т^у:

(4)

- '-Г

гдо и'яюмкчэсч! з яоофрпцпеиш турбулентной .зязкости ранга;:

Иерчходп з цилиндрическую зт: т- ."" ~ »»нг.пч, з силу

• Д = - и«»)],

(5)

осевой симметрии задачи, отсутствия радиальных потоков движения фаа, слабой зависимости (р<> от вертикальной координаты можно принять:

('V--0, Oí,.) -3, <-Jw)--Ü, Щд/№о,д(Мд1>а. '

С учетом того, что в реальных системах и получая для градиента давления газовой.фазы следующее выражение

^ **"-<«>/ (6)

система (4) преобразуется к виду:

(м/í < f + I^J- M«-<ol - ,

Член уравнения в этой системе отвечает

' за силу ме;;'фззного взаимодействия в газожидкостном барбо-тожнсм слое. Рначение коэффициента J получено из полуэм-пирмчоских записге-гоотоГ; И.М.Федсткина для определения гид-ч равлическогс сопротивления трения npi. движении двухфазных потоков. '

Член ^((if^ отвечает за силу взаимодействия на уровне молей фль. С достаточно высокой степенью точности, как и у R-Г.JÍGi:iiíC, эту силу ьзаимодейстгия меяду пуэырь-коч газа и турбулентным потоком екдкпстн кохшо представить в виде: ,

. ' (6)

Газосодоркшше сисуеми по физическому смыслу

является объемной относительной концентрацией газа в бар-.ботажном слое. Очевидно, vq его перенос в слое будет происходить по тем же законам массошраноса, как и любого дру-- гог,о вещества в диффузионных процессах. Принимая, что z бар-ботшкном споо существенной изменение гаэоаодерханкя имеет место только по вертикально? координате для газосодержания мокно записать:

<1и>7м~-ъTyjr >. (9)

•где^г - коэффициент турбулентной диффуз::;г ге.эа в барботаж-нсм слое. В результате получим систем;/ нелинейных уравнений первой степени Бторог'о порядка относительно неизвестных осредкенных величин <V~ti?' <t> :

Ч w^o,(10)

•с'граничными условиями

■ • ' (II)

<£>|fIfl = Л - ъ<£>Мив - wt.

Решение системы (10) с границами условиями (II) возможно, если определены значения всех коэффициентов, а име(1-ноЛгш этого из условия баланса энергии барботпжного слоя опрэделено значение диссипавди, а такие экспериментально найдена 'й теоретически подтверящена скорость газовых пузырьков, среднее значение которой для пузырьков <1= 3-4 мм составляло 0,343 м/с, значение энергии диссипации 0,21 Дч?/кг. Выражение для *5>г получено в вйде:

ит г £""11 к (1-иу) (12)

Система'(10) с граничными условиями (II) решалась численно. Использовалась схема послойного вычисления, где для каждого уравнения применялся метод прогонки, В работе дана программа расчета6-на язи.о Фортран, вычисления велис на ЭВМ МЕРА-125.' На рисунке 4 приведены профили сяо-рости газовой фазы в барботажном слое на рис.5 - жидкой. Для проверки адекватности модели были использованы экспериментальные результаты В.П.Павлова и В.Н.Ермакога по исследования поля скорости жидкости п барботадном слое при следующих условиях: диаметр тарелки 0,172 и, ее свободное сечение 1,12$, диаметр отвепстил \,3 лм, систска воздух-

¿0

I i b ч s b С/Л 4^5 и ¡с, S-0,ô*t

Çuc.k

y..-вода, высота слоя, ¿¡L С) ,6 м. Профиль ско-,ia рости газа в бар-ботажном слое име-S0 ет так0{» Же харак-^ тер, что и профиль

скорости газа в ■¿о псевдоожиженном слое, найденный в работах И.Н.Тагано-ц ва, П.Г.Рочанкова и подтверждает гипо-j теэУ о параболлкчес-

ком характере распределения скорости ' -в барботажном слое. Сравнение теоретических и экспериментальных профилей ии.дкой фазы показывает на их хорошее качественное совпадение. Эти .•оезультатн кспольэозались длл опредзленкя гарамстров функции распределения при нахозденки эффективности работы кон-гак'люго устройства.

В ч^хтьай. ¿ллпе ьылолнсно теоретико-й'.ссперимйнтакьчое исследование :.;ассопирсл:осг внутри пузирькь, дп;г:гуще;.'ося к • слоо дудкой фасы. В барбогажюм'-'слое. на тарелках колонии;: аппаратов, имеют «гбто пуоь'рьпг. газа (пара) самых разли--icitx рЕ.г.;.)еров cl = 0,01-30 ш. '/ассонеренос целоього компонента внутри их будет определяться гкдподкн^нчго^ двиисенпя гаэосоГ фазу. работа р&исмо ро^ы ему tri», '-зрваоз

будет лг'-миткрогсл ьс:: моле; у?«грло1. к«-.да Ь'оязлу- .

h lyprSyatîHVir.ft (■■.\ii<.:jyi : гс*д; î;o.v.:K,y-

вчффуаг.и кдл;.. ifern?.;' i1;^: i/, о j,, ^ ; - :.туроулс;;-VPOIV) ¡•.{'•ссоперзноои 1 fr'HHJlbKv ШЬОЛНГ.ЬО l.p" СЛгДООЫЭС ДО" луде1 пел;:. £ч/(т.;г, ладш.? ъп близкой. сфаргдйской.

чтение ггзоуоп рну-ур» при г.9-ютк i. iu.h

Чурбулзит.г.п'и дьг.^ш:;. Видело: о ;b:i;pai;;K':i;i j , niiiia.-oj?« с осргднсиной смори?-'. t- нэдьвча пу-

зырька. Осридиенног! д^иязнио внутри пузырька пр'.мимчсуся совпадающее с линиями теца, £:;:хрн Хилла. 3t сре::я пзремс-штания ы,1б"р'.!5тсл сроднее по координате £ врог'.я полного

---тгорцд

Эксперимент

оборота элементарного объема пара внутри пузырька вдоль линии тока вихря .Хилла.

; Решение зада: чи выполнено в кри-^ воли ейной систем, координат, использованной в модели Кронига-Бринк. В сферической системе координат выражение для | задается в виде:

(13)

где эквивалентный диаметр пузырька.

Наиболее важной особенностью этой задачи является то, что найдено аналитическое решение уравнения конвективного массопербноса в криволинейных координатах:

(14)

с' краевыми условиями с{^,о]=о, с(0,1)м( с{^('<оо.

Для среднего по объему значения безразмерной концентрации оно имеет вид:

¿С) г -{-(¡,^6 е

о.о и ще

(15)

Оценки показывают, что скорость массопереноса, расчитан-ная по полученному выражению (15) больие скорости вычисленной по модели Ньюмена при Ре > 215. При скорости пузьрь-' ков 2м/с такой величине критерия соответствуют пузырьки диаметром 2 мм. Это показывает, что разработанная модель применима к пузырькам всех размеров, при работе тарелки в режиме подвижной динамической пень.

В основе математического моделирования массопереноса внутри пузырька при КЦ А 50 и 10 < 1С0 /.оттаю лежать ясное физическое представление с характере течении п нем

газа (па,^а). Решение этой задачи возможно только через экспериментальные исследования течения газа внутри пузырька, всплывающего в слое жидкости, которые приводятся в диссертации. Испс ьзован метод фотосъемки движения трассера (дыма) внури пузырьков, всплывающих в водно-глицериновом раст воре, позволяющем получить сферические пузырьки диа^етр^м 10—15 мм. Экспериментально установлено существование циркуляционного движения газа внутри всплывающего пузырька типа вихря Хилла, что позволяет обосновать в качестве замыкающих состношйн..Л к уравнению конвективной диффузии внутри пузырька:

34 ^ 3 ' (16)

выраг.ениР для составляющих скорости,'полученных Дцамарон и Рыбчинскш ^~il(<-iLIHllccs&}

Уравнении конвективной диффг/гчш (16) с замь.саюшими соотношениями и кривыми условиями )

в сферической системе координат решалось численно. На рис.6

приведены пробили пиля концентраций аммиагч внутри пузырька радиусом 2,1 ¡.si при егг скорости 0,25 м/с в моьйнт времени 0,013 с. Откуда видно, что линии 'мн и линии концентрации в общ:;:.; сг.учис» не совпадают, что не под-твергздаст гипотезу с совпадении линий тока п линий концентраций для пузирь-КОБ. Fu pjiii.7 приведена зписилость счапат гомгз'лод «ysapwy» от величины ¡шачс-гшй ups««pr.efl Пм:ле и &урьо, где^О как ароднзе по объему

пузкрька зна'хзпио jbsspasyepHofl концентрации целевого компонента. Результат,! расчета находлти: v полно;; соглглпи с физичисшзш представле-HKKMI-.. Т«я, при Иекпе ривнек нули чиолсиноо решшше задачи с точности» 0,5$ совпию с рспидшем ;.юд«л1; Ньюмен»». ПриСе>200 степень насыщения приближается к иначенигм вытекающим из модели Кронига-Ериш;,

Для инженерных расчетов получено аппрокеиыационное выражение численного решения уравнений конвективной диффузии,

t--с, 011 с.

Рил:. 6

которое имеет вид:

пузырька ргциуса 2 ым с

ентов массоотдачи внутри

^Проверка адекватности модели реальному лроцессу выполнена при сопоставлении коэффици-

а,05 о,{ ' о,ю ' р0 экспериментальными дан-

\ 1-Рл1-о) 1-9^*10, $'9.1^50, 2 ными, полученными Ф.Н.Та-. к-Р^т, з-Рг^мо, ги-За^е и Ю.И.Дытнерским.

рас., 7 . Среднее 1иадратичное от-

клонение экспериментальных и теоретических значений коэффициентов мас.;оотдачи- не превышает 12%.

Правомерность ггслользования предложенной модели, описывающей массоперенос внутри сферических пузырьков, является такяе совпадение профилей полей концентрации при поглощении паров иода из сферических пузырьков, полученных экспериментально с помошыо фотосъемки и рассчитанных по модели.

В диссертации разработана математическая ..юдель переноса целевого компонента внутри пузырька, учитывающая диффузионный и турбулентный механизмы переноса. Сна отличается тем, что в уравнение конвективной диффузии введен оффектив-ный коэффициент диффузии, поедставлкшгй собой сумму кссф-фициентов молекулярной и турбулентной диффузии. Очевидно, что коэффициент турбулентной диффузии будет характеризовать перемешчвание Енутри пузырька интенсивностью которого тем болыиз, чем больше частота & и амплитуда с. колебание пс-перхности пузырька. Используя .тетодц анализа размерности аыраяенне дляФт мояно 'аписать в ^л^дуащем виде:

Еыражзнио для частоты колебания поверхности пугирька в таких системах получыю Д.г'елеем. Наибольшую сложность представляет наховдение зависимости для сшлитудч колебания. Исходя из ячеечной модели, ссылаемо которой каждый пузырек в дисперсной системе заключен э яг,. "'г/. • д»:«еегтацпи по-

получена экспериментальная зависимость для амплитуды колебания пузыръкэ от его радиуса К и газосодержания ^ , которая имеет вид:

а-./мт/

ГЧН

ц1к

если

гш-.т -и

если

АН*

(19)

где Рч= 1,Ь м, = 0,3.

Реше1 ле математической модели переноса вещества внутри пузырька с учетом диффузионного и турбулентного мьхгчиэма формам лю совпадает с решением, когда имеет место только один диффузионный (молекулярный) механизм. Зна:ит решение уравнений для диффузионного механизма переноса можно использовать для определения средней по объему пузырьке безразмерной концентрации распределяемого компонента. При этом критерии ^ и . ^ имеют вид:

Р е1*1иЩ&14<Ът) = 1и1ЦЪ9 (20)

Вщипнена проверка построенной модели, при расчете коэффициент корреляции зкспериментальнг'с и рассчитанных по модели данных составил 0,92^,4X0 гЬворит ^б адекиатности поет-роет")1* модели реальпму процесс/.

В четвертой £лаве вьлолнено исследование по массопе-реносу в пуьмрьке газа в период его образования на отверстии контактного устройства. Решение этой задачи важно з связи с тем, что доля вклада в общий массообмен на этапе образования пузырьки, может быть очень большим и достигать 50 и даже ТОО?» и ноучет его снижает точность и надежность расчета эффективности контактного устройства. Для построения замкнутой математической модели внутренней задачи ...ассопероноса необходимо иметь информацию о гидродинамике газовой фазы внутри пугчрь-ка. Исследования движения, газовой фазы внутри пузырька при образовании его на отверстии контактного устройства были выполнены экспериментально. В качестве жидкой фазы1сгюльзовался водно-глицериновый раствор, что позволило получить пузырьки близкие к сферическим диаметром до 25 мм. Информация о те-

чении газа внутри образующихся пузырьков была получена методом фотосъемки линии тока, визуализированных с помощь^ струй дш;. Установлено, что течение газа внутри пузырька отличается существенной нестационарностыо и сложностью. На начальной стадии формирования пузырька течение носит веерообразный характер, на более поздней - циркуляционный, что не .гсдтверядж^т гипотезу авторов А.И.Сафонова, К.В.Гомоно-за о том, что течение представляет собой вихрь Хилла. В силу указанных особенно-тей течения газа в пузырьке его поле скоростей можно представить кок суперпозицию двух полей веерообразного и поля составляющие скорости которого получены Адамаром и Рыбчинскш. Составляющие веерообразного поля получены в виде:

<*« „.л (22)

tst )£ «4{fr- V) - 5J-

где

■и^.-к /йф-ч'!-^ ■ (23)

¿JiWuwsliF. dl dl

(25)

Для сравнения картин линий тона, полученных экспериментально и построенных теоретически были произведены расчеты движения струй трассера внутри растущего пузырька, выполненных на ЭГ.М. Идея из: сводилась к слодухзщену, через равные прокрутки времена sl из то-жи " координатами выпускались меченные чэстигч, 1знпт:ру\вгодсши частпц трассера. Кривая, соединяющая носрз.чн"':!; оти;: ■•астнц соответствовала положения струг, трассзра, что iг г: г': о г п: i ру's" с я на рис.8. Cor,падение картин лики Я тек л, пояу<г>тшх р.чгпз-риментагьно и теорптичес ли, позголяз? псаолг.омзать р: га-женчя (22) -- (25) для определения составлю?,и;: скорости течения газа в пузьтьке при его образовании ка огчсрсти!' контактного устройства.

При математическом моделировании переноса вещества внутри пузырька необходимо рассматривать дзо s-тчдки, вследствие того, что движение газа внутри ого на начальном

Рис.*

ы конечном этапах образования существенно различны: Второй

этап, когда движение газа -носит характер развитой циркуляции, является более длительным. В этом случае цир-куляцио: ная скорость и равная скорости течения газа вдоль поверхности пузырька в экваториальной точке может, достигать значений, больших 10м/с , следовательно, мокно допустите, что движущийся газ может сообщить жидкости большие скорости. Надо отметить, ча э должна илег"ь место у протцвополо;шая картина, т.е. газ должен ториозитьря о поверхность" жидкости, Оценки показывают,- что у внутренней поворхкост-и пузырька будет существовать пограничный газодинамический слой толщиной во'много раз меньший радиуса пузырька! Для на*»адьного стала образовании пузырька, "вес-, рообразного". точен:;« гаоа, шла," в общий «ассообыэн но превышает "3-5$ и у,у «шлю пренебречь'. Математическая модель перенс-.а вощсства «»утри вклачоння была построена при следующих допущениях:-, "пузырек" в течении всего времени роста сохраняет сфзрича'скуа форму, во ьнутрениой области пузырька происходит -полное першаииюаииз вощоства вследствио разни цнрй'у !яции газа, сопротивление массопэрсносу сосредо-'.•о1..ело в исетацнонарном'диффуоиемпе:.! погранпчнегл слое тол-щп-.-ой 6который ыо;;що считать плоскш и составляющие поля скорости б котором отдаются в виде:

а о б"

(26)

(27)

(28)

1'зыенение концентрации цзлового компонента внутри растущего пузырька происходит б рэоультагг поступления

него потока вещества через отверстие барботера а потока от границы раздела фаз 3"(tJ, которые можно записать в виде'.

в ог 1

где Dcfrfiij[дг мокет *ыть найдено г результате решения уравнения конвективной диффузии в пограничном слоз с соответствующими кргзвыми условиями. Система уравнений (22-30) вместе с ''равнением конвективной диффузии Представляет co6of .'математическую модоль гассопереноса вещества в период образования пузырька на отверстии барботера. Следует ст»"етить, что она отражает основные физические особенности этого процесса: нестационарыость, переменность с1хема пузы'рька, гидродинамику движения газа внутпи его, совокупность потоковых•членов. Решение уравнений «одели вогуешо только пис-енно > Для отпго разработан алгоритм и программа расчёта на языке Фортран. В диссертации приводе!® результаты проверки математической модели на адекватность с использованием лптера-турнь-х данных Б.И.БроунэтеИна по зтплог*зрйносу па единичном пузырьке и результатов Опспер-алеш-рльных ¡¡сслрдоисичй по испарению в;\ды в гоздуянмо пузырьки радиусом о? 2,Р до 9 т при i ■= 60° на специально сочдалюй уетт'опка. UnKCiii^JibHJti отклоненкр экспергсзптолыпгс и гниспкшятх по подзли данных не прзшгаоет 15%, что укг^ыппзт и-" рденватиовг-ь построенной модели реальном? прмсееу.

П>;тпя глпво, пооппщйна рсь-зшп оя:;спп с04}';/п-с1мсгй тппло-»асс«/обмзт:а при eo'u/'.opivrc фто,"::: о»:п> -nr.-.'"¡"Лл; Счьрктом ?; с о л - д о -г п ?' *: f i я'-ля^ея lr/wp^i:: г.4;: :,::Ttv;:(Vo са--

депп п тзчоГ. пост,''НО;-кс ра^па 'ии:рс: и {'а;-:"' си ио-дсяч пас носил дли v crorivcua iv /о; т. ч'-о г-';г'"-

иоганя.*1 ч д!:;;;:'сн.чк з г:тш> fV.<:cr- * '■'■"■

цссз рвктк-ййлацки, таг; и аЗсс» ¡; (u'V л • i"?«* 1 nr-np гдеи-ниР теялог.'зссообгзн liyev?*:«. го- 'р-чгО .сдч-'.-"* •• r'<r. описываться систсмо" ъел-ъс-г. л^п" : ,

вкличадщьД по два vr,"?f:rr.-n>'.t ои«-.~:с-?яг>по»'с

переноса теплоты н масем а гвйог:аТ; к о.'? с кр-с-

выки условиями и зашяа'О'димк сocjuo'.1 гиг/. Олн."со педодет-

вие того, что критерий Льюиса для паровоГ. фазы близок к единице поле температур внутри пузырька может восстановлено по полю кончег.'рации и необходимость в регзнии задачи переноса теплота внутри пузырька отпадает. Поскольку в приближении диффузионного пограничного слоя имеетсг решение вадачи о переносе вещества в жидкости лри построении математической модели можно воспользоваться этими результатами. Вследствие того, что д^ч определения потока тепла от Границы пузырька к жидкости можно воспользоваться выражением для коэффициента теплоотдачи, записанным по аналогии с коэффициентом массоотдачи в жидкости, т.к. значение теплового критерик Пекле для жидкости велико (10^-10°) и модно допустить существование теплового пограничного слоя, то нет необходимости в решении внешней задачи теплообмена пузырька пара с жидкостью. Таким образом из общей системы четырех дифференциальных уравнений остается только одно уравнение конвективного переноса распределяемого компонента внутри пузырька, а учет сопротивления в сплошой фазе производится через граничные условия, в которые входит коэффициент массоотдачи в сплошной фазе. Граничные условия, при равенстве плотности потоков вещества на поверхности раздела йаз имзют вид: . .' '

(31)

гдм - коэффициент ыассоотдач" в кидкисти.

Процесз ректификации шеет- ту особенность, что он осложнён тепловыми эффектами. Поэтому для границы раздела кроме массовых потоков (31) нсдо учитывать и -чзпловые. Баланс тепловых потоков записывается из условия, что поверхность п1 зырька обедняется целевым кожпнентом, переходящим в пар, т этому температура жидкости Тг на поверхности пузырька выше температуры ее в ядре потока Т*. , а также принимается, что жидкость на границе пузырька и в ядре потс.са находится при температуре кипения:

Тг-и>гЬ (32)

и, на межфазной границе име1

-ъ'МТг-Ы, ^-л^и,

Таким образом, на межфазной границе имеют место следующие потоки тепла:

(33)

^/з^Л-гЛ1; ^¿-«М^г•х)4б-1р<„(Хг-х}к, (34)

'«б)

и массы

гД

(36)

где - плотность теплового потока л шдкостп, обусловленная градиентом температур в ней, ог - плотность теплового-.потока в пузырьке, обусловленная наличием градиента теми^-ратур в паре у грапицы пузырька, у - плотность теплового по* тока, определяемого плотностью потока сковдепеирозавпсгося пара, ^ , (¡г - плотности тепловых потоков обусловленные гра-диечтнкм переносом'обоих компонентов веществ.."'.

Ёнракення (3'3-25) лозголяот гатить ноша граничило .' ■ условия для мех:фз:?ной поверхности, в которых отрапени тер-мг1!шамкчэскг,; свойства раэдо.~яо'«к хетепттов и то, что. потоки тепла и массы являются функцгпми времени и полярной координаты, которая определяет полней:: э '-.-очки на поверхности пупмрыа. - ¡

При роктпфккоцип пузырма пур'\ лследствг.о конденсации п нем пер:; он изгоняет споН объ'.-м. Поэтому- этот эф^оп'!' • необходимо учитэтать п и.чтс::ат!!пссгсог1 чс.пг;,и. Дся этапа о;''-' разовангя пу.'прг^а зякеи ют^иешч то рсн.чугп 1:оггцп определить i.1 пнде: . _ '

'■■и

< /т-ЬЬ

С>7)

.1 !:-'Г- !'• 1, ■

О'.О..:

■""¡■Ль:

г-Г тг

где пепп/п: г з"■' ' "

СТУП-'.'ПНСГО П Т-\ . ч •'С!'."-', о

готе- ксчд V?)

'. . '.>•;- ;ц:,-; пу;:к- м-,'-' . \

обрл-кп, ур'С-ча. пуп'-ч^ька тул :; ;V; -о :псн"г. в с-ое гидпокти пргч'-'Т^-л..» вок-щ.:« п-эр'-':оз ьсщсстпг. ьнуг;;;;: !.,-• вилми для процессов абсорбции у. у по;:уч;:)!'Г,.:п

мг; (32-30) и урпшс-пгя (37), Полп.'Н п;р', с»:гу-;г.г, 1

■'/•:'"о -

математической модели приведен в диссертации. Она решалась численными методами. Получены поля безразмерной концентрации распределяемого компонента внутри пузырька при разделении смеси отанол-яода для различных моментов времени (рис.5 Сравнение полей концентрации распределяемого компонента

внутри пузырька для процессов ф/чичес- " ;-----

кой абсорбции, когда сопротивление сплошной фазы мало (рис.5) и процесса солрякенного тепломассообмена с соизмеримыми фазовыми сопротивлениями (рис.9) показывает, что они существенно отличны. На рис.9 точками обозначено первоначальное положение границы пузырька. Показано, что при расчете безразмерной концентрации распределяемого компонента внутри пузырька ^ без учета тепловых аффектов и учетом - - ' е-•последнке увеличивают эффективность . Р*1-^ ' массообмена примерно'в 1,5 раза,.чго особенно сильно прояв,-ляет'ся в области ыалых и средних концентраций. Очевидно, этот Ф1кт необходимо учитывать при расчете эффективйости работа тарелки.

. Проверка адекватности математической модели реальному процессу били произведены на смесях, этанол-вода, пропансл-вода, иаопр эпанол-вода. Экспериментальная установка включа-еу о себя'!., юсообменнув ячейку, позволяющую, получить цу-.чн;>ьки диаметром от 2,5 до 9 мы, Средне-квадратичное откло-нелле экспериментальных и рассчитан;шх по моделл данных по степени насыщения пузырьков не повышает 17%, что позволяет с^алеть вывод об адекватности построенной модели для ыассо-01 лена единичных пузырьков реальному процессу.

В шестой_главе^ результаты всесторонних теоретических и экспериментальных исследований по гидродинамике и масси-обмену пузырька газа (пара), движущегося в слое жидкости, использованы для исследования массообмена в барботожном слое на контактном устройстве колонного аппарата. Вследствие того, что в барботажном слое имеют место пузырьки самых различных размеров и каждый сорт пузырьков в слое бу-п,ет находиться определенное время, эти особенности при рас-

чете необходимо учитывать. Стохастичность массового движения пузырьков и время пребывания в газожидкостном слое учитывается .дикциями распределения>пузырьков по раз~:зрам и по времени пребывания. Результатами исследований показано, что распределение пузыръкор по размерам в газожидкостном слое подчиняется гамма-распределенига , а по времени пребывания нор\;ально-логар;ф.н!ческому ЛМ, которые имеют вид:

= . (38)

г

(39)

■Ш- <■

">= Цг-, 5г i7-хч, и = н -гIV/. : (40)

Тогда для орадней концентрации целевого компонента на выходе пара из барбстат'-юго слоя могло записать:

= (J Ге i ^-Ь) (tjct^ rL«i / O'Tfv Я] A fi) fti d. R J. Ш)

Необходима уолозис-м расчета зтоО неличины япляется угтетшэ наводить значение параметров чходлцих в функции распределения . Определение их производилось с

помощью результатов тсорзтико-акспэрптентальных исследо- . ваний. по -гидредипамике'йарботаяниго слои, выполненных в диссертации, а тнкгта данных авторов Н.З hshieä., Л.Н.Красиль-никова, А.И.Роднснога. '

Необходимо откатит*», ~то г'чтенсиг гость переноса Ье- • щостса внутри луяырыса ¡'ри ого дп-л№, ц бпрбожчит схоо ■• будет нияо чем при пзпл'н.гнин одкпо'ного цугчф&уг..'Э?о объясняется тем, что при стснотшгл дрггепил г/апька в бар-ботатчем слое скорость ки.тиос;;: нг его т-:о,"г.твя

в пиракенио д::я состпвляш;:« п^торг. е\срасти гага (пара) внутри включения, умечы-готел. р;.уо? зча'д'г.м цкенго турбулентной диТ&у.'Г'Ч», котор-^ nivxoTo.i фуькцкеЯ газосодергания, изменится п иреяя оСрк»сгяшм пугпрг.хог r»o-сравнен:» со .-реуеием оЗразос^нил ощгсочг.-сс nyc&-pv;03. Все ати особенности учитыЕсттея при расчета если'»:»?; (¿> , что показано в лиссартациа.

Определение среднего значения концонтрзиип целевого компонента по выражения. (41) нодет бшь-выполнено только

¡численно, что связано с необходимостью вычисления двойного 'интеграла и численного метода нахождения'.с-) . С этой целью .бцл разработан специальный алгоритм, который дает значительное сокращения машинного времени., В диссертации приведена'программа расчета на языке Фортран, которую можно использовать как для процесса ректификации так и для абсорбции.

: . Проверка адекватности модели массообмена в барботажноы слое реальному процессу была.выполнена на экспериментальной установке, Процесс ректификации исследовался на смесях: этанол-вода, прэпанол-вода, изопропанол-вода, абсорбции: иодовоздушная смесь-сульфптнощолочной сорбент. В процессе пссперимента определялась эффективность контактного устройства по Мсрфри в зависимости от высоты парсжидкостного рлоя, скорости пара в колонне концентрации целевого компонента, в кидкой фаво на тарелке. ■

Установлено,. то ьфсективнооть тарелки по Норфри от 'высоты пароаидкоотного .слоя с учетом теплоте еффектов 'и 1,6 раза'шла, чем .боз учота,.. Завиожость сффоктивности от, концентрации отанелг для сиетеш оганол-ЕСда при скорости пара в 'колошю О,У -и/о и висиго барбот&шого слоя 65 ш .шлоз!1 убгсищ'м и области :;'длт: и средних концентраций Ж 0,4. Та:со!г:,а|;_цл'ор ниасдолня ц^шташости по Мирфри от концзп-урацич легколеа-учзго кклгохюнта ь кидкоП фиос известен как

о<Шл:т. Оавито оского-

ил

• '¡г/.- «¿иЗл.

-

£1 /и

и г 0 - ссфГ-'и ;

/

01

Рис. 10

о.-:

Смпга н. подтвердалт данные теории, р-есчи-ташшо па :/.эдали. На рис.10 приведена корреляция тоопотичесшп: и '.лгепериыонталыгчх значений уффоктивности та-■релкн по ¡лорфрл для различим;? (.члгеей п скоростей плра в колонне. Ср.,-пае иы'дратичное отклонение теоретических ч гнеоьоря.здштальнпх значений не пр';ьькает 16%,

что является доказательством адекватности математический модели массообмена.

Седьмая £лава посвящена разработке методики расчета аб-сорбционнгх и ректификационных процессов, протекающих в колонных тарельчатых аппаратах, разработке новых высокоэффективных контактных устройств и колонных массообменных аппаратов, а такн^ систем автоматического управления процессом ректификации, позволяющих проводить, процесс в оптимальном режиме с точки зрения экономии тепла. Методика расчета эффективности работы контактного устройства абсорбционных и ректификациош--« колонн предусматривает' на первом этапо гидравлический расче" тарелки с целью определения, например, таких величин как высоты бар Этажного слоя, его га-зосодержшия, коэффициента турбулентной диффузии. Они (со-гут быть вычислены■на основе метода статистической физики с использованием функций распределения пузырьков газа по скоростям и координатам прнведеннкмх" в работах С.Р.Богданс-ва, Л.П.Размоло.цина, а такие используя накопленный большой экспериментальный материал по зтим вопросам. Разработанная в диссертации математичзская модель массообмена в барботаж-ном слое легла в основу методики расчета эффективности контактного устройства на гтором отале ее создания. Реальные условия движения газовых пузырьков в барботажном слое таковы, что имеет место их коалесценцкя и дробление. Очевидно, что эти процессы надо учитывать, так кате они будут оказывать влияние на массообмен в барботшшем слое. 'В диссертации показано, что функция распределения пузырьков по размерам :ообце говоря не является постоянной, а "изменяется по высоте барботалного слоя н мояэт имзт'ъ а ид бимодального распределения. Используя оксперкментаг.мп:з данные Т.Отапе, получена аппроксямациошяш завпечггозт:» для гокой фшяции:

(42)

Она легла в основу создания готодихч распета ^фгктиппости контактного устройства, когда клеот место дробление и поа-лесценция пузырьков в бар'"отг;тнсм слое. Утат этих еффзктоэ позволяет повысить точность расчета контактного устройства. В приложении диссертации приведена инженерная методика и

.программы расчета на языке Фортран ректификационных и абсорбционных крлогч, в основу которых положен метод расчета Эффективности контактного устройства, исходя из рассмотрения; элементарного: акта масоообмена в барботажном слое. . '.,¿г; ... Основной задачей, контактного,устройства ректификационных' и абсорбционных-ЩрЗо]^^ является обеспечение тесного «э8имодейеч,вия фаз, между .которыми идет об-деен анергией и веществом. Эти два процесса взаимосвязаны, . Т.к. массообмен всегда интенсифицируется за счет высокого ' уровня энергии газсдадкостной системы. Поэтому одно из направлений ■создания новых контактных устройств является разработка таких,-которые бц оиеспе^йЕйли "высокую подвижность разажидкостной.системы без излишних конструктивных усложнений и увеличения 'штаплоемкости, На рисЛ показан ряд та-|шх контактных устройств. Исследования по гидродинамике коь тактного; устройства о турбулиза-орами пену позволили выполнить расчет указашшх.контшстных устройств, что использовало при; модернизаций, абсорбционных и ректификационных колот '^а ]ШПЗ', ЯИГИ, :'ЯЗ' "Свободный -груд"/ г ; Вхкмической, н$фгехиш1чесгоЙ, нефтеперерабатывающей рроглщШеиносзда вследствие■большой енергосыкости ректкфика-ционн;,;' установок. огромное значение придяют гкономии тепла, Значительная'роль-в этом отводится разработке способов опт! пального уаравлё/иад-'процеесаш- рек^фшсащш, Необходимым ус .'довиёу. в их создании является знание влияния возмущений . ■!»). -л^ных' аметров' рёнтйфйсадпощшх колода на их внутренние 5я.гоки;,'Ч,.к< сущвствеш1оел1 зиец'гчие послед'чк может гзывесп угр~лкич;'з облаоти устойчивой, паб^ты. В диссертации получе! Соотношения иейду: потоками фаз в укрепляющий и отпарной час Т' колонии и ее входаши параметрами: начальной яемперату-р й питающей скоси,, хладагента, теплоносителя куба чспари-Ъьля, подогревателя и их расходами.- Полученытредаточные функции контактных устройст» с учетом изменения высоты бар-"ботаадого^ слоя, .что такие является важным элементом в создании математических моделей систем управления и решения з* дач динамической оптимизации работы ректификационной колонны. Раэработашгые способы автоматического управления процэ: сом ректификации с использованием дополнительного канала регулирующего воздействия по свободному сечению тарелки, -

позволяют вести процесс ректификации таким образом,, чтобы/ Каждая тарелка работала в оптимальном гидродинамическом режиме , обеспечивающем макс мальную ее разделительную способ-ность.На базе.типовых промышленных регуляторов осуществлен синтез системы управления для разделения смеси метанол,-во-;.', да. Применение предлагаемого способа управления дает э^Ьно-шпо 3,7 KVVr тепловой энергии. Разработанные способы управ-, ления процессом ректификации защищены авторскими Свидетельствами. • ■ :"'•"...

, ШЮВНЫЗ ВЫВОДЫ И РЕЗУЛЬТАТЫ РАБОТЫ ; .

1. В i ззульта^о теоретических, экспериментальны::'исследований на базе системного подхода"района важная нарц-дохозяйстсенная проблема,' связанная ¿разработкой "теоротиг ческих основ расчета тепло- л масс'осбизнжйс коленных аппаратов с барботажккми слоями,' предназначенных для проведения процессов абсорбции и ректификации. г '. . - ,-"'■ ./»»

2. На основе-представлений uexanníctí 'сплошных сред 'cj использованием общей теории турб;"пентпоотп построена ьттгз-метическая модель- гидродинамики • rasодчдкосткоЯ с'кстеш. на

.тарелках колонных аппаратов. Проаедено сопоставление коэффициента турбулентной днрфузи!!, гульсацислной скорости, .- -прошлой скоростей газа и падкости,1 в:¡полненных по, разработанной модели с" экспвржеи'-'-лдьь-ат к лктературнши. данными. Показано, что они ииепт хоропоа кглг-зствегп-юо--совпадение.

3. На 'ОСИОЕ0 подхода copoiзр-хднС-^П!;!!. разработана т ория массообмена кожЦу пуеырьксп (игра) и есидкостьо в барботапном слое. В рззультате с:ссг•орк:.сига

иий гидродинамики газовой фйЗН г, ВУЗ:!,"*»';« Г.Т?а, ДГГЛ./'ДОГОСЙ D СЛОЯ яидкссти, получьио ГЖСГ.ЗОГ tcl Ж.Г К ¡oí. ro^'xcopvp"«« . -

гипотезы о сущостпооатп' циркуглпогеичел") к:, "'/тггя' ~т.и:< вихря Хилла внутри его.

4. Построена MaTetnTH'-jo'nn'i.í •to.n-í.tt. л-:..-i i ч-з г zviatua внутри ггт.грька для лгпкнпрасго. дг г С!utyrpji ''.го. -Для всего интервала пиа .сгг'Л 1ф.:г.;;т«:» по.туч'лте ai;:--литичбекез nupattoiitre длл еи-пош: иг'*:.*:: ra. w-ji::*, Оч.здч-нгзщзо известные ретчатил нодллоП íí;-.^* т-л '¡ ívCoíi.n'u-r.pT'H:-. Выполнена проверка на огрет-ПК -¡ть г-г.одоли.

5. построена матсматнчасхая tíOjrs ги г-^ркоса вещества

внутри пузырька-для случая, когда ¿йярд нслакул^иого л тур-

булзпт-

о2

Кого механизмов переноса в общий массоперенос ярляется соизмеримым и когда перенос осуществляется турбулентной диффузн ей; На основании сравнен я расчетов выполненных по модели и.полученных из экспериментов и литературных данных, сделан вывод об адекватности построенной математической модели реальному процессу.

6. Выполнены теоретико-экспериментальные исследования движения дисперсной фазы внутри пузырька газа на этапе образования его на отверстии контактного устройства. Показано что это движение носит сложный характер. Полученные результаты положены в основу приближенной математической модели, 'уписывающей это движение.

7. Построена математическая модель переноса вещества внутри пуе*лрька, образующегося на отверстии барботера. Разработан алгоритм и программа расчета. Выполнена проверка на адекватность построенной модели. Показано, что необходимым условием получения точных методив расчета эффективности тарелок ыасоообменных аппаратов является учет-вклада в массо-обмен на этапе образования пузырьков в общий массообмен, поскольку степей: насыщения на этапе образования пузырьков* цсяет достигнуть 50 и даже 100%.

я. На основе новых представлений процесса'массоперено-са вещества' через границу пузырька для этапов образования ' и движения его.в слое жидкости построена математическая модель массообмена' пузырька пара (гага) с жидкостью при соиз-ме ;--мых фаговых сопротивлениях.' Через граничные условия тр^ьего рода учтено влияние сплошной фазы на массообмен. Подход, используемый при псстроснии модели является физически наиболее обоснованным; что повышает точногь расчета. Вьполнено численное решение урав :ений модели, показана а, екватность ее экспериментальным и литературным данным.

9. Построена математическая .лодель сопряженног ■> тепло- и массообмена пузырька пара с жидкостью пр.1 ректификации. Граничные условия на межфазной поверхности записаны условия брланса потоков тепла и массы по обе стороны границы раздела фаз. Выполнено численное решение уравнений модели для обоих этапов массообмена. Показано, что тепло-пые эффекты при ректификации могут увеличивать интенсивность [.'ассообмена в 1,5 раза.

10. С учетом функций распределения пузырьков в барбо-т&тлон слое по времени пребывания и размерам для процессов абсорбции и ректификации построена математическая модель массообмена в барботаксно:: слое. Рыполнека проверка адекватности построс-нной модели реальному процессу для ректифгса-' цни и абсорбции.

11. На осново ..рогедешшх псеоторокпи:-: теоретических-и окспери-'онт.гпьных исследовании по гидродинамике и иасео-оС:.:ену в барботохнеи слое разработана ггэтодшеа распета сф-фсктивности тор'-лкн для прои*. ссов абсорбции и ректификации. Otr базируется на описании явлений. происходящих на уровчо элементарного пклопэкюг с послсдувц1. я осреднение» по" r.<*.r.:ty (риоггеескому пространству. что лпяиотся нов гл /гачостЕенг.;": подходом к исследованга явлений, протокол:»« п барботалш слое. ' ; ;

12. Разработан рдд нссчх копсюу.сьчй контактных уст- , ройств и иолопких 'a«nap''TOL-, огличггтоямгой особенность?} кото?» а: является високся сфТоптк: гюсчь р'.ботя, достигаемся •. за счет дополнительной турбулизация гезспидкостного обхсиа • п огрпипеинсм пространство tíap'J- -тарного слоя. Ряд конет-ру.г-г|й аащтя^сшд: авторскими спидутадйстггик « внедрена. в производство,

Разрабст.'.нп систст управления процэс-

ссп ректификации, защ5пденпкс авп-рскийн ^»гагетольствами.

13. Результаты тсорстпт>?коигк:::снталм.'«х изслсдовс-.

ни" гцдродююнкнн* -юссо- и 'ven:icc.aai'r«'л бард;! п токи оч слое позьолнлй создать гстодипу, п^сгр.'-::^: распето, кксскосЛ-' ' фок'гш'.цце пгнгакткчо устроПстта - для вротмссоп р.лстпфика-'-ции » обгорСгчи, асгорчз кс'лол-.ior... щ пы ипзацпи и прг^ктировапия mccott-?:-?! .н?г cníu'-nvpa t:'a ПГ-А~ прглтиях: ШД1ПЗ, ЯКГИ, :з-д "Ог-оОде "К'л" -

ВНМЛХЗСР г.цел-:опо. В час :-o;;r,r¡ гг тд ргпр.чбо/с-.: :!л-кодптег? в стаяли Я1сдр-;;к"{ шх ос::-."по4 ин-

дустрии. Об^лй сжсксипчьсппЛ rj.'^'.n.- xrnfiiv-n соу-лагл ■1?.г,е 'ii:.'.. рублей.

уатоуз позатика

>1,2 - ицдоксы, отнссядкеоп :t -"гд^г.:; к гямгс.1 Спм«,' Ь- - цусота осветленного слоя г.ггдпос?::, ч, 1«4) ft< - сусота

й текущая высота барботежногослоя, м, - дигметр аппарата, и,<2, - характеристика среднего диаметра газового вклю чения, ы, 1 - средний диаметр пузырька, м, и. - циркуляционная скорость, и/с МОЛЬР'Ш плотность потоков, кмоль/ы - плотность потока вещества хмсль/(с.мс), 1Г„ - расход газа (пара) через отверстие барбот^ра, ч^/с, 3 - поток вещества, кмоль/с, W - линейная скорость газа (пара) в колонне, и/с, С,<-) - концентрация и средняя концентрация распределяемого компонента в газовой фазе, мольн.доли, <ск),<си>_ значение средней по oбъeмv безразмерной концентрации, рассчитанной . по модели Крони. ¿ринка и Ньюмена соответственно,

- концентрация ниэкокипящего компонента в глубине жид-т ьой фазы и на границе пузырька, кмоль/кмоль, V- - концен- . трация высэкокипящего компонента, кыоль/кмоль, - коэффициент молекулярной диффузии, м/с, Л - коэффициектеплопроводности, кДж/(м с гр), ЦП - удельная энтальпия низ-■Кокипящего компонента в паре и кидкости соответственно, .*гДж/кмоль. р - мольная масса, кг-моль, Л - универсальная газовая постоянная, И1, - дисперсии распределения ' Пузырьков по разьэрам и по времени пребывания, - сред-' нее и минимальное ¿ремя пребывания пузырьков в слое, с, К,а. - „юстоянные"коэффициенты, А„ Аг, ¿Дк), параметры бимодальной, фуннцк : •распределения. .

ОСНОВНОЕ (ЭДЩАНИЕ ДИССЕРТАЦИИ ОПУБЛИКОВАНО В РАБОТАХ:

1. Расчет вффективгости контактного устройства с"ис-по ьзованием бимодальной функции паспределения пузырбй по размерам /Л.П.Размолодин, С.Б.Кузьмичев, А.А.Коротков // Те>рет.основы хкм»технологии. - а990. - Т.24, №3. - С.423-42 !. • .

2. Модель неэквшолярного массообмена, обусловленного различием теплот испарения компонентов смеси при двшпниг лузырьна пара в жйдкости /А.Г.Муравьев, И.О.Протодьяконов, Л.П.Размолодин, А.Л.Коротков/ Л., 1985. - 12 с. - Деп. в ВИНИТИ 13.06.65 № 4168-85.

3. Массотренос внутри сфергческого пузырька, движуще, т-'ося в жидкости /А'.Л.Коротков, Л. П. Размол один, И.О.Протодьяконов // Журнал прикл.химии. - 1987. -Т.60, I? 10. - С.2262-

- 2265.

4. Исследование циркуляции в пузырьке, движущемся в слое кидкости / А.Л.Коротнов, Л.П.Размолодин, И.О.Протодьяконов и др. // Журн.прикл.химии. - 1987. -Т.60, № 10. - С. 2386-2388.

5.- Статистический вывод уравнений гидродинамики газовой фазы барб~тарного слоя /С.Р.Богданов, И.О.Протодьяконов, JI.П.Размолодин// Журн.прикл.химии. - 1982. - Т.55,

№ 4. - С.818-833.

6. Об уравнении энергии барботалной тарелки /Л.П.Размолодин, А.Л.Коротков, В.В.Засов// Изв.ЗУЗов, Сер.хим. и . хим.технология. - '1988. - Т.31, вып.4. - С.124-126. V'

7. Математическая модель масопереноса внутри пузырька с учетом нестабильности его форм /А.Л.Коротков, И.О.Протодьяконов, Л.П.Размолодин и др.// Ш Зсесоязн.совещ* по проб^ леме "Абсорбция газов" Тез.докл. 4.1 - Таллин, IS87. - С. ■ 93-94.

8. Исследование поля скоростей внутри.пузырька при его . образовании на затопленном отверстии /А.Л.Коротнов, И.О.Про--тодьяконов, Л.П.Размолодин и" др. // Ш Зсесоязн.совещ. по проблеме "Абсорбция газов" Тез.докл. ч.2 - Таллин, 1987. -C.134-I35. *

9. Определение коэффициента турбулентной диффузии в газожидкостной системе на контактном устройстве колонного-.' аппарата / Л.П.Размолодин, В.И.Тарасов // Совершенствование агрегатов производства азотной кислоты: Тэз.докл. 1У Всесоюзн.семинара, Харьков, 1938. ~ 0.94.-96."

10. Опыт применения ябесрбц:;ок-юго аппарата с провальными тарелками регулируемого свободного ce«?mi:t для промнг;-ленного получения йода /В.И.Кулноцов', И.О.Протодьяконов,

Л. П. Размол один, А. И. Овчиннике.'; //' Тез. до, п.". г Всеесэз--. сопещ. по проб-.еме "Абсорбция raoc-d" - Чир".»:::, 1979. - С. 259-260.

11. Расчет гидравлических параметров барбот'.глого слоя на основе статистической модели /Л.П.Разиогодкн, И.О.Протодьяконов // Тез.докл. на I Всесскзи.соп:щ. по проблеме "Абсорбция газов" - Чирчик, 1979. - С.140-142.

J2. Описание массообменшлс процессов з барботикном слое на основе статистической модели /ЛЛ.Размолодин,-

.И.О.Протодьяконов, С,РгБогдапои, Т.И.Ч,.сан // Тег.докл. па Г.Всесоюзн.совещ. по проблеме "Абсорбция газов". - Чирчи::, '1979. - С.202-,,03.

13. Передаточные функции --олониого ректификационного.' аппарата / Л.П.Раьмолодин. А.Л,Короткой, И.О.Прртодыпгиов, А.Г.Муравьев. Л.,' 1934. - 7с. - Деп. в ВИНИТИ в!06.84 ' '

3790-84 Деп.

14. Метод оценки изменения нагрузок по фазам в тарельчатой ректификационной колонне в условиях океплуатацконных розмущений входных параметров / А.Г.Муравьев, Л.П.Разыодо-дин, И.О.Протодьяконов// Ленинградский технологически!! i.h-i г Л., 1984.,- loe. - Доп.' в ВИНИТИ 4.01.84, Í? 177-84-Деп. -

■ 15, Способ управления ректификационной колонна;! с про-вальНши тарелками■переконного свободного сечения / Л.П.Ра; холодин, А.Д,Короткое I/ Ярославский политех, ин-т - Ярославль,- 1984. v 6с. - Доп. v. ЩШШГЗнефтсхим.

16. Аналитическоз рскешэ оадачи.пассообдгени медду дш Г-сущикея пуснрысоц пара (каплей) и сплошной фазой /А.Г.Мура; св, И.О.Протодьяконов; 01.П.Размолодин,'' Л.Л-.Коротков // Журз рршл.хинии. - IVcS, -Т.68,. Jí> 8- C.I7Ü9-1803. » ■ 17. Нассоибави иевду дша$ущ.згзя iryaupL;co:.i пара и сил о: licli f. ¿«o:! Jipi«. couDücpnimx fecomuc сопротивлениях /Л.Г.Мура] си, И.О.Протодьяконов, Л.П.Рао:.:сло,!,пн, Л.Л.Короткое /7 Пос; рани: сфрсгтмшшстп и coj»pucH5»ao2?:iK3 процоссоъ и аппаратов ;a;;'.iiiibvN:;3üO,4cii¡¿ Теп.дстгл.Баисиопн.пауч.иоаф. ч.З -Хд' '"об,' IV !ü. - СЛ70-179. '

18. Мо'.'одрасчета сф^зиткиностп тарелки, основанний н. нслоль&лн-чши результатов подоли олсмонтар»ого акта uaccooi ?лг в мегду пу;щ|:ы;см пара п 'гидкоотш в процессе роктпфика-ц?; '. / А.Г.Мураь'ьСи," П.О.Проч^дыионой, Л.П.Р;^;лслоднп, А. '!.Короткое. - Л., I9S5. 6с. - Деп. в ЕШйь 13.06,65, Р> !169-80 Деп.

' 19с Математическая модель динамики ректификационной к лонии при больших• возмущениях по сходный параметрам /Л.П.Р. молсдин, А.Л.Короткое // Механика гетерогешшх сред: Мо/;г.у сб. - Ярославль, 1986. - С.56-60.

20. Работа провальной тарелки с пневмоприводом /Л.П.Р молод:;н, А.Я.Зайцев, Б.В.Борнозолокоп, Н.Д.Данилов и др. / Ярославль, I9S2. - de. рукопись Деп. ь 1"ГГИШ'Знефтехим

25.04.82 - i.' 69/НХ-Д.82.

21. Движение пузырька газа (пара) переменного объема при массообменном процессе / Л.П.Размолодин, Ю.В.пусова// Тез.докл. П Всесоюзн.студ.научн.конферен. - Казань, 1984.

- С.68.

22. Массообменная колонка с провальными тарелками усовершенствованной конструкции /Л.П.Размолодин, Б.В.Бор-ноболокоб, А.Л.Коротков // Ярославский политех.ин-т. -Ярославль, 1983. - 5с. ■ Деп. в ЦКТИИГЭнефтехим 25.01.83, № 243ХП-Д83.

23. Размстодин Л.П., Короткое А.Л.-, Кузьмккзв Ю.Б. Моделирование на контактном устройстве тепло- и массоой-менных колонных аппаратов с использованием элементов теории турбулентности. -.Ярослизль, 1987 • 9с. Деп. г1ЩИ1!ТЭ-нефтехим 14.04.87. 25-94-В87.

24. О границах применимости уравнения конвективной--■ цкффузии при моделировании массолерсноеа внутри пузырька . / А.Л.Коротков, И.О.Протодьяконов, Л.П.Размолодин и др. // Ш Всесотазн.совкщ. по проблеме "Абсорбция газов" Тез.докл. 4.2. - Таллин, 1987. - C.I34-I35.

25. Подход к описанию тепломассбофлэнных процессов в дисперсных системах / А.Л.Коротков, Л.П.Размолодин, Л.В.Разумов // Роль молодых конструкторов и ^«".следователей химического машиностроения в реализации шлгвкк. комплексны:: программ, направленных на ускорение научно-технического прогресса в отраслях: Тез.докл. У Ососаозн. :сон.р. Северо-донецк, I960, -С.45-40. "

26. Пленочный массосбменгшй атаппт с деформируемой насадкой./ Л. П. Размел один, Л. , Б.В.Борнг-золоксв,

A.Г.Муравьеп // Ярославль, 1933.'- 8с. Д?я. -ЯЬЦпгГЭисф-техтт I4.02.6J, G НХ-Д С-'.

, 27. А.с. 1152603 СССР, ?'.Ш! В 01 ДО'2. Способ amw-тичоского управления процессом ^тУ.Тчк:гд /Л.Л.Рапнулс-дин, А.И.Зайцев, Н./--Данилов, Л.Г.Г.^яэьаъ, А.Л.Гиротксп,

B. М.'Гарас о о (СССР). - ^59509/23-^ (?2>; Заяс;. £.10.83, Опубл.3.01.85, Бйиг. 16 // 0-imirrr- u-o-frcioi'"-» - 19И5.

- г IG. C.I&.

'28. А.с. 1443920 СССР, Ш\\ B0I ДЗ/42. СпоесО управления процессом ректификации / Л.П.Рпсме^однн, Л.Л.Коро-ков,

И.О.Протодьяконов, А.И.Зайцев, Н.А Цанилов, А.Г.Муравьев, В.М.Тарасов (СССР). - № 4243073/31-26(22); Заявл. 13.05.87; Опубл.15.09.88, Бюл. №'46 // Открытия изобретения. - 1988.

- № 46. - С.25.

29. A.c. 988308 СССР, МКИ BOI ДЗ/22. Массообменная колонна / Л.П.Размолодин, Г.И.Ефоемов, А.И.Зайцев, С.Р.Богданов, (СССР). -№ 3272260/23-26(22); Заявл. 14704.81; Опубл.14.09.82, Бол.' № 2 // Открытия. Изобретения. - 1983.

- С.19.

v 30. A.c. 1456175 СССР, МКИ B0I Д 3/30 Массообменная тарелка / Л.П.Размолодин, А.И.Зайцев, А.Л.Короткое, Ю.Б.Ку-дьмичев (СССР). - № 4216660/31-26(22); Заявл. 27.03.87; Бюл !' 5 // Открытия. Изобретения. - 1989. - № 5. - С.31.

'31. A.c. I561994 ССР, МКИ B0I Д 3/22 Массообменная колонна/ Л.П.Размолодин, А.И.Зайцэв, А.Л.Коритков, В.М.Тарасов, Н.А.Данилоа, Ю.Б.Кусьмичев (СССР). - № 449121/31-26(22); Заявл. 29.07.88; Опубл. 8.01.90, Бюл. У 17 // Открытия. Изобретения. - 1990. - № 17. - С.17.

32.-А.с. 1680275 СССР, МКИ B0I Д 47/04 Стабилизатор пены/ Л.П.Размолодин, А.И.Зайцев, А.Л.Короткое, В.Н.Соколов В.М.Тарасов, Ю.Б.Кузьмичев, Е.Н.Шабанин (СССР), -№.4690933, 26; Зкявл. 15.05.89; Опубл. 30.09.91, Еюл. № 3 // Открытия. Изибрегеник. I99i. - 36. - C.2I.

33. Высокоэффективное контактное устройство с турбу-лизатораыи газожидкостного слоя / Л.П.Размолодин, Ю.Б.Кузьм: г:пь, В.М. Икредов // Повышение эффективности и надежности '..аи-н и аппдратов в оонсзноЯ химии: Тез.докл. Всесоюзн.

г Сумы, 1989. - С.23-24.

34. A.c. 680742 МКИ B0I ДЗ-28. Пленочный массообмен-нь'й аппарат / Л.П.Размолодин, Б.Ь.Борноволоков, А.Г.Муравьев, А.И.Зайцев (СССР). - № 3298309/23-56(22); Заявл.26.05.8 Огубл. 16.08.82, бюл'..» 46 // Открытия. Изобретения. - 1982.

- № 46. - С.19,

35. Аппарат для очистки промышленных газов от вредных примесей / Л.П Лазыолодин, Ю.Б.Кузьмичев, Е.Н.Шабанин // Очистка газовых выбрасов промышленных предприятий: Тез.докл Всесоюзн. конф. - Тольятти, 1990. - 4.1 - С.50.-51.

об. Стабилизатор пены для аппарат-в очистки газовых выбросов / Л.П.Размолодин, А.И.Зайцев, Е.Н.Шабанин //

Очистка газовых выбросов промышленных предприятий: Тез. докл. Всосоюзн.' конф. - Тольятти, 1990..- 4.1 - 0.52-53.

37. Применение контактного устройства с турб-'лизато-рами для очистки газовых выбросов технологических установок / Л.П.Размолодин, В.М.Тарасов, А.Л.Коротков // Там ае. -С.68.-69.

38. Мате:.1апгчечкая модель сопряженного теплотссооб-.^ена пузырька пара с яидкостьи при ректификации 7 Д.Л.Короткое, Л.П.Размолодин, И.0.Протодьяконов // Теор.основы хш. технологии - 1991. - Т.£5, !? 2. - С.190-191.

. ' 39, Теория и практика расчета и направлен!"? в ксцс-г . рупровани» контактных устройств и к^яошшя аппаратов фш" .'извлечения чистых компонентов из; .т.'зссй яадссстой итазоп

/ Л.П.Размолодин // Изэ. БУГов, Сер.хим. и ;аИ;тёхнолс5гпя. - 1992. - Т.35, вып.4. - С.19-27. .

I4.C5.92r.3art.lS3-I00.PTn ЛТН.Косгопскпи пр. ,25