автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Численно-аналитические методы математического моделирования процессов формообразования свободных границ
Автореферат диссертации по теме "Численно-аналитические методы математического моделирования процессов формообразования свободных границ"
005019607
На правах рукописи
МУКСИМОВА Роза Равилевна
ЧИСЛЕННО-АНАЛИТИЧЕСКИЕ МЕТОДЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПРОЦЕССОВ ФОРМООБРАЗОВАНИЯ СВОБОДНЫХ ГРАНИЦ (НА ПРИМЕРЕ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ)
05.13.18 - Математическое моделирование, численные методы и комплексы программ (технические науки)
1 9 ДПР 2012
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук
Уфа —2012
005019607
Работа выполнена на кафедре компьютерной математики Уфимского государственного авиационного технического университета
Научный руководитель: д-р физ.-мат. наук, профессор, заведующий
кафедрой компьютерной математики УГАТУ, Житников Владимир Павлович
Официальные оппоненты: д-р физ.-мат. наук, проф.
Бронштейн Ефим Михайлович, Уфимский государственный авиационный технический университет, профессор кафедры вычислительной математики и кибернетики УГАТУ
канд. техн. наук
Идрисов Тимур Рашитович
ООО «Electrochemical Machining», г. Уфа,
главный технолог ООО «ЕСМ»
Ведущее предприятие Институт проблем механики
им. А. Ю. Ишлинского РАН, г. Москва
Защита состоится <<^> МАЯ 2012 г. в 10 часов на заседании диссертационного совета Д-212.288.03 при Уфимском государственном авиационном техническом университете по адресу: 450000, г. Уфа, ул. К. Маркса, 12
С диссертацией можно ознакомиться в библиотеке университета
Автореферат разослан «30» МАРтА 2012 г.
Ученый секретарь диссертационного совета д-р. тех. наук, проф.
. В. Миронов
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность. В настоящее время широкое применение наукоемких технологических процессов требует разработки все более сложных математических моделей, численных методов и проведения комплексных исследований с использованием современных компьютерных технологий. При этом возникают противоречивые требования к проводимым исследованиям. С одной стороны, исследование задач должно проводиться с достаточной полнотой, для качественного описания процесса целесообразно исследование граничных режимов и предельных соотношений геометрических параметров, что связано с большими объемами вычислений и затратами времени на исследования. С другой стороны, возникают затруднения при использовании большого объема данных, полученных в результате этих исследований, для практических целей.
В связи с этим становится актуальной разработка методов построения математических моделей, основанных на анализе и обработке данных, полученных путем численного решения сложных задач. Это, во-первых, облегчает практическое использование результатов, во-вторых, позволяет создать базу для решения более общих задач моделирования. К таким методам построения приближенных моделей относятся, в частности, интерполяция и аппроксимация. Однако эти задачи во многих случаях некорректны, в особенности, когда набор исходных данных является неполным в силу большой сложности их получения в определенных областях. Для получения надежных результатов необходима разработка специальных методов и алгоритмов построения, обоснования и тестирования численных моделей.
Одной из важнейших проблем математического моделирования является совершенствование существующих и разработка новых методов оценки погрешности и обоснования достоверности этих оценок. В данной работе эти цели достигаются с помощью фильтрации численных результатов, полученных при различном числе узловых точек сетки, основанных на подавлении одних компонент погрешности и выявлении других, а также путем использования нескольких способов оценок и их проверки на непротиворечивость.
В частности, к наукоемким относятся процессы размерной электрохимической обработки (ЭХО), которые при допущении о соленоидапьности и потенциальности электрического поля сводятся к решению задач Хеле-Шоу, используемых также при исследованиях течений жидкости при преобладании сил вязкости, гидродинамики в пористых средах и др.
Таким образом, актуальность темы диссертации обусловлена как общими проблемами разработки и тестирования математических моделей, так и вопросами использования результатов исследований для практических целей.
Целью исследований является:
Разработка методов построения приближенных моделей стационарных и нестационарных процессов, численно-аналитических методов решения задач Хеле-Шоу, анализ и обоснование результатов вычислительного эксперимента, а также приложение этих методов в области исследования процессов ЭХО.
Для достижения этой цели необходимо решить следующие задачи:
1. Разработать метод построения и оценки погрешности приближенных численных моделей, позволяющий его использование в условиях неполноты исходных данных.
2. Разработать численно-аналитические методы решения стационарных и нестационарных задач Хеле-Шоу с подвижной заданной границей криволинейной формы и различными условиями движения неизвестной границы.
3. Разработать комплекс программ и провести комплексное исследование решений указанных задач применительно к ЭХО, обоснование и тестирование алгоритмов и программ, оценку погрешностей результатов. Построить приближенные модели формообразования для возможности практического использования полученных численных результатов.
На защиту выносятся следующие результаты:
1. Фильтрационно-интерполяционный метод построения и оценки погрешности приближенных численных моделей.
2. Численно-аналитические методы решения стационарных и нестационарных задач Хеле-Шоу с негладкой заданной границей.
3. Результаты комплексных исследований решений задач моделирования процессов электрохимического формообразования, включающих предельные реясимы, а также комплекс программ, реализующий численные методы. Разработанные приближенные модели стационарных и нестационарных процессов при электрохимическом копировании и резке.
Научная новизна
1. Новизна разработанного метода построения приближенных численных моделей заключается в появлении возможности вычислять искомые параметры в условиях неполноты исходных данных и контролировать их погрешность двумя способами для проверки непротиворечивости оценок.
2. Новизна разработанных численно-аналитических методов заключается в представлении решения в виде суммы двух функций, определенных на разных параметрических плоскостях, использовании формулы Келдыша-Седова, что в отличие от известных ранее методов решения задач Хеле-Шоу, позволяет с высокой точностью моделировать предельные режимы формообразования границ при наличии угловых точек.
3. В результате комплексных исследований задач копирования сегмента круга, прорезания пазов круглым и пластинчатым инструментом, включающих предельные режимы обработки и соотношения геометрических параметров, впервые определены закономерности и зависимости, на базе которых построены приближенные численные модели процессов формообразования.
Достоверность результатов
Достоверность результатов подтверждается применением фильтрации для оценки погрешности численных данных, тестированием алгоритмов и программ путем сравнения оценок результатов, полученных разными способами.
Практическая ценность
Автором получены модели, пригодные для использования при проектировании технологических процессов, разработаны численные методы, алгоритмы и программы решения стационарных и нестационарных задач, что подтверждается актом о внедрении в ООО «ЕСМ».
Результаты исследований внедрены в учебный процесс УГАТУ при реализации учебных планов по дисциплинам «Специальные главы теории функций комплексного переменного», «Экстраполяционные методы оценки погрешности» по направлению 01.03.00 - «Математика. Компьютерные науки».
Работа проводилась по тематике госбюджетной НИР Уфимского государственного авиационного технического университета: «Создание математических моделей естествознания», программы Президента «Ведущие научные школы РФ» (проект НШ-65497.2010.9).
Апробация работы
По основным результатам работы были сделаны доклады на Международной научной школе «Гидродинамика больших скоростей» (Чебоксары, 2008); на Всероссийских зимних школах-семинарах аспирантов и молодых ученых (Уфа, 2008-2011); на международных семинарах «Компьютерные науки и информационные технологии» СБГГ (Анталия, 2008, Крит, 2009); на Всеросс. научн. конф. «Мавлютовские чтения» (Уфа, 2009-2011); на XIV междунар. науч. конф. «Решетневские чтения» (Красноярск, 2010); на научно-техн. конф. «Образование и наука - производству» (Набережные Челны, 2010); на 9-й молодежи, научн. школы-конф. «Лобачевские чтения» (Казань, 2010); на междунар. молодежной научн. конф. «XXXVI Гагаринские чтения» (Москва, 2010); на межд. научн.-техн. конф. «Электроэрозионные и электрохимические технологии в производстве наукоемкой продукции» (Москва, 2010); на 4-й Всероссийск. конф. «Задачи со свободными границами» (Бийск, 2011); на X Всеросс. съезде по фундаментальным проблемам теоретической и прикладной механики (Н. Новгород, 2011).
Публикации
Основные результаты диссертации отражены в 27 научных трудах, в том числе в 4 статьях в изданиях, рекомендованных ВАК, 20 - в других изданиях, 3 свидетельствах о регистрации программ для ЭВМ.
Структура и объем работы
Диссертация (157 стр.) состоит из введения, четырех глав, заключения, списка литературы (126 наимен.), содержит 124 рисунка.
СОДЕРЖАНИЕ ДИССЕРТАЦИИ
Во введении обоснованы цель и актуальность работы, кратко изложено содержание работы и сформулированы результаты, выносящиеся на защиту.
В главе1 проведен анализ литературы, рассмотрены методы построения приближенных моделей формообразования и дана общая постановка задач.
Скорость электрохимического растворения определяется законом Фарадея
М
Уест = ЛkEn, к =--к, (1)
Р тптР
где рт, М, пт — плотность, молярная масса и валентность материала детали; Е„ ~ нормальная к анодной поверхности составляющая напряженности, г| - анодный выход по току; F — число Фарадея; к - электропроводность электролита. Зависимость выхода по току моделировалась скачкообразной функцией
•По, Е„>Еь
п(£я)=|пе[0,г|о1 E„=Ei, (2)
О, Еп<Ех.
В предположении малости зазора по сравнению с радиусом электрод-инструмента (Эй) величина безразмерного зазора sq между точкой поверхности ЭИ и деталью связана с безразмерным радиусом ЭИ r=R!l уравнением
где характерный размер l = U/E0, Е0 = Vet/(kr\0), r'=r cosS, ,v'= s0 cos 3; U-напряжение между электродами; Ve, - скорость ЭИ; 9 — угол между вектором скорости ЭИ и внешней нормалью к поверхности ЭИ.
Стационарный зазор s0(9,r) устанавливается по экспоненциальному закону е'Хг с коэффициентом х = Vet cos2 a/ssl, Sst=fo\0U/Vet. Стационарное и предельное формообразование имеют место, соответственно, при выполнении равенств
|£| = £0 cos 0 (стационарное), |£| = Е] (предельное). (4)
Электрическое поле считается соленоидальным и потенциальным. Для решения задач применяются методы теории функций комплексного переменного. Задача заключается в определении конформных отображений на физическую плоскость Z(%,ty=X+iY и плоскость комплексного потенциала И/(х,т) = [/(ср+ /((/) плоскости параметрического переменного '/=а+/и, областью изменения которого является, например, полоса. Тогда Е = dWJdZ и (1) эквивалентно равенству
/ --ч
dz dz
Im
(5)
Ло
где г = г/1 - безразмерные координаты; т = - безразмерное время.
В главе 2 решены задачи стационарного и предельного формообразования. В разд. 2.1 получены точные решения трех задач формообразования с помощью плоского инструмента с криволинейным и прямолинейным выступом, которые использовались в качестве тестовых примеров.
В разд. 2.2 разработан численно-аналитический метод и проведено исследование стационарной задачи для плоского ЭИ с полукруглым выступом А ТСОВкоторый движется вертикально вниз со скоростью Уе1 (рис. 1, а). На плоскости годографа напряженности Е = <Ш' ¡¿Х образом границы ЭИ (рис.
1, б) является кривая РСО. Аноду, согласно (4), соответствует разрез по дуге окружности радиуса Е<>!2. Ввиду симметрии области рассмотрим ее правую половину. В качестве параметрической области ^ выберем полукольцо (рис. 2, а).
А
О - Р(
а б в
Рисунок 1 — Плоскости: а - физическая; б - годографа напряженности; в - комплексного потенциала
Рассмотрим функцию са(^) (рис. 2, б), где
Е0\сіг
771=1
Параметр v определяется из уравнения ш(і) = тс/2.
а \
1 V ]
р V і
®
йЯ
-я/2 в 0 71/2
V V'
(6)
Рисунок 2 - Параметрические плоскости: а — переменного С;, б — переменного ю
В связи с эквипотенциальностыо электродов образом межэлектродного пространства (МЭП) на плоскости комплексного потенциала является полоса (рис. 1, в). Производная ¿IV¡¿С^ определяется конформным отображением
аш
2 т
п
4р
+ 1-
2т-1
% (7)
Форма анода определяется численным интегрированием выражения
аг^Ц-^Кі]-1^. (Ю
Е0 ас,
Задача решается численно методом коллокаций. Для этого в сумме (6) сохраняется конечное число п слагаемых, а уравнение \г\ = г, г = й/5 выполняется
в конечном числе точек границы области С, = еЮт, ат = им/л, т - 0,..., п. Получаемая таким образом система нелинейных уравнений решается относительно параметров Ст (т < п), р методом Ньютона с регулированием шага.
Форма МЭП для г=10 показана на рис. 3, а. Для оценки погрешности значений параметров применялся метод фильтрации последовательности числен-
ных данных, полученных для разных п. что позволило получить результаты с точностью около 12 значащих цифр (рис. 3, б).
а б
Рисунок 3 - Результаты решения: а - форма МЭП при стационарной ЭХО (г=10); б - оценка погрешности (л=32)
В разд. 2.3 разработан численно-аналитический метод и решена аналогичная задача о предельном формообразовании. Образом МЭП на плоскости годографа напряженности Е = dW|dZ является некоторая фигура (рис. 4, а) с разрезом по дуге окружности радиуса Е\ с центром в начале координат. Это следует из условия (4).
С т©
£>лД
-71/2 0 е
О ст
Рисунок 4- Параметрические плоскости: а - переменного С;, б- переменного ш Рассмотрим функцию Жуковского (рис. 4, 6)
= = е + = ^ + + (9)
Е\ 2 Ь-Р и=1
Производная /Л^ получена выше (7). Тогда форма границ определяется численным интегрированием выражения
^ 1 (10)
Задача решается численно методом коллокаций, аналогично предыдущей. Формы МЭП для различных радиусов г показаны на рис. 5. В разд. 1.4 предлагается метод построения интерполяционных моделей на основе решений задач стационарного и предельного формообразования.
¿(9 г)
На рис. 6, а представлены зависимости /2 (Э, г) = —ЦК- соя 9 -1, построенной)
ные по данным разд. 1.2. Как показали оценки предельных (при г—>со) значений, в рамках погрешности вычисления их следует принять равными 0.
а б
Рисунок 5 - Формы МЭП при предельной ЭХО: а - при г=2; б - при г= 5
а б
Рисунок б- К задаче интерполяции: а - зависимость /2 (Э, г);
б - оценки погрешности значения /2 (Э,'-) при г=«>, 3 =60°
Отсутствующие данные для /->32 и промежуточных значений г можно получить с помощью интерполяции. Для оценки погрешности интерполяции применяется увеличение степени интерполяционного многочлена, использование исходных данных через одно или несколько значений гу, интерполяция «по наклонной» вдоль луча /о9 = -Э0(/ - /0) (рис. 7, а), использование разных параметров интерполяции (1/г, 1/л/г). * - - -
Рисунок 7 - Результаты интерполяции: а -«по наклонной»; б - при разных г для а 0 =80°
На рис. 7, б показаны результаты интерполяции по параметру \j-Jr для Э0=80°. Правее пунктирной прямой расположены заданные точки, левее (кроме нуля) - полученные с помощью интерполяции. На рисунке совмещены графики,
полученные по полной базе данных и по разреженной (через одну точку). Разница не превышает 10"3. На рис. 8 показаны интерполированные зависимости для г=100 и г=1000 вместе с оценками погрешностей интерполяции, полученной путем сравнения полиномов с возрастающей степенью. На рис. 8, а совмещены графики, полученные по полной и разреженной базе, на рис. 8, б - для интерполяции при /о=-10 и со.
а б
Рисунок 8 - Сравнение результатов интерполяции для г=100 и г=1 ООО, полученных: а - по полной и разреженной базе; б - при^о=-10 и со
Построение численной модели для задачи предельного формообразования проведена таким же способом. Отметим, что данная задача являлась тестовой (в отличие от стационарной), поскольку ограничение значений радиуса, использованных для проведения интерполяции, числом 10 не является существенным. Тем самым, полученные приближенные расчеты и оценки были проверены сравнением с результатами прямого численного решения задачи. Из сравнения следует, что результаты интерполяции и численного решения совпадают при г-12 с точностью до 10"3, при г= 15 до 10"2. При увеличении г значения становятся малыми и входят в диапазон 1 %.
Тем самым, согласно оценкам, разработанные численные модели позволяют определить зависимость г) с погрешностью около 1 % для 0 < Э < 85°.
В главе 3 разработан метод решения нестационарных задач формообразования с помощью плоского инструмента с выступом или выемкой (рис. 1,а). Скорость движения ЭИ Уе/. Начальный межэлектродный зазор АЛ 'равен 5о-
Перейдем к безразмерным величинам г, х,у, т и м/, где характерный размер I в (5) выбран равным При этом
[1/3(1), з(т)<а, _£о
Форма области МЭП на плоскости комплексного потенциала представляет собой полосу (рис. 1, в). Выберем в качестве параметрической переменную % = а + /V, область изменения которой представляет собой горизонтальную полосу единичной ширины (рис. 9, а). Тогда комплексный потенциал и>=('х, т. е.
ду/д ст = 1. (11)
Представим функцию, конформно отображающую полосу плоскости % на область МЭП физической плоскости в неподвижной системе координат в виде
ег Л ' ест А \ 0, 5(т)> а,
г{г, т) = -'І-ГІ + ^к + 2а(х,т)+7с т), бфі)
где га(х, т) - аналитическая в области £>х и непрерывная в ее замыкании Т5.( ■ функция, определяющая отличие формы обрабатываемой поверхности от прямолинейной (при 1тга(х,т) = 0); гс(^,т) - аналитическая в области Це и непрерывная в ее замыкании О^ функция, предназначенная для описания выпуклости на ЭИ (при Е,=<э+Ю 1шгс(^,т) = 0), Функция гс(^,т) определена на полосе единичной ширины (рис. 9, б). Связь и х
1, е71^ х = -1п
71 е'-^-е
-1
—г-+ с = —1п-
+ е
7Г0 '
(13)
к с
о
©
Р АО
О /3
©
о а
а б
Рисунок 9 - Формы образов МЭП на параметрических плоскостях % и ^
Функция г„(х,т) определяется следующим образом. Будем искать решение на границе х=О'+'0 в узловых точках <7т (т=0,...,п). Заданными на каждом временном шаге будут значения 1тга(ат,Ту] = ут. Примем (<тл,т) = 0, поскольку (а, т) быстро (как экспонента) убывает при а->со. Значения 1тгд(сг,т) в промежуточных между узловыми точках найдем с помощью кубического сплайна, имеющего две непрерывные производные. Для восстановления функции га(у ,т) используем формулу Шварца
га(х,х) = 5Ьлх}1тга(сг,т) г ^ . --. (14)
о
сЬлст-сЬях Функция 2с(^,т) получается аналогичным образом
гс = яЬя 41іт2с(ш + г,т)——-.
д СЬЯС0 + СП7Г^
(15)
Производную дг/дт(х, т), как и конформное отображение г(х,т) параметрической плоскости х па физическую, будем искать в классе аналитических функций. Тогда равенство (5) служит краевым условием для определения &/от(х,т) на части границы, соответствующей поверхности анода, на поверхности катода (ЭИ) правая часть (5) равна нулю, а г задается в системе координат, связанной с ЭИ (задача Римана-Гильберта). Для вычисления производной
&а/дг(х,Ту) применяется способ, аналогичный применяемому для определения конформного отображения гД%,Ту). Искомыми параметрами на каждом временном шаге Ту=у'Д, будут значепия 1тдza|дx(csm,■zj)= qm. Для восстановления дга /дх {%, Ту ) используется формула Шварца, аналогичная (14).
Для вычисления производной агс/Эт();,Ту) применяется способ, аналогичный применяемому для определения конформного отображения ту). Искомыми параметрами на каждом временном шаге т^у'Д, будут значения 1т дгс /<3г(сот, Ту ) = гт. Для восстановления &с/от(Е„Ту) в предложенном методе используется формула Шварца, аналогичная (15).
Значения <7„, г„ определяются методом коллокаций по краевому условию (5) путем решения системы линейных алгебраических уравнений. Далее производится шаг по времени по методу Эйлера и процесс повторяется.
Некоторые результаты численного моделирования обработки плоским ЭИ с выступом и впадиной в форме сегмента круга в приведены на рис. 10 для r|=const (А - высота расположения центра окружности, Дт - шаг по времени).
...
а б
Рисунок 10- Формы нестационарных поверхностей: а - г =2, й=-1, Дт=1; б-г =5, А=-1, Дт=2
Уг
.,„.1.. . ...-
а б
Рисунок 11 - Формы нестационарных поверхностей для выступа в форме вертикальной пластины при Ь =10, Дг=2: а — полная картина; б - фрагмент
Результаты численного моделирования обработки плоским ЭИ с выступом в форме вертикальной пластины длины 1 для г)=соп£1 приведены на рис. И.
и
Рис. 11,5 иллюстрирует длительный процесс установления стационарного решения вблизи угловой точки. Около 20 единиц безразмерного времени необходимо, чтобы форма приблизилась к стационарной. Следует отметить, что это в 2 раза больше Ь. Можно приближенно считать, что растворение на периферии начинается примерно при т=10, когда плоская часть ЭИ окажется на расстоянии 1 от поверхности заготовки. Далее растворение происходит со скоростью движения ЭИ и до момента т=20 растворится слой материала заготовки около 10 единиц. При прекращении процесса растворения ранее этого момента отличие формы от стационарной в данной области может оказаться существенной.
На рис. 12 приведены формы обрабатываемой поверхности для г=5, а~Ео!Е\=2 и 1. Для а=1 процесс устанавливается за конечное время.
Рисунок 12 — Формы нестационарных поверхностей для выступа в форме полукруга при г=5, Дт=1; а - а=2; б — а=1
На рис. 13 приведены зависимости глубины выемки р на аноде от времени обработки для г=2 и г= 5 при а=1, 2 и со. Видно, что максимальная скорость образования выемки наблюдается при а=1. При а=2 в начале процесса скорость примерно такая же, а затем начинает уменьшаться, так как начинается растворение материала на периферии.
В главе 4 разработан метод моделирования нестационарного формообразования с помощью ЭИ в виде замкнутой ограниченной фигуры (рис. 14, а). Выберем в качестве параметрической переменную х=,з+/и область изменения которой представляет собой горизонтальную полосу ширины 1/2 (рис. 15, а).
Конформное отображение параметрической плоскости % на плоскость комплексного потенциала удобнее определять через переменную С, (рис. 14, в)
іЛ С-1. .я) 2 " 1 р
_-2т+1
-1 -р
а б в
Рисунок 14- Плоскости: а - физическая; б - комплексного потенциала; в - параметрическая
А' І7 с а э В' А' Р1 с а 0 в
I 1 //2 | і 1 иг |
1 А 1 1 О 1 в А 1 1 і О 1 в
-/з 0 (3 -0 о 0
Рисунок 15 - Формы образов МЭП на параметрических плоскостях х и Ъ, Комплексный потенциал и его производная равны
1пД 4 2)' ¿г Ъхрс\ъ) Представим функцию, конформно отображающую полосу плоскости % на область МЭП физической плоскости в неподвижной системе координат в виде
4х, т) = гСфЬ ях + га (х, т)+гс (^(х), т), где функция 20(х)= ЯвЬях при £>0 конформно отображает полосу плоскости х на верхнюю полуплоскость с разрезом, проведенным вверх от точки 0+ig до бесконечности; га(%,~с) - аналитическая в полосе Бу (рис. 15, а) и непрерывная
в ее замыкании функция, определяющая отличие формы обрабатываемой поверхности от прямолинейной (при х=о+г/2 11е2а(х,1:) = 0); - аналитическая в полосе (рис. 15, б) и непрерывная в ее замыкании О^ функция, предназначенная для описания формы ЭИ (при ^=<о+//2 1тгс(с1,-с) = 0).
Функция 2„(х,т) определяется, как и выше, значениями 1т7а(аот,Ту]= ут на границе у=а в узловых точках ат (т=0,...,«). Поскольку га{%,т:) - аналитическая функция, имеющая чисто мнимые значения на прямой 1тх=1/2, анали-
тически продолжим ее вверх на полосу единичной ширины. Для определения функции га(%,х) используем формулу Шварца
Лт / Ч
О
При вычислении функции
Ч-БЬЯХ [1тга(а,т)
сЬяст-сЬях 5 спясг+сЬях
■ (17)
искомыми будут значения
Кегс(ют,ту )=3ст на границе с,=о. Для восстановления функции гДд) используем формулу Келдыша-Седова
2с(ю,т)] бЬтов | °гт„Гге((0>т) б1171Ш
о
I
бЬТОВ , Гг
-аа+ 11т
сЬлш-сЬтс^ ^
I С(о>)
■I
сЬяш + сЬп^
<4,(18)
По полученным с помощью (18) значениям ус(ш,т:) строится сплайн Рус((й), дифференцированием которого получается производная дус/д(£>{т,1).
Для вычисления производных &а/3т(х,"[у) и Эгс/Эх^,Ту) (х фиксировано) применяется способ, аналогичный применяемому для определения конформных отображений и
Значения 1шог<:г/сл;(стт) = 1т&с/5т(ает)= в предложенном методе определяются методом коллокаций по краевому условию (5). Далее производится шаг по Бремени по методу предиктор-корректор или Эйлера.
На рис. 16 показаны формы обрабатываемой поверхности при г= 1, а=2 при различном времени обработки,
X
/ / /' /'
Т7л 1 ( \ М тел , г ^
Рисунок 9 - Формы нестационарных поверхностей доя выступа в форме полукруга при г= 1, а=2, Дт=5 в системе координат: а - неподвижной; б -связанной с ЭИ
В разд. 4.3 приводится описание комплекса программ трехуровневой структуры, включающего программы решения стационарных и нестационарных задач предложенными методами, программы обработки, проверки, сравнения, оценки погрешности результатов и преобразования информации к виду, удобному для использования на 3-м уровне — в программах, реализующих приближенные модели для практического использования.
ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ РАБОТЫ
1. Разработанный метод создания, обоснования и тестирования численных моделей дал возможность получать искомые параметры в условиях неполнота исходных данных, получать оценки погрешности двумя способами для проверки их непротиворечивости.
2. Разработаны численно-аналитические методы решения задач Хеле-Шоу, использующие сумму двух функций с областями определения, расположенными на различных параметрических плоскостях, формулу Келдыша-Седова, решение задачи Римана-Гильберта на каждом временном шаге, которые, в отличие от известных ранее методов решения таких задач, позволяют с точностью до 4 значащих цифр моделировать различные условия движения свободной границы при подвижной заданной границе негладкой криволинейной формы.
3. На основе предложенных методов разработан трехуровневый комплекс программ и проведены комплексные исследования, включающие предельные режимы обработки и соотношения геометрических параметров, решены задачи копирования сегмента круга, пластины, резки круглым и пластинчатым ЭИ. Показано, что вблизи угловых точек имеют место две стадии формообразования: грубая и окончательная, что требует удвоения времени обработки. Показано, что установление предельной формы происходит за конечное время, а стационарной - асимптотически по экспоненциальному закону. Впервые получены зависимости, наборы данных, позволяющие создать на их основе приближенные численные модели процессов формообразования, которые получены в удобном для применения виде интерполяционных зависимостей, позволяют при произвольных значениях геометрических параметров при незначительных затратах ресурсов с достаточной точностью (около 1 %) вычислять параметры формообразования и могут бьггь использованы на практике.
ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ
В рецензируемых журналах из списка ВАК
1. Моделирование процесса формообразования выступов при электрохимической обработке / С. С. Поречный, Р. Р. Муксимова, А. Р. Маннапов // Вестник УГАТУ: науч. журн. Уфимск. гос. авиац. техн. ун-та. 2010. Т. 14, № 2 (37). С. 195-201.
2. Численная оценка параметров нестационарных процессов электрохимического формообразования / В. П. Житников, Р. Р. Муксимова, Н. М. Шерыха-лина, С. С. Поречный // Труды ГОСНИТИ. 2010. Т. 106. С. 67-71.
3. Решение задачи нестационарной электрохимической обработки плоским электрод-инструментом с ограниченной неровностью / В. П. Житников, Р. Р. Муксимова // Вестник УГАТУ: науч. журн. Уфимск. гос. авиац. техн. унта. 2011. Т. 15, № 1 (41). С. 113-118.
4. Задачи Хеле-Шоу с ограничениями на подвижность свободных границ / В. П. Житников, Р. Р. Муксимова, Н. М. Шерыхалина // Вестник Нижегородского университета им. Н. И. Лобачевского. 2011. № 4 (3). С. 779-780.
В других изданиях
5. Механизм возникновения етруйности на поверхности детали при импульсной электрохимической обработке вибрирующим электрод-инструментом / С. С. Поречный, Р. Р. Муксимова // Гидродинамика больших скоростей: матер. X Междунар. науч. шк. Чебоксары: изд-во ЧИМГОУ, 2008. С. 295-302.
6. Определение напряженности электрического поля в пространстве между двумя пластинчатыми полубесконечными электродами / Р. Р. Муксимова, Т. Р. Хадимуллин // Мавлютовские чтения: матер. Всеросс. молодежи, научн. конф.. Уфа: УГАТУ, 2008. Т. 5. С. 64-65.
7. Применение фильтрации численных результатов для увеличения надежности вычислений / Р. Р. Муксимова // Технические науки и моделирование: сб. ст. 3-й всеросс. шк.-сем. аспирантов и молодых ученых. Уфа: УГАТУ, 2008. Т. 2. С. 204-209.
8. Компьютерное моделирование образования макродефектов при электрохимической обработке / С. С. Поречный, Р. Р. Муксимова // Компьютерные науки и информационные технологии: матер. 10 Междунар. конф. С51Т'2008. Анталия, 2008. Т. 2. С. 218-220. (Статья на англ. яз.).
9. Стационарная электрохимическая обработка плоским электрод-инструментом с криволинейным выступом / Р. Р. Муксимова // Сб. ст. 4-й всеросс. шк.-сем. аспир. и молодых ученых. Уфа: УГАТУ, 2009. Т. 2. С. 259-262.
10. Стационарная электрохимическая обработка плоским электрод-инструментом с полукруглым выступом / Р. Р. Муксимова И Всерос. молодежи, научн. конф. «Мавлютовские чтения»: сб. тез. докл. Уфа: УГАТУ, 2009. Т. 5. С. 33-35.
11. Стационарная электрохимическая обработка прямолинейным ЭИ с полукруглым выступом / Р. Р. Муксимова, М. Н. Касюк, Р. Р. Шаймарданов // Компьютерные науки и информационные технологии: матер. 11 Междунар. конф. С81Т'2009. Крит, 2009. Т. 3. С. 28-31. (Статья на англ. яз.).
12.Моделирование процессов нестационарного электрохимического формообразования применительно к прецизионным технологиям / В. П. Житников, Р. Р. Муксимова, Е. М. Ошмарина // Труды математического центра им. Н. И. Лобачевского.. Казань, изд-во КГУ, 2010. Т. 42. С. 99-122.
13.Исследование параметров нестационарных процессов электрохимического формообразования уплотнений ГТД (с оценкой погрешностей численного решения) / В. П. Житников, Н. М. Шерыхалина, С. С. Поречный, Р. Р. Муксимова // Решетневские чтения: матер. XIV Междунар. науч. конф. Красноярск: СибГАУ, 2010. Т. 2. С. 388-389.
14.Нестационарная электрохимическая обработка плоским полубесконечным электродом-инструментом / С. С. Поречный, Р. Р. Муксимова, Е. М. Ошмарина // Образование и наука - производству: сб. тр. межд. научно-техн. и образовательной конф. Набережные Челны: изд-во КамПИ, 2010. Ч. 1. Кн. 1. С. 136-138.
15.Моделирование процесса формообразования выступов при электрохимической обработке / С. С. Поречный, Р. Р. Муксимова, Ю. Ю. Скорульская // Образование и наука - производству: сб. тр. межд. научно-техн. и образовательной конф. Набережные Челны: изд-во КамПИ, 2010. Ч. 1. Кн. 1. С. 139-142.
16.Решение задачи о стационарной электрохимической обработке плоским конечным электрод-инструментом с помощью разложения в ряд / Ю. Ю. Ско-рульская, Р. Р. Муксимова, Е. М. Ошмарина // Образование и наука - производству: сб. тр. межд. научно-техн. и образовательной конф. Набережные Челны: изд-во КамПИ, 2010. Ч. 1. Кн. 1 С. 148-151.
17. Стационарное электрохимическое формообразование горизонтальной пластиной с изолированной верхней частью / С. С. Поречный, Р. Р. Муксимова // Актуальные проблемы науки и техники: сб. тр. 5-й Всероссийск. зимн. шк,-семинара аспирантов и молодых ученых, 17-20 февраля 2010. Уфа: УГАТУ, 2010. Т. 3. С. 268-271.
18. Решение нестационарной задачи об электрохимической резке круглым электрод-инструментом / Р. Р. Муксимова // Всерос. молодежи, научн. конф. «Мавлютовские чтения»: сб. тез. докл. Уфа: УГАТУ, 2010. Т. 5. С. 22-24.
19.Решение задачи нестационарной электрохимической обработки плоским электродом-инструментом с ограниченной неровностью / P.P. Муксимова, A.A. Ошмарин // Лобачевские чтения: сб. тр. 9-й молодежи, научн. школы-конф., 2010. Т. 40. Казань: Казан, матем. общ-во. С. 237-241.
20. Моделирование нестационарной электрохимической обработки полукруглым электрод-инструментом / Р. Р. Муксимова // XXXVI Гагаринские чтения: науч. тр. Междунар. молодежи, науч. конф. М.: МАТИ, 2010. Т. 5. С. 114— 116.
21. Обтекание мягкой оболочки вблизи экрана / Р. Р. Муксимова, М. IO. По-дымова // Мавлютовские чтения: матер. Всерос. молодежи, научн. конф., 2010. Т.5. Уфа: УГАТУ. С. 20-22.
22. Методы решения нестационарных задач электрохимического формообразования / Р. Р. Муксимова, С. С. Поречный // Сб. статей 6-й Всероссийск. зимн. шк.-семинара аспирантов и молодых ученых. Уфа: УГАТУ, 2011. Т. 2. С. 325329.
23. Электрохимическая размерная обработка плоским подвижным электрод-инструментом / С. С. Поречный, Р. Р. Муксимова // Мавлютовские чтения: сб. трудов Всерос. научн.-техн. конф. Уфа: УГАТУ, 2011. Т. 5. С. 138-142.
24. Формообразование границ при нестационарной электрохимической обработке круглым электрод-инструментом / В. П. Житников, Р. Р. Муксимова, А. Р. Салимьянов // Задачи со свободными границами: сб. матер. 4-й Всероссийск. конф., Бийск. Новосибирск: Ин-т гидродинамики им. М. А. Лаврентьева СО РАН, 2011.С. 36-37.
25.Свид. об офиц. per. программы для ЭВМ РФ № 2011619286. Расчет формы поверхности при нестационарной электрохимической обработке / Р. Р. Муксимова, А. Р. Салимьянов. Зарег. М.: Роспатент, 2011.
26. Свид. об офиц. per. программы для ЭВМ РФ № 2012610168. Моделирование нестационарной электрохимической обработки круглым электрод-инструментом / В. П. Житников, Р. Р. Муксимова. Зарег. М.: Роспатент. 2012.
27. Свид. об офиц. per. программы для ЭВМ РФ № 2012610169. Интерполяционная модель образования зазора при электрохимической обработке / В. П. Житников, P.P. Муксимова. Зарег. М.: Роспатент. 2012.
МУКСИМОВА Роза Равшіевна
ЧИСЛЕННО-АНАЛИТИЧЕСКИЕ МЕТОДЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПРОЦЕССОВ ФОРМООБРАЗОВАНИЯ СВОБОДНЫХ ГРАНИЦ (НА ПРИМЕРЕ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ)
05.13.18— Математическое моделирование, численные методы и комплексы программ
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук
Подписано к печати 30.03.2012. Формат 60x84 1/16. Бумага офсетная. Печать плоская. Гарнитура Тайме. Усл. печ. л. 1,0. Уч.-изд. л. 1,0. Тираж 100 экз. Заказ № 661.
ФГБОУ ВПО «Уфимский государственный авиационный технический университет» Центр оперативной полиграфии 450000, Уфа-центр, ул.К. Маркса, 12
Текст работы Муксимова, Роза Равилевна, диссертация по теме Математическое моделирование, численные методы и комплексы программ
61 12-5/3357
ФГБОУ ВПО «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ
ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
На правах рукописи
Муксимова Роза Равилевна
ЧИСЛЕННО-АНАЛИТИЧЕСКИЕ МЕТОДЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПРОЦЕССОВ ФОРМООБРАЗОВАНИЯ СВОБОДНЫХ ГРАНИЦ (НА ПРИМЕРЕ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ)
05.13.18 - Математическое моделирование, численные методы
и комплексы программ
Диссертация на соискание ученой степени кандидата технических наук
Научный руководитель доктор физико-математических наук, профессор Житников В.П.
Уфа —2012
СОДЕРЖАНИЕ
Введение 4
Глава 1. Анализ подходов к моделированию стационарных и
нестационарных процессов применительно к ЭХО 12
1.1. Анализ подходов к построению интерполяционных и экстраполяционных моделей 12
1.2. Анализ подходов к моделированию ЭХО 23
1.3. Краткий обзор нестационарных задач, решенных ранее и
анализ недостатков известных методов 37
Выводы по главе 1. Цели и задачи исследования 46
Глава 2. Разработка численно-аналитических методов и решение задач
стационарной ЭХО криволинейным и полукруглым ЭИ 48
2.1. Аналитические решения задач стационарного
формообразования ЭИ с выступом различной формы 48
2.2. Разработка численно-аналитического метода и комплексное исследование процесса стационарной электрохимической
обработки плоским ЭИ с полукруглым выступом 64
2.3. Разработка численно-аналитического метода и комплексное исследование процесса предельной электрохимической обработки плоским ЭИ с полукруглым выступом 74
2.4. Разработка метода и построение приближенных моделей формообразования 79
Выводы по главе 2 85
Глава 3. Разработка численно-аналитического метода и решение задачи
ЭХО нестационарной обработки плоским ЭИ с ограниченной неровностью 86
3.1. Разработка численно-аналитического метода решения нестационарной задачи 86
3.2. Результаты вычислительного эксперимента 97 Выводы по главе 3 109
Глава 4. Разработка численно-аналитического метода, программная реализация и решение задачи ЭХО нестационарной обработки круглым и пластинчатым ЭИ 110
4.1. Разработка численно-аналитического метода и решение задачи нестационарной обработки ЭИ в виде ограниченной фигуры 110
4.2. Результаты вычислительного эксперимента 124
4.3. Описание алгоритмов и комплекса программ численного решения, тестирование и применение фильтрации для обоснования результатов 132
Выводы по главе 4 140
Заключение 141
Литература 143
ВВЕДЕНИЕ
Необходимость построения математических моделей, основанных на анализе и обработке данных, полученных путем численного решения сложных задач, объясняется, во-первых, получением возможности практического использования результатов, во-вторых, позволяет разработать базу данных для решения более общих задач моделирования. Одним из методов построения таких моделей, является интерполяция. Однако эта задача во многих случаях является некорректной, и в ряде случаев необходима разработка специальных методов и приемов построения и верификации интерполяционных моделей.
В качестве примера в диссертации рассмотрено моделирование процессов размерной электрохимической обработки (ЭХО), которое при допущении об однородности электролита сводятся к решению задач Хеле-Шоу. Решения задач Хеле-Шоу также могут интерпретироваться как течения вязкой жидкости, потоки в пористых средах (полагая, что они описываются законом Дарси), движение границы фазового перехода (с приложением в металлургии), процессы напыления металлов и т.д.
Исследование формообразования анодной поверхности в процессе электрохимического растворения существенно осложняется необходимостью проведения длительных расчетов процесса установления предельных конфигураций. Разработанные ранее методы либо не обладают достаточной устойчивостью к накоплению погрешности при расчете длительных переходных процессов, либо позволяют исследовать процессы ЭХО только электрод-инструментами (ЭИ) в виде точки, прямолинейной пластины, угла. Решение задач обработки, например, круглым ЭИ требует разработки существенно более сложных численных методов и алгоритмов. В ряде случаев приведенные в известных работах результаты сводятся к получению двух-трех частных решений и не пригодны для описания процессов в приемлемом для дальнейшего применения диапазоне.
Одной из важнейших проблем математического моделирования является совершенствование существующих и разработка новых методов оценки погрешности и обоснования достоверности этих оценок. В данной работе эти цели достигаются с помощью методов фильтрации численных результатов, полученных при различном числе узловых точек сетки, основанных на подавлении одних компонент погрешности и выявлении других, а также путем использования нескольких способов оценок и их проверки на непротиворечивость.
При ЭХО межэлектродное пространство (МЭП) заполняется электролитом, к электродам подключается источник тока и происходит растворение материала анода со скоростью, зависящей от плотности тока в данной точке анодной поверхности. Деталь необходимой формы можно получить путем выбора необходимой формы ЭИ и задания соответствующих параметров процесса. Для эвакуации продуктов реакции, загрязняющих электролит, и газа, выделяющегося вследствие электролиза воды, необходимо обеспечить проточность электролита.
Технологические схемы ЭХО на импульсном токе, синхронизированном с вибрацией электродов, позволяют улучшить обмен электролита, эвакуацию продуктов реакции и значительно уменьшить погрешность ЭХО.
Прецизионная ЭХО применяется в авиационной, медицинской, инструментальной промышленности, а в последнее время находит сферу применения в нанотехнологиях.
Необходимо отметить, что, в отличие от механического, процесс ЭХО происходит в бесконтактном режиме и скорость съема материала заготовки в каждой точке поверхности определяется плотностью тока. Поэтому форма следа на заготовке при ЭХО только приближенно повторяет профиль ЭИ. Для расчета формы ЭИ необходимо учитывать различные факторы, связанные с физико-химическими особенностями процесса. Кроме того, необходимо
учитывать, что форма анодной поверхности зависит от времени обработки, что требует решения нестационарных задач и исследования процессов установления стационарных и предельных конфигураций. Таким образом, возникает задача расчета форм обрабатываемых поверхностей, образующихся в ходе ЭХО.
В связи с этим развитие ЭХО требует разработки адекватных математических моделей, учитывающих различные факторы, но при этом не требующих больших затрат машинного времени на расчет формообразования. Эти противоречивые требования могут быть удовлетворены путем создания численных моделей, аппроксимирующих или интерполирующих результаты численного решения сложных задач в широком диапазоне.
В данной работе для исследования процессов ЭХО применяются численно-аналитические методы на основе теории функций комплексного переменного (ТФКП). Предлагается видоизмененный метод решения нестационарных задач электрохимического формообразования. Для возможности более точной аппроксимации изломов на ЭИ предлагается искать конформное отображение в виде двух функций (одна из которых определяет неровности на аноде, другая - на катоде), определенных на разных параметрических областях, представляющих собой полосы % и Это позволяет отобразить особые точки на бесконечность и аппроксимировать функции убывающими экспонентами.
Целью исследований является:
Разработка методов построения приближенных моделей стационарных и нестационарных процессов, численно-аналитических методов решения задач Хеле-Шоу, анализ и обоснование результатов вычислительного эксперимента, а также приложение этих методов в области исследования процессов ЭХО.
Для достижения поставленной цели необходимо решить следующие
задачи:
• Разработать метод построения и оценки погрешности приближенных численных моделей, позволяющий его использование в условиях неполноты исходных данных.
• Разработать численно-аналитические методы решения стационарных и нестационарных задач Хеле-Шоу с подвижной заданной границей криволинейной формы и различными условиями движения неизвестной границы.
• Разработать комплекс программ и провести комплексное исследование решений указанных задач применительно к ЭХО, обоснование и тестирование алгоритмов и программ, оценку погрешностей результатов. Построить приближенные модели формообразования для возможности практического использования полученных численных результатов.
Диссертация (147 стр.) состоит из введения, четырех глав, заключения, списка литературы, приложения и содержит 92 рисунка.
В первой главе диссертации проведен обзор литературы и дана общая постановка задач.
В разделе 1.1 обсуждаются некоторые особенности задач интерполяции и экстраполяции, имеющие отношение к решаемым далее задачам.
В разделе 1.2 рассматриваются подходы, применяемые к упрощенному моделированию процессов электрохимической обработки (ЭХО). Приводится постановка плоской нестациционарной задачи ЭХО (Хеле-Шоу) с переменным выходом по току.
В разделе 1.3 проводится анализ видов задач нестационарного формообразования, решенных ранее.
Во второй главе диссертации рассматриваются решения задач стационарной и предельно-стационарной ЭХО с плоским ЭИ с криволинейным (круглым) выступом.
В разделе 2.1 приводятся стационарные решения задач ЭХО плоским ЭИ с криволинейным и прямолинейным выступом, найденные с помощью построения конформных отображений. Приведены полученные формы обрабатываемой поверхности.
В разделах 2.2 и 2.3 с помощью конформных отображений и метода коллокаций решены стационарная и предельная задачи ЭХО плоским ЭИ с круглым выступом. Получены наборы решений, достаточные для построения численных моделей для возможности дальнейшего использования результатов.
В разделе 2.4 предлагается метод (основанный на интерполяции функций, заданных на неодносвязных множествах данных). Предлагается набор способов оценки погрешности для сравнения результатов и проверки их надежности. Созданы модели стационарного и предельного формообразования.
В третьей главе диссертации предложен метод решения нестационарных задач ЭХО плоским ЭИ с ограниченной неровностью. Получены решения задач для ЭИ с выступом и впадиной в виде сегмента круга и выступом в виде прямолинейной пластины.
В разделе 3.1 предложен метод решения нестационарных задач ЭХО плоским ЭИ с ограниченной неровностью.
В разделе 3.2 приведены результаты решения задач нестационарной ЭХО для ЭИ с выступом и впадиной в виде сегмента круга и выступом в виде прямолинейной пластины.
В четвертой главе предложен метод решения задач нестационарной обработки круглым и пластинчатым ЭИ. Получены решения задач для ЭИ в виде круга и прямолинейной горизонтальной и вертикальной пластины.
В разделе 4.1 предложен метод решения нестационарных задач ЭХО с помощью ЭИ в виде ограниченной фигуры.
В разделе 4.2 приводится описание алгоритмов и комплекса программ решения нестационарных задач.
В разделе 4.3 приведены результаты решения задач нестационарной ЭХО для ЭИ в виде круга и прямолинейной горизонтальной и вертикальной пластины. Проведена оценка вычислительной погрешности полученных результатов.
На защиту выносятся:
• Фильтрационно-интерполяционный метод построения и оценки погрешности приближенных численных моделей.
• Численно-аналитические методы решения стационарных и нестационарных задач Хеле-Шоу с негладкой заданной границей.
• Результаты комплексных исследований решений задач моделирования процессов электрохимического формообразования, включающих предельные режимы, а также комплекс программ, реализующий численные методы. Разработанные приближенные модели стационарных и нестационарных процессов при электрохимическом копировании и резке.
Научная новизна
• Новизна разработанного метода построения приближенных численных моделей заключается в появлении возможности вычислять искомые параметры в условиях неполноты исходных данных и контролировать их погрешность двумя способами для проверки непротиворечивости оценок.
• Новизна разработанных численно-аналитических методов заключается в представлении решения в виде суммы двух функций, определенных на разных параметрических плоскостях, использовании формулы Келдыша-Седова, что в отличие от известных ранее методов решения задач Хеле-
Шоу, позволяет с высокой точностью моделировать предельные режимы формообразования границ при наличии угловых точек. • В результате комплексных исследований задач копирования сегмента круга, прорезания пазов круглым и пластинчатым инструментом, включающих предельные режимы обработки и соотношения геометрических параметров, впервые определены закономерности и зависимости, на базе которых построены приближенные численные модели процессов формообразования.
Достоверность результатов
Достоверность результатов подтверждается применением фильтрации для оценки погрешности численных данных, тестированием алгоритмов и программ путем сравнения оценок результатов, полученных разными способами.
Практическая ценность
Автором получены модели, пригодные для использования при проектировании технологических процессов, разработаны численные методы, алгоритмы и программы решения стационарных и нестационарных задач, что подтверждается актом о внедрении в ООО «ЕСМ».
Результаты исследований внедрены в учебный процесс УГАТУ при реализации учебных планов по дисциплинам «Специальные главы теории функций комплексного переменного», «Экстраполяционные методы оценки погрешности» по направлению 01.03.00 - «Математика. Компьютерные науки».
Работа проводилась по тематике госбюджетной НИР Уфимского государственного авиационного технического университета: «Создание математических моделей естествознания», программы Президента «Ведущие научные школы РФ» (проект НШ-65497.2010.9).
Основные материалы диссертации опубликованы в работах автора [58 - 63] и в соавторстве [24, 17, 20, 21, 67, 64, 65, 76, 73, 80, 72, 77, 74, 105, 56, 18,57, 75, 19, 66].
По основным результатам работы были сделаны доклады на Международной научной школе «Гидродинамика больших скоростей» (Чебоксары, 2008); на Всероссийских зимних школах-семинарах аспирантов и молодых ученых (Уфа, 2008-2011); на международных семинарах «Компьютерные науки и информационные технологии» С81Т (Анталия, 2008, Крит, 2009); на Всеросс. научн. Конф. «Мавлютовские чтения» (Уфа, 20092011); на XIV междунар. науч. конф. «Решетневские чтения» (Красноярск, 2010); на научно-техн. конф. «Образование и наука - производству» (Набережные Челны, 2010); на 9-й молодежи, научн. школы-конф. «Лобачевские чтения» (Казань, 2010); на междунар. молодежной научн. конф. «XXXVI Гагаринские чтения» (Москва, 2010); на межд. научн.-техн. конф. «Электроэрозионные и электрохимические технологии в производстве наукоемкой продукции» (Москва, 2010); на 4-й Всероссийск. конф. «Задачи со свободными границами» (Бийск, 2011); на X Всеросс. съезде по фундаментальным проблемам теоретической и прикладной механики (Н.Новгород, 2011).
Глава 1. Анализ подходов к моделированию стационарных и нестационарных процессов применительно к ЭХО
1.1. Анализ подходов к построению интерполяционных и экстраполяционных моделей
1.1.1. Некоторые вопросы, возникающие при интерполяции функций, заданных только дискретными значениями
Вопрос о возможности восстановления значений функции, заданной дискретными узловыми значениями, решается положительно в известной теореме Котельникова. Однако в этой теореме речь идет о функции, обладающей ограниченным спектром, заданной бесконечной последовательностью равноотстоящих узловых значений.
Пусть некоторая функция Xх) задана своими значениями _уу=/(ху) на дискретном множестве точекТребуется приближенно определить аналитический вид этой функции и тем самым получить возможность вычислить ее значения в промежуточных точках хе(х7,х7+1).
Интерполирующую функцию будем искать в виде алгебраического многочлена
п
рп(х)=^хг. (1.1.1)
1=0
Решение задачи можно представить в форме интерполяционного многочлена Лагранжа [2, 5]:
к+п к+п г _ г
рй(*)=А,М= П (ы-г)
где к - номер первого, а к+п - номер последнего узла, используемого для построения многочлена.
Справедлива следующая оценка погрешности интерполяции [2, 5]
f{x) = Pn (*)+ П (x - xj > (1-1-3)
где xj - узлы сетки, e [хк,хп+к\, x - значение аргумента, где оценивается погрешность интерполяции.
Для непосредственного применения этой формулы необходимо иметь верхнюю оценку модуля w+1-й производной функции f{x). Если речь идет об интерполяции известной функции по ее табличным значениям, то такая оценка может быть получена аналитически. Например, производная л
-
Похожие работы
- Методология геометрического и компьютерного моделирования формообразования технических поверхностей
- Методы расчета формообразования поверхности при нестационарной электрохимической обработке
- Разработка методов формообразования производящей поверхности червячных фрез и долбяков
- Управление формообразованием прецизионных поверхностей деталей машин и приборов на основе математического моделирования
- Развитие моделей и алгоритмов формообразования сложных инструментальных и технологических поверхностей
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность