автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.01, диссертация на тему:Система поддержки принятия решений по оценке активности воспалительных процессов на основании анализа пассивных электрических свойств биопроб
Автореферат диссертации по теме "Система поддержки принятия решений по оценке активности воспалительных процессов на основании анализа пассивных электрических свойств биопроб"
003464309
На правах рукописи
КИРЕЕВ Андрей Владимирович
СИСТЕМА ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ ПО ОЦЕНКЕ АКТИВНОСТИ ВОСПАЛИТЕЛЬНЫХ ПРОЦЕССОВ НА ОСНОВАНИИ АНАЛИЗА ПАССИВНЫХ ЭЛЕКТРИЧЕСКИХ СВОЙСТВ БИОПРОБ
Специальность 05.13.01 - Системный анализ, управление и обработка информации (технические и медицинские системы)
Автореферат
диссертации на соискание ученой степени кандидата технических наук
\ I
и:.-
Курск-2009
003464309
Работа выполнена в государственном образовательно учреждении высшего профессионального образования «Пензенска государственная технологическая академия».
Научный руководитель: доктор технических наук, профессо
ИСТОМИНА Татьяна Викторовн
Официальные оппоненты: доктор технических наук, профессор
ФИЛИСТ Сергей Алексеевич
кандидат технических наук УВАРОВА Анна Георгиевна
Ведущая организация: ФГУ «Пензенский ЦСМ»
Защита состоится 26.03.2009 в {С часов в конференц-зале на заседании совета по защите докторских и кандидатских диссертаций Д 212.105.03 при ГОУ ВПО «Курский государственный технический университет» по адресу: 305040, г. Курск, ул. 50 лет Октября, 94.
С диссертацией можно ознакомиться в библиотеке ГОУ ВПО «Курский государственный технический университет».
Автореферат разослан /У. . 2009 г.
Ученый секретарь диссертациодаото совета Д 212.105.03 /
Старков Ф.А.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность работы. Эффективность лечения и предупреждение осложнений воспалительных процессов во многом связаны не только с возможностью их надежного выявления на ранних стадиях, но и с возможностью регистрации активности их протекания в динамике. Это необходимо для получения прогноза дальнейшего течения заболевания и выбора оптимальной тактики лечения. В настоящее время для исследования воспалительных процессов используются рентгенологические и биохимические методы, а так же методы рентгеновской и МР томографии, предоставляющие значительную информацию о характере патологического процесса. Однако применение этих методов отнимает значительное время и сопряжено с воздействием вредных факторов на организм, что не позволяет их использовать с высокой периодичностью и сильно затрудняет исследование воспалительного процесса в динамике. В этом отношении, перспективным является применение диагностических методов, основанных на исследовании пассивных электрических свойств биообъекта (ПЭС).
Общие достоинства этих методов заключаются в абсолютной безвредности для организма, быстроте и оперативности применения, а так же сравнительно низкой себестоимости.
Понятие пассивные электрические свойства включает в себя множество характеристик, определяющих электрическую реакцию объекта на воздействие внешнего электрического тока. Пассивные электрические свойства биообъекта заключают в себе значительный объем полезной информации, однако ее полное использование для постановки диагноза сталкивается с серьезными затруднениями. Из-за отсутствия четкой взаимосвязи с физиологическими параметрами биообъекта, представляющими интерес в плане постановки диагноза, параметры ПЭС биообъекта несут в себе значительную неопределенность. Увеличение числа принимаемых во внимание параметров неизбежно приводит к возникновению противоречий в процессе принятия диагностических решений. Вместе с этим, в силу особенностей мышления человек не в состоянии оперировать большим количеством параметров, что особенно ярко проявляется в условиях недостатка времени, типичных для большинства задач медицинской диагностики. Поэтому на практике обычно используется только малая часть полезной информации, заключенная в нескольких наиболее информативных параметрах ПЭС.
Одной из форм представления ПЭС является частотная зависимость импеданса. В настоящее время именно импедансометрия используется в биомедицинских исследованиях. А.Ф. Калашник предложил использовать импедансометрию для прогнозирования нагноения ран. В работе A.B. Давыдова предприняты попытки увеличения диагностической ценности им-педансометрического метода при диагностике острого синусита за счет использования в качестве информативного признака "коэффициент актив-
ного сопротивления" (КАС), представляющий собой отношение активных низкочастотных и высокочастотных сопротивлений воспаленной биологической ткани.
Несмотря на отдельные успехи, реальная диагностическая ценность методов исследования ПЭС биообъекта в настоящее время остается слишком низкой, и результаты таких исследований являются малодостоверными. Это связано с тем, что информативность отдельных параметров импеданса биообъекта является сравнительно невысокой, а их связь с интересующими физиологическими параметрами биообъекта - сильно опосредованной. Низкая информативность импедансных параметров связана с присутствием в результатах реальных измерений значительной доли погрешностей, как случайного, так и систематического характера. Отсутствие четкой взаимосвязи между измеряемыми параметрами импеданса и физиологическими параметрами биообъекта, вызывает серьезные затруднения, вязанные с интерпретацией результатов измерений.
В настоящее время методики биоимпедансных исследований разработаны достаточно хорошо и существенное повышение информативности результатов исследований ПЭС биообъекта может быть достигнуто только за счёт использования других, более адекватных, способов представления ПЭС биообъекта и построения на их основе новых способов получения и обработки первичной измерительной информации о ПЭС. Причём достижение реального положительного эффекта в плане повышения качества постановки диагноза за счет увеличения числа измеряемых параметров, становится возможным, только при использовании автоматизированных систем поддержки принятия решений (СППР), позволяющих в условиях дефицита времени, на основании множества параметров ПЭС, давать четкие рекомендации по принятию оптимальных диагностических решений. Создание таких систем на основе методов исследования ПЭС является особенно актуальным, так как является единственным путем существенного повышения диагностической ценности и расширения области практического применения этих методов.
Работа выполнена в соответствии с внутренним грантом Пензенской государственной технологической академии за 2008г. на тему «Информационно-измерительная система для исследования и контроля пассивных электрических свойств биообъекта» по направлению «Наука - шаг в будущее».
Цель работы. Разработка системы поддержки принятия решений врача - хирурга, позволяющей повысить достоверность оценки активности протекания воспалительного процесса на основании данных о ПЭС отбираемых биопроб.
Для достижения поставленной цели необходимо решить следующие задачи:
- разработать адекватную математическую модель ПЭС биообъекта и эффективный метод её идентификации при наличии посторонних шумов;
-разработать методы компенсации случайной и систематической погрешностей измерения параметров ПЭС биообъекта;
- разработать специализированные алгоритмы принятия диагностических решений по оценке активности воспаления на основании параметров ПЭС биопроб, отбираемых в процессе лечения;
- реализовать СППР по оценке активности воспалительного процесса на основании данных о ПЭС отбираемых биопроб.
Методы исследований. При решении поставленных задач использовались методы системного анализа, методы математического моделирования, методы принятия решений, методы адаптивной идентификации линейных систем, методы деконволюции сигналов, методы редукции измерений, численные методы, методы статистики многомерных данных, ней-росетевые методы, методы линейной оптимизации, методы электрохимического анализа.
Научная новизна работы. В диссертационной работе получены следующие результаты, характеризующиеся научной новизной:
- двухуровневая иерархическая модель ПЭС биообъекта, отличающаяся наличием второго уровня иерархии, выполняющего функции компенсации влияния дестабилизирующих факторов и интерпретации результатов измерений параметров ПЭС биообъекта, позволяющая организовать эффективную процедуру обработки первичной измерительной информации.
- алгоритмы редукции измерений параметров ПЭС биообъекта, позволяющие скомпенсировать систематическую погрешность измерений, обусловленную несовершенством и нестабильностью характеристик аппаратной части системы поддержки принятия решений по оценке активности воспалительного процесса (СППР АОВП) в реальном времени.
- специализированные алгоритмы принятия решений по оценке активности воспаления, отличающиеся использованием в качестве информативных признаков коэффициентов многочленов числителя и знаменателя передаточной функции ПЭС биопроб и позволяющие повысить достоверность оценки активности воспаления.
- система адаптивной идентификации, отличающаяся сочетанием полигармонического сигнала с идеальной автокорреляционной функцией (АКФ), линейной модели ПЭС биообъекта с бесконечной импульсной характеристикой (БИХ) и градиентного алгоритма наименьших средних квадратов (ИСК), обеспечивающая, при минимальной вычислительной сложности, быструю сходимость и точную оценку высокоинформативных параметров ПЭС биообъекта.
Практическая значимость и результаты внедрения. Разработанные методики модели и алгоритмы позволяют повысить достоверность оценки активности воспалительного процесса и дают возможность прогнозирования дальнейшей динамики его протекания, на основании анализа ПЭС биопроб, что в свою очередь позволяет своевременно определить
наиболее эффективную тактику лечения и сократить период пребывания больных в стационаре.
Результаты работы внедрены в учебный процесс Пензенской государственной технологической академии при подготовке специалистов по направлению 200401 - "Биотехнические и медицинские аппараты и системы", а так же используются в учебном процессе ГДО ДПО «Пензенский институт усовершенствования врачей Росздрава».
Апробация результатов работы. Основные положения диссертационной работы докладывались и обсуждались на следующих конференциях, симпозиумах и форумах: Междунар. симп. «Надежность и качество» (Пенза, 2002); XIII научных чтениях памяти академика H.H. Бурденко (Пенза, 2002); XI Междунар. симп. «Мониторинг, аудит и информационное обеспечение в системах медико-экологической безопасности» (Испания, Коста Дуарада, 2002); V междунар. конф. «Радиоэлектроника в медицине» (Москва, 2003); Междунар. конф. «Измерительные и информационные технологии в охране здоровья» (Санкт-Петербург, 2007); Междунар. НТК «Современные информационные технологии» (Пенза, 2007); XIV Междунар. НТК «Радиоэлектроника, электротехника и энергетика» (Москва, 2008); XI Междунар. НТК «Медико-экологические информационные технологии - 2008» (Курск, 2008); Междунар. НТК «Методы, средства и технологии получения и обработки измерительной информации» (Пенза, 2008); XXXIV Междунар. конференции и дискуссионного клуба «Информационные технологии в науке социологии экономике и бизнесе IT+SE'08» (Крым, Ялта - Гурзуф, 2008).
Основные положения, выносимые на защиту.
1. Двухуровневая иерархическая модель ПЭС биообъекта, позволяющая организовать эффективную процедуру обработки первичной измерительной информации, получаемой в процессе исследования ПЭС биообъекта.
2. Алгоритмы редукции измерений параметров ПЭС биообъекта, позволяющие скомпенсировать систематическую погрешность измерений, обусловленную несовершенством и нестабильностью характеристик аппаратной части системы поддержки принятия решений по оценке активности воспалительного процесса (СППР АОВП) в реальном времени.
3. Специализированные алгоритмы принятия диагностических решений по оценки активности воспалительного процесса на основании анализа ПЭС отбираемых биопроб, позволяющие повысить достоверность оценки активности воспаления за счёт использования множества параметров ПЭС.
4. Система адаптивной идентификации модели ПЭС биообъекта, позволяющая при минимальной вычислительной сложности достичь быстрой сходимости адаптивного процесса и высокой точности оценок высокоинформативных параметров ПЭС биообъекта.
Публикации. Самостоятельно и в соавторстве по теме диссертации опубликовано 20 печатных работ.
Личный вклад автора. В работах, опубликованных в соавторстве и приведенных в конце автореферата, в [5] лично автором проведен сравнительный анализ эффективности применения нейронных сетей различного типа при распознавании биообъекта, в [4,6,9] - лично автором проведено усовершенствование конструкции четырехэлектродных датчиков и проведен анализ областей его практического применения, в [8] - лично автором проведены исследования по улучшению воспроизводимости параметров ПЭС, в [10] - лично автором установлена теоретическая взаимосвязь ПЭС ДЭС с химическим составом электролита, в [11,16] - лично автором проведен анализ методов адаптивной идентификации и преимуществ их использования при исследовании ПЭС биообъекта, в [2,17,19] - лично автором разработана система сбора данных и алгоритмы обработки первичной измерительной информации, в [20] - лично автором проведен анализ методов принятия решений и разработаны нейросетевые алгоритмы построения решающей функции СППР.
Структура и объем работы. Диссертация состоит из введения, 4 глав, выводов по главам, заключения, библиографического списка использованной литературы и приложения. Основная часть работы изложена на 145 страницах, включая 51 рисунок, 84 формулы, 11 таблиц. Библиографический список содержит 107 наименований источников.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы диссертации, сформулированы цель и основные задачи исследования, перечислены методы исследования, показана научная новизна работы, показана обоснованность и достоверность основных научных результатов работы, сформулированы основные положения, выносимые на защиту, показана практическая значимость работы; приведены сведения об апробации работы, реализации и внедрении ее результатов, а так же сведения о публикациях.
В первой главе рассматриваются общие особенности объекта исследования и существующие методы, применяемые для оценки активности протекания воспалительных процессов. Определяется область применения методов исследования ПЭС биообъекта в медицинской диагностике. Приводятся основные преимущества и недостатки этих методов в сравнении с другими диагностическими методами. Определяются основные затруднения, возникающие при проведении подобных исследований.
В настоящее время для исследования ПЭС биообъекта, как правило, используется импедансный метод. Однако большая продолжительность импедансных измерений, плохая воспроизводимость и сложность их интерпретации обуславливают необходимость поиска более эффективных
методов получения первичной измерительной информации и её дальнейшей обработки.
Проведённые систематизация и анализ существующих методов получения первичной измерительной информации о ПЭС, математических моделей биообъекта, наиболее распространенных методов идентификации и методов принятия решений, позволили поставить цель и задачи исследования, а так же наметить основные пути их решения.
Во второй главе разрабатываются методы, используемые при обработке информации в СППР ОАВП. Предложена иерархическая модель биообъекта (рисунок 1) позволяющая осуществить эффективную процедуру обработки первичной измерительной информации.
Щ
С,
Второй уровень ->
Zl
Q
МОДЕ ЛЬ ДЭС
i k i к • А • 1
Ol «i • • ч
ЭЛЕКТРИЧЕСКАЯ МОДЕЛЬ БИООБЪЕКТА
u<t)
Первый уровень
Рисунок 1 - Иерархическая модель биообъекта
Подмодель первого уровня иерархии - электрическая модель биообъекта устанавливает однозначную взаимосвязь между возбуждающим током и откликом напряжения биообъекта выполняет функции сжатия первичной измерительной информации, подавления посторонних шумов, и получения инвариантных во времени параметров передаточной функции а; ... а,-... bj. Подмодель второго уровня иерархии - модель двойного электрического слоя (ДЭС) выполняет функцию компенсации влияния дестабилизирующих факторов и интерпретации измерений. Входными данными этой подмодели служат параметры подмодели первого уровня и значения дестабилизирующих факторов (равновесный потенциал 9, температура Т и площадь поверхности электрода S). Выходными данными этой модели являются концентрации ионов С,- и их заряды z,-.
В качестве подмодели первого уровня - электрической модели биообъекта, используется линейная модель с бесконечной импульсной характеристикой и дискретным временем:
y[ri\ = bQx[n\ + bxx[n-1] +... + bpx[n-р]-а,у[п-1] -...aqy[n-q] + е[п), (1)
где р - порядок многочлена числителя, q - порядок многочлена знаменателя (здесь а0 = 1 для обеспечения однозначности) передаточной функции, п - номер отсчета, е(п) - остатки модели (шум).
Исследуются разновидности линейных параметрических моделей с дискретным временем, алгоритмов адаптивной идентификации и применяемых сигналов. Предложена адаптивная система идентификации, отличающаяся сочетанием линейной модели типа ARX (авторегрессиия со входом), градиентного алгоритма НСК, и полигармонических тестовых сигналов с идеальной формой АКФ. Алгоритм НСК предельно прост в вычислительном отношении (на каждом шаге он требует выполнения 2-х операций сложение и 2-х операций умножение на каждый коэффициент модели), согласно этому алгоритму параметры модели ARX обновляются в соответствии с рекуррентными формулами:
V[n +1] = V[n} + 2ц • е[я] • U[n], (2)
где п - номер отсчета, V =[ba, Z>, ,...Ьр, я,, a1 ]т - обобщенный вектор параметров, U - [.\-f/i],....\[/i - р],-у[п -1],... - _>■[« - q]]T обобщенный вектор сигналов /л- параметр сходимости алгоритма (шаг), е[п\ = - VT ■ U -ошибка.
Предложенные полигармонические тестовые сигналы с идеальной формой АКФ, описываются следующим уравнением:
гдеpиq-порядки полиномов передаточной функции числителя и знаменателя электрической модели биообъекта.
Подмодель второго уровня иерархии - дискретная модель ДЭС (рисунок 2), устанавливает взаимосвязь ПЭС биообъекта с химическим составом приэлектродных слоев. Передаточная функция отдельного слоя ДЭС определяется как:
где 3- дискрет времени, А,. - толщина соответствующего элемента, ¿V -площадь соответствующей эквипотенциальной поверхности, %к - электропроводность, ейек - диэлектрическая проницаемость.
Посредством разложения передаточной функции ДЭС на элементарные дроби вида (4), определяются значения электропроводностей отдельных слоев (диэлектрическая проницаемость принимается постоянной).
Я(г) -
Рисунок 2 - Дискретная модель ДЭС
Из уравнения диффузии - миграции, при отсутствии тока, и уравнения Пуассона следует уравнение, позволяющее на основании распределений макроскопических параметров (е0ек и %к) определить распределение
напряженности электрического поля в зоне действия ДЭС:
у -
2>— + ^£ = 0, (5)
дг ее0
где Ъ - эффективный коэффициент диффузии ионов в зоне действия ДЭС.
Оценка химического состава ДЭС производится на основании автономного дифференциального уравнения, вытекающее из уравнения Пуассона и уравнения Нернста:
(6)
ОГ ¡-1
где С,- концентрация ионов при бесконечном удалении от поверхности электрода, г; - заряд ионов; (р - потенциал в заданной точке ДЭС; Т -температура ДЭС; Я - универсальная газовая постоянная; ¥ - постоянная Фарадея, ееь - диэлектрическая проницаемость, г - расстояние от поверхности электрода.
Таким образом, в предлагаемой модели, качественной характеристикой, позволяющей дифференцировать ионы различного типа, является величина их относительного заряда г, ■
Дискретная модель позволяет построить алгоритмы компенсации дестабилизирующего влияния нестабильностей температуры, поверхности электрода и равновесного электродного потенциала. Кроме того, она дает возможность интерпретировать параметры ПЭС двойного электрического слоя биообъекта в терминах химического состава электролита.
Эквипотенциальные поверхности
Электрод 5
«(г), х(г)
Л (й, Н)=$мрЕ
т-
е(0
тш.(7)
Разработаны алгоритмы компенсации систематической погрешности измерений параметров ПЭС, основанные на методах редукции измерений. Стохастическая постановка задачи редукции для модели типа АЛХ имеет следующий вид:
где А(д) и В(д) - искаженные полиномы числителя и знаменателя передаточной функции, а А(с]) и - истинные полиномы, Щф - оптимальный оператор редукции, позволяющий наиболее точно восстановить искаженный отклик, х(() - входной сигнал, е(1) - шум, Е - обозначение математического ожидания.
Оператор редукции определяется в процессе калибровки измерительной части СППР ОАВГТ, после чего он используется для построения цифрового фильтра деконволюции, включаемого перед алгоритмом идентификации и компенсирующего систематическую погрешность измерений связанную с несовершенством аналогового тракта СППР ОАВП.
Предложено формирование обобщенного показателя активности воспалительного процесса на основании параметров ПЭС биопроб, позволяющего характеризовать активность протекания воспаления. При построении решающей функции рассматривается задача регрессии.
В третьей главе представлены результаты экспериментальных исследований основных элементов СППР ОАВП и образцов исследуемых биопроб. Исследования проводились с целью получения сравнительной оценки эффективности применения различных тестовых сигналов, моделей ПЭС биообъекта и алгоритмов их идентификации, а так же для установления взаимосвязи динамики воспалительного процесса с параметрами ПЭС биопроб и построения решающей функции СППР ОАВП.
На рисунке 3 приведены результаты численного эксперимента представленные в форме зависимостей ошибок идентификации имитационной модели биообъекта от числа иттераций, характеризующие сходимость адаптивного процесса алгоритма НСК (во всех случаях использована одна и таже модель). Кривая «а» соответствует полигармоническому сигналу с идеальной АКФ, кривая «б» -последовательности Фибоначчи, кривая «в» - конгруэнтной последовательности и кривая «г» - последовательности максимальной длинны.
В ходе исследований установлено, что в отношении точности и скорости сходимости адаптивные алгоритмы сравнимы с корреляционными алгоритмами частотной идентификации, и их преимущество заключается только в возможности получения более информативных параметров, так как идентифицируемая модель в этом случае является более адекватной (параметрическая модель с БИХ, при той же точности, требует в 12 раз меньше параметров по сравнению с импедансной моделью).
Рисунок 3 - Зависимости ошибок идентификации от числа итерации
В рамках исследования предложенной модели ДЭС проведены расчеты основных характеристик ДЭС для электролита заданного состава. По полученным данным рассчитана импульсная реакция ДЭС при его представлении эквивалентной схемой замещения Войта. Проведено исследование влияния температурной нестабильности и нестабильности равновесного потенциала на форму расчетных импульсных реакций ДЭС.
Приведены результаты исследования ПЭС биопроб, отбираемых посредством проведения пункций у больных с диагнозом гнойный плеврит. На основании полученных данных, согласно критерия Акаике и финальной ошибке предсказания (рисунок 4), определен оптимальный порядок идентифицируемой параметрической модели с БИХ, равный 16 (16 коэффициентов числителя и 16 коэффициентов знаменателя передаточной функции). Получены оценки дисперсии измеряемых параметров, равные в среднем 10-15%. На основании анализа собственных чисел ковариационной матрицы параметров передаточной функции (рисунок 5) сделан вывод об информационной избыточности признакового пространства, сформированного из параметров передаточной функции ПЭС биопроб.
Приведены результаты кластерного анализа экспериментальных данных (таблица 1), после сокращения размерности признакового пространства по методу главных компонент, с помощью различных методов кластеризации. Из приведенных данных следует, что выделенные кластеры примыкают друг к другу, их центры С1 образуют ядерную аппроксимацию линии в сокращенном, 16 мерном пространстве новых признаков VI, что подтверждает справедливость постановки задачи регрессии.
Получены оценки статистической значимости отдельных параметров передаточной функции ПЭС, позволяющие сделать вывод о том, что только 5 из 32 параметров имеют существенную связь с динамикой протекания воспалительного процесса (определяют 75% дисперсии данных).
порядок
Рисунок 4 - Зависимости зиачспнй критерия Акаике II финальной ошибки предсказания от порядка идентифицируемой модели
собственное число
Рисунок 5 - Распределение собственных чисел ковариационной матрицы параметров ПЭС биопроб
Ыа основании полученных данных сформирована линейная решающая функция, следующего вида:
16 , ч
* = -Я|+М). (8)
¡=1
где Р - значение показателя активности воспалительного процесса, а, и Ъ, - коэффициенты знаменателя и числителя передаточной функции биопробы, а, и Д- коэффициенты линейной регрессии.
Значение эмпирического коэффициента детерминации сформированного показателя составило 0,85-0,9. На рисунке 6 представлены зависимости значений сформированного показателя активности воспаления от времени лечения для четырех пациентов с диагнозом гнойный плеврит.
Таблица 1 - Координаты центров и дисперсия кластеров
С1 С2 СЗ С4 С5
VI -0,04032 -0,02435 -0,05986 0,076797 -0,10723
V2 0,033803 -0,0661 -0,07676 -0,02193 -0,03562
V3 0,009164 -0,03461 0,024108 0,046512 0,093481
V4 0,067239 0,042481 0,098558 0,080297 0,084399
V5 -0,00273 0,018694 -0,03377 0,012808 0,026237
V6 -0,05701 -0,08574 -0,02739 -0,06538 -0,10968
V7 0,01962 0,011995 0,001862 -0,00594 0,004931
V8 -0,05664 -0,0373 -0,02979 -0,02761 -0,05153
V9 -0,0102 -0,01474 -0,00252 -0,02026 -0,02199
VIO -0,09153 -0,10626 -0,08806 -0,09006 -0,08643
Vil -0,10028 -0,08756 -0,10497 -0,09865 -0,08802
V12 -0,11719 -0,11903 -0,11842 -0,10838 -0,10453
V13 0,043696 0,035838 0,045726 0,039458 0,042849
V14 0,078618 0,081849 0,08609 0,083117 0,085702
V15 -0,09906 -0,10127 -0,09992 -0,10022 -0,10677
V16 0,063213 0,061704 0,059868 0,061963 0,061916
дисперсия 0,030486 0,0091511 0,0049982 0,0066891 0,0066015
дни дни дни дни
Рисунок 6 - Зависимости значения показателя активности воспаления от времени лечения
Таким образом, сформированный показатель позволяет характеризовать активность и прогнозировать динамику дальнейшего протекания воспалительного процесса, в то время как, ни один из параметров ПЭС биопробы в отдельности не даёт такой возможности.
В четвертой главе рассмотрены вопросы практической реализации СППР АОВП на основании ПЭС биообъекта. Предложена обобщенная структурная схема СППР АОВП на основании ПЭС биообъекта (рисунок 7). Сформулированы основные требования, предъявляемые к каждому элементу структурной схемы СППР АОВП, проведен анализ существующей элементной базы и даны рекомендации по выбору элементов.
Рисунок 7 - Обобщенная структурная схема СППР ОАВП на основании анализа ПЭС биообъекта
Разработана конструкция аналогового тракта ИИС контроля ПЭС биообъекта, включающая инструментальный усилитель, аналоговый фильтр и однобитный ЦАП с токовым выходом. Описана реализация аппаратного интерфейса предлагаемой СППР ОАВП на основании анализа ПЭС биообъекта на базе универсальной платы Advantech PCI - 1710.
Разработаны конструкции контактных датчиков для исследования ПЭС биожидкостей. На рисунке 8 показан двухэлектродный контактный поляризующийся датчик, который использовался при получении экспериментальных данных, приведенных в работе. Он позволяет проводить наиболее информативные измерения параметров ПЭС (измеряется до 32 параметров передаточной функции биопробы).
Программная часть СППР реализована в пакете визуального моделирования МаНаЬ - БтшНпк. На рисунке 9 приведена действующая БшшНпк - модель СППР ОАВП на основании анализа ПЭС биообъекта.
m-genefatoí Digital Output
Рисунок 9 - Simulink - модель СППР ОАВП на основании анализа ПЭС биообъекта
Блок 1 - реализует сопряжение программной части с АЦП аналогового тракта СППР ОАВП, блок 2 - реализует сопряжение программной части с управляемым генератором возбуждающего тока. Блок 3 - представляет собой реализацию цифрового фильтра деконволюции, компенсирующего систематическую погрешность измерений. Блок 4 - реализует алгоритм идентификации и линейную решающую функцию СППР ОАВП. Блок 5 - реализует генератор двоичной последовательности максимальной длинны, блок 6 - предназначен для преобразования униполярного сигнала в биполярный. Блок 7 - непосредственно осуществляет индикацию значения формируемого показателя активности воспалительного процесса.
Предлагаемая реализация программной части работает в реальном масштабе времени. При проведении клинических исследований значение определяемого показателя активности воспаления устанавливается достаточно быстро, что позволяет осуществлять оперативный контроль и многократно повторять измерения. Кроме того, имеется возможность осуществления мониторинга состояния исследуемого биообъекта, что особенно важно при проведении исследований ín vivo.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
1. Предложена двухуровневая иерархическая модель ПЭС биообъекта, позволяющая реализовать эффективную обработку первичной измерительной информации, а так же интерпретировать данные измерений в терминах химического состава биообъекта.
2. Разработана адаптивная система на базе полигармонических тестовых сигналов с идеальной формой АКФ, алгоритма НСК и линейной пара-
метрической модели типа ARX, обеспечивающая при минимальной вычислительной сложности, быструю сходимость и точную оценку высокоинформативных параметров ПЭС биообъекта.
3. Разработаны алгоритмы редукции измерений параметров ПЭС биообъекта, позволяющие скомпенсировать систематическую погрешность измерений, обусловленную несовершенством и нестабильностью характеристик аппаратной части СППР ОАВП.
4. Разработаны специализированные алгоритмы поддержки принятия решений на основе линейной решающей функции, формирующей обобщенный показатель активности протекания воспалительного процесса.
5. Разработана обобщенная структурная схема построения СППР ОАВП на основании ПЭС биообъекта, позволяющая выделить основные элементы данной СППР, их взаимосвязи и сформулировать основные требования, предъявляемые к каждому из них.
6. Разработана надежная конструкция двухэлектродного поляризующегося датчика для исследования ПЭС биожидкостей, обеспечивающая высокую информативность измерений параметров ПЭС.
7. Реализован и внедрен опытный образец СППР ОАВП на основании анализа ПЭС биообъекта, построенный на базе ПЭВМ и средств визуального моделирования Matlab - Simulink, позволяющий проводить исследования ПЭС биообъекта в реальном масштабе времени, осуществлять быстрый и оперативный контроль, многократно повторять измерения, а так же - реализовать мониторинг параметров ПЭС.
СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМАТИКЕ ДИССЕРТАЦИИ
Публикации в изданиях рекомендованных ВАК РФ
1. Киреев, A.B. Многопараметрическая система контроля ПЭС биообъекта [Текст] / A.B. Киреев // Вестник Рязанского государственного радиотехнического университета №2 (24). Рязань, 2008. -С. 19-25.
2. Киреев, A.B. Исследовательский комплекс для анализа электрических характеристик на базе универсальной платы Advantech PCI-1710 [Текст] / Т.В. Истомина, A.B. Киреев, Е.В. Истомина // Известия ЮФУ. Технические науки. Тематический выпуск. «Медицинские информационные системы» №5(82).- Таганрог, 2008. -С. 61-64.
3. Киреев, A.B. Выбор оптимальной структуры модели пассивных электрических свойств биообъекта при построении биометрических ИИС [Текст] / A.B. Киреев // Известия ЮФУ. Технические науки. Тематический выпуск. «Медицинские информационные системы» №5(82). - Таганрог, 2008. -С. 64-68.
Авторские свидетельства и патенты
4. Киреев, A.B. Способ прогнозирования динамики воспалительного процесса и устройство для его осуществления [Текст] / В.И. Волчи-хин, С.И. Геращенко, С.М., Геращенко, Ф.Ш. Енгалычев, A.B. Киреев, Н.О. Голотенков // Патент РФ А61В5/053 № 2224458. Заявка №2002108201, 01.04.2002г.; Опубликовано: 27.02.2004г. Бюл. №6.
Статьи и материалы конференций
5. Киреев, A.B. Выбор структуры нейронной сети для распознавания человека [Текст] / Г.С. Никитина, Ю.С.Чистова, A.B. Киреев // Безопасность информационных технологий: Труды НТК, Пенза 2001. -С. 38-40.
6. Киреев, A.B. Использование четырехэлектродного электрохимического датчика в биометрических исследованиях [Текст] / С.И. Геращенко, A.B. Киреев, Ю.С. Чистова, С.М. Геращенко // Безопасность информационных технологий: Труды НТК, Пенза 2001. -С. 45-47.
7. Киреев, A.B. Четырехэлектродные контактные датчики [Текст] / A.B. Киреев // Современные охранные технологии и средства обеспечения комплексной безопасности объектов: Материалы IV Всерос. НПК- Пенза: Инф. -изд. центр ПГУ, 2002. -С. 116-118.
8. Киреев, A.B. Исследование влияния емкостной, миграционной и диффузионной составляющих электрического тока на достоверность и воспроизводимость джоульметрических измерений [Текст] / С.И.Геращенко, С.М.Геращенко, А.В.Киреев // Надежность и качество: Труды Междунар. симп. - Пенза; Инф. -изд. центр ПГУ, 2002. -С.460-462.
9. Киреев, A.B. Применение четырехэлектродных электрохимических датчиков в медико-биологических исследования [Текст] / Геращенко С.И., Геращенко С.М., Енгалычев Ф.М., Киреев A.B.// Тринадцатые научные чтения памяти академика H.H. Бурденко: Материалы НПК - Пенза: НИЦ, ПГУ, 2002. -С. 56-57.
10. Киреев, A.B. Исследование динамических свойств ДЭС для оценки состояния биосистем [Текст] / Т.В. Истомина, A.B. Киреев // Измерительные и информационные технологии в охране здоровья. МЕТ-РОМЕД - 2007.: Труды Международной научной конференции. СПб.: Изд-во Политехи. Ун-та, 2007. -С. 88-90.
11. Киреев, A.B. Адаптивная идентификация пассивных электрических параметров биообъекта [Текст] / Т.В. Истомина, A.B. Киреев // Информационные и управленческие технологии в медицине: сборник статей Всероссийской НТК. - Пенза, 2007. -С. 25-30.
12. Киреев, A.B. Применение методов идентификации для контроля пассивных электрических свойств биообъекта [Текст] / A.B. Киреев // Инновационные технологии в экономике, информатике, медицине и образовании: Сб. статей IV Межрегиональной НПК, Пенза, 2007. -С. 105-107.
13. Киреев, A.B. Синтез оптимальной структуры электрической модели биообъекта [Текст] / A.B. Киреев // Современные информационные технологии: Труды Международной НТК, Пенза, 2007. -С. 161-165.
14. Киреев, A.B. Система контроля пассивных электрических свойств биообъекта [Текст] / A.B. Киреев // Биотехнические, медицинские и экологические системы и комплексы, БИОМЕДСИСТЕМЫ-2007: Материалы XX Всероссийской НТК, Рязань, 2007. -С. 12-17.
15. Киреев, A.B. Повышение информационных характеристик систем контроля ПЭС биообъекта [Текст] / A.B. Киреев // Радиоэлектроника, электротехника и энергетика: Тез. докл. XIV Междунар. НТК в 3-х т. - М.: Изд. дом МЭИ, 2008. Т.1 - С. 247-248.
16. Киреев, A.B. Основные преимущества методов параметрической идентификации в исследованиях ПЭС биообъекта [Текст] / Т.В. Истомина, A.B. Киреев // Медико-экологические информационные технологии - 2008: сборник материалов XI Международной НТК, Курск, 2008. -С. 75-78.
17. Киреев, A.B. Оценка оптимальной структуры модели электрокар-диосигнала типа ARMA [Текст] / Т.В. Истомина, A.B. Киреев, Е.В. Истомина, И.В. Степичев // Информационные и управленческие технологии в медицине: сборник статей Всероссийской НТК. - Пенза, 2008.-С. 31-33.
18. Киреев, A.B. Моделирование динамических характеристик двойного электрического слоя // Современные информационные технологии: Труды Международной НТК, Пенза, 2008. -С. 88-90.
19. Киреев, A.B. Особенности измерения и интерпретации параметров ПЭС биологических объектов [Текст] / Т.В. Истомина, A.B. Киреев, Е.В. Истомина // Методы, средства и технологии получения и обработки измерительной информации: труды Международной НТК, Пенза, 2008. -С. 73-80.
20. Киреев, A.B. Систематизация методов принятия диагностических решений [Текст] / Т.В.Истомина, Е.В. Истомина, A.B. Киреев // Информационные технологии в науке, социологии, экономике и бизнесе IT+SE'08: Материалы XXXIV международной конференции и дискуссионного научного клуба, Украина, Крым, Ялта - Гурзуф, 2008г. - С. 200-202.
Подписано в печать 18.02.2009 г. Формат 60x84 1/16 Печатных листов 1,0. Тираж 100 экз.
Отпечатано с готового оригинал-макета в типографии «Копи-Ризо» ИП Поповой М. Г. 440600, г. Пенза, ул. Московская, 74, к. 213.
Тел. 56-25-09.
Оглавление автор диссертации — кандидата технических наук Киреев, Андрей Владимирович
СПИСОК ОБОЗНАЧЕНИЙ И СОКРАЩЕНИЙ.
ВВЕДЕНИЕ.
1 ОСОБЕННОСТИ ИССЛЕДОВАНИЯ ПЭС БИООБЪЕКТА.
1.1 Общая характеристика задач и объекта исследования.
1.2 Систематизация методов исследования ПЭС.
1.3 Параметры, определяющие ПЭС биообъекта.
1.4 Систематизация математических моделей биообъекта.
1.5 Анализ методов идентификации математических моделей.
1.6 Анализ методов принятия решений при интерпретации параметров ПЭС биообъекта.
Выводы по главе.
2 ОБРАБОТКА ПЕРВИЧНОЙ ИЗМЕРИТЕЛЬНОЙ ИНФОРМАЦИИ
В СППР ОАВП НА ОСНОВАНИИ АНАЛИЗА ПЭС БИОПРОБ.
2.1 Разработка математической модели ПЭС биожидкости.
2.2 Анализ алгоритмов адаптивной идентификации.
2.3 Определение оптимального тестового воздействия.
2.4 Компенсация систематической погрешности измерений параметров ПЭС с помощью методов редукции.
2.5 Формирование обобщенного показателя активности протекания воспалительного процесса.
Выводы по главе.
3 ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ
УСЛОВИЙ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПЭС БИООБЪЕКТА.
3.1 Оценка эффективности применения тестовых сигналов различного типа.
3.2 Исследование алгоритмов адаптивной идентификации параметров линейной динамической модели биообъекта.
3.3 Проверка электрических моделей ПЭС на адекватность и определение требуемых значений параметров дискретизации.
3.4 Исследование модели ДЭС.
3.5 Анализ передаточных функций ПЭС биопроб и построение решающей функции СППР ОАВП.
Выводы по главе.
4 РЕАЛИЗАЦИЯ СППР ОАВП НА ОСНОВАНИИ АНАЛИЗА ПЭС
БИООБЪЕКТА.
4.1 Обобщенная структура СППР ОАВП на основании анализа ПЭС биообъекта.
4.2 Разработка датчиков для исследования ПЭС биожидкостей.
4.3 Реализация аналогового тракта СППР ОАВП на основании анализа ПЭС биообъекта.
4.4 Реализация программной части СППР ОАВП на основании анализа ПЭС биообъекта.
Выводы по главе.
Введение 2009 год, диссертация по информатике, вычислительной технике и управлению, Киреев, Андрей Владимирович
Актуальность работы. Эффективность лечения и предупреждение осложнений воспалительных процессов во многом связаны не только с возможностью их надежного выявления на ранних стадиях, но и с возможностью регистрации активности их протекания в динамике. Это необходимо для получения прогноза дальнейшего течения заболевания и выбора оптимальной тактики лечения. В настоящее время для исследования воспалительных процессов используются рентгенологические и биохимические методы, а так же методы рентгеновской и MP томографии, предоставляющие значительную информацию о характере патологического процесса. Однако применение этих методов отнимает значительное время и сопряжено с воздействием вредных факторов на организм, что не позволяет их использовать с высокой периодичностью и сильно затрудняет исследование воспалительного процесса в динамике. В этом отношении, перспективным является применение диагностических методов, основанных на исследовании пассивных электрических свойств биообъекта (ПЭС). Общие достоинства этих методов заключаются в абсолютной безвредности для организма, быстроте и оперативности применения, а также сравнительно низкой себестоимости.
Понятие пассивные электрические свойства включает в себя множество характеристик, определяющих электрическую реакцию объекта на воздействие внешнего электрического тока. Пассивные электрические свойства биообъекта заключают в себе значительный объем полезной информации, однако ее полное использование для постановки диагноза сталкивается с серьезными затруднениями. Из-за отсутствия четкой взаимосвязи с физиологическими параметрами биообъекта, представляющими интерес в плане постановки диагноза, параметры ПЭС биообъекта несут в себе значительную неопределенность. Увеличение числа принимаемых во внимание параметров неизбежно приводит к возникновению противоречий в процессе принятия диагностических решений. Вместе с этим, в силу особенностей мышления человек не в состоянии оперировать большим количеством параметров, что особенно ярко проявляется в условиях недостатка времени, типичных для большинства задач медицинской диагностики. Поэтому на практике обычно используется только малая часть полезной информации, заключенная в нескольких наиболее информативных параметрах ПЭС.
Одной из форм представления ПЭС является частотная зависимость импеданса. В настоящее время именно импедансометрия используется в биомедицинских исследованиях. А.Ф. Калашник предложил использовать импедансометрию для прогнозирования нагноения ран. В работе А.В. Давыдова предприняты попытки увеличения диагностической ценности импедансометрического метода при диагностике острого синусита за счет использования в качестве информативного признака "коэффициент активного сопротивления" (КАС), представляющий собой отношение активных низкочастотных и высокочастотных сопротивлений воспаленной биологической ткани.
Несмотря на отдельные успехи, реальная диагностическая ценность методов исследования ПЭС биообъекта в настоящее время остается слишком низкой, и результаты таких исследований являются малодостоверными. Это связано с тем, что информативность отдельных параметров импеданса биообъекта является сравнительно невысокой, а их связь с интересующими физиологическими параметрами биообъекта - сильно опосредованной. Низкая информативность импедансных параметров связана с присутствием в результатах реальных измерений значительной доли погрешностей, как случайного, так и систематического характера. Отсутствие четкой взаимосвязи между измеряемыми параметрами импеданса и физиологическими параметрами биообъекта, вызывает серьезные затруднения, вязанные с интерпретацией результатов измерений.
В настоящее время методики биоимпедансных исследований разработаны достаточно хорошо и существенное повышение информативности результатов исследований ПЭС биообъекта может быть достигнуто только за счёт использования других, более адекватных, способов представления ПЭС биообъекта и построения на их основе новых способов получения и обработки первичной измерительной информации о ПЭС. Причём достижение реального положительного эффекта в плане повышения качества постановки диагноза за счет увеличения числа измеряемых параметров, становится возможным, только при использовании автоматизированных систем поддержки принятия решений (СППР), позволяющих в условиях дефицита времени, на основании множества параметров ПЭС, давать четкие рекомендации по принятию оптимальных диагностических решений. Создание таких систем на основе методов исследования ПЭС является особенно актуальным, так как является единственным путем существенного повышения диагностической ценности и расширения области практического применения этих методов.
Работа выполнена в соответствии с внутренним грантом Пензенской государственной технологической академии за 2008г. на тему «Информационно-измерительная система для исследования и контроля пассивных электрических свойств биообъекта» по направлению «Наука -шаг в будущее».
Цель работы. Разработка системы поддержки принятия решений врача - хирурга, позволяющей повысить достоверность оценки активности протекания воспалительного процесса на основании данных о ПЭС отбираемых биопроб.
Для достижения поставленной цели необходимо решить следующие задачи:
- разработать адекватную математическую модель ПЭС биообъекта и эффективный метод её идентификации при наличии посторонних шумов;
-разработать методы компенсации случайной и систематической погрешностей измерения параметров ПЭС биообъекта;
- разработать специализированные алгоритмы принятия диагностических решений по оценке активности воспаления на основании параметров ПЭС биопроб, отбираемых в процессе лечения;
- реализовать СППР по оценке активности воспалительного процесса на основании данных о ПЭС отбираемых биопроб.
Методы исследований. При решении поставленных задач использовались методы системного анализа, методы математического моделирования, методы принятия решений, методы адаптивной идентификации линейных систем, методы деконволюции сигналов, методы редукции измерений, численные методы, методы статистики многомерных данных, нейросетевые методы, методы линейной оптимизации, методы электрохимического анализа.
Научная новизна работы. В диссертационной работе получены следующие результаты, характеризующиеся научной новизной:
- двухуровневая иерархическая модель ПЭС биообъекта, отличающаяся наличием второго уровня иерархии, выполняющего функции компенсации влияния дестабилизирующих факторов и интерпретации результатов измерений параметров ПЭС биообъекта, позволяющая организовать эффективную процедуру обработки первичной измерительной информации.
- алгоритмы редукции измерений параметров ПЭС биообъекта, позволяющие скомпенсировать систематическую погрешность измерений, обусловленную несовершенством и нестабильностью характеристик аппаратной части системы поддержки принятия решений по оценке активности воспалительного процесса (СППР АОВП) в реальном времени.
- специализированные алгоритмы принятия решений по оценке активности воспаления, отличающиеся использованием в качестве информативных признаков коэффициентов многочленов числителя и знаменателя передаточной функции ПЭС биопроб и позволяющие повысить достоверность оценки активности воспаления.
- система адаптивной идентификации, отличающаяся сочетанием полигармонического сигнала с идеальной автокорреляционной функцией (АКФ), линейной модели ПЭС биообъекта с бесконечной импульсной характеристикой (БИХ) и градиентного алгоритма наименьших средних квадратов (НСК), обеспечивающая, при минимальной вычислительной сложности, быструю сходимость и точную оценку высокоинформативных параметров ПЭС биообъекта.
Практическая значимость и результаты внедрения. Разработанные методики модели и алгоритмы позволяют повысить достоверность оценки активности воспалительного процесса и дают возможность прогнозирования дальнейшей динамики его протекания, на основании анализа ПЭС биопроб, что в свою очередь позволяет своевременно определить наиболее эффективную тактику лечения и сократить период пребывания больных в стационаре.
Результаты работы внедрены в учебный процесс Пензенской государственной технологической академии при подготовке специалистов по направлению 200401 - "Биотехнические и медицинские аппараты и системы", а так же используются в учебном процессе ГДО ДПО «Пензенский институт усовершенствования врачей Росздрава».
Апробация результатов работы. Основные положения диссертационной работы докладывались и обсуждались на следующих конференциях, симпозиумах и форумах: Междунар. симп. «Надежность и качество» (Пенза, 2002); XIII научных чтениях памяти академика Н.Н. Бурденко (Пенза, 2002); XI Междунар. симп. «Мониторинг, аудит и информационное обеспечение в системах медико-экологической безопасности» (Испания, Коста Дуарада, 2002); V междунар. конф. «Радиоэлектроника в медицине» (Москва, 2003); Междунар. конф. «Измерительные и информационные технологии в охране здоровья» (Санкт-Петербург, 2007); Междунар. НТК «Современные информационные технологии» (Пенза, 2007); XIV Междунар. НТК «Радиоэлектроника, электротехника и энергетика» (Москва, 2008); XI Междунар. НТК «Медико-экологические информационные технологии - 2008» (Курск, 2008); Междунар. НТК «Методы, средства и технологии получения и обработки измерительной информации» (Пенза, 2008); XXXIV Междунар. конференции и дискуссионного клуба «Информационные технологии в науке социологии экономике и бизнесе IT+SE'08» (Крым, Ялта - Гурзуф, 2008).
Основные положения, выносимые на защиту.
1. Двухуровневая иерархическая модель ПЭС биообъекта, позволяющая организовать эффективную процедуру обработки первичной измерительной информации, получаемой в процессе исследования ПЭС биообъекта.
2. Алгоритмы редукции измерений параметров ПЭС биообъекта, позволяющие скомпенсировать систематическую погрешность измерений, обусловленную несовершенством и нестабильностью характеристик аппаратной части системы поддержки принятия решений по оценке активности воспалительного процесса (СППР АОВП) в реальном времени.
3. Специализированные алгоритмы принятия диагностических решений по оценки активности воспалительного процесса на основании анализа ПЭС отбираемых биопроб, позволяющие повысить достоверность оценки активности воспаления за счёт использования множества параметров ПЭС. 4. Система адаптивной идентификации модели ПЭС биообъекта, позволяющая при минимальной вычислительной сложности достичь быстрой сходимости адаптивного процесса и высокой точности оценок высокоинформативных параметров ПЭС биообъекта. Публикации. Самостоятельно и в соавторстве по теме диссертации опубликовано 20 печатных работ.
Личный вклад автора. В работах, опубликованных в соавторстве и приведенных в конце автореферата, в [5] лично автором проведен сравнительный анализ эффективности применения нейронных сетей различного типа при распознавании биообъекта, в [4,6,9] - лично автором проведено усовершенствование конструкции четырехэлектродных датчиков и проведен анализ областей его практического применения, в [8] - лично автором проведены исследования по улучшению воспроизводимости параметров ПЭС, в [10] - лично автором установлена теоретическая взаимосвязь ПЭС ДЭС с химическим составом электролита, в [11,16] - лично автором проведен анализ методов адаптивной идентификации и преимуществ их использования при исследовании ПЭС биообъекта, в [2,17,19] - лично автором разработана система сбора данных и алгоритмы обработки первичной измерительной информации, в [20] -лично автором проведен анализ методов принятия решений и разработаны нейросетевые алгоритмы построения решающей функции СППР.
Структура и объем работы. Диссертация состоит из введения, 4 глав, выводов по главам, заключения, библиографического списка использованной литературы и приложения. Основная часть работы изложена на 145 страницах, включая 51 рисунок, 84 формулы, 11 таблиц. Библиографический список содержит 107 наименований источников.
Заключение диссертация на тему "Система поддержки принятия решений по оценке активности воспалительных процессов на основании анализа пассивных электрических свойств биопроб"
Выводы по главе
1. Предложена обобщенная структурная схема построения СППР ОАВП на основании ПЭС биообъекта позволяющая выделить основные элементы данной СППР, их взаимосвязи и сформулировать основные требования, предъявляемые к каждому из них.
2. Предложены надежные и практичные конструкции двухэлектродно-го поляризующегося датчика и четырехэлектродного контактного датчика для исследования ПЭС биожидкостей, обеспечивающие высокую информативность измерений параметров ПЭС.
3. Предложено использование в СППР ОАВП на основании анализа ПЭС биообъекта, в качестве генератора возбуждающего тока, однобитного ЦАП с токовым выходом управляемого двоичными минимаксными кодовыми последовательностями имеющего простую конструкцию и позволяющего обеспечить высокую точность воспроизведения требуемой формы тестового сигнала на физическом уровне.
4. В результате расчета и оценки нестабильности характеристик аналоговых фильтров установлено, что современные средства аналоговой фильтрации не позволяют в полной мере удовлетворить требованиям высокоразрядных АЦП по подавлению высокочастотных составляющих сигнала и устранению эффекта наложения спектров и для обеспечения высокой информативности измерений требуется восстановление искаженных сигналов посредством цифровой фильтрации.
5. Разработана действующая Simulink - модель СППР ОАВП на основании анализа ПЭС биообъекта, реализующая ее программную часть, позволяющая проводить исследования ПЭС биообъекта в реальном масштабе времени, осуществлять быстрый и оперативный контроль, многократно повторять измерения, а так же - реализовать мониторинг состояния исследуемого биообъекта.
ЗАКЛЮЧЕНИЕ
В результате выполнения настоящей диссертационной работы были получены следующие результаты.
1. Предложена двухуровневая иерархическая модель ПЭС биообъекта, позволяющая реализовать эффективную обработку первичной измерительной информации, а так же интерпретировать данные измерений в терминах химического состава биообъекта.
2. Разработана адаптивная система на базе полигармонических тестовых сигналов с идеальной формой АКФ, алгоритма НСК и линейной параметрической модели типа ARX, обеспечивающая при минимальной вычислительной сложности, быструю сходимость и точную оценку высокоинформативных параметров ПЭС биообъекта.
3. Разработаны алгоритмы редукции измерений параметров ПЭС биообъекта, позволяющие скомпенсировать систематическую погрешность измерений, обусловленную несовершенством и нестабильностью характеристик аппаратной части СППР ОАВП.
4. Разработаны специализированные алгоритмы поддержки принятия решений на основе линейной решающей функции, формирующей обобщенный показатель активности протекания воспалительного процесса.
5. Разработана обобщенная структурная схема построения СППР ОАВП на основании ПЭС биообъекта, позволяющая выделить основные элементы данной СППР, их взаимосвязи и сформулировать основные требования, предъявляемые к каждому из них.
6. Разработана надежная конструкция двухэлектродного поляризующегося датчика для исследования ПЭС биожидкостей, обеспечивающая высокую информативность измерений параметров ПЭС.
7. Реализован и внедрен опытный образец СППР ОАВП на основании анализа ПЭС биообъекта, построенный на базе ПЭВМ и средств визуального моделирования Matlab - Simulink, позволяющий проводить исследования ПЭС биообъекта в реальном масштабе времени, осуществлять быстрый и оперативный контроль, многократно повторять измерения, а так же - реализовать мониторинг параметров ПЭС.
Библиография Киреев, Андрей Владимирович, диссертация по теме Системный анализ, управление и обработка информации (по отраслям)
1. Получение информации о параметрах и характеристиках организма и физические методы воздействия на него: Учебное пособие/ В.Г. Гусев. М.: Машиностроение, 2004. - 597с.
2. Лайт Р.У. Болезни плевры / Пер. с англ. М.: Медицина 1986; 376 с.
3. Путов Н.В. Плевриты. В кн.: Руководство по пульмонологии. Под ред. Н.В. Путова и Г.Б. Федосеева. - Л.: Медицина 1984. - С. 414-30.
4. Стручков В.И. Острый гнойный плеврит. В кн.: В.И. Стручков. Гнойная Хирургия. - М.: Медицина 1967. - С. 255-66.
5. Геращенко С.И., Никольский В.И. Применение джоульметрии для изучения динамики воспалительного процесса // Новые промышленные технологии. М. - 1993. - № 6 (260). - С. 23-26.
6. Гостищев В.К., Сажин В.П., Авдовенко А.Л. Перитонит. М.: Медицина 1992. -224 с.
7. Давыдов А.В. Использование импедансометрии в диагностике острого синусита, Бюлл. Сиб. Мед. -2002. -№1. -С. 101-106.
8. Калашник А.Ф. и др., Прогнозирование гнойных осложнений послеоперационных ран, Сов. Мед. -1983. №2. - С. 22-25.
9. Смирнов А.В., Цветков А.А. Анализ факторов, влияющих на погрешность измерения биоимпеданса. // Сборник трудов седьмой научно-практической конференции "Диагностика и лечение нарушений регуляции сердечно-сосудистой системы". Москва: 2005. - С. 61 - 66.
10. Элею-ро-химический импеданс/ З.Б. Стойнов, Б.М. Графов, Б.Н. Са-вова-Стойнова, В.В. Елкин М.: Наука, 1991. - 336 с.
11. Торнуев Ю.В., Хачатрян Р.Г., Хачатрян А.П. и др. Электрический импеданс биологических тканей. М.: ВЗПИ, 1990. -145 с.
12. Киреев А.В. Применение методов идентификации для контроля пассивных электрических свойств биообъекта // Инновационные технологии в экономике, информатике, медицине и образовании: Сб. статей IV Межрегиональной НПК, Пенза, 2007. -С. 105-107.
13. Дамаскин Б.Б., Петрий О.А. Введение в электрохимическую кинетику. М.: Высшая школа, 1983. -400 с.
14. Лопатин Б.А. Теоретические основы электрохимических методов анализа. М.: Высшая школа, 1986. - 296 С.
15. Захаров М.С., Баканов В.И., Пнев В.В. Хронопотенциометрия. М.: Химия, 1978. -200 с.
16. Худякова Т.А., Крешков А.П. Теория и практика кондуктометрическо-го и хронокондуктометрического анализа. М.: Химия, 1976. - 304 с.
17. Эме Ф. Диэлектрические измерения / Пер. с нем. М.: Химия, 1967. -223 с.
18. Надь 111. Б. Диэлектрометрия / Пер. с венг. Под ред. В. В. Малова. -М. "Энергия", 1976.-200 с.
19. Антонов В.Ф. и др. Биофизика: Учебник для студ. высш. Учеб. Заведений. М.: Гуманит. изд. центр ВЛАДОС, 1999. -288с.
20. Фридрихсберг Д. А. Курс коллоидной химии / Учеб. для вузов, 2-е изд., перераб. и доп. Л.: Химия, 1984. - 368 с.
21. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. -М.: Наука, 1982.-624 с.
22. Владимиров Ю.А., Рощупкин Д.И., Потапенко А.Я. Биофизика: Учебник. М.: Медицина, 1983. -272 с.
23. Гааль Э., Медьеши Г., Верецкеи Л. Электрофорез в разделении биологических макромолекул / Пер. с англ. М.: Мир, 1982. - 448 с.
24. Стромберг А.Г., Семченко Д.П. Физическая химия: Учеб. для хим. спец. вузов / Под ред. А.Г. Стромберга. 3-е изд., испр. и доп. - М.: Высшая школа, 1999. - 527 с.
25. Феттер К. Электрохимическая кинетика. М.: Химия, 1967. - 856 с.
26. Аверьянов А.Н. Система: философская категория и реальность. -М.: Мысль, 1976. -328с.
27. Романов В.Н. Системный анализ для инженеров. СПб: СЗГЗТУ, 2006.-186 с.
28. Эйкхофф П. Основы идентификации систем управления. М.: Мир, 1975.-321 с.
29. Советов Б. Я., Яковлев С. А. Моделирование систем. М.: Высшая школа, 1998. - 319 с.
30. Сизиков B.C. Устойчивые методы обработки результатов измерений. Учебное пособие. СПб.: «СпецЛит», 1999. - 240 с.
31. Льюнг Л. Идентификация систем. Теория для пользователя: пер. с англ. / Под ред. Я.З. Ципкина. М.: Наука 1991. -432 с.
32. Гольденберг Л.М. и др. Цифровая обработка сигналов: Справочник. -М.: Мир, 1989.-590 с.
33. Пупков К.А., Капалин В.И., Ющенко А.С. Функциональные ряды в теории нелинейных систем. М.: Наука, 1976. - 448 с.
34. Вольтерра В. Теория функционалов, интегральных и интегро-дифференциальных уравнений. М.: Наука, 1982, 304 с.
35. Сверкунов Ю.Д., Исаев А.Е. Идентификация нелинейных систем в классе обобщенных радиотехнических звеньев при гармоническом воздействии // Измерение, контроль, автоматизация. 1980, N 12, С 44-49.
36. Иванов А.И. Ортогональные преобразования при идентификации нелинейных динамических объектов. Челябинск, 1985, ЧПИ. -20 с. Рукопись деп. в ВИНИТИ 12.12.85, N 8617-В85.
37. Мармарелис П., Мармарелис В. Анализ физиологических систем (метод белого шума). М.: Мир, 1981. 480 с.
38. Первозванский A.A. Курс теории автоматического управления: Учеб. Пособие. М.: Наука. Главная редакция физико-математической литературы, 1986. -616 с.
39. Ли. Ю., Щецен М. Определение ядер Винера-Хопфа методом взаимной корреляции. "Техническая кибернетика за рубежом" М.: Машиностроение, 1968. - С. 166-185.
40. Иванов А.И., Иконников А.В., Сон В.А. К вопросу об оценке параметров нелинейного объекта по экспериментальным данным // Ленинграда 986, "Известия ЛЭТИ" вып. 376. С. 44-48.
41. Теоретические основы электротехники. Учебник для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. М.: Энергия, 1972. -200 с.
42. Блейхут Р. Быстрые алгоритмы цифровой обработки сигналов: Пер. с англ. М.: Мир, 1989. - 448 с.
43. Уидроу Б., Стирнз С. Адаптивная обработка сигналов: Пер. с англ. -М.: Радио и связь, 1989. -440 с.
44. С.Л. Марп-мл., Цифровой спектральный анализ и его приложения. -М.: Мир, 1990.-547 с.
45. Моисеев Н. Н., Иванилов Ю. П., Столярова Е. М. Методы оптимизации. М.: Наука, 1978г. 352 с.
46. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ.- М.: Мир, 1985. -509 с.
47. Емельянов С.В., Ларичев О.И. Многокритериальные методы принятия решений. М.: Знание, 1985. -32 с.
48. Белкин А.Р., Левин М.Ш. Принятие решений: комбинаторные модели аппроксимации информации. М.: Наука, 2000. - 272 с.
49. Истомина Т.В., Киреев А.В., Истомина Е.В. Особенности измерения и интерпретации параметров ПЭС биологических объектов // Методы, средства и технологии получения и обработки измерительной информации: труды Международной НТК, Пенза, 2008. -С. 73-80.
50. Денисов А.А. Информационные основы управления. Л.: Энерго-атомиздат, 1983. -72с.
51. Мандель И.Д. Кластерный анализ. М.: Финансы и статистика. 1988.- 176с.
52. Гвишиани Д.М. Организация и управление. М.: Наука, 1972. -265с.
53. Программа создания, внедрения и эффективного использования автоматизированных систем и средств вычислительной техники в МВД СССР на период до 2000 года. М.: МВД СССР, 1987. -75с.
54. Райков А.Н. Аналитическим службам информационные технологии. - М.: Ваш выбор №4 1994. - С.28-29.
55. Новицкий П.В., Основы информационной теории измерительных устройств, «Энергия», Ленингр. отд-ние, 1968.
56. Киреев А.В. Повышение информационных характеристик систем контроля ПЭС биообъекта // Радиоэлектроника, электротехника и энергетика: Тез. докл. XIV Междунар. НТК в 3-х т. М.: Изд. дом МЭИ, 2008. Т.1 - С. 247-248.
57. Пытьев Ю.П. Математические методы интерпретации эксперимента. М.: Высш. шк., 1989. - 351 с.
58. Пытьев Ю.П. Методы анализа и интерпретации эксперимента. М.: Изд-во МГУ, 1990.-288 с.
59. Шеннон К. Работы по теории информации и кибернетике. М.: Изд-во иностр. лит., 1963. - 829с.
60. Киреев А.В. Синтез оптимальной структуры электрической модели биообъекта // Современные информационные технологии: Труды Международной НТК, Пенза, 2007. -С. 161-165.
61. Киреев А.В. Выбор оптимальной структуры модели пассивных электрических свойств биообъекта при построении биометрических ИИС. Известия ЮФУ. Технические науки. Тематический выпуск. «Медицинские информационные системы» №5(82). Таганрог, 2008. -С. 64-68.
62. Потапов А.С. Распознавание образов и машинное восприятие на основе принципа минимальной длинны описания. СПб.: Политехника, 2007. - 547 с.
63. Akaike Н. A New Look at the Statistical Model Identification, IEEE Transaction on Automatic Control, AC-19. 1974. C. 716-723.
64. Schwarz G. Estimating the Dimension of a Model // The Annals of Statistics. 1978. -C. 461-464.
65. Ljung G. M. and Box G. E. P. On a Measure of Lack of Fit in Time Series Models // Biometrika. 1978. 65. P. 297-303.
66. Магнус Я.P., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. М.: Москва: Изд-во "Наука", 2001. - 636 с.
67. Киреев А.В. Моделирование динамических характеристик двойного электрического слоя // Современные информационные технологии: Труды Международной НТК, Пенза, 2008. -С. 88-90.
68. Истомина Т.В., Киреев А.В. Адаптивная идентификация пассивных электрических параметров биообъекта // Информационные и управленческие технологии в медицине: сборник статей Всероссийской НТК. Пенза, 2007. -С. 25-30.
69. Истомина Т.В., Киреев А.В. Основные преимущества методов параметрической идентификации в исследованиях ПЭС биообъекта // Медико-экологические информационные технологии 2008: сборник материалов XI Международной НТК, Курск, 2008. -С. 75-78.
70. Киреев А.В. Многопараметрическая система контроля ПЭС биообъекта. Вестник Рязанского государственного радиотехнического университета №2 (24). Рязань, 2008. -С. 19-25.
71. Джиган В.И. Многоканальные RLS- и быстрые RLS- алгоритмы адаптивной фильтрации //Успехи современной радиоэлектроники. -2004. -№11.
72. Варакин Л.Е. Системы связи с шумоподобными сигналами. М.: Радио и связь , 1985. - 384 с.
73. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. -Л.: Энергоатомиздат, 1985.-248с.
74. Рапопорт М.Б. Вычислительная техника в полевой геофизике: Учебник для вузов. М.: Недра, 1993,- 350 с.
75. Многокритериальные задачи принятия решений / Под ред. Д.М. Гвишиани и С.В. Емельянова. М.: Машиностроение, 1978. - 192 с.
76. Дрейпер Н., Смит Г. Прикладной регрессионный анализ: В 2-х кн. Кн. 1 / Пер. с англ. 2-е изд., перераб. и доп. - М.: Финансы и статистика, 1986. - 366 е., Кн. 2/ Пер. с англ. - 2-е изд., перераб. и доп. - М.: Финансы и статистика, 1987. -351 с.
77. Гусаров В.М. Статистика: Учебное пособие / В.М. Гусаров.- М.: ЮНИТИ-ДАНА, 2001.-463с.
78. Гантмахер Ф.Р. Теория матриц. М.: Наука, 1966. - 576 с.
79. Oja, Е. "A simplified neuron model as a Principal Component Ana-lyzer", J. Math. Biology, 16, 267-273, 1982.
80. Галушкин А.И. Теория нейронных сетей. Кн.1: Учеб. Пособие для вузов / Общая ред. А.И. Галушкина.- М.: ИПРЖР, 2000.- 416 с.
81. Никитина Г.С., Чистова Ю.С., Киреев А.В. Выбор структуры нейронной сети для распознавания человека // Безопасность информационных технологий: Тр. НТК, Пенза 2001. С. 38-40.
82. Осовский С. Нейронные сети для обработки информации. М.: Финансы и статистика, 2002 г. -344 с.
83. Классификация и кластер. / Под ред. Дж. Вэн Райзина. М.: Мир, 1980,-390 с.
84. Дубров A.M., Мхитарян B.C., Трошин Л.И. Многомерные статистические методы. М.: Финансы и статисткиа, 2000. - 352 с.
85. Мэйндоналд Дж. Вычислительные алгоритмы в прикладной статистике: Пер. с англ. / Под ред. Е.Д. Демиденко. -М.: Финансы и статистика, 1988.-350 с.
86. Математические и компьютерные основы криптологии. Учебное пособие. М.: Новое знание, 2003. - 384 с.
87. Kamke Е., Differentialgleichungen: Losungsmethoden und Losungen, I, Gewohnliche Differentialgleichungen, B. G.Teubner, Leipzig, 1977.
88. Истомина T.B., Киреев A.B., Истомина E.B., Степичев И.В. Оценка оптимальной структуры модели электрокардиосигнала типа ARMA // Информационные и управленческие технологии в медицине: сборник статей Всероссийской НТК. Пенза, 2008. -С. 31-33.
89. Jeffrey S. Blair, The Biomedical Engineering handbook, 1995, pp. 26502659.
90. Киреев А.В. Система контроля пассивных электрических свойств биообъекта // Биотехнические, медицинские и экологические системы и комплексы, БИОМЕДСИСТЕМЫ-2007: Материалы XX Всероссийской НТК, Рязань, 2007. -С. 12-17.
91. Андреев B.C., Попечителев Е.П. Лабораторные приборы для исследования жидких сред. Л.: Машиностроение 1981г. - 311с.
92. Трезубов В.Н., Штейнгарт М. 3., Мишнев Л.М. Ортопедическая стоматология. Прикладное материаловедение. СПб: Спец. литература, 1999.-324 с.
93. Геращенко С.И., Киреев А.В., Чистова Ю.С., Геращенко С.М. Использование четырехэлектродного электрохимического датчика в биометрических исследованиях // Безопасность информационных технологий: Тр. НТК, Пенза 2001. С. 45-47.
94. Киреев А.В. Четырехэлектродные контактные датчики // Современные охранные технологии и средства обеспечения комплексной безопасности объектов: Материалы IV Всерос. НПК Пенза: Инф. -изд. центр ПГУ, 2002. -С. 116-118.
95. Тирней Дж., Рейдер Ч., Голд Б. Цифровые синтезаторы частоты. -Зарубежная радиоэлектроника, 1972, №3, с.57-74.
96. Кочемасов В.Н., Фадеев А.Н. Цифровые вычислительные синтезаторы двухуровневых сигналов с компенсацией фазовых ошибок. -Радиотехника, 1982, №10, с. 15-19.
97. Москатов Е. А. Справочник по полупроводниковым приборам. Издание 2. Таганрог, 219 с.
98. Лэм Г. Аналоговые и цифровые фильтры: Расчет и реализация: Пер. с англ. 1982. 592 с.
99. Гультяев А. Визуальное моделирование в среде MATLAB: учебный курс. СПб.: Питер, 2000. - 432 с.
-
Похожие работы
- Информационный подход к анализу биосубстратов и формирование систем поддержки принятия решений на его основе
- Метод, модели и технические средства для неинвазивного анализа биоматериалов на основе многочастотной импедансометрии и нейросетевого моделирования
- Нейросетевой динамический анализ биологических тканей и жидкостей
- Системы измерений электрических параметров биологических объектов при адаптивной многоканальной электростимуляции
- Джоульметрические системы оценки состояния биологических объектов
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность