автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.01, диссертация на тему:Синтез цифровых автономных систем управления многосвязными нестационарными объектами на основе методов теории чувствительности

кандидата технических наук
Свиридов, Дмитрий Алексеевич
город
Воронеж
год
2015
специальность ВАК РФ
05.13.01
Автореферат по информатике, вычислительной технике и управлению на тему «Синтез цифровых автономных систем управления многосвязными нестационарными объектами на основе методов теории чувствительности»

Автореферат диссертации по теме "Синтез цифровых автономных систем управления многосвязными нестационарными объектами на основе методов теории чувствительности"

На правах рукописи

СВИРИДОВ ДМИТРИЙ АЛЕКСЕЕВИЧ

СИНТЕЗ ЦИФРОВЫХ АВТОНОМНЫХ СИСТЕМ УПРАВЛЕНИЯ МНОГОСВЯЗНЫМИ НЕСТАЦИОНАРНЫМИ ОБЪЕКТАМИ НА ОСНОВЕ МЕТОДОВ ТЕОРИИ ЧУВСТВИТЕЛЬНОСТИ

Специальности: 05.13.01 - Системный анализ, управление и обработка информации (пищевая и химическая промышленность) 05.13.18 — Математическое моделирование, численные методы и комплексы программ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

1 з МАЙ 2015

Воронеж - 2015

005568479

005568479

Работа выполнена в ФГБОУ ВПО «Воронежский государственный университет инженерных технологий» (ФГБОУ ВПО «ВГУИТ»),

Научный руководитель:

Научный консультант:

Официальные оппоненты:

Ведущая организация:

доктор технических наук, профессор Кудряшов Владимир Сергеевич (ФГБОУ ВПО «ВГУИТ»)

кандидат технических наук, доцент Рязанцев Сергей Васильевич (ФГБОУ ВПО «ВГУИТ»)

Матвейкин Валерий Григорьевич

доктор технических наук, профессор, ФГБОУ ВПО «Тамбовский государственный технический университет», заведующий кафедрой информационных процессов и управления

Магергут Валерий Залманович

доктор технических наук, профессор, ФГБОУ ВПО «Белгородский государственный технологический университет им. В.Г. Шухова», профессор кафедры технической кибернетики

ФГБОУ ВПО «Воронежский государственный университет»

Защита состоится «21» мая 2015 г. в 15 ч 30 мин на заседании диссертационного совета Д 212.035.02 при ФГБОУ ВПО «ВГУИТ» по адресу: 394036, г. Воронеж, проспект Революции, д. 19, конференц-зал.

Отзывы (в двух экземплярах) на автореферат, заверенные гербовой печатью учреждения, просим отправлять в адрес диссертационного совета Д 212.035.02.

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВПО «ВГУИТ». Полный текст диссертации размещен в сети «Интернет» на официальном сайте ФГБОУ ВПО «ВГУИТ» http://www.vsuet.ru «10» марта 2015 г. Автореферат размещен на сайтах Высшей аттестационной комиссии при Минобрнауки РФ http://vak.ed.gov.ru и ФГБОУ ВПО «ВГУИТ» http://4vww.vsuet.ni «20» марта 2015 г. Автореферат разослан «16» апреля 2015 г.

Ученый секретарь

диссертационного совета Д 212.035.02 -

кандидат технических наук, доцент /^¿¿•¿■а**^-' И.А. Хаустов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Объекты пищевой и химической технологий характеризуются взаимосвязью технологических величин и нестационарностью динамических свойств. Применение традиционных систем, не учитывающих данных особенностей, не обеспечивает высокого качества управления и выполнение принципа автономности.

Решение данной задачи путем проведения адаптации связано со значительными трудностями: длительность и трудоемкость проведения текущей идентификации многосвязного объекта и перенастройки управляющей части, необходимость наличия значительных вычислительных мощностей, а также определение момента проведения данной процедуры. Перечисленные обстоятельства значительно снижают преимущества, получаемые от проведения адаптации.

Одним из эффективных методов решения является применение методов теории чувствительности, обеспечивающих заданное качество управления в условиях нестационарности, без проведения адаптации.

К настоящему времени известен целый ряд работ, таких ученых как Цыпкин ЯЗ., Красовский A.A., Изерман Р., Розенвассер E.H., Юсупов P.M., Ермаченко А.И. и других, заложивших теоретические основы анализа и синтеза дискретных систем управления низкой чувствительности и адаптивных систем. Однако существующие методы расчета в большей степени относятся к одноконтурным и простейшим связным системам.

Подходы к синтезу низкочувствительных систем заключаются в изменении структуры управляющей части, при котором меняется чувствительность к вариациям параметров нестационарного объекта. Наиболее эффективный из них заключается во введении дополнительных отрицательных обратных связей с корректирующими звеньями, охватывающих систему управления.

Использование данного подхода при расчете многосвязных систем низкой чувствительности приводит к выполнению значительного объема аналитических преобразований и громоздкости передаточных функций корректирующих звеньев, существенно затрудняя расчет, моделирование, реализацию и использование систем данного типа. Кроме того, описанные в литературных источниках подходы к синтезу низкочувствительных систем не учитывают обеспечение независимого управления взаимосвязанными параметрами в условиях нестационарности.

Существенным недостатком систем низкой чувствительности является их использование в узком диапазоне вариаций динамических свойств объекта. Расширение области их применения связано с адаптацией управляющей части. Однако, наличие корректирующих звеньев и сложность математического описания требуют их учета при выполнении текущей иден-

тификации нестационарного объекта и на ее основе пересчета управляющей части системы, включая регуляторы, компенсаторы перекрестных связей и корректирующие звенья.

Цель и задачи диссертационной работы. Целью диссертационной работы является разработка подхода, методики и алгоритмов синтеза и моделирования адаптивных автономных цифровых систем управления низкой чувствительности, обеспечивающих требуемое качество управления в широком диапазоне вариаций динамических свойств многосвязного объекта.

Для достижения поставленной цели был сформулирован и решен ряд задач исследования:

1) разработка структуры адаптивных автономных цифровых систем управления низкой чувствительности и алгоритма их функционирования в условиях нестационарности;

2) разработка подхода, метода, алгоритмов и программного обеспечения синтеза автономных цифровых систем управления низкой чувствительности, обеспечивающих независимое управление выходными параметрами при вариациях динамических свойств объекта в заданном рабочем диапазоне и исключающих перенастройку управляющей части системы;

3) разработка подхода к адаптации автономных цифровых систем управления низкой чувствительности и быстродействующего алгоритма текущей идентификации нестационарного многосвязного объекта;

4) разработка методики моделирования корректирующих звеньев и компенсаторов перекрестных связей адаптивной автономной цифровой системы управления низкой чувствительности;

5) разработка прикладного программного обеспечения расчета и моделирования адаптивных автономных цифровых систем управления низкой чувствительности, исследование работоспособности и достоверности предложенных подходов, методики, алгоритмов и систем путем постановки вычислительных экспериментов на примере непрерывного объекта химической технологии.

Методы исследования. При выполнении диссертационной работы применялись системный анализ, теория автоматического управления аналоговых и цифровых систем, методы теории чувствительности, методы математического моделирования, структурного синтеза и параметрической идентификации. Общей методологической основой является системный подход.

Научная новизна. 1. Метод расчета многосвязной системы управления низкой чувствительности на основе предложенного подхода компенсации дополнительного движения нестационарного объекта, отличающийся охватом его каналов

корректирующими звеньями и обеспечивающий автономное управление взаимосвязанными параметрами.

2. Алгоритм оптимизации регуляторов автономных цифровых систем управления низкой чувствительности, обеспечивающих заданное качество управления выходными величинами в условиях нестационарности на основе формирования обобщенного объекта.

3. Подход к адаптации автономных цифровых систем управления низкой чувствительности и алгоритм текущей идентификации нестационарного многосвязного объекта, который основан на использовании функций чувствительности, позволяющих повысить скорость получения результатов идентификации.

4. Методика численного моделирования корректирующих звеньев и компенсаторов перекрестных связей адаптивной автономной цифровой системы управления низкой чувствительности на основе декомпозиционного подхода, исключающая необходимость аналитических преобразований и обеспечивающая необходимую точность результатов моделирования.

5. Прикладное программное обеспечение, позволяющее осуществить расчет, моделирование и исследование адаптивных автономных цифровых систем управления низкой чувствительности.

Практическая значимость. Разработанные алгоритмы, методика и созданный на их основе пакет программ синтеза и реализации адаптивных автономных цифровых систем управления низкой чувствительности многомерными нестационарными объектами использованы на ЗАО «Сибур-Химпром» г. Пермь (акт об использовании от 17.02.2015 г.). Это позволило автоматизировать этапы расчета и моделирования управляющей части многосвязной цифровой системы управления низкой чувствительности и повысить качество управления процессами ректификации за счет применения разработанного программного обеспечения.

Соответствие диссертации паспортам научных специальностей. Диссертация соответствует паспорту специальности 05.13.01 - «Системный анализ, управление и обработка информации (пищевая и химическая промышленность)» по п. 4 области исследования: «Разработка методов и алгоритмов решения задач системного анализа, оптимизации, управления, принятия решений и обработки информации», п. 5 области исследования: «Разработка специального математического и алгоритмического обеспечения систем анализа, оптимизации, управления, принятия решений и обработки информации», п. 7 области исследования: «Методы и алгоритмы структурно-параметрического синтеза и идентификации сложных систем»; а также паспорту специальности 05.13.18 - «Математическое моделирование, численные методы и комплексы программ» по п. 3 области исследования: «Разработка, обоснование и тестирование эффективных вычислительных методов с применением современных компьютерных технологий», п. 4 области исследования:

«Реализация эффективных численных методов и алгоритмов в виде комплексов проблемно-ориентированных программ для проведения вычислительного эксперимента».

Апробация работы. Основные результаты по теме диссертационной работы доложены на международных научных конференциях «Математические методы в технике и технологиях ММТТ-24, 25, 26, 27» в 20112014 годах (г. Саратов, г. Нижний Новгород, г. Тамбов); «Современные проблемы прикладной математики, теории управления и математического моделирования (ПМТУММ-2011)» в 2011 году (г. Воронеж); I, II и III международных научно-практических интернет-конференциях «Моделирование энергоинформационных процессов» в 2013-2015 годах.

Публикации. По теме диссертационной работы опубликовано 20 печатных работ, в том числе 7 статей (из них 4 статьи в периодических изданиях, рекомендуемых ВАК РФ при защите кандидатских и докторских диссертаций) и 3 свидетельства о регистрации программ.

Личный вклад соискателя. В работах [1-16] автором предложена классификация нестационарности и на ее основе использование адаптивной автономной цифровой системы управления низкой чувствительности; предложен способ введения корректирующих звеньев; разработан алгоритм текущей идентификации объекта управления; предложена методика моделирования звеньев управляющей части многосвязной системы низкой чувствительности; разработано программное обеспечение и на его основе осуществлено машинное моделирование адаптивной автономной системы низкой чувствительности, в ходе которого показана эффективность ее использования по сравнению с традиционной автономной системой, при расчете которой принималось допущение о стационарности объекта.

Структура и объем работы. Диссертация состоит из введения, четырех глав с выводами, заключения, библиографического списка и приложения. Материал изложен на 126 страницах, содержит 42 рисунка и 14 таблиц. Библиографический список включает 121 наименование.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, перечисляются цели и задачи исследования, научная новизна и практическая значимость работы.

В первой главе приведен анализ работ по синтезу многомерных автономных цифровых систем управления нестационарными объектами со связанными параметрами. На его базе обоснована необходимость разработки математического, алгоритмического и соответствующего программного обеспечения (ПО) синтеза и моделирования адаптивных автономных цифровых систем управления (АвЦСУ) низкой чувствительности. В результате обзора сформулированы цели и задачи исследования.

Вторая глава посвящена разработке подхода к синтезу АвЦСУ низкой чувствительности, в рамках которого предложены подход, метод, и алгоритм расчета передаточных функций (ПФ) элементов. Разработан алгоритм функционирования адаптивной АвЦСУ низкой чувствительности в условиях дрейфа параметров объекта.

В зависимости от степени вариаций параметров модели многосвязного объекта предлагается использование одной из АвЦСУ: традиционной, низкочувствительной и адаптивной. Величина текущей нестационарности объекта управления (ОУ) определяется по сумме квадратов невязок (СКН) между текущими и номинальными переходными процессами (ПП):

Ч/ = £а[-'1-Ч/т , 7 = 1, г

(1)

где =Х(зГ'Ш-;Г"[Я)2 - значение СКН /-го выхода АвЦСУ;

номЦ]

у:-—»' - значения У-го выхода традиционной АвЦСУ при номинальных параметрах модели ОУ; у/""^ - значения /-го выхода АвЦСУ при нестационарных параметрах модели ОУ, /=[1, N ]; г - индекс такта квантования; Ы— общее число тактов наиболее длительного из ПП; - весовой коэффициент у-го выхода ОУ; г - размерность ОУ.

Переход от одной АвЦСУ к другой осуществляется путем сравнения текущего значения СКН (1) с пороговыми - Х\'хкр"т и ЧУ'7""", определяемыми на основе моделирования АвЦСУ и требований к качеству управления технологическими параметрами на этапе проектирования системы [13]. Если Ч\крит используется традиционная АвЦСУ, в случае Ч>>ч>1кРит включаются звенья низкой чувствительности, а при *р>*р2*Ри'л задействует-ся контур адаптации.

Предлагаемый подход к синтезу АвЦСУ низкой чувствительности включает два этапа. На первом каналы многосвязного нестационарного объекта охватываются отрицательными обратными связями (рис. 1) с корректирующими звеньями (КЗ) [2, 9].

На основе матричного описания объекта, охваченного КЗ:

у = (1+^0+ мгоуцга)-\ *{уГ0+Ш0)-и

где у - вектор выходов ОУ; и - вектор выходов управляющей части системы;

Рис. 1. Структурная схема ОУ с корректирующими контурами.

I - единичная матрица; \У0 - матрица номинальных ПФ объекта по каналам; ¡¥кз - матрица ПФ корректирующих звеньев; АIV0 - матрица вариаций ПФ объекта по каналам;

и условия компенсации дополнительного движения объекта (3):

(1 + (1Го+МГо).гга)"' • № + А1¥0) = \¥а, (3)

получено матричное выражение расчета ПФ корректирующих звеньев: ={Ж0+АЖ0У'-АЖ0. = {АЖа = Па ■ Аво} =

При этом вариации ПФ каналов объекта А\¥а представлены произведением матриц функций чувствительности (ФЧ) Па и заданных (расчетных) вариаций параметров модели объекта А0„. Выражения ФЧ рассчитываются путем дифференцирования дискретных ПФ каналов ОУ по соответствующим нестационарным параметрам.

Второй этап синтеза АвЦСУ низкой чувствительности - расчет автономных компенсаторов (АК) и основных регуляторов, предлагается осуществлять на основе математического описания обобщенного объекта (рис. 1). Исходя из (2) рассчитывается матрица ПФ обобщенного объекта:

ж;6- = (/.+(1Г0+Д 1ГВ ). и^)"' • (ТГВ+АЩ,). (5)

Анализ выражения (5) позволяет предложить два варианта описания обобщенного объекта. Согласно допущению о полной компенсации дополнительного движения ОУ, в качестве первого варианта принимается матрица ПФ многосвязного объекта с номинальными параметрами:

К6'" (6)

Использование (6) позволяет упростить расчет АК и оптимизацию цифровых регуляторов.

По второму варианту в качестве описания обобщенного объекта используется матрица ПФ, получаемая непосредственно по выражению (5) при заданных (расчетных) вариациях параметров ПФ каналов ОУ. По сравнению с первым вариантом преимуществом является получение настроек регуляторов и АК, обеспечивающих повышение качества ПП.

Поведение АвЦСУ низкой чувствительности (рис. 2) в условиях нестационарности описывается системой матричных уравнений (7):

у = и = Жк-ис; ис=Жр-е3; е3=у3-у, (7)

где у3 - вектор задающих воздействий; е - вектор суммарных входных воздействий объекта; е - вектор ошибок управления; ис - вектор выходов регуляторов; IVк - матрица ПФ автономных компенсаторов; \Ур - диагональная матрица ПФ регуляторов.

Рис. 2. Структурная схема АвЦСУ низкой чувствительности. Из выполнения условия автономности следует:

ууавт _ ууобщ с_ает ^^

где \У"ет - вектор, элементами которого являются ПФ автономных компенсаторов; \у°6щ-авт - матрица, элементами которой являются ПФ каналов обобщенного объекта; \уоо6щ--авт - вектор, элементами которого являются ПФ перекрестных каналов обобщенного объекта.

При первом варианте обобщенного ОУ процедуры расчета ПФ автономных компенсаторов и основных регуляторов АвЦСУ низкой чувствительности будут такими же, как и в традиционной АвЦСУ [4].

Оптимизация регуляторов АвЦСУ низкой чувствительности при втором варианте описания обобщенного ОУ осуществляется в два этапа. На первом - регуляторы оптимизируются в традиционной АвЦСУ по критерию минимума интегрально-квадратичной ошибки. Найденные значения используются на втором этапе в качестве начальных приближений при оптимизации регуляторов в АвЦСУ низкой чувствительной. Критерием оптимизации в этом случае является минимум СКН (9) между номинальными ПП и ПП автономной системы управления низкой чувствительности при втором варианте описания обобщенного объекта:

Т = Е" • Е'у „ >шш, (9)

мтр ект & р ' V /

где Ч* - вектор критерия СКН по каждому выходу объекта; , Е*и -

матрица и вектор соответственно, элементами которых являются значения невязок для выходов АвЦСУ низкой чувствительности; ©^ - матрица, элементами которой являются настроечные параметры цифровых регуляторов.

Кроме того, разработанный подход к обеспечению принципа автономности в условиях нестационарности на основе зависимости (8) позволяет осуществить одновременную оптимизацию всех основных регуляторов с использованием одного из численных методов. В процессе оптимизации моделирование АвЦСУ низкой чувствительности осуществляется на основе имеющейся декомпозиционной модели (7).

В третьей главе на основе подхода косвенной идентификации многосвязного объекта разработаны алгоритм и математическое описание текущей идентификации параметров модели несвязной системы управления. Разработан метод численного моделирования КЗ и АК адаптивной системы управления низкой чувствительности без получения их ПФ в явном виде. Приведена структура ПО синтеза, моделирования и исследования традиционных и низкочувствительных автономных систем, а также проведения процедуры адаптации.

При значительных вариациях динамики объекта, приводящих к снижению эффективности использования автономной системы низкой чувствительности, адаптация осуществляется в два этапа:

1) идентификация замкнутой системы и на ее основе расчет параметров основных и перекрестных каналов многосвязного объекта;

2) перенастройка управляющей части системы, включающей цифровые регуляторы, АК и КЗ по уточненным параметрам моделей каналов объекта.

Численные значения параметров АК и КЗ напрямую зависят от точности описания ОУ, что в условиях нестационарности приводит к нарушению принципа автономности и появлению дополнительного движения. В этих условиях использование КЗ и АК является неэффективным. На первом этапе идентификации для упрощения процедуры предлагается исключить КЗ и АК, перейдя к несвязной системе управления (НСУ) (рис. 3).

Алгоритм идентификации параметров НСУ [1, 5, 6], основан на использовании ФЧ, получаемых при совместном решении системы дифференциальных уравнений, описывающей поведение НСУ:

сИХ/А = Р(Х,г,а), Х(10) = х0, (10)

Рис. 3. Структурная схема НСУ. [У = Н-Х,

где а - вектор параметров НСУ; X - вектор переменных состояния НСУ; (ЗХ/Ж - вектор производных переменных состояния НСУ по времени; г, а) — вектор правых частей дифференциальных уравнений системы в

форме Коши; Х0 - вектор начальных условий; У - вектор выходных величин НСУ; Я - матрица наблюдаемости; и систем дифференциальных уравнений чувствительности:

\с1ик/с11 = р-ик+ск,

£/*('„) = о.

где р — квадратная матрица частных производных элементов вектора Р{Х, а) по переменным состояния НСУ при а=а0; а0 - вектор номинальных идентифицируемых параметров НСУ; с* - вектор частных производных элементов вектора Г(Х, г, а) по к-му параметру НСУ при а=а0; ик - вектор частных производных элементов вектора X по к-иу параметру НСУ (вектор ФЧ) при «=а0; с1ик/Ж — вектор производных элементов вектора ФЧ по времени при а=а0; ик(1п) - вектор начальных условий [1], А=[1, от]; т - число параметров НСУ.

Из результата совместного решения (10) и (11) формируется матрица чувствительности (12):

и = [ии...,ит]. (12)

При известных Х{ао), и и при малом по норме векторе Да справедливо:

Х{1,а0+Аа) = Х(!,а0) + и-Аа. (13)

Задача идентификации сводится к оценке вектора Да по векторам У, Х({, а0) и матрицы чувствительности С/. Рассмотрим функционал:

--\Kv-Ytdt, (14)

где Уизм - вектор измеренных значений выходных величин НСУ. Для нахождения У в уравнении (14) воспользуемся выражением (13):

У = Н-ХЦ,а0+Асс) = Н-Х{1,а0)+Н-и-Асс . (15)

Получим Да путем минимизации функционала (14) после подстановки в него выражения (15):

Аа = В~1 - С. (16)

г г

где В = Цвг-С)с//; С = ¡(вТ-АУ)с/Г; в = Н-и; АУ = У^-Н-Х((,а0). о о

Используя формулы взаимосвязи параметров ПФ замкнутой системы, регуляторов и каналов ОУ, рассчитываются непрерывные параметры ПФ моделей каналов объекта после идентификации параметров НСУ. Далее осуществляется переход к дискретному описанию объекта. Затем выполняется адаптация управляющей части АвЦСУ низкой чувствительности.

Анализ зависимостей расчета КЗ (4), и АК (8) показывает, что их ПФ являются отношением сумм произведений ПФ каналов объекта, ФЧ, и

расчетных вариаций параметров. Поскольку ПФ корректирующих звеньев входят в описание обобщенного ОУ и АК, это значительно усложняет структуру ПФ этих элементов.

Использование общепринятого подхода к моделированию системы, связанного с получением в явном виде ПФ и на их основе разностных уравнений элементов, приводит к значительному объему аналитических преобразований. Кроме того, требуются вычисления результирующих коэффициентов с высокой точностью, что зависит от разрядной сетки ЭВМ и не всегда выполнимо. В этом случае снижение точности получаемой модели системы приводит к недостоверности результатов моделирования, невыполнению принципа автономности и снижению качества ПП.

Исходя из сказанного, предлагается методика численного моделирования и реализации элементов и адаптивной АвЦСУ низкой чувствительности в целом, заключающаяся в представлении системы в виде последовательно-параллельного соединения элементарных звеньев.

Анализ ПФ корректирующих звеньев и АК позволяет представить их в виде последовательного соединения двух элементов (рис. 4).

8

Рис. 4. Схема КЗ (АК) в виде последовательного соединения: и - вход КЗ (АК); g - выход звена с ПФ IV4(г); у - выход звена с ПФ \IWiz)-, И/3(г) - числитель и знаменатель ПФ корректирующего звена (АК).

Элемент с ПФ ¡У(г) (рис. 4) представим в виде параллельного соединения цепочек, представляющих собой последовательное соединение элементов, ПФ которых являются сомножителями слагаемых числителя. Например, для корректирующего звена двумерной АвЦСУ (рис. 5).

ПФ

41][1]

3

у=[1, 6], /=[1, 3], входящие в последовательно-параллельное соединение (рис. 5), являются номинальными ПФ каналов не-

„ , „ стационарного ОУ Рис. 5. Схема соединения элементов (ПФ),

" __ 4 " или ПФ элементов

входящих в числитель ПФ корректирующего звена. мятп д у/

Мц1 иПЦш ¿Л Ут0л

Выход соединения получают последовательным вычислением выходов элементов цепочек, начиная с первых, которые в дальнейшем используются как входы последующих элементов. Выходы последних элементов суммируются, определяя искомое значение g.

Представление знаменателя КЗ основано на обращении сигналов входа и выхода (рис. 6): Ь'

\IW\s)

У

О О

1

g Ж' (2)

1 У

■.IV'(г)

Рис. 6. Способ расчета выхода звена с ПФ \IWiz) на основе инвертирования направления сигналов «вход-выход».

Данный подход позволяет избавиться от дробно-рационального вида ПФ \IWiz) и представить ее в виде последовательно-параллельного соединения элементов, аналогично числителю. Существенным отличием является то, что известна величина выхода g и требуется найти вход у, для чего получена соответствующая формула и разработан алгоритм.

Анализ ПФ автономных компенсаторов при втором варианте обобщенного ОУ показывает, что слагаемые полиномов числителя и знаменателя содержат повторяющиеся ПФ. Отсюда АК представляются соединением, повторяющийся элемент которого рассчитывается однократно, а его выход подается на входы нескольких цепочек.

На основе предложенных математического и алгоритмического обеспечений разработано ПО синтеза и моделирования адаптивных АвЦСУ низкой чувствительности [14-16], включающее подсистемы:

1) ввода номинальных значений коэффициентов непрерывной модели объекта и их вариаций, и перехода от непрерывной модели ОУ к дискретной;

2) расчета управляющей части АвЦСУ низкой чувствительности, включающей КЗ, АК и цифровые регуляторы;

3) моделирования традиционной АвЦСУ и низкочувствительной АвЦСУ;

4) адаптации, состоящей из текущей идентификации ОУ и перенастройки управляющих частей рассматриваемых систем управления;

5) представления результатов моделирования в виде графиков ПП систем управления и значений показателей качества.

Структура разработанного пакета программ представлена на рис. 7.

Пакет программ

Подсистема ввода исходных данных

Подсистема расчета звеньев АвЦСУ

Подсистема моделирования АвЦСУ

Подсистема адаптации АвЦСУ

Подсистема представления результатов

Рис. 7. Структура прикладного ПО.

Четвертая глава посвящена исследованию работоспособности и эффективности предложенных подходов, методики, алгоритмов и ПО на основе машинного моделирования адаптивной АвЦСУ низкой чувствительности процессом экстрактивной ректификации бутилен-дивинильной фракции в производстве бутадиена [4].

На первом этапе изучалось влияние нестационарности объекта на ПП традиционной АвЦСУ. Непрерывные параметры модели объекта были увеличены на 30% по модулю относительно номинальных значений. Задающие воздействия подавались одновременно (эксперимент №1) и порознь (эксперимент №2 - только по первому входу, эксперимент №3 -только по второму входу). На графиках ПП (рис. 8) по осям ординат отложены значения выходов в приращениях.

5

О 50 ¡00 !5С

"а)

о $о ¡аз ¿«& ;•>; 2» .»:<• .<*?

в)

l-Bl.Sn«

СО

/ \

/ 6)

/

/

1

Г. ЛИН

»С 2» УЛ

-б)

уИ.Н. а

© г мнн

200 253

5 Г)

/ \

/ V

\ / '7

\ V <ь

г.™.

Д)

>1-3, *»мас

(0

; / \

/ (я

/

/

-1

/, ыин

е)

Рис. 8. Графики ПП традиционной АвЦСУ: а), в), д) - первый выход;

б), г), е) - второй выход; а), б) - эксперимент №1;

в), г) — эксперимент №2; д), е) - эксперимент №3;

1 - ПП при вариации параметров модели ОУ; 2 - номинальный ПП. Таблица 1. Значения СКН традиционной Критерием оценки влияния

АвЦСУ в условиях нестационарности нестационарности на ПП является

СКН между текущими и номинальными переходными процессами (таблица 1).

Анализ переходных процессов АвЦСУ (рис. 8) и значений

№ Значения СКН

эксп. 1-й выход 2-й выход

1 2,079 0,402

2 1,765 0,001

3 0,027 0,373

СКН (таблица 1) показывает ухудшение качества управления (увеличение СКН) и невыполнение принципа автономности из-за нестационарности динамических свойств многосвязного объекта (рис. 6, г), д)).

При проверке предложенного подхода к расчету АвЦСУ низкой чувствительности моделировались три системы данного типа:

1-й: АК и регуляторы получены на основе первого варианта математического описания обобщенного объекта.

2-й: расчет АК осуществляется на основе второго варианта описания обобщенного объекта. В качестве настроек регуляторов использовались значения, полученные при расчете традиционной АвЦСУ.

3-й: помимо расчета по предложенным методикам КЗ и АК согласно второму варианту описания обобщенного объекта проведена оптимизация настроек цифровых регуляторов по критерию минимума СКН.

Во всех случаях осуществлен охват ОУ корректирующими звеньями, рассчитанными согласно предложенному методу.

Нестационарность ОУ имитировалась путем увеличения параметров непрерывных моделей каналов объекта в диапазоне от нуля до 25% с шагом 5% (коэффициенты усиления уменьшались по модулю, постоянные времени увеличивались). При расчете КЗ учитывалась 15% вариация непрерывных параметров модели объекта.

1 (расчетные"") I вариашш Г у

ч (Т! / /

\ \ @

п / V 2

Вариация непрерывных параметров по модулю, ■

а)

¥ ]

V [■расчетные 1 [ вариашш \---'

5 т4

№ / <Е>

(Г <1 * *

б)

Вариация непрерывных параметров п

в)

Вариация непрерывных параметров п

Рис. 9. Графики зависимости СКН от вариаций непрерывных параметров модели объекта в традиционной АвЦСУ и АвЦСУ низкой чувствительности: а), в), д) - первый выход; б), г), е) - второй выход; а), б) -эксперимент №1; в), г) - эксперимент №2; д), е) - эксперимент №3; 1 - традиционная АвЦСУ; 2 - АвЦСУ низкой чувствительности первого типа; 3 - АвЦСУ низкой чувствительности второго типа; 4 -АвЦСУ низкой чувствительности третьего типа.

Результаты исследования влияния нестационарности каналов двумерного объекта на качество ПП в традиционной АвЦСУ и различных типов АвЦСУ низкой чувствительности, представлены графиками (рис. 9) зависимости СКН от величины текущей вариации.

Как видно из графиков (рис. 9) положительный эффект от использования АвЦСУ низкой чувствительности любого из типов достигается при вариациях, лежащих в определенной окрестности расчетной нестационарности. При вариациях, лежащих за пределами данной окрестности, качество управления в АвЦСУ низкой чувствительности хуже, чем в традиционной (левее) или не удовлетворяет требуемым условиям (правее).

Для определения момента перехода от традиционной к АвЦСУ низкой чувствительности и момента проведения адаптации системы необходимо рассчитать два пороговых значения СКН.

Для определения первого порогового значения 4*1крит предлагается использовать ординаты точек пересечения графиков зависимости СКН от величины текущей вариации традиционной АвЦСУ и АвЦСУ низкой чувствительности по каждому выходу, полученные при одновременной подаче единичных ступенчатых воздействий по обоим входам.

Например, для традиционной АвЦСУ и АвЦСУ низкой чувствительности, учитывающей 15%-ое отклонение параметров модели ОУ от номинальных значений, осуществлен расчет СКН по каждому выходу для различных вариаций параметров моделей каналов объекта в диапазоне от нуля до 25% с шагом 5% (коэффициенты усиления уменьшались по модулю, постоянные времени увеличивались). Задающие воздействия изменялись одновременно по ступенчатому закону.

/ ' //

_

["расчетные \ У вариации ] /

®

Варнаши непрерывных параметров по модулю. 'о

Рис. 10. Определение моментов перехода к АвЦСУ низкой чувствительности и проведения адаптации, эксперимент №1, первый выход; 1 - традиционная АвЦСУ; 2 - АвЦСУ низкой чувствительности первого типа; 3 — АвЦСУ низкой чувствительности второго типа; 4 — АвЦСУ низкой чувствительности третьего типа.

Анализ поведения графиков для первого выхода (рис. 10) позволил определить пороговые значения критерия Ч'/11, к= 1, 2, 3 (где к - индекс, определяющий тип АвЦСУ низкой чувствительности). Момент проведения адаптации определяется теми же значениями СКН по каждой выходной величине, достигаемые в АвЦСУ низкой чувствительности (рис. 10). Таким образом, включение КЗ и проведение адаптации определяются критическими значениями ЧУ7""" и ц>2кРит, которые равны по величине, и типом текущей автономной системы.

Анализ приведенных результатов исследований (рис. 8-10) показывает, что использование предложенных типов АвЦСУ низкой чувствительности позволяет обеспечить заданное качество ПГТ (совпадение с номинальными ГШ) в окрестностях расчетных вариаций. При этом пересчет АК и основных регуляторов с учетом вводимых корректирующих контуров, охватывающих нестационарный объект, приводит к дополнительному улучшению качества управления.

ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ РАБОТЫ

1. Предложены подход к синтезу и структура адаптивной АвЦСУ низкой чувствительности, обеспечивающей стабилизацию качества в условиях нестационарности динамических свойств каналов объекта на основе охвата многосвязного объекта корректирующими звеньями, компенсирующими его дополнительное движение.

2. Разработаны методика, математическое описание и алгоритмы расчета корректирующих звеньев, автономных компенсаторов и оптимизации настроек регуляторов в АвЦСУ низкой чувствительности с использованием обобщенного объекта.

3. Разработан подход к адаптации управляющей части многосвязной системы, заключающийся в расчете цифровых регуляторов, автоном-

ных компенсаторов и корректирующих звеньев на основе последовательной идентификации параметров системы управления и моделей каналов объекта.

4. Способ определения моментов перехода от традиционной АвЦСУ к АвЦСУ низкой чувствительности и проведения ее адаптации, основанный на расчете текущей величины СКН и сравнении с пороговым значением.

5. Разработана методика численного моделирования корректирующих звеньев и автономных компенсаторов цифровой системы низкой чувствительности, передаточные функции которых представляют собой дробно-рациональные выражения, состоящие из элементарных звеньев. Данная методика позволяет упростить процедуру расчета и повысить точность результатов моделирования.

6. На основе предложенных подходов, методики и алгоритмов разработано программное обеспечение и осуществлено машинное моделирование адаптивной АвЦСУ низкой чувствительности на примере процесса ректификации в производстве бутадиена. В ходе вычислительных экспериментов показана эффективность ее использования по сравнению с традиционной автономной системой управления.

7. Использование разработанных программных модулей в составе автоматизированной системы управления процессами ректификации дивинила, этилбензола и стирола повышает качество управления технологическими параметрами.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ ОПУБЛИКОВАНЫ В СЛЕДУЮЩИХ РАБОТАХ: Публикации в изданиях, рекомендованных ВАК РФ

1. Кудряшов, B.C. Применение одного из методов теории чувствительности для идентификации нестационарного объекта управления [Текст] /

B.C. Кудряшов, C.B. Рязанцев, О.В. Тарабрина, Д.А. Свиридов // Вестник Воронежской государственной технологической академии. Серия: информационные технологии, моделирование и управление. — 2011. — № 2. -

C. 52-56.

2. Кудряшов, B.C. Синтез корректирующего контура цифровой системы регулирования низкой чувствительности [Текст] / B.C. Кудряшов, C.B. Рязанцев, A.B. Иванов, Д.А. Свиридов // Вестник Воронежской государственной технологической академии. Серия: информационные технологии, моделирование и управление. - 2012. - № 3. - С. 65-69.

3. Кудряшов, B.C. Оценка устойчивости цифровой системы регулирования многосвязного объекта [Текст] / B.C. Кудряшов, A.B. Иванов, A.A. Гай-дин, Д.А. Свиридов // Вестник Воронежской государственной технологи-

ческой академии. Серия: информационные технологии, моделирование и управление. - 2012. - № 3. - С. 35-39.

4. Кудряшов, B.C. Разработка многосвязной автономной цифровой системы регулирования низкой чувствительности [Текст] / B.C. Кудряшов, C.B. Рязанцев, Д.А. Свиридов // Приборы и системы. Управление, Контроль, Диагностика. - 2014. -№ 5. - С. 1-11.

Статьи и материалы конференций

5. Кудряшов, B.C. Идентификация нестационарных объектов управления с применением методов теории чувствительности [Текст] / B.C. Кудряшов, C.B. Рязанцев, О.В. Тарабрина, Д.А. Свиридов // Современные проблемы прикладной математики, теории управления и математического моделирования (ПМТУММ-2011) : сб. материалов IV междунар. науч. конф., Воронеж / ВГУ. - Воронеж, 2011. - С. 162-164.

6. Кудряшов, B.C. Применение методов теории чувствительности для идентификации нестационарных объектов управления [Текст] /B.C. Кудряшов, C.B. Рязанцев, О.В. Тарабрина, Д.А. Свиридов // Математические методы в технике и технологиях (ММТТ-24) : сб. трудов XXIV междунар. науч. конф., Саратов / СГТУ им. Гагарина Ю.А. - Саратов, 2011. -Т. 6.-С. 85-87.

7. Кудряшов, B.C. Корректирующий контур цифровой системы регулирования низкой чувствительности [Текст] / B.C. Кудряшов, C.B. Рязанцев, Д.А. Свиридов, B.C. Польшаков // Математические методы в технике и технологиях (ММТТ-25) : сб. трудов XXV междунар. науч. конф., Саратов / СГТУ им. Гагарина Ю.А. - Саратов, 2012. - Т. 4. - С. 135-136.

8. Свиридов, Д.А. Алгоритм синтеза корректирующего контура цифровой системы регулирования [Текст] / Д.А. Свиридов // Моделирование энергоинформационных процессов : сб. материалов I междунар. науч.-практ. ин-тернет-конф., Воронеж / ВГУИТ. - Воронеж, 2013. - С. 53-54.

9. Кудряшов, B.C. Способы подключения корректирующего звена в системах регулирования низкой чувствительности [Текст] / B.C. Кудряшов, C.B. Рязанцев, Д.А. Свиридов, Ю.А. Свиридова // Математические методы в технике и технологиях (ММТТ-26) : сб. трудов XXVI междунар. науч. конф., Нижний Новгород / НГТУ им. Р.Е.Алексеева. - Нижний Новгород, 2013.-Т. 1.-С. 51-52.

10. Кудряшов, B.C. Обеспечение низкой чувствительности в автономных многосвязных системах регулирования [Текст] / B.C. Кудряшов, C.B. Рязанцев, Д.А. Свиридов // Моделирование энергоинформационных процессов : сб. материалов II междунар. науч.-практ. интернет-конф., Воронеж / ВГУИТ. - Воронеж, 2014. - С. 79-80.

11. Кудряшов, B.C. Обеспечение автономности и низкой чувствительности в многосвязных системах регулирования [Текст] / B.C. Кудряшов, C.B. Рязанцев, Д.А. Свиридов // Математические методы в технике и технологиях

(ММТТ-27) : сб. трудов XXVII междунар. науч. конф., Тамбов / ТГТУ. -Тамбов, 2014. - Т. 5. - С. 45-47.

12.Кудряшов, B.C. Алгоритм функционирования автономной системы регулирования в условиях нестационарности [Текст] / B.C. Кудряшов, C.B. Рязанцев, Д.А. Свиридов // Наукоемкие технологии и инновации (XXI научные чтения) : сб. докладов юбилейной межд. науч.-практ. конф., посвященной 60-летию БГТУ им. В.Г. Шухова, Белгород / БГТУ им. В.Г. Шухова. - Белгород, 2014. - С. 211-214.

13.Кудряшов, B.C. Алгоритм функционирования многосвязной системы регулирования переменной структуры [Текст] / B.C. Кудряшов, C.B. Рязанцев, Д.А. Свиридов, Р.И. Сарин // Моделирование энергоинформационных процессов : сб. материалов III междунар. науч.-практ. интер-нет-конф., Воронеж / ВГУИТ. - Воронеж, 2015. - С. 12-18.

Свидетельства о регистрации программ

14. Синтез двумерных автономных цифровых систем регулирования низкой чувствительности (с использованием 1-го варианта обобщенного описания объекта) [Текст] : электронный ресурс, свидетельство «Центра информационных технологий и систем органов исполнительной власти» № 50201450444 от 11.06.2014 / B.C. Кудряшов, C.B. Рязанцев, И.А. Козен-ко, Д.А. Свиридов.

15. Синтез двумерных автономных цифровых систем регулирования низкой чувствительности (с использованием 2-го варианта обобщенного описания объекта) [Текст] : электронный ресурс, свидетельство «Центра информационных технологий и систем органов исполнительной власти» № 50201450445 от 11.06.2014 / B.C. Кудряшов, C.B. Рязанцев, И.А. Козен-ко, Д.А. Свиридов.

16. Синтез двумерных автономных цифровых систем регулирования низкой чувствительности (с использованием 3-го варианта обобщенного описания объекта) [Текст] : электронный ресурс, свидетельство «Центра информационных технологий и систем органов исполнительной власти» № 50201450446 от 11.06.2014 / B.C. Кудряшов, C.B. Рязанцев, И.А. Козен-ко, Д.А. Свиридов.

Подписано в печать 19.03.15. Формат 60*84 '/16. Усл. печ. л. 1. Тираж 100 экз. Заказ 146.

Отпечатано с готового оригинал-макета в типографии Издательского дома ВГУ. 394000, Воронеж, ул. Пушкинская, 3