автореферат диссертации по энергетике, 05.14.04, диссертация на тему:Разработка динамической модели охлаждения и затвердевания сляба на машинах непрерывного литья заготовок
Автореферат диссертации по теме "Разработка динамической модели охлаждения и затвердевания сляба на машинах непрерывного литья заготовок"
На правах рукописи
МУСИН Андрей Равильевич
РАЗРАБОТКА ДИНАМИЧЕСКОЙ МОДЕЛИ ОХЛАЖДЕНИЯ И ЗАТВЕРДЕВАНИЯ СЛЯБА НА МАШИНАХ НЕПРЕРЫВНОГО ЛИТЬЯ ЗАГОТОВОК
Специальность 05.14.04 - Промышленная теплоэнергетика
Автореферат
диссертации на соискание ученой степени кандидата технических наук
Череповец-2004
Работа выполнена в Череповецком государственном университете.
Научный руководитель - кандидат технических наук, доцент,
Лукин Сергей Владимирович
Официальные оппоненты - доктор технических наук, профессор,
Осипов Юрий Романович
- кандидат технических наук, доцент Григорьев Николай Сергеевич
Ведущее предприятие - ОАО «Северсталь», г. Череповец
Защита диссертации состоится «10» декабря 2004 г. в 16 часов на заседании диссертационного совета Д 212.297.01 в Череповецком государственном университете по адресу: 162600, г. Череповец Вологодской обл., пр. Луначарского, 5.
С диссертацией можно ознакомиться в библиотеке Череповецкого государственного университета.
Автореферат разослан «¿^ » 2004 г.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность работы.
В последние годы наблюдается значительный рост требований, предъявляемых современным машиностроением к качеству непрерывнолитых заготовок и стальных изделий в целом, в связи с чем одной из главных практических задач является совершенствование технологического процесса непрерывной разливки стали, его оптимизация с целью получения более качественного продукта.
Известно, что наиболее качественный металл получается при стационарных режимах разливки, когда скорость вытягивания сляба не изменяется. Наибольшая доля брака разливаемого металла получается при переходных режимах разливки, когда в силу технологических причин приходится изменять скорость разливки, причем около 10-20% всего металла разливается на машинах непрерывного литья заготовок (МНЛЗ) в условиях переходных режимов. Брак металла получается в большой степени из-за нерационального управления охлаждением сляба в переходных режимах разливки. На большинстве отечественных МНЛЗ управление вторичным охлаждением сляба производится таким образом, что при изменении скорости разливки расходы воды в зонах изменяются практически мгновенно и принимают значения, соответствующие текущей скорости разливки без учета инерционности переходного процесса. При снижении скорости разливки происходит значительный разогрев поверхности сляба, что может привести к уменьшению прочности твердой оболочки сляба и ее выпучиванию между поддерживающими роликами, а это вредно отражается на качестве металла. При увеличении скорости разливки происходит переохлаждение поверхности сляба, твердая оболочка может потерять необходимую пластичность и в зоне разгиба криволинейной МНЛЗ могут возникать внутренние и поверхностные трещины в металле. Таким образом, при существующем способе управления охлаждением сляба в МНЛЗ в переходных режимах разливки не выдерживается заданный температурный режим охлаждения сляба.
В связи с этим разработка эффективного способа управления охлаждением сляба в МНЛЗ, позволяющего выдерживать рациональный температурный режим охлаждения сляба при стационарных и переходных режимах разливки, является актуальной.
Задачи работы.
В ходе выполнения работы поставлены следующие задачи:
1) Разработка способа динамического управления охлаждением сляба в зоне вторичного охлаждения (ЗВО) при стационарных и переходных режимах разливки.
2) Разработка математической модели затвердевания сляба при стационарных и переходных режимах разливки при данном способе управления охлаждением сляба.
3) Разработка инженерного способа расчета толщины твердой фазы в кристаллизаторе МНЛЗ при переходных режимах разливки.
4) Разработка математической модели перестройки тепловых потоков в рабочей стенке кристаллизатора при
БИБЛИОТЕКА СИ О»
'ГЛЗОГх
5) Разработка компьютерной программы динамического управления охлаждением сляба в ЗВО МНЛЗ для внедрения на МНЛЗ конвертерного производства ОАО «Северсталь».
Методы исследований.
В данной работе использовались методы математического моделирования, полученные результаты сравнивались с известными экспериментальными и расчетными данными. При разработке динамической модели охлаждения и затвердевания сляба использована квазиравновесная математическая модель затвердевания и охлаждения сляба, а также метод контрольных сечений, позволяющий рассчитывать процесс затвердевания при изменении скорости разливки.
Научная новизна.
1) Разработана математическая модель управления охлаждением сляба и установлены основные закономерности изменения интенсивности охлаждения сляба в ЗВО при стационарных и переходных режимах разливки.
2) Разработана математическая модель затвердевания сляба и установлены основные закономерности формирования твердой фазы и изменения температуры поверхности сляба в динамических режимах разливки.
3) Разработана математическая модель изменения тепловых потоков в рабочей стенке кристаллизатора и установлены основные закономерности изменения тепловых потоков в рабочей стенке кристаллизатора при переходных режимах разливки.
Практическая ценность.
1) Разработан способ динамического управления охлаждением сляба в зоне вторичного охлаждения МНЛЗ.
2) Разработан инженерный способ расчета толщины твердой фазы сляба в кристаллизаторе МНЛЗ при переходных режимах разливки.
3) Разработан инженерный способ расчета плотности теплового потока от сляба к кристаллизатору при переходных режимах разливки.
4) Разработан способ визуализации процесса охлаждения и затвердевания сляба в динамических режимах разливки.
5) Разработан способ настройки зоны вторичного охлаждения МНЛЗ.
6) Разработана компьютерная программа, реализованная в среде программирования Borland Delphi для операционных систем Windows 9Х/2000/ МЕ/ХР, для динамической модели охлаждения и затвердевания сляба в МНЛЗ.
Реализация работы.
Разработанный способ динамического управления охлаждением сляба в ЗВО МНЛЗ, а также компьютерная программа динамической модели охлаждения и затвердевания сляба в МНЛЗ обсуждались на научно-технических совещаниях в конвертерном производстве (19.03.03) и в управлении механизации и автоматизации (15.10.03) ОАО «Северсталь». Протоколом технического совещания от 26.11.03 за подписью начальника
конвертерного производства, данная компьютерная программа рекомендуется к внедрению в систему автоматизации МНЛЗ конвертерного производства ОАО «Северсталь».
Апробация работы.
Основные результаты работы были доложены и обсуждены на 4-й межвузовской конференции молодых ученых (Череповец, ЧГУ, 2003 г.); на
3-й межвузовской научно-технической конференции «Фундаментальные проблемы металлургии» (Екатеринбург, ГОУ ВПО УГТУ - УПИ, 2003 г.); на
4-й Международной научно-технической конференции «Инфотех-2004» «Информационные технологии в производственных, социальных и экономических процессах» (Череповец, ЧГУ, 2004); на Международной научно-технической конференции, посвященной 75-летию АГТУ (Архангельск, АГТУ, 2004); на 4-й Международной научно-технической конференции «Повышение эффективности теплообменных процессов и систем» (Вологда, ВоГТУ, 2004).
Публикации.
По материалам диссертации опубликовано 8 печатных работ в научных сборниках и монографиях.
Структура и объем диссертации.
Диссертационная работа состоит из введения, пяти глав, заключения и приложений. Общий объем работы 188 страниц машинописного текста, включает в себя 60 рисунков, 5 таблиц и список литературы, состоящий из 155 наименований.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность выбора темы диссертации, описаны методы исследований, приведена характеристика структуры диссертации.
В первой главе выполнен литературный обзор, в котором проанализированы теоретические и экспериментальные работы различных авторов по следующим вопросам:
1) Математическое моделирование затвердевания и охлаждения сляба при непрерывной разливке стали.
2) Управление вторичным охлаждением сляба при стационарных и переходных режимах разливки.
3) Охлаждение и затвердевание сляба в кристаллизаторе.
В результате анализа литературных данных по изложенным выше вопросам сделаны следующие выводы:
1) В обзоре представлена краткая характеристика существующих математических моделей затвердевания и охлаждения непрерывного слитка. Показано, что многие модели достаточно полно и точно отражают сущность наблюдаемых на практике явлений. В данной работе будет использована квазиравновесная модель затвердевания, а также метод контрольных сечений для расчета затвердевания сляба в переходных режимах разливки.
2) Рассмотрены существующие способы управления вторичным охлаждением сляба и отмечены их недостатки. Рациональное охлаждение сляба должно быть таким, чтобы температура поверхности сляба понижалась монотонно и в зоне вторичного охлаждения она находилась в оптимальном диапазоне температур, для того, чтобы твердая оболочка сляба была достаточно прочной во избежание ее выпучивания между роликами, и в то же время достаточно пластичной, чтобы не возникало трещин в слябе в зоне разгиба криволинейной МНЛЗ. Например, на большинстве отечественных МНЛЗ расходы воды в зонах устанавливаются в соответствии с текущей скоростью разливки, без учета инерционности переходных процессов, в результате чего при снижении скорости разливки происходит разогрев оболочки сляба, что приводит к уменьшению ее прочности, а при увеличении скорости разливки происходит переохлаждение оболочки сляба, что может привести к потере ее пластичности, причем то и другое вредно отражается на качестве металла.
Существующие способы динамического управления охлаждением сляба также имеют недостатки. Например, модель БУКСООЬ является расчетно-адаптивной, т.к. компьютерная программа подбирает расходы воды в зонах таким образом, чтобы расчетное распределение температуры поверхности сляба вдоль технологической оси как можно меньше отличалось от теоретического распределения температуры. Это приводит к тому, что даже при стационарных режимах разливки имеется "биение" расходов воды около стационарных значений, что вредно отражается на контрольно-регулирующей аппаратуре. Кроме того, для реализации данной модели требуется непрерывное решение задачи затвердевания для большого числа контрольных сечений сляба, что требует большого объема вычислительной работы, и соответственно, мощных компьютерных процессоров.
Существуют также способы динамического управления охлаждением, разработанные отечественными авторами, которые позволяют качественно управлять охлаждением сляба только при простых скачках скорости разливки.
Таким образом, имеется необходимость в разработке эффективного способа динамического управления охлаждением сляба, избавленного от отмеченных недостатков. Кроме того, необходимо осуществить визуализацию процесса охлаждения и затвердевания сляба, чтобы в режиме реального времени контролировать данный процесс.
3) Рассмотрены существующие представления на процесс охлаждения и затвердевания сляба в кристаллизаторе МНЛЗ. Отмечено, что управлять охлаждением сляба в кристаллизаторе на практике достаточно сложно. Плотность теплового потока, отводимого от поверхности сляба в кристаллизаторе и формирование твердой фазы сляба определяются главным образом временем, проведенным слябом в кристаллизаторе. Таким образом, тепловой поток, отбираемый от сляба в кристаллизаторе, при стационарном режиме зависит в основном от скорости разливки.
В динамических моделях охлаждения и затвердевания сляба, например в БУМСООЬ, для расчета процесса затвердевания сляба в кристаллизаторе используется текущее значение теплового потока, уносимого водой, охлаждающей кристаллизатор, которое в настоящее время непрерывно определяется по расходу и перепаду температур охлаждающей поды. Однако, при переходных режимах разливки из-за тепловой инерции рабочей стенки
кристаллизатора тепловой 11010К ОТ сляба К крисышпшюру и текущий момент времени может отличаться oт теплового потока, уносимого охлаждающей водой. Эти тепловые потоки равны только при стационарной скорости разливки. Таким образом, использовать значения экспериментально определяемого теплового потока, уносимого охлаждающей водой, для расчета процесса затвердевания сляба в кристаллизаторе в динамических режимах разливки представляется не совсем корректным. Необходимо оценить, насколько различаются тепловые потоки от сляба к кристаллизатору и от кристаллизатора к охлаждающей воде при изменении скорости разливки.
Процесс формирования твердой оболочки сляба в кристаллизаторе при стационарных скоростях разливки достаточно хорошо изучен экспериментально. В то же время экспериментальное исследование процесса формирования твердой оболочки в переходных режимах разливки является очень сложным, а теоретическое исследование предполагает достаточно трудоемкое математическое моделирование процесса затвердевания с помощью метода контрольных сечений Простые инженерные способы расчета процесса формирования твердой оболочки в переходных режимах разливки в настоящее время отсутствуют.
На основе сформулированных выводов поставлены задачи исследований.
Во второй главе разработан способ динамического управления охлаждением сляба в зоне вторичного охлаждения МНЛЗ. Поскольку рост твердой фазы сляба определяется, главным образом, временем затвердевания, т.е. временем пребывания сляба в МНЛЗ, начиная с момента поступления жидкой стали в кристаллизатор, то сформулирован следующий принцип охлаждения сляба: температура поверхности и интенсивность охлаждения поверхности выделенного элемента сляба должны определяться только временем пребывания данного элемента в МНЛЗ как при стационарных, так и переходных режимах разливки.
Теоретическое изменение температуры поверхности сляба в зависимости от времени затвердевания X* показано на рис. 1. Температура резко снижается в пределах кристаллизатора, а затем в зоне вторичного охлаждения держится на неизменном оптимальном уровне, в диапазоне температур 900-1100°С (в зависимости от марки стали). На рис. 2 показано теоретическое изменение коэффициента теплоотдачи на поверхности сляба в зависимости от времени затвердевания. Чтобы обеспечить неизменную температуру поверхности сляба коэффициент теплоотдачи должен монотонно снижаться.
Рис. 1. Изменение температуры поверхности сляба от времени затвердевания
О
т'
На МНЛЗ принято позонное охлаждение сляба. Зона вторичного охлаждения разбивается на ряд участков, в пределах которых задается примерно постоянная средняя интенсивность охлаждения. Средняя интенсивность охлаждения в каждой зоне теоретически задается так, как показано на рис. 3. Таким образом, интенсивность охлаждения при переходе от зоны к зоне изменяется скачком, что приводит к искажению теоретического температурного профиля. Зная управляющую зависимость, т.е. зависимость коэффициента теплоотдачи от удельного расхода охладителя, можно рассчитать средний удельный расход воды в каждой зоне, а далее, зная длины зон и охлаждаемую ширину сляба, рассчитать расходы воды в каждой зоне.
Расчет теоретического изменения коэффициента теплоотдачи в зависимости от времени затвердевания производится при численном решении задачи затвердевания сляба при граничных условиях 1-ого рода. Температурное поле сляба принимается одномерным, что допустимо для широких стальных слябов. Теоретическая температура поверхности сляба
задается выражением: /(т *) = (зво + - (зво)■ е~т , где 1Ж = 1500-1600РС;
{зво = - 1050°С; а=соп$1. Температурное поле сляба определяется из решения следующей системы уравнений:
дх * дх
где: х - координата по толщине сляба; ;хЮ - координата середины сляба; х=5 -координата поверхности сляба; т* - время затвердевания; р, X - плотность и коэффициент теплопроводности стали; X], Хж - коэффициенты теплопроводности твердой и жидкой фаз; Сэф - коэффициент эффективной теплоемкости; Су, сж - массовые теплоемкости твердой и жидкой фаз; /с> 0; -температуры солидуса и ликвидуса стали; £ - теплота затвердевания стали; 1Ж - температура жидкого металла в промковше.
Расчет теоретического коэффициента теплоотдачи в зависимости от времени затвердевания производится по формуте:
<х[т*] = -Х-
<Э;(х,т*)
дх х=5
(6)
/(0,т*)-/0
где /о - температура охлаждающей среды.
Система уравнений (1)-(6) решается численно конечно--разностным методом по явной схеме. Сляб разбивается по толщине на N-0 количество узлов, число которых определяется при тестировании компьютерной программы.
Адекватность модели затвердевания устанавливается путем сравнения времени полного затвердевания сляба, полученного в расчете, с результатами других авторов. Расхождение между расчетным временем затвердевания и данными других авторов при аналогичных условиях не превышает 1,5%, что вполне приемлемо для целей, поставленных в данной работе.
В работе приведены примеры расчета теоретического коэффициента теплоотдачи в зависимости от времени затвердевания при различном изменении теоретической температуры поверхности.
Время затвердевания, или время пребывания элемента сляба в МНЛЗ т* при стационарных и переходных режимах определяется по-разному. При стационарной скорости разливки время затвердевания определяется
выражением
где z -координата технологической оси, V -
стационарная скорость разливки; при переходном режиме, когда происходит
изменение скорости вытягивания, время затвердевания из решения интегрального уравнения:
нужно определять
|у(т')К=2, (7)
г-г*
где т - текущее время, у(т') - изменение скорости разливки со временем.
На рис. 4 пояснено, как определять время затвердевания т*. Время затвердевания зависит от координаты г, где находится элемент сляба, и в общем случае от значений скорости разливки в текущий и предыдущий моменты времени. Поскольку скорость разливки может изменяться произвольным образом, то решение интегрального уравнения (7) относительно т* должно производится численно. При изменении скорости разливки формируется динамический массив значений скорости в дискретные моменты времени V* (например, через 5т =1 с), где ¿=0,1,2,...- индекс текущего момента времени. Для различных координат г в режиме текущего времени численно рассчитывается время пребывания в МНЛЗ элементов сляба, которые в текущий момент времени находятся на отметке ъ технологической оси с помощью выражений: т * (г, т) = ш • 8т, где целое число ш в текущий момент времени такое, что выполняются неравенства
" к
£ V, • 8т < ъ, £ у( • 8т £ 2. Выражение т * (г, т) означает время,
к-т к-т-1
проведенное элементом сляба, который в текущий момент т находится на отметке г, в МНЛЗ, начиная с момента его поступления в кристаллизатор.
Рис. 4. Определение времени затвердевания т*
При одинарном (простом) скачке скорости разливки, изображенном на рис. 5, время т* можно аналитически рассчитать по формулам (8) и (9).
V 2
О т
Рис. 5. Простой скачок скорости разливки
т* = —, X < О > X* =
г+х(у|-у2)
О < х <
• < х
Как следует из формул (8) и (9), при резком уменьшении скорости разливки время х* начинает линейно увеличиваться со временем х от одного стационарного значения до другого. При резком увеличении скорости разливки время т* начинает линейно уменьшаться со временем т. В обоих случаях, чем больше г, и чем меньше новая скорость разливки Уг, тем дольше
В диссертационной работе приведены формулы, по которым можно аналитически рассчитать время т* при двойном скачке скорости. При большом количестве скачков скорости аналитические выражения становятся настолько громоздкими, что проще использовать численный метод
Коэффициент теплоотдачи в точке г технологической оси в текущий момент времени х теоретически должен определятся выражением:
Если известна зависимость коэффициента теплоотдачи от удельного расхода охладителя а(^), то можно рассчитать теоретический удельный расход охладителя в точке ъ в текущий момент времени х по выражению:
где #{а}- зависимость, обратная к а^). Зависимость а(^) обычно представляют в виде: а(#) = а0 + ц • £, где а0 и ц - эмпирические
Поскольку в условиях реальной МНЛЗ невозможно изменять интенсивность охлаждения в каждой точке технологической оси, то формулы (10) и (11) не годятся для управления охлаждением сляба. Введем характерные координаты отдельных зон охлаждения г„ где /=1,2,...К -индекс, нумерующий зоны охлаждения. В качестве характерных координат могут быть выбраны координаты середин зон г0„ координаты начал или конца
зон г) и г". Выражение а(г0(,т) = а[т* (г0(,х)] характеризует средний
коэффициент теплоотдачи в /-ой зоне в текущий момент времени. Выражения
а(г(',х) = а[х* (г),х)] и а(:*,х) = а[х*(г*,х)] дают значения коэффициентов
теплоотдачи, соответственно завышенные или заниженные относительно среднего коэффициента теплоотдачи в /-ой зоне. Поэтому, если в качестве характерной координаты использовать г0„ то расход охладителя в /-ой зоне в текущий момент времени можно определить по выражению:
где /, и В, - соответственно длина и орошаемая ширина сляба в /-ой зоне. Если выбрать другие характерные координаты, то расход охладителя следует в /-ой
Вт/м2°С. Длины зон охлаждения приведены в табл.1. В первых двух зонах (/=1,2) принято водяное охлаждение с управляющей зависимостью а = 170 + 72■ #, в остальных зонах (/=3,4,...К) принято водовоздушное охлаждение с управляющей зависимостью а = 170+150-^
Таблица 1
/ 1 2 3 3 5 6 7 8 9
/„ м 0,2 1,2 1,98 1,62 1,66 1,83 1,82 3,45 5,17
В начале разливки, когда сляб находиться в кристаллизаторе, расходы воды в зонах равны нулю. По мере того, как сляб достигает середины зоны, происходит включение расхода воды в данной зоне. Далее, при скачках скорости разливки происходит плавное изменение расходов воды в зонах с учетом инерционности переходных процессов. По технике безопасности, в начале разливки расходы воды в зонах должны включатся до того, как сляб войдет в данную зону. Поэтому в данном случае в качестве характерных координат следует выбрать координаты начал зон.
В третьей главе рассматриваются процессы охлаждения и затвердевания сляба в кристаллизаторе МНЛЗ при стационарных и переходных режимах разливки. Если мениск жидкого металла автоматически поддерживается на одной высоте кристаллизатора, плотность теплового потока от сляба к кристаллизатору (усредненная по периметру) и толщина твердой оболочки сляба зависят главным образом от времени т*, проведенным слябом в кристаллизаторе, как при стационарных, так и переменных скоростях разливки. Время т* определяется, как и раньше, из решения интегрального уравнения (7). Плотность теплового потока от сляба к кристаллизатору в зависимости от времени т* можно аппроксимировать выражением:
?'(т*)= а + р-ехр(-ух*), (14)
где а, р, у - эмпирические коэффициенты. Сравнение с экспериментальными данными позволило получить представительную зависимость (/'(т*) в
следующем виде: д'(х *)= 0,4 + 1,6 • ехр (- 2,5 • т *),МВт/м 2, где т* измеряется в минутах.
Плотность теплового потока от сляба к кристаллизатору на отметке г в текущий момент времени т должна определяться выражением:
д'М = д'(х * (г,т)) = а + Р • ехр(- у-г* (г,т)). (15) Полный тепловой поток и среднюю плотность теплового потока от сляба к кристаллизатору можно рассчитать по выражениям:
б'(т)=Р.|,^(г,х)>/г; = Об)
где Р и Н - периметр и рабочая высота кристаллизатора.
При стационарной скорости разливки v среднюю плотность теплового потока от сляба к кристаллизатору (равную средней плотности теплового потока от кристаллизатора к охлаждающей воде), с учетом (14) и (16) можно
рассчитать по выражению:
Выражение (17) показывает, что средняя плотность теплового потока от сляба к кристаллизатору при стационарной скорости разливки примерно линейно зависит от скорости разливки, что подтверждается экспериментально.
В переходных режимах разливки средняя плотность теплового потока от сляба к кристаллизатору не равна средней плотности теплового потока от кристаллизатора к охлаждающей воде. Чтобы показать это, промоделируем процесс передачи тепла через рабочую стенку кристаллизатора. Схема передачи тепла через рабочую стенку показана на рис. 8.
Введем следующие величины: р„, с,„ а„ - теплофизические параметры меди; 5„ - средняя толщина меди; х- координата по толщине рабочей стенки; а^ - эффективный коэффициент теплоотдачи к
охлаждающей воде; - средняя температура охлаждающей воды; ~
средняя плотность теплового потока от сляба к рабочей стенке; -
средняя плотность теплового потока от рабочей стенки к охлаждающей воде; tC|, 1С2 - температуры поверхностей стенки; /(*,т)- усредненное по высоте и периметру кристаллизатора температурное поле в рабочей стенке. В начальный момент времени распределение температуры в рабочей стенки примем стационарным. Система уравнений (18), (19), (20), (21) описывает температурное поле в рабочей стенке кристаллизатора в переходном режиме разливки при т > 0, при условии, что задана средняя плотность теплового
потока от сляба к рабочей стенке ¿?'(х). По выражению (21) можно также рассчитать среднюю плотность теплового потока от рабочей стенки к охлаждающей воде.
а(х,т)_ дгг{х,х) дт дх2
д'(х>т)
( 1 с ^
аэф
&
9/(*,т)
Зх
х=5„
х=0
= азф(г(5,т)-0-
(19)
(20) (21)
Система уравнений (18-21) решалась при простом скачке скорости разливки от стационарного значения V, до значения уЛ причем <?'(т) рассчитывалась по формулам (14), (15), (16). В данном простом случае решение можно получить аналитически операционным методом Лапласа. Данное решение приведено в диссертационной работе. Результаты решения
обрабатывались в виде величин: у/(т) = ^ ^ ; у*(т) = ^ ^ , где Цх
Ч\-Чг
и ¡72 - средние плотности тепловых потоков при стационарных скоростях разливки V/ и у2.
На рис. 9 приведен пример изменения величин у'(т) и у*(т)при резком уменьшении скорости разливки от 0,8 м/мин до 0,5 м/мин при различной толщине рабочей стенки.
У, У
1
0,8 0,6 0,4 0,2 0
а=15000 Вт/м2°£ ^=300 Вт/м°С; у,=0,8 м/мин; у2=0,5 м/мин
1-5 = Ю мм
\1 2-8=: 10 мм
з-8=; !0 мм
0,5
1 1,5 Время, мин
2,5
Рис. 9. Изменение у'. V* при разной толщине рабочей стенки
Из рис. 9 видно, что после скачка скорости величина у' сразу начинает уменьшаться, а величина у " начинает уменьшаться лишь спустя какое-то время, что обусловлено тепловой инерцией рабочей стенки. Тепловая инерция тем больше, чем больше толщина рабочей стенки.
Кроме того, в диссертационной работе исследовано, как влияет эффективный коэффициент теплоотдачи и коэффициент теплопроводности медной стенки на тепловую инерцию. Тепловая инерция тем больше, чем меньше коэффициент теплоотдачи и коэффициент теплопроводности медной стенки.
Результаты: моделирования тепловых потоков в рабочей стенке сравнивались с доступными экспериментальными данными. Обнаружено достаточное соответствие тех и других.
Исследование тепловых потоков в рабочей стенке кристаллизатора показало, что для расчета процесса затвердевания сляба в переходных режимах разливки плотность теплового потока от сляба в кристаллизаторе следует определять по выражениям (14) и (15), а значение теплового потока, уносимого охлаждающей водой, экспериментально определенное при стационарной скорости разливки, следует использовать для корректировки эмпирических коэффициентов а, р, у в выражении (14).
Толщину твердой оболочки сляба в кристаллизаторе при переходных режимах разливки можно рассчитать довольно просто с помощью инженерного метода, минуя метод математического моделирования. Если \ = 4(т*) - зависимость толщины оболочки сляба от времени затвердевания
при стационарной скорости разливки, определенная экспериментально или рассчитанная теоретически, то в переходных режимах разливки на уровне z в текущий момент времени т толщину твердой оболочки можно рассчитать с помощью выражения:
= = (22) где время т* определяется из решения интегрального уравнения (7).
ММ
45 40 35 30 25 20 15 10 5 0
мин т=2
:=2 тут 1=2,мк н
0,2
0,4
0,6
0,8
1
Рис. 10. Профиль твердой фазы вдоль оси кристаллизатора
В диссертационной работе приведены формулы, по которым можно аналитически рассчитать толщину твердой оболочки сляба в кристаллизаторе при простом и двойном скачках скорости разливки. Для примера, на рис. 10 показан профиль твердой оболочки в разные моменты времени при двойном скачке скорости разливки, когда скорость от значения 1 м/мин резко уменьшается до 0,2 м/мин, в течении 2 минут держится на этом значении, затем резко увеличивается до прежнего значения.
В четвертой главе разработана математическая модель затвердевания сляба при динамических режимах разливки, позволяющая рассчитывать температуру поверхности сляба и толщину твердой фазы по температурам солидус и ликвидус вдоль технологической оси при стационарных и нестационарных скоростях разливки. При этом использовалась квазиравновесная модель затвердевания сляба вместе с методом контрольных сечений.
В данной модели весь сляб разбивается по длине на М сечений одинаковой длины Д/ « 0,1 м. Сечения нумеруются по порядку от 1 до М, начиная с сечений, находящихся в кристаллизаторе, и заканчивая сечениями, находящимся в зоне воздушного охлаждения, причем координата сечения №m
определяется так: Для каждого сечения вводится свое
одномерное температурное поле (температура изменяется по толщине
сечения). Температурное поле каждого сечения описывается дифференциальным уравнением теплопроводности:
д(т(х,1) д21т(х,т)
(23)
, причем Сэф и X определяются выражениями (2).
Граничные условия задаются выражениями (24), (25), (26), (27).
0 <2т<Н:
дх
-¡Д
дх
= 0;
(24)
х-0
(25)
-X
д1_
дх
= а[т*(2,)т)]-(/|п=0-/0); (26)
х=5
■"ЗВО
^ ^техи
-А
дх
= С
Т, 100
Ь. 100
(27)
где
'¡но И Ь /цехи
длина ЗВО и технологической оси; С - коэффициент излучения на воздухе.
Формула (24) - условие симметрии, поскольку охлаждение сляба с двух сторон ведется симметрично. Формулы (25), (26), (27) описывают условия теплообмена на поверхности сечений. Если сечение находиться в кристаллизаторе, задаются граничные условия Н-ого рода, т.е. задается плотность теплового потока от поверхности сляба в зависимости от времени
пребывания элемента сляба в кристаллизаторе. Если сечение находится в одной из зон ЗВО, то задаются граничные условия Ш-ого рода, то есть задается коэффициент теплоотдачи, средний для данной зоны. Если сечение находится в зоне воздушного охлаждения, то задается коэффициент излучения, и теплообмен происходит по закону Стефана -Больцмана.
Далее вводится вспомогательная величина ^(т) = /у(т')Л' ,
определяющая, на какое расстояние переместился сляб. В начальный момент времени Z=0, температурное поле первого сечения принимается равным температуре жидкого металла в промковше, температурное поле остальных сечений принимается равным нулю. При перемещении сляба на расстояние, равное длине одного сечения Д/, из величины Z вычитается длина А/, и Z опять принимает нулевое значение. В этот момент первому сечению присваивается температура жидкого металла в промковше, а сечению № т присваивается температурное поле сечения № m-1, т.е. ¡т{х,*) = '„,_!
m=2,3,...М. Это происходит каждый раз, когда величина Z обнуляется. Таким образом, задача затвердевания решается одновременно для всех сечений, и в определенный момент времени, когда сляб перемещается на длину одного сечения, температурное поле данного сечения присваивается следующему сечению. Температурное поле сляба в текущий момент времени складывается из температурных полей всех сечении в данный момент времени.
Задача затвердевания при данных граничных условиях решается также численно. Тестирование компьютерной программы производится при стационарной скорости разливки. Расчетная температура поверхности сляба в ЗВО в данной модели должна в среднем равняться теоретической температуре поверхности сляба.
Рассмотрим процесс затвердевания сляба в следующем переходном режиме. Скорость разливки в текущий момент времени, принятый за нулевой, скачком уменьшается от стационарной скорости разливки 1 м/мин до 0,2 м/мин, в течение 5-ти минут держится на этом значении, затем скачком увеличивается до первоначального значения. Данные для расчета возьмем из примера, приведенного во второй главе.
На рис. На и 116 показано изменение средних коэффициентов теплоотдачи в отдельных зонах при управлении охлаждении динамическим способом, описанным во второй главе. При первом скачке скорости разливки коэффициенты теплоотдачи во всех зонах начинают плавно уменьшаться. Поскольку ни в одной из зон не успевает установиться стационарное значение коэффициента теплоотдачи, соответствующее скорости 0,2 м/мин, то после второго скачка скорости коэффициенты теплоотдачи некоторое время перестают изменяться. Это происходит потому, что второй переходной процесс накладывается на первый. После некоторого времени, когда первый переходной процесс исчерпает себя, коэффициенты теплоотдачи начинают плавно увеличиваться до стационарных значений, соответствующих скорости 1 м/мин.
На рис. 12 показано изменение толщины твердой фазы по температурам солидус и ликвидус вдоль технологической оси в разные моменты времени.
На рис. 12 а показан профиль твердой фазы при стационарной скорости разливки 1 м/мин. Через пять минут после уменьшения скорости (рис.12 б) в кристаллизаторе успел сформироваться так называемый "пояс", т.е. участок сляба, проведший в кристаллизаторе больше времени, чем обычно. Далее этот "пояс" движется вдоль технологической оси (рис. 12 в). В конце может образоваться так называемый "мост" (рис. 12 г), когда внутри сляба остается жидкая фаза, отделенная от основной массы жидкого металла. Образование "моста" обусловлено неуправляемым охлаждением сляба в кристаллизаторе и тем, что интенсивность охлаждения вдоль технологической оси изменяется не монотонно, а ступенчато.
На рис. 13 а показан профиль температуры поверхности при стационарной скорости разливки 1 м/мин. Теоретическая температура в ЗВО выбрана равной 900вС. Поскольку коэффициенты: теплоотдачи изменяются ступенчато при переходе от одной зоны к другой, то расчетная температура в ЗВО не будет оставаться неизменной, а будут наблюдаться колебания
температуры поверхности: в начале каждой зоны имеется разогрев поверхности сляба до температуры выше теоретической, а в конце зоны -охлаждение поверхности сляба до температуры ниже теоретической. На выходе из ЗВО, охлаждаясь на воздухе, сляб разогревается, поскольку внутри еще имеется жидкая фаза. На рис. 13 б, г, д показан профиль температуры поверхности через 1, 5, 10 минут после первого скачка скорости. При управлении охлаждением данным способом не наблюдается дополнительного разогрева и переохлаждения сляба, как при обычных способах управления. Исключение представляет "пояс", т.к. температура поверхности "пояса" может значительно разогреваться и переохлаждаться при переходе из зоны в зону. Это опять же связано со ступенчатым изменением интенсивности охлаждения вдоль технологической оси.
Таким образом, при управлении охлаждением сляба данным способом, в переходных режимах разливки выдерживается заданный температурный режим.
В данной главе рассмотрен также способ настройки зоны вторичного охлаждения МНЛЗ. Настройка тепловой работы ЗВО МНЛЗ состоит в определении управляющей зависимости Настройку ЗВО можно
произвести с помощью сканирующего пирометра, установленного в одной из
зон охлаждения. В зависимости = а0 + ц • #, коэффициент а0 -
учитывает теплообмен излучением и контактом сляба с роликами. Этот коэффициент достаточно просто оценивается и находится в пределах
Величина для разных типов охлаждающих форсунок может изменяться в широких пределах.
Рассмотрим сущность метода корректировки коэффициента ц в
управляющей зависимости вида
Пусть в точке технологической оси ЗВО установлен сканирующий пирометр, показывающий среднюю температуру поверхности сляба в
текущий момент времени . В результате численного решения задачи
затвердевания сляба при граничных условиях (25), (26), (27) рассчитывается температура поверхности сляба в точке технологической оси в
текущий момент причем в управляющей зависимости используется предварительно взятый коэффициент Цо- Если расчётная температура поверхности сляба отличается от показаний пирометра в текущий
момент времени то значит следует скорректировать управляющую
зависимость, а именно коэффициент ц.
Предлагается следующая процедура самонастройки ЗВО МНЛЗ. Коэффициент ц следует считать переменной величиной, зависящей от текущего значения времени т, который корректируется со временем согласно следующему выражению:
ц(т) = ц0 - с |(Г„ (т) - *(*0, т))А,
где с ~ коэффициент корректировки; То_0 - момент времени, соответствующий началу настройки.
В пятой главе разработан алгоритм управления расходами воды в зоне вторичного охлаждения МНЛЗ, реализованный в компьютерной программе на языке программирования Borland Delphi. После соответствующей настройки данную программу можно использовать в АСУ криволинейных МНЛЗ. Планируется внедрение данной программы в АСУ МНЛЗ конвертерного производства ОАО «Северсталь».
ОБЩИЕ ВЫВОДЫ
Основные результаты работы сводятся к следующему:
1) Разработана математическая модель управления охлаждением сляба при стационарных и переходных режимах разливки.
2) Разработан способ динамического управления охлаждением сляба в зоне вторичного охлаждения МНЛЗ.
3) Разработана математическая модель затвердевания сляба при динамических режимах разливки.
4) Разработан способ визуализации процесса охлаждения и затвердевания сляба в динамических режимах разливки.
5) Разработана математическая модель изменения тепловых потоков в рабочей стенке кристаллизатора при переходных режимах разливки.
7) Разработан инженерный способ расчета толщины твердой фазы сляба в кристаллизаторе МНЛЗ при переходных режимах разливки.
8) Разработан инженерный способ расчета плотности теплового от сляба к кристаллизатору при переходных режимах разливки.
9) Разработан способ настройки зоны вторичного охлаждения МНЛЗ.
10) Разработана компьютерная программа, реализованная в среде программирования Borland Delphi для операционных систем Windows 9Х/2000/ МЕ/ХР, для динамической модели охлаждения и затвердевания сляба в МНЛЗ.
Основное содержание диссертации опубликовано в работах:
1. Мусин А.Р. Разработка методики настройки системы вторичного охлаждения машины непрерывного литья заготовок.- Сб. трудов участников 4-й межвуз. конф. молодых ученых.- Череповец: ЧГУ, 2003.- С. 179-180.
2. Затвердевание сляба при переходных режимах разливки в машине непрерывного литья заготовок (МНЛЗ) / Лукин СВ., Калягин ЮА, Усачев А.В., Мусин А.Р. // Фундаментальные проблемы металлургии / Сб. материалов 3-й межвуз. науч.-техн. конф.- Вестник УГТУ - УПИ.-Екатеринбург: ГОУ ВПО УГТУ - УПИ, 2003.- № 5 (20).- С. 75-78.
3. Экспериментальное исследование режима работы кристаллизатора слябовой вертикальной машины непрерывного литья заготовок (МНЛЗ) / Калягин Ю.А., Лукин СВ., Усачев А.В., Мусин А.Р. // Фундаментальные проблемы металлургии: Сб. материалов 3-й межвуз. науч.-техн. конф.-
»225 15
Вестник УГТУ - УПИ.- Екатеринбург: ГОУ ВПО УГТУ - УПИ, 2003.- № 5 (20).-С. 66-69.
4. Мусин А.Р., Габелая Д.И. Динамическое управление вторичным охлаждением // Калягин Ю.А., Лукин СВ., Бормосов Н.А. Тепловые процессы в зоне вторичного охлаждения машины непрерывного литья заготовок.-Череповец: ЧГУ, 2004.- С. 104-113.
5 Мусин А.Р., Габелая Д.И. Математической модель реализации способа управления вторичным охлаждением // Калягин Ю.А., Лукин СВ., Бормосов Н.А. Тепловые процессы в зоне вторичного охлаждения машины непрерывного литья заготовок.- Череповец: ЧГУ, 2004,- С. 114-118.
6. Мусин А.Р., Лукин СВ., Калягин Ю.А. Управление охлаждением металла в зоне вторичного охлаждения машины непрерывного литья заготовок // Материалы Междунар. науч.-техн. конф., поев. 75-летию АГТУ, Архангельск, 3-4 ноября 2004г.- Архангельск: АГТУ, 2004.- С 83-84.
7. Мусин А.Р., Лукин СВ. Способ определения зависимости коэффициента теплоотдачи от удельного расхода охладителя в зоне вторичного охлаждения МНЛЗ // Вестник ЧГУ, Череповец: ЧГУ, 2004, № 2.- С. 53-55.
8. Моделирование теплового состояния сляба при переходных процессах разливки на машине непрерывного литья заготовок / Мусин А.Р., Лукин СВ., Калягин Ю.А., Габелая Д.И. // Повышение эффективности теплообменных процессов и систем: Материалы 4-й Междунар.науч.-техн.конф.- Вологда: ВоГТУ,2004.-С.76-81.
РНБ Русский фонд
Подписано к печати_
_Заказ №_. Объем 1,0 п. л. Тираж 100 экз._
Отпечатано в РИО Череповецкого государственного университета 162600, г. Череповец, пр. Луначарского, 5
Оглавление автор диссертации — кандидата технических наук Мусин, Андрей Равильевич
ВВЕДЕНИЕ.
1. СОВРЕМЕННОЕ СОСТОЯНИЕ ВОПРОСА И
ПОСТАНОВКА ЗАДАЧ ИССЛЕДОВАНИЯ.
1.1. Непрерывная разливка в современном металлургическом цикле.
1.2. Математическое моделирование затвердевания и охлаждения сляба при непрерывной разливке стали.
1.3. Охлаждение и затвердевание сляба в кристаллизаторе.
1.4. Управление вторичным охлаждением сляба при стационарных и переходных режимах разливки.
1.5. Выводы по главе.
2. СПОСОБ ДИНАМИЧЕСКОГО УПРАВЛЕНИЯ ОХЛАЖДЕНИЕМ СЛЯБА В ЗОНЕ ВТОРИЧНОГО ОХЛАЖДЕНИЯ МНЛЗ.
2.1. Принцип управления охлаждением сляба при стационарных и нестационарных режимах разливки.
2.2. Определение теоретического коэффициента теплоотдачи в зависимости от времени затвердевания.
2.3. Определение времени затвердевания.
2.4. Управление расходами охладителя в зонах вторичного охлаждения МНЛЗ при стационарных и нестационарных скоростях разливки.
2.5. Выводы по главе.
3. ОХЛАЖДЕНИЕ И ЗАТВЕРДЕВАНИЕ СЛЯБА
В КРИСТАЛЛИЗАТОРЕ МНЛЗ.
3.1. Механизм теплообмена сляба с рабочей поверхностью кристаллизатора.
3.2. Моделирование тепловых потоков в рабочей стенке кристаллизатора при стационарных и переходных режимах разливки.
3.3. Результаты моделирования тепловых потоков в рабочей стенке при простом скачке скорости разливки.
3.4. Определение толщины твердой фазы сляба в кристаллизаторе при переходных режимах разливки.
3.5. Выводы по главе.
4. МОДЕЛИРОВАНИЕ ПРОЦЕССА ЗАТВЕРДЕВАНИЯ СЛЯБА
В МНЛЗ ПРИ ДИНАМИЧЕСКИХ РЕЖИМАХ РАЗЛИВКИ.
4.1. Математическая модель затвердевания сляба при динамическом управлении охлаждением сляба в ЗВО МНЛЗ.
4.2. Способ настройки зоны вторичного охлаждения МНЛЗ.
4.3. Изменение толщины твердой фазы сляба вдоль технологической оси МНЛЗ в переходном режиме разливки.
4.4. Изменение температуры поверхности сляба вдоль технологической оси МНЛЗ в переходном режиме разливки.
4.5. Выводы по главе.
5. ДИНАМИЧЕСКАЯ МОДЕЛЬ ОХЛАЖДЕНИЯ И ЗАТВЕРДЕВАНИЯ СЛЯБА В МНЛЗ.
5.1. Блок-схема алгоритма управления расходами воды в ЗВО в МНЛЗ.
5.2. Визуализация процесса охлаждения и затвердевания сляба в МНЛЗ.
5.3. Выводы по главе.
Введение 2004 год, диссертация по энергетике, Мусин, Андрей Равильевич
Актуальность работы.
В последние годы наблюдается значительный рост требований, предъявляемых современной техникой к качеству непрерывнолитых заготовок и стальных изделий в целом, в связи с чем одной из главных практических задач является совершенствование технологического процесса непрерывной разливки стали, его оптимизация с целью получения более качественного продукта.
Известно, что наиболее качественный металл получается при стационарных режимах разливки, когда скорость вытягивания сляба не изменяется. Наибольшая доля брака разливаемого металла получается при переходных режимах разливки, когда в силу технологических причин приходится изменять скорость разливки, причем около 10-20% всего металла разливается на MHJ13 в условиях переходных режимов. Брак металла получается в большой степени из-за нерационального управления охлаждением сляба в переходных режимах разливки. На большинстве отечественных MHJ13 управление вторичным охлаждением сляба производится таким образом, что при изменении скорости разливки расходы воды в зонах изменяются практически мгновенно и принимают значения, соответствующие текущей скорости разливки без учета инерционности переходного процесса. При этом при снижении скорости разливки происходит значительный разогрев поверхности сляба, что может привести к уменьшению прочности твердой оболочки сляба и ее выпучиванию между поддерживающими роликами, что вредно отражается на качестве металла. При увеличении скорости разливки происходит переохлаждение поверхности сляба, твердая оболочка может потерять необходимую пластичность и в зоне разгиба криволинейной MHJ13 могут возникать внутренние и поверхностные трещины в металле. Таким образом, при существующем способе управления охлаждением сляба в
MHJI3 в переходных режимах разливки не выдерживается заданный температурный режим охлаждения сляба.
На некоторых отечественных MHJI3 внедряются системы динамического управления охлаждением, призванные уменьшить вредное влияние переходных режимов на качество разливаемого металла, среди которых наиболее известной является система DYNCOOL, разработанная на металлургическом заводе г. Раутарукки (Финляндия) и внедренная на MHJI3 №5 конвертерного производства ОАО «Северсталь».
В связи с вышесказанным имеется необходимость в разработке эффективного способа управления охлаждением сляба в MHJI3, позволяющего выдерживать рациональный температурный режим охлаждения сляба при стационарных и переходных режимах разливки.
Тепловым процессам формирования непрерывного слитка посвящено значительное количество экспериментальных и теоретических исследований. Существенный вклад в развитие науки внесли работы Г.П. Иванцова, B.C. Рутеса, А.И. Манохина, Б.Т. Борисова, Ю.А. Самойловича, А.А. Скворцова, А.Д. Акименко, Е.И. Астрова, В.Т. Сладкоштеева, В.А. Ефимова, Д.П. Евтеева, Э. Германа, О. Клейнгауэра, С. Огибаяси.
Развитие требований к современным MHJI3 и появление новых технологических приемов приводят к тому, что сложившиеся представления о тепловых процессах в непрерывнолитых заготовках оказываются недостаточными. В силу этого возникает необходимость в более углубленном исследовании тепловых процессов формирования слитков на MHJI3 в стационарных и, особенно, в переходных режимах литья. Следует отметить, что экспериментальное изучение процессов формирования непрерывных слитков сопряжено с большими трудностями. В этих условиях значительную роль играют теоретические исследования, в частности, метод математического моделирования с использованием современных ЭВМ.
Целью данной работы является разработка способа динамического управления охлаждением сляба в зоне вторичного охлаждения криволинейной MHJ13 для уменьшения вредного влияния переходных режимов на качество разливаемой стали.
Методы исследований.
В данной работе использовались методы математического моделирования, полученные результаты сравнивались с известными экспериментальными данными. При разработке динамической модели охлаждения и затвердевания сляба использована квазиравновесная математическая модель затвердевания и охлаждения сляба, а также метод контрольных сечений, позволяющий рассчитывать процесс затвердевания при изменении скорости разливки.
Реализация работы.
Разработанный способ динамического управления охлаждением сляба в ЗВО MHJ13, а также компьютерная программа динамической модели охлаждения и затвердевания сляба в MHJ13 обсуждались со специалистами по автоматизации и технологами непрерывной разливки стали ОАО «Северсталь». На научно-техническом совещании начальником конвертерного производства, главным технологом непрерывной разливки и главным специалистом по автоматизации ОАО «Северсталь» был подписан протокол, где данная компьютерная программа рекомендуется к внедрению в систему автоматизации MHJ13 конвертерного производства ОАО «Северсталь».
Апробация работы.
Основные результаты работы были доложены и обсуждены на 4-й межвузовской конференции молодых ученых (Череповец, ЧГУ, 2003 г.); на 3-й межвузовской научно-технической конференции «Фундаментальные проблемы металлургии» (Екатеринбург, ГОУ ВПО УГТУ - УПИ, 2003 г.); на Международной научно-технической конференции, посвященной 75-летию АГТУ (Архангельск, АГТУ, 2004); на 4-й Международной научно-технической .конференции «Повышение эффективности теплообменных процессов и систем» ( Вологда, ВоГТУ, 2004); на 4-й Международной научно-технической конференции «Инфотех-2004» «Информационные технологии в производственных, социальных и экономических процессах» (Череповец, ЧГУ, 2004).
Публикации.
По материалам диссертации опубликовано 8 печатных работ в научных сборниках и монографиях.
Структура и объем диссертации.
Диссертационная работа состоит из введения, пяти глав, заключения и приложений. Общий объем работы 188 страниц машинописного текста, включает в себя 60 рисунков, 5 таблиц и список литературы, состоящий из 155 наименований.
Заключение диссертация на тему "Разработка динамической модели охлаждения и затвердевания сляба на машинах непрерывного литья заготовок"
5.3. Выводы по главе
В данной главе сделано следующее:
1) Разработан алгоритм управления расходами воды в зонах вторичного охлаждения в условиях реальной МНЛЗ.
2) Описана компьютерная программа динамического управления охлаждением сляба в ЗВО МНЛЗ, основанная на данном алгоритме. Данная программа позволяет рассчитывать расходы воды в зонах охлаждения в режиме реального времени разливки, производить визуализацию процесса охлаждения и затвердевания сляба, осуществлять настройку зоны вторичного охлаждения на основе показаний пирометра, установленного в одной из зон охлаждения.
Данная программа рекомендована к внедрению в АСУ МНЛЗ конвертерного производства ОАО «Северсталь».
163
ЗАКЛЮЧЕНИЕ
В литературном обзоре рассмотрены наиболее важные математические модели охлаждения и затвердевания сляба. В данной работе при разработке способа динамического управления охлаждением сляба в МНЛЗ использовалась квазиравновесная модель затвердевания- сляба, обеспечивающая достаточную точность расчета, а также метод контрольных сечений, позволяющий решать задачу затвердевания при переменной скорости разливки.
Рассмотрены способы управления охлаждением сляба при стационарных и переходных режимах непрерывной разливки стали и сформулированы требования оптимального режима охлаждения сляба на МНЛЗ. Указаны недостатки существующих способов управления охлаждением сляба в ЗВО МНЛЗ. Например, на большинстве МНЛЗ управление режимом вторичного охлаждения осуществляется автоматически с помощью локальных систем регулирования, которые устанавливают расход воды по секциям ЗВО в соответствии с мгновенным значением скорости разливки без учета переходных процессов. В результате скачкообразных изменений скорости разливки возникает переохлаждение или перегрев отдельных участков слитка, что приводит к браку по наружным и внутренним трещинам.
Рассмотрены особенности теплообмена и затвердевания сляба в кристаллизаторе МНЛЗ. Показано, что при переходных режимах разливки тепловой поток от сляба к кристаллизатору не равен тепловому потоку от кристаллизатора к охлаждающей воде, поэтому последний, измеряемый экспериментально в системе автоматизации МНЛЗ, не может непосредственно использоваться в моделях управления расходами воды и расчета процесса затвердевания сляба в МНЛЗ при переходных режимах разливки. Кроме того, отсутствуют инженерные методики расчета толщины твердой фазы в кристаллизаторе при переходных режимах разливки.
Научная новизна работы состоит в следующем:
1) Разработана математическая модель управления охлаждением сляба при стационарных и переходных режимах разливки.
2) Установлены основные закономерности изменения интенсивности охлаждения сляба в ЗВО в переходных режимах разливки.
3) Разработана математическая модель затвердевания сляба при динамических режимах разливки.
4) Установлены основные закономерности формирования твердой фазы и изменения температуры поверхности сляба в динамических режимах разливки.
5) Разработана математическая модель изменения тепловых потоков в рабочей стенке кристаллизатора при переходных режимах разливки.
6) Установлены основные закономерности изменения тепловых потоков в рабочей стенке кристаллизатора при переходных режимах разливки.
Практическая ценность работы состоит в следующем:
1) Разработан способ динамического управления охлаждением сляба в зоне вторичного охлаждения МНЛЗ.
2) Разработан инженерный способ расчета толщины твердой фазы сляба в кристаллизаторе МНЛЗ при переходных режимах разливки.
3) Разработан инженерный способ расчета плотности теплового от сляба к кристаллизатору при переходных режимах разливки.
4) Разработан способ визуализации процесса охлаждения и затвердевания сляба в динамических режимах разливки.
5) Разработан способ настройки зоны вторичного охлаждения МНЛЗ.
6) Разработана компьютерная программа, реализованная в среде программирования Borland Delphi для операционных систем Windows 9Х/2000/ МЕ/ХР, для динамической модели охлаждения и затвердевания сляба в МНЛЗ, рекомендованная к внедрению в АСУ МНЛЗ конвертерного производства ОАО «Северсталь».
Библиография Мусин, Андрей Равильевич, диссертация по теме Промышленная теплоэнергетика
1. Автоматическое управление режимом охлаждения непрерывнолитой заготовки на MHJ1. / Иванов А.А., Капитанов B.C., Манаенко Е.Н. и др. // Черная металлургия: Бюл. НТИ.- М.: Черметинформация, 1982. — № 11. - С. 46-48.
2. Акименко А.Д., Китаев Е.М., Скворцов А.А. Тепловой расчет машин непрерывного литья стальных заготовок.— Горький, 1979.— 86 с.
3. Акименко А.Д., Скворцов А.А. Охлаждение машин непрерывного литья заготовок // Использование вторичных энергоресурсов и охлаждение агрегатов в черной металлургии.- М., 1975.— Вып. 4.—С. 102—110
4. А.с. 602289 СССР, МКИ В 22Д 11/00. Способ непрерывной разливки металлов / Лебедев В.И., Уразаев Р.А., Паршин В.М. и др.- № 2380873; Заявл. 24.06.76; Опубл. 1978, Бюл. № 14.- С. 34.
5. А.с. 648332 СССР, МКИ В22Д 11/16. Способ автоматического управления режимом работы кристаллизатора установок непрерывной разливки металла / Краснов Б.И., Лебедева М.И., Зимин Ю.И. и др. № 2513998; Заявл. 25.07.77; Опубл. 1979, Бюл. № 7.- С. 40-41.
6. А.с. 686811 СССР, МКИ В 22Д 11/00. Способ непрерывной разливки металлов / Лебедев В.И., Евтеев Д.П., Уманец В.И. и др. № 2503173; Заявл. 01.07.77; Опубл. 1979, Бюл. № 35.- С.-46.
7. А.с. 1225679 СССР, МКИ В 22 Д 11/16. Устройство для измерения уровня металла / Шичков А.Н., Демьяновская О.Г., Шестаков Н.И. и др.— № 3832783/22—02; Заявл. 29.10.84; Опубл. 1986, Бюл. № 15.-С. 37.
8. А.с. 1320011 СССР, МКИ В 22 Д 11/16. Способ управления процессом непрерывной разливки металла и устройство для его осуществления / Шичков А.Н., Калягин Ю.А., Сорокин С.В. и др.—№ 3978025/31-02; Заявл. 19.11.85; Опубл. 1987, Бюл. № 24.- С. 50.
9. Бережанский В.А., Дождиков В.И., Емельянов В.А. Математическая модель процесса кристаллизации и затвердевания непрерывного слитка // Известия вузов. Черная металлургия. 1987. — № 10. - С. 139.
10. Борисов В.Т., Соколов JI.A. Об оптимальных условиях охлаждения непрерывного слитка при изменении скорости его вытягивания // Известия АН СССР. Металлы.- 1979.- № 1.- С. 124-129.
11. Борисов В.Т. Теория двухфазной зоны металлического слитка. М.: Металлургия. - 1987. - 224 с.
12. Вейник А.И. Теория затвердевания отливки. -М.: Машгиз-1960 -435 с.
13. Вейник А.И. Тепловые основы теории литья. М.: Машгиз-1953. -384 с.
14. Гиря А.П., Урбанович Л.И., Ермаков О.Н., Пестов В.И. Исследование процесса теплообмена в кристаллизаторе MHJI3 // Повышение эффективности процесса непрерывного литья стали. М. — 1983. С. 4-7.
15. Данилов В.Д., Кораблин А.И. Математическая модель деформирования непрерывнолитых стальных слябов // Известия вузов. Машиностроение — 1989.-№ 12.-С. 142-145.
16. Девятов Д.Х., Пантелеев И.И. Определение коэффициентов теплоотдачи в зоне вторичного охлаждения MHJI3 с помощью идентифицируемой математической модели // Известия вузов. Черная металлургия. 1999. — № 8. - С. 62-65.
17. Девятов Д.Х., Флейман С.Д., Шварцкопф А.А. Моделирование и оптимизация тепловых процессов в зоне вторичного охлаждения МНЛЗ // Совершенствование технологии и автоматизация сталеплавильных процессов. Магнитогорск. - 1989. - С. 64-67.
18. Динамическая модель системы охлаждения вторичной зоны для машины непрерывного литья заготовок / Яухола М., Кивеля Э., Коннтинен Ю. и др. // Сталь.-1995.- № 2.- С. 25-29.
19. Динамическая система вторичного охлаждения машины непрерывного литья заготовок / Парфенов Е.П., Смирнов А.А., Кошкин А.В., Корзунин Л.Г. // Металлург. 1999. - № 11. - С. 53-54.
20. Динамическое управление охлаждением сляба в машине непрерывного литья заготовок (МНЛЗ) / Лукин С.В., Калягин Ю.А., Ламухин A.M. и др. // Вузовская наука региону: Материалы 1-й Общероссийской науч.-техн. конф. - Вологда: ВГТУ, 2003.- С. 25-28.
21. Дождиков В.И., Горяинов А.В., Емельянов В.А., Ермолаева Е.И. Математическое моделирование форсуночного охлаждения непрерывного слитка // Непрерывное литье стали. Москва. - 1978. - № 5. - С. 21-25.
22. Дюдкин Д.А. О стабилизации условий формирования непрерывной заготовки в кристаллизаторе // Изв. вузов. Черная металлургия.— 1980.— № 1.—С. 49-53.
23. Дюдкин Д.А., Токарев В.Л., Ильин А.А., Онопченко В.М., Курапин Б.С. Оптимизация режима охлаждения непрерывного слитка с помощью приближенной модели // Сталь. 1981. - № 9. - С. 30-32.
24. Евтеев Д.П., Колыбалов И.Н. Непрерывное литье стали. М.: Металлургия, 1984. - 197 с.
25. Емельянов В.А. Тепловая работа машин непрерывного литья заготовок: Учебное пособие для вузов. М.: Металлургия, 1988. -143 с.
26. Есаулов B.C., Сопочкин А.И., Поляков В.Д., Ноговицын А.В., Семеньков В.И. Моделирование процесса теплообмена при водовоздушном охлаждении непрерывнолитой заготовки // Известия вузов. Черная металлургия. 1990. — № 8. - С. 82-85.
27. Ефремов П.Е., Рутес B.C. Определение эффективного контакта и площади прилипания между поверхностью слитка и стенкой кристаллизатора // Изв. вузов. Черная металлургия.— 1974. № 12.— С. 28—32.
28. Журавлев В.А., Китаев Е.М. Теплофизика формирования непрерывного слитка. М.: Металлургия. - 1974. - 215 с.
29. Завгородний П.Ф., Недопекин В.Ф., Повх И.Л., Финошин Н.В., Севастьянов Г.М. Численное исследование влияния термогравитационной конвекции на распределение примеси в затвердевающем слитке // Известия АН СССР. Металлы. 1977. - № 5. - С. 128.
30. Закономерности кристаллизации плоской отливки из бинарного сплава. Самойлович Ю.А., Горяинов В.А., Дистергефт И.М., Чесницкая Е.А. // Горение, теплообмен и нагрев металла: Сб. науч. тр. № 24 / ВНИИМТ. М. — 1973.-С. 75-88.
31. Затвердевание стальных слитков. Китаев Е.М. М.: Металлургия. — 1982. -168 с.
32. Заявка 57-19143 Япония, МКИ3 В 22 Д 11/10. Улучшение качества поверхности заготовок, отлитых на УНРС / Ямаути Кэйки.—№ 55—93311; Заявл. 10.07.80; Опубл. 01.02.82.
33. Заявка 2757430 Франция, МПК6 В 22 D 11/07. . Lingotiere a largeur variable pour la coulee continue de produits metalliques / Perrin E., Spiquel J., Jolivet J.M., Galpin J.M.; SOLLAC SA.— № 9615594; Заявл. 19.12.96; Опубл. 26.06.98.
34. Иванцов Г.П. Нагрев металла. — М.: Металлургиздат. 1948.
35. Иванцов Г.П. Теплообмен между слитком и изложницей. М.: Металлургиздат. - 1951. — 40 с.
36. Исследование влияния протяжённости жидкой фазы в непрерывном слитке на сопротивление его вытягиванию из МНЛЗ / Дружинин Н.Н., Филатов С.А., Храпченков O.K. и др. // Сталь.- 1982.- № 6. С. 27-30.
37. Исследование способов управления охлаждением непрерывного слитка с помощью математической модели / Дождиков В.И., Емельянов В.А., Евтеев Д.П. и др. // Изв. вузов. Чёрная металлургия.- 1984.- № 5.- С. 113-116.
38. Исследование тепловой работы кристаллизатора методом посекционного калориметрирования / Евтеев Д.П., Горяинов В.А., Ермолаева Е.И. и др. // Непрерывное литье стали.- М.: Металлургия, 1979.—№ 6- С. 33-37.
39. Ицкович Г.М., Ганкин В.Б. Строение непрерывного слитка кипящей стали // Сталь. 1961. -№ 6. - С. 505-514.
40. Камаев Ю.П., Хлопкова Н.В., Пугин А.И. В кн.: Расчет и моделирование тепловых процессов. - Куйбышев. Книжное изд-во. — 1976. — С. 128-131.
41. Клипов А.Д., Колпаков А.И., Чигринов М.Г., Баллад Э.Р. Физико-химические и теплофизические особенности непрерывной разливки под шлаком // Сталь. 1972. - № 2. - С. 124-128.
42. Коротков К.П., Майоров Н.П., Скворцов А.А. Промышленное применение непрерывной разливки стали. Л.: Судпромгиз, 1958. -152 с.
43. Краснов Б.И. Оптимальное управление режимами непрерывной разливки стали.— М.: Металлургия, 1975.— 312 с.
44. Кузьминов А.Л. Расчёт и диагностика процессов и оборудования непрерывной разливки стали. Череповец: ЧТУ, 1999. - 191 с.
45. Лебедев В.И., Евтеев Д.П., Битков В.Н. Переходный режим вторичного охлаждения непрерывных слитков в нестационарных условиях разливки // Сталь.- 1980.- № 4.- С. 283-285.
46. Лукин С.В., Габелая Д.И., Калягин Ю.А. Управление охлаждением металла на слябовых машинах непрерывного литья заготовок // Северсталь — пути к совершенствованию: Материалы науч.- техн. конф.- Череповец.-2003.- С. 27-28.
47. Лыков А.В. Теория теплопроводности. М.: «Высшая школа». - 1967. — 601 с.
48. Математическое моделирование затвердевания непрерывного слитка при переходных режимах / Урбанович Л.И., Горяинов В.А., Емельянов В.А. и др. // Непрерывное литье стали.- М.: Металлургия, 1978.- Вып. 5.- С. 5-9.
49. Машины непрерывного литья слябовых заготовок. Нисковских В.М., Карлинский С.Е., Беренов А.Д. М.: Металлургия. - 1991. - 272 с.
50. Металлографические проблемы производства продукции из непрерывнолитых быстрорежущих сталей / Супов А.В., Александрова Н.М.,
51. Пареньков С.А. и др. // Металловед, и терм, обраб. мет.— 1998.— № 9.— С. 6-13.
52. Мусин А.Р., Габелая Д.И. Динамическое управление вторичным охлаждением // Калягин Ю.А., Лукин С.В., Бормосов Н.А. Тепловые процессы в зоне вторичного охлаждения машины непрерывного литья заготовок.- Череповец: ЧТУ, 2004.- С. 104-113.
53. Мусин А.Р., Лукин С.В. Способ определения зависимости коэффициента теплоотдачи от удельного расхода охладителя в зоне вторичного охлаждения МНЛЗ // Вестник ЧГУ, Череповец: ЧГУ, 2004, № 2.- С. 53-55.
54. Мусин А.Р. Разработка методики настройки системы вторичного охлаждения машины непрерывного литья заготовок.- Сб. трудов участников 4-й межвуз. конф. молодых ученых.- Череповец: ЧГУ, 2003.- С. 179-180.
55. Напряженное состояние и качество непрерывного слитка. Мирсалимов В.М., Емельянов В.А. М.: Металлургия. - 1990. - 151 с.
56. A.И.Целикова, Москва, 14-15 апреля 2004 г.- М.: МГТУ им.Н.Э.Баумана, 2004.- С. 44.
57. Недопекин Ф.В. Математическое моделирование гидродинамики и теплопереноса при затвердевании слитков и отливок // Процессы литья. -1990.-№2.-С. 15-20.
58. Непрерывная разливка стали на радиальных установках / Сладкоштеев
59. B.Т., Потанин Р.В., Суладзе О.Н., Рутес B.C. М.: Металлургия, 1974. -286 с.
60. Носоченко О.В., Лебедев В.И., Емельянов В.В., Николаев Г.А. Моделирование процесса охлаждения непрерывнолитых слитков // Сталь. -1983.-№ 12.-С. 37.
61. Оптимизация затвердевания непрерывного слитка / Берзинь В.А., Жевлаков В.Н., Клевинь Я.Я. и др.- Рига: Зинатне, 1977. 148 с.
62. Оптимизация процесса непрерывной разливки стали путем улучшения теплопередачи в кристаллизаторе / Поживанов A.M., Дождиков В.И., Кукарцев В.М. и др. // Сталь.- 1986.- № 7.- С .20-22.
63. Основы теплопередачи. Михеев М.А., Михеева И.М. М.: Энергия. -1973.-320 с.
64. Охлаждение и затвердевание сляба в машине непрерывного литья заготовок при переходных режимах разливки / Лукин С.В., Калягин Ю.А., Шестаков Н.И., Габелая Д.И. // Изв.вузов. Черная металлургия.- 2004.- № 1.1. C. 59-61.
65. Оценка основных параметров процесса электромагнитной разливки без качания кристаллизатора // Новости черной металлургии за рубежом.- 2001 .№1.- С. 50-53.
66. Паршин В.М., Кан Ю.Б. Непрерывная разливка в модернизации черной металлургии России // Тр. 4 Конгр. сталеплавильщиков, Москва, 7-10 окт., 1996.—М., 1997.—С. 327-329.
67. Паршин В.М., Ларин А.В. Непрерывная разливка — позиции лидера — задача вполне реальная // ЦНИИчермет им. И. П. Бардина на рубеже столетий (научно- исследовательская деятельность за 1998-2000 г.г.).- М.: Интернет Инжиниринг, 2001.- С. 74-79.
68. Парфенов Е.П., Смирнов А.А., Антонов А.А. Вторичное охлаждение непрерывнолитых заготовок в переходных режимах // Труды второго конгресса сталеплавильщиков. М., 1994. - С. 317-318.
69. Пат. 48-3676 Япония. Температурный контроль слябов непрерывной разливки / Яматани Дзюн, Миясита Йосио, Кимура Йоситоро и др. № 5435174; Заявл. 28.12.72; Опубл. 31.10.79.
70. Пат. 2059030 Канада, МПК6 В 22 D 11/18. Method for continuous casting of slab / Kubota Jun, Shirayama Akira, Masaoka Toshio et al; NKK Corp.— № 2059030.1; Заявл. 08.01.92: Опубл. 10.03.95.
71. Пат. 2090304 Россия, МКИ6 В 22 D 11/10. Способ непрерывной разливки металла / Глазков А.Я., Андреенко О.Н., Шевчук Г.С.; Укр. НИИ мет.— № 94022779/02; Заявл. 14.06.94; Опубл. 20.09.97, Бюл. № 26.
72. Пат. 2112626 Россия, МПК6 В 22 D 11/12. Способ непрерывного литья заготовок / Тимофеев В.Н., Христинин P.M.; Краснояр. гос. техн. ун-т.- № 97111257/02; Заявл. 02.07.97; Опубл. 10.06.98, Бюл. № 16.
73. Пат. 2369548 Франция, МКИ3 В 22 Д 11/02. Procede et installation de mesure duniveau de metal, liquide dans une lingotiere. — № 7732104; Заявл. 25.10.77; Опубл. 26.05.78.
74. Пат. 4226278 Япония, МКИ В22Д 11/16. Automatic molten metal surface level control system for continuous casting machines / Osugi Kozo.- № 959639; Заявл. 13.11.78; Опубл. 07.10.80.
75. Пат. 52-101360 Япония. Способ регулирования охлаждения заготовки в установке непрерывной разливки / Ямадзаки Дзюндзиро, Нодзаки Ну. № 54-35125; Заявл. 23.08.77; Опубл. 15.03.79.
76. Пат. 5281647 Япония. Устройство для определения местоположения точки затвердевания лунки внутри непрерывнолитой заготовки / Сага Тикао, Кавамура Тацуо, Сайто Цутому. № 54-17327; Заявл. 08.07.77; Опубл. 08.02.79.
77. Пат. 53163727 Япония. Непрерывная разливка стальных слитков / Сэра Ясудзо, Кояна Масаюки, Сиритани Юсукэ. № 54-163727; Заявл. 16.06.78; Опубл. 26.12.79.
78. Пат. 5375648 США , МКИ6 В 22 D 27/02.Apparatus and method for continuous casting of steel / Idogawa Akira, Bessho Nagayasu, Soriuiacla Kenichi et al; Kawasaki Steel Corp.—№ 116138 ; Заявл. 02.09.93 ; Опубл. 27.12.94.
79. Пат. 5564487 США, МПК6 В 22 D 11/04. Continuous casting mold having radiation source for level measurement / Cahill Bonaventure В., Adkins Jack H.; Ronan Engineering Co.—№ 170047; Заявл. 17.12.93; Опубл. 15.10.96.
80. Поживанов A.M., Дождиков В.И., Кукарцев В.М., Фарафонов В.П., Шейнфельд И.И., Бережанский В.Е. Оптимизация процесса непрерывной разливки стали путем улучшения теплопередачи в кристаллизаторе // Сталь. 1986.-№7.-С. 20-22.
81. Работа кристаллизаторов НРС при вынужденной конвекции в зазорах / Акименко А.Д., Скворцов А.А., Стоянов А.Ю. и др. // Изв. вузов. Черная металлургия.- 1979.- № 2.-С. 122-124.
82. Разработка конструкции и исследование режимов работы кристаллизатора с разрежением в газовом зазоре / Горский В.Б, Стоянов А.Ю., Гранат И.Я. и др. // Проблемы стального слитка.- М., 1976.- Вып. 6.- С. 382-384.
83. Разработка рационального режима вторичного охлаждения непрерывно литых слябов / Столяров A.M., Селиванов В.Н., Буданов Б.А., Масальский С.С. // Изв. вузов. Черная металлургия.- 2004.- № 2.- С. 55-57.
84. Расчёт продолжительности переходных режимов охлаждения слитков при разливке на MHJI3 / Лебедев В.И., Егоров Д.П., Колпаков С.В., Уманец В.И. // Сталь.- 1979.- № 4.- С. 262-264.
85. Рудой Л.С. К вопросу о формировании и поведении непрерывного стального слитка в кристаллизаторе // Изв. вузов. Черная металлургия.— 1962.—№ 2.—С. 51—55.
86. Рудой Л.С., Лисянский И.Б. Численное моделирование выпучивания корочки литого сляба между поддерживающими роликами МНЛЗ // Процессы литья. 1998. - № 2. - С. 75-79.
87. Рудой Л.С. Моделирование на ЭВМ затвердевания и разнотолщинности корки слитка в кристаллизаторе // Известия вузов. Черная металлургия. — 1974.-№4.-С. 144-148.
88. Самойлович Ю.А. Гидродинамические явления в незатвердевшей части (жидком ядре) слитка // Известия АН СССР. Металлы. 1969. — № 2. — С. 84.
89. Самойлович Ю.А., Кабаков З.К. Затвердевание непрерывного слитка при резком снижении скорости его вытягивания // Металлургическая теплотехника.- М.: Металлургия, 1978.- Вып. 6.- С. 52-55.
90. Самойлович Ю.А. Математическая модель непрерывного слитка и ее применение в исследовании УНРС с контактным вторичным охлаждением // Сб. научн. тр. ВНИИ металлург, теплотехн. 1973. - № 24. - С. 135-142.
91. Самойлович Ю.А., Ясницкий А.Н., Кабаков З.К. Математическое моделирование тепловых и гидродинамических явлений процесса затвердевания непрерывного слитка // Известия АН СССР. Металлы. — 1982. № 2. - С. 62-68.
92. Самойлович Ю.А., Ясницкий А.Н., Кабаков З.К. Математическое моделирование тепловых и гидродинамических явлений процесса затвердевания непрерывного слитка // Известия АН СССР. Металлы. — 1982. -№ 2.-С/62-68.
93. Скворцов А.А., Акименко А.Д. Теплопередача и затвердевание стали в установках непрерывной разливки.- М.: Металлургия, 1966.- 190 с.
94. Скворцов А. А., Соколов Л.А., Ульянов В. А. О применении водоохлаждаемых виброхолодильников при непрерывной разливке стали // Известия АН СССР. Металлы.— 1980.— № 1.— С. 61—65.
95. Совершенствование охлаждения непрерывной заготовки / Куклев А.В., Тиняков В.В., Айзин Ю.М., Паршин В.М. // Сталь. 1998. - № 8. -С. 20-21.
96. Способ динамического управления вторичным охлаждением сляба на машинах непрерывного литья заготовок при стационарных и переходных процессах / Лукин С.В., Шестаков Н.И., Калягин Ю.А., Габелая Д.И. //
97. Заготовительные производства в машиностроении (кузнечно-штамповочное, литейное и другие производства). М.: Машиностроение,- 2003.- № 3. - С. 30-32.
98. Теория непрерывной разливки / Рутес B.C., Аскольдов В.И., Евтеев Д.П. и др.— М.: Металлургия, 1971.— 296 с.
99. Тепловая работа машин непрерывного литья заготовок. Емельянов В.А. Учебное пособие для вузов. М.: Металлургия. - 1988. - 143 с.
100. Тепловые процессы при непрерывном литье стали / Самойлович Ю.А., Крулевецкий С.А., Горяинов В.А., Кабаков З.К. // М.: Металлургия, 1982. -153 с.
101. Теплоотвод в кристаллизаторе МНЛЗ при переменной скорости вытягивания / Дождиков В.И., Емельянов В.А., Евтеев Д.П., Карлик В.А. // Известия вузов. Чёрная металлургия.- 1984,- № 4.- С. 104-106.
102. Термопарный уровнемер для непрерывной разливки / Imata Hitomu, Kawata Yutaka, Kojima Yasunori // Kobe Steel Eng.Repts.— 1979.— 29, № 3.— P. 83—86.
103. Улучшение техники контроля вторичного охлаждения при непрерывной разливке / Иида Йосихару, Кодана Масанорм, Судзуки Ясихару и др. // Tetsu to hagane / J. Iron and Steel. Inst. Jap. 1978. - 64, № 11. - P. 203.с
104. Управление вторичным охлаждением сляба на машине непрерывного литья заготовок / Ламухин A.M., Лукин С.В., Калягин Ю.А. и др. // Сталь. — 2003.-№4.- С. 24-25.
105. Управление с помощью ЭВМ вторичным охлаждением слитка на МНЛЗ / Манаенко Е.Н., Капитанов B.C., Иванов А.А. и др. // Сталь. 1983. - № 12. -С. 31-33.
106. Хасин Г.А. и др. О математическом моделировании процесса формирования поверхностных слоев слитка // Известия вузов. Черная металлургия. 1987. -№ 8. - С. 133-135.
107. Хворинов Н.И. Кристаллизация и неоднородность стали. М.: Машгиз. - 1985. -382 е., ил.
108. Шестаков Н.И., Калягин Ю.А., Лукин С.В. Управление охлаждением сляба на машинах непрерывного литья заготовок // Неделя металлов: Материалы Междунар. Недели металлов, г. Москва, 3-5 июля 2003г.-Москва.- 2003.- С. 48.
109. Шестаков Н.И., Лукин С.В., Аншелес В.Р. Совершенствование системы охлаждения машины непрерывной разливки стали.- Череповец: ЧТУ, 2003.100 с.
110. Шестаков Н.И. Расчет теплообмена в зоне начального формирования слитка // Процессы разливки, модифицирования и кристаллизации стали и сплавов: Материалы 11-й Всесоюзной конф. по проблемам слитка.- Ч.2.-Волгоград: ВПИ, 1990.- С. 11-13.
111. Шестаков Н.И. Расчет теплопередачи от жидкого металла к охлаждающей воде при непрерывном литье слябовых заготовок // Изв. вузов. Черная металлургия.- 1990.- № 9.- С. 24-25.
112. Шестаков Н.И. Тепловые процессы при непрерывной разливке стали. — М.: Черметинформация. 1992. - 268 с.
113. Шмидт П.Г. Влияние механического перемещения жидкой стали на процесс кристаллизации непрерывного слитка // Известия вузов. Черная металлургия. 1974. - № 4. - С. 35-38.
114. Экспериментальное исследование процесса кристаллизации при использовании внутренних холодильников / Рамшивили Ш.Д., Кевхишвили Г.Ш., Тхелидзе Н.Д. и др.// Процессы литья и непрерывная разливка металлов.—Тбилиси, 1979.—Вып. 2.- С. 84-88.
115. Яухола М. // Труды второго конгресса сталеплавильщиков. М., 1994. — С. 314-316.
116. Automatic mould level control for continuous casting machines // Steel Times.- 1979, N3.- P. 75.
117. Ayub T. Fuzzy mould level keeps slabs in prime // Steel Times Int.— 2000.—24, N 1. —P. 32.
118. Birat J.P. Innovation in steel continuous casting: past, present and future // Rev. met. (France).— 1999.—96, N 11.—P. 1389-1399.
119. Development of continuous casting technology at Kawasaki Steel / Soriinachi Kenichi, Nasunuma Junichi // Kawasaki Steel Techn. Kept.— 1996.— N 35.— P. 52-53.
120. Developments in continuous casting of bloom & billet: An institute of materials conference report // Steel Times.— 1998.— 226, N 3.— P. 109-110.
121. Dewar W.A.C., Patric B. Computer control of secondary spragcooling on an eight-Strand continuous bloom casting machine // Int. Eisenhuttentechn. Kongr., Dusseldorf, 1976: Bd. I b.- Dusseldorf, 1976.-P. 3.
122. Control of steel flow with high field electromagnetic braking // Steel Times.— 1999.—227, N4.—P. 125, 127.
123. Faoro G. Kontrollierte kuhlunger laubt Kontinuitat beim stranggub von stahl //Messwerte.-1979.-N 19.-P. 14-19.
124. Heinmann W. Continuons casting an industrial process for shaping of liguid Steel//Metals. Technol.- 1978.- 5, N 12.- P. 414-421.
125. Improved system for measuring the molten steel level in the mold of a continuous casting machine // CIM Bull.—1973.— 72, N 805—P. 121—122.
126. Maar H.S. Electromagnetic stirring stepping stone to improved continuously cast product // Iron and. Steel. Inst.— 1979.—52, N 1—P. 29—31.
127. Neuere Ergebnisse vom elektromagnetischen Runre beim Stranggieben mit dem Magnetogye—Verfahren / Rirat I., Chone J., Frantz A., Heisbourg—Fachber P.//HiittenpraxMetaliweiterverarb.— 1979—N 10—P. 820—824.
128. Mizikar E.A. // Trans. Met. Soc. AJME. 1967. - v. 239. - p. 1747-1755.
129. No-man control of the continuous casting operation at Kashima Steel Works / Ichikawa H., Kabanasti Т., Jamazaki I.,.Tokonodo N // Contin. Cast.Pros. Inst. Conf. London-Biarritz, 1976.- London.- 1977.- P. 304-308.
130. Streubel H. Thin-slab casting with liquid core reduction // MPT Int.— 1999.— 22, N 3.— P. 62-64, 66.
131. Technological advances of a new slab caster at Mizushima Works / Sekiguchi H., Hiwasa S., Osanai H. et al // 10th. Continuous Cast. Conf., Dusseldorf, 30 Aug.—1 Sept., 1995: Proc. Vol.1.- Dusseldorf, 1995.—P. 75—81.
132. VAI continuous casting conference // Steel Times.— 1996.—224, N 7.— P. 269-271, 274.
133. Vers la coulee continue sans defauts // Usine nouv.— 1997. N 2603. — P. 42.
-
Похожие работы
- Совершенствование теплообмена при охлаждении металла в машинах непрерывного литья заготовок
- Управление охлаждением сляба на основе эффекта вторичного разогрева его поверхности
- Метод и алгоритмы обработки информации для оценки параметров теплового состояния слябов на линии "МНЛЗ-холодный склад"
- Усовершенствование режима вторичного охлаждения непрерывнолитых слябов для условий Магнитогорского металлургического комбината
- Методические основы охлаждения металла в машинах непрерывного литья заготовок.
-
- Энергетические системы и комплексы
- Электростанции и электроэнергетические системы
- Ядерные энергетические установки, включая проектирование, эксплуатацию и вывод из эксплуатации
- Промышленная теплоэнергетика
- Теоретические основы теплотехники
- Энергоустановки на основе возобновляемых видов энергии
- Гидравлика и инженерная гидрология
- Гидроэлектростанции и гидроэнергетические установки
- Техника высоких напряжений
- Комплексное энерготехнологическое использование топлива
- Тепловые электрические станции, их энергетические системы и агрегаты
- Электрохимические энергоустановки
- Технические средства и методы защиты окружающей среды (по отраслям)
- Безопасность сложных энергетических систем и комплексов (по отраслям)