автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Первичная обработка гидроакустических сигналов на основе итеративного моделирования помехо-сигнальной обстановки
Автореферат диссертации по теме "Первичная обработка гидроакустических сигналов на основе итеративного моделирования помехо-сигнальной обстановки"
На правах рукописи
СОТНИКОВ АНТОН АЛЕКСЕЕВИЧ 003068235
ПЕРВИЧНАЯ ОБРАБОТКА ГИДРОАКУСТИЧЕСКИХ СИГНАЛОВ НА ОСНОВЕ ИТЕРАТИВНОГО МОДЕЛИРОВАНИЯ ПОМЕХО-СИГНАЛЬНОЙ ОБСТАНОВКИ
О
05.13.18
«Математическое моделирование, численные методы и комплексы программ»
АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата технических наук
Новосибирск - 2007
003068235
Работа выполнена в Институте автоматики и электрометрии Сибирского отделения Российской академии наук
Научный руководитель
доктор технических наук Нежевенко Евгений Семёнович
Официальные оппоненты:
доктор технических наук, профессор Спектор Александр Аншелевич
Ведущая организация
доктор технических наук Резник Александр Львович
Технологический институт Южного федерального университета в г. Таганроге
Защита диссертации состоится « -г» мая 2007 г. в «1' » часов на заседании диссертационного совета К 003.005.01 в Институте автоматики и электрометрии СО РАН по адресу: 630090, г. Новосибирск, проспект Акад. В.А. Коптюга, 1.
С диссертацией можно ознакомиться в библиотеке ИАиЭ СО РАН.
Автореферат разослан « апреля 2007 г.
Учёный секретарь диссертационного совета кандидат технических наук —5 Косых В.П.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы,
В настоящий момент произошло смещение интересов в области назначения морских гидролокационных систем. Раньше основной ареной действия служил открытый океан, в современном мире наибольшее внимание уделяется операциям у побережья в отдельных регионах, где складываются кризисные ситуации. Соответственно, в качестве потенциальных целей сейчас рассматриваются объекты, обладающие малой гидроакустической замет-ностью. Другим фактором становится все возрастающая потребность борьбы с незаконной деятельностью в прибрежной зоне, осуществляемой, как правило, с помощью небольших судов. Все это делает задачу обнаружения малых целей вблизи береговой линии (в бухтах, фиордах и т.д.) весьма актуальной. Это обстоятельство с учетом сложных гидролого-акустических условий на мелководье требует новых подходов к обработке гидроакустических сигналов (ГАС).
Распространение звуковых волн в прибрежной акватории в условиях мелководья принципиально отличается от распространения в открытом море. Здесь характерными являются множественные отражения звука от дна, поверхности воды и берегов, а также высокий уровень фонового шума и большое количество локальных направленных помех, связанных с высокой интенсивностью деятельности человека в прибрежной полосе. Все это повышает требования к разрешающей способности системы обработки ГАС и делает необходимым учет влияния среды на формирование акустического поля.
Важным фактором является также смена приоритетов и в конструкции антенн. Вместо стационарных комплексов, имеющих регулярную пространственную конфигурацию (линейные, цилиндрические, сферические), широкое распространение получают конформные антенны (по обводу корпуса судна), гибкие буксируемые антенны, а также приемные массивы, элементы которых устанавливаются на гидроакустических буях. Обработка сигналов с многоэлементных антенн произвольной конфигурации обладает своей спецификой, что накладывает отпечаток на выбор методов.
Отдельно следует отметить режим пассивной гидролокации (шумо-пеленгования), где предметом обработки является акустический сигнал, излучаемый собственно целью. Малое отношение сигнал-шум (ОСШ) при пассивном режиме требует более сложной процедуры обнаружения цели и выделения полезного широкополосного сигнала на фоне помех. Сложность обработки искупается возможностью вести сбор данных без демаскирования носителя гидроакустического комплекса, а также возможностью классификации цели, определению параметров ее движения и других характеристик по оценке данных, полученных в результате пространственно-временного анализа первичного поля цели. Основной задачей при проектировании комплексов пассивной гидролокации, в частности, систем первичной обработки ГАС, является поиск компромисса между эффективностью системы в задачах об-
наружения и идентификации целей и ее сложностью, которая определяется требуемой производительностью и характером обработки. Повышение сложности ведет к увеличению массы, габаритов, энергопотребления, стоимости, то есть таких параметров, на которые накладываются жесткие ограничения. Поэтому основными направлениями исследований в области вычислительной гидроакустики являются, с одной стороны, поиск новых эффективных алгоритмов обработки, которые позволили бы получать больше информации при том же объеме вычислений, с другой - разработка эффективных высокопроизводительных программно-аппаратных средств обработки массивов данных.
Цели и задачи исследования.
Цель работы - повышение эффективности систем первичной обработки гидроакустических сигналов многоэлементных антенн произвольной формы, предназначенных для использования в пассивном режиме в средах, характеризующихся большим количеством локальных помех и неоднородностью в горизонтальной плоскости.
Основные задачи работы:
1. Разработка методов обнаружения нескольких источников звука, в т.ч. коррелированных, определения их пространственных и акустических характеристик на основе моделирования помехо-сигнальной обстановки.
2. Исследование способов снижения объема вычислений при определении дальности источников звука для стесненных прибрежных участков за счет упрощения акустической модели среды и использования многолучевого распространения, вызванного горизонтальной неоднородностью среды.
3. Разработка программного исследовательского комплекса, включающего в себя генератор помехо-сигнальной обстановки для формирования тестовых выборок сигналов многоэлементной антенны, и программно-алгоритмическое обеспечение, реализующее обработку ГАС в соответствии с разработанными методами.
4. Исследование эффективности предложенных методов в задачах первичной обработки ГАС с помощью разработанного программного исследовательского комплекса.
5. Разработка высокопроизводительного программно-аппаратного модуля первичной обработки широкополосных ГАС на основе современных средств параллельных вычислений.
Научная новизна.
Разработан метод обнаружения целей, определения их пеленга и спектральных характеристик излучаемого звука в сложной помехо-сигнальной обстановке на основе итеративного моделирования. Метод позволяет увеличить вероятность обнаружения целей на фоне локальных помех (в т.ч. коррелированных с полезным сигналом) по сравнению с традиционными методами первичной обработки.
Предложен метод оценки расстояния до источника акустических колебаний на основе предсказания и моделирования трасс прохождения звуко-
вых волн с учетом отражений, вызванных батиметрической рефракцией в средах с многолучевым распространением в горизонтальной плоскости.
Показано, что реализация сбора и обработки широкополосных ГАС на основе современных высокопроизводительных микросхем программируемой логики позволяет увеличить производительность блока первичной обработки ГАС.
Практическая значимость.
Разработанные методы могут быть использованы для создания блоков первичной обработки гидроакустических комплексов, предназначенных для обнаружения целей и определения их параметров на фоне большого количества локальных помех. Следовательно, они могут применяться в современных пассивных гидролокационных системах, создаваемых на основе многоэлементных антенн. Внедрение полученных результатов.
Результаты работы использовались при выполнении НИР «Цигуне» (2002-2004 гг.) и «Цурок» (2005-2007 гг.), посвященных исследованию методов первичной обработки ГАС в целях повышения эффективности систем пассивной и активной гидролокации.
В рамках диссертационной работы разработан и создан электронный блок управления, сбора и обработки данных акустооптического приемника (АОП) Сибирского солнечного радиотелескопа (ССРТ) для Института солнечной и земной физики (ИСЗФ) СО РАН (г. Иркутск), с весны 2005 три экземпляра которого внедрены в опытную эксплуатацию на ежедневных наблюдениях ССРТ для формирования радиоизображений Солнца. Основные положения, выносимые на защиту.
1. Метод обнаружения целей, определения их пеленга и спектральных характеристик излучаемого звука на основе итеративного моделирования обладает лучшим пространственным разрешением при разделении коррелированных волн, чем у всех известных спектральных методов, предназначенных для работы с многоэлементными антеннами произвольной формы.
2. В случае сложной помехо-сигнальной обстановки (большого количества источников) метод итеративного моделирования при реализации требует существенно меньшего объема вычислений, чем параметрические методы, при равной обнаружительной способности. При этом для построения итеративной модели не требуется априорной информации о помехо-сигнальной обстановке (количестве источников звука в среде, их пространственных и спектральных характеристиках).
3. Метод определения дальности источников акустических колебаний путем моделирования многолучевого распространения ГАС в горизонтальной плоскости позволяет существенно снизить объем вычислений при определении координат цели в пассивном режиме.
4. Использование микросхем программируемой логики общего назначения в качестве вычислительной базы блока первичной обработки позволяет совмещать на одной микросхеме реализацию задач сбора данных, фор-
мирования диаграммы направленности и адаптивной пространственно-временной обработки широкополосных многоканальных ГАС. При этом структура современных микросхем программируемой логики, оптимизированная под параллельные вычисления, позволяет достичь в несколько раз большей производительности (при прочих равных параметрах) по сравнению с реализацией на сигнальных процессорах. Апробация работы.
Результаты работы докладывались на следующих международных конференциях: «Прикладные технологии гидроакустики и гидрофизики - ГА-2004», Санкт-Петербург, 2004 г.; «Актуальные проблемы электронного приборостроения - АПЭП-2004», Новосибирск, 2004; «7th International Conference on Pattern Recognition and Image Analysis: New Information Technologies -PRIA-7-2004», St.Petersburg, 2004; IASTED International Conference «Signal and Image Processing - ACIT-SIP 2005», Novosibirsk, 2005; IASTED International Conference « Automation, Control and Applications - ACIT-ACA 2005», Novosibirsk, 2005; «Прикладные технологии гидроакустики и гидрофизики -ГА-2006», Санкт-Петербург, 2006 г.
Материалы диссертации опубликованы в 8 печатных работах, в том числе в 2-х статьях. Структура и объем диссертации:
Работа состоит из введения, 4 глав, заключения, списка цитируемой литературы (62 пункта), изложена на 148 страницах, содержит 32 рисунка и 10 таблиц. В дополнение к содержательной части представлены 5 приложений, изложенных на 64 страницах, содержащих 32 рисунка и 1 таблицу.
СОДЕРЖАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ
В первой главе приведен обзор актуальных проблем первичной обработки ГАС. Система первичной или пространственно-временной обработки сигналов, подключенная к выходам каналов системы предварительной обработки, решает задачи максимизации ОСШ, порогового обнаружения полезных сигналов и определения координат их источников на основе выборки волнового поля, полученной на массиве распределенных в пространстве акустических датчиков (гидрофонов) с последующей выдачей информации в системы вторичной обработки. Пространственно-временную обработку можно разделить на две процедуры: пространственную обработку, на основе которой делаются выводы о наличии источников и определение их пространственных координат, и частотно-временную обработку, где по восстановленному пространственной обработкой сигналу от цели с помощью спектрального анализа определяется звуковой портрет цели, что является необходимым для его последующей классификации.
Основной вклад в общую мощность излучаемого водной целью звука вносит широкополосный шум, причем энергия дискретных составляющих спектра, как по отдельности, так и в сумме может и не превышать порога обнаружения. Вследствие этого анализ всего частотного спектра входных сиг-
налов является неотъемлемой частью первичной обработки в гидроакустических комплексах (ГАК), предназначенных для работы в пассивном режиме. Естественным расширением методов спектрального и параметрического оценивания в частотной области на протяженный участок спектра является применение набора узкополосных фильтров (или преобразования Фурье), на вход которых подается один и тот же сигнал, после чего компоненты спектра обрабатываются как обычные узкополосные сигналы. Подобная обработка может завершаться финальным совмещением результатов (объединение узкополосных спектральных оценок, обратное преобразование Фурье и т.д.) или без них.
Подобный подход благодаря простоте реализации на сегодняшний день является превалирующим в широкополосных ГАК. Наиболее популярным критерием оптимального узкополосного формирования характеристики направленности (ФХН) является MVDR (Minimum Variance Distortionless Response, минимум дисперсии при неискаженном отклике), для поиска целей также используется MUSIC (Multiple Signal Classification, классификация множественных сигналов). Спектральные оценки, полученные на отдельных частотах, при этом складываются, а решение об обнаружении цели при этом принимается по полученной интегральной оценке. Аналогичным образом для поиска целей и оценки их параметров могут использоваться параметрические методы, например WSF (Weighted Subspace Fitting, взвешенная подгонка подпространства) где для оптимизации используется оценка максимального правдоподобия (МП). При этом общая функция подобия формируется как сумма функций подобия для отдельных частотных каналов. Оптимизация общей функции и приводит к МП оценке для широкополосных сигналов.
Несмотря на все свои достоинства, такая обработка поддиапазонами имеет и ряд существенных недостатков. Обработка в частотной области является только пространственной, а разделение на гармоники основывается на предположении, что узкополосные компоненты широкополосного сигнала некоррелированны между собой, поэтому выдаваемые оценки не являются оптимальными. По современным представлениям пространственную и временную обработку рассматривают как единый процесс, оптимизируя его на основе единого критерия, обеспечивающего обнаружение сигнала и оценку его параметров с требуемым качеством.
Все это делает выбор частотной области для первичной обработки ГАС не совсем очевидным. Если помимо энергетических оценок широкополосного сигнала цели необходимо когерентное восстановление временного ряда этого сигнала, для этого приходится применять обратное преобразование Фурье. Достоинством процессоров временной области является то, что они могут обеспечить выделение сигналов с непрерывным спектром и от источников с непрерывным распределением по углам. Вместо фазовых задержек здесь при формировании диаграммы направленности приходится оперировать временными задержками, реализация которых более сложна. Временные задержки сигналов гидрофонов реализуются с помощью аналоговых ли-
ний задержки или цифрового ФХН. Частота выборки в последнем случае должна быть избыточной и определяться не динамическим диапазоном, а точностью задания временных задержек.
Развитие микроэлектроники и создание высокопроизводительных интегральных микросхем вернуло интерес к оптимальной пространственно-временной обработке во временной области с помощью трансверсальных фильтров, которая, несмотря на большой объем вычислений, естественным образом осуществляет когерентное ФХН широкополосного сигнала. Наиболее известными методами адаптивного ФХН во временной области являются алгоритм Фроста и его модификация, известная как алгоритм Гриффитса-Джима. Оба алгоритма предполагают обработку данных по критерию уменьшения мощности выхода ФХН при неискаженном отклике в нужном направлении, как и MVDR. Эти алгоритмы по своей эффективности схожи с MVDR, однако более устойчивы и надежны благодаря своей принципиальной широкополосности, а принцип получения оптимальной оценки полезного сигнала путем постоянной адаптации делает их нечувствительными к размеру выборки и позволяет работать в сложной быстроменяющейся среде.
В некоторых случаях знание направления на цель (пеленга), определяемого упомянутыми выше спектральными и параметрическими методами, уже является достаточной информацией для выполнения определенных задач. Тем не менее, точные координаты местоположения цели также могут представлять интерес. Знание дальности цели, помимо всего прочего, позволяет рассчитать потери распространения и оценить оригинальную интенсивность и спектральный состав излучаемого звука (сильная зависимость потерь от частоты приводит к искажению спектрального портрета собственного широкополосного шума), что является необходимой информацией для классификации и идентификации цели по ее шуму.
Традиционные триангуляционные методы оценки дальности в пассивной гидролокации основаны на оценке кривизны фронта волны. Существенным недостатком такого подхода является прямая зависимость его точности от апертуры антенной решетки и расстояния до источников звука, а также чувствительность к искажениям фронта волны вследствие неоднородностей среды. В последнее время наибольшей популярностью для пассивной локализации источников звука в мелководной среде, характеризующейся волновод-ным распространением звука в толще воды, пользуется подход, называемый обработка сигналов в согласованном поле или matched-field processing (MFP). Здесь особенности когерентного многолучевого распространения звука не только не усложняют, а наоборот помогают в решении задачи. Идея состоит в сравнении измеренных на антенном массиве данных с данными, полученными моделированием источника в различных точках среды, и расчет корреляции между ними с помощью спектральных методов, например, Бартлетта (на основе классического ФХН) или Кэйпона (на основе MVDR).
Одним из факторов, ограничивающих широкое применение MFP в первичной обработке для пассивной локализации целей, является большой
объем требуемых вычислений: определение координат источника осуществляется с помощью двумерного поиска по дальности и глубине (при известном пеленге), связанного в каждой итерации с построением сложных акустических моделей. При этом поверхность функции корреляции обладает множеством локальных экстремумов, что исключает применение градиентных методов поиска оптимума. К недостаткам метода следует отнести также его чувствительность к точности задания параметров модели среды, в частности, профиля скорости звука в толще воды, геоакустических параметров дна и т.д., которые к тому же могут изменяться с течением времени. Кроме того, пассивная локализация источников на базе многоэлементных массивов произвольной формы с помощью MFP не всегда возможна, поскольку для эффективного применения данного метода желательно иметь достаточную вертикальную апертуру антенной базы.
На основе проведенного обзора сделано несколько выводов.
Используемые в настоящее время для первичной обработки ГАС методы (классический ФХН, MVDR, MUSIC) обладают в целом низким пространственным разрешением и плохо подходят для работы в сложной, быстро меняющейся помехо-сигнальной обстановке, в частности, при наличии когерентных помех. При этом, с точки зрения технической реализации в ГАК, оптимальные методы также обладают рядом недостатков: относительно большой объем вычислений, чувствительность к ошибкам. Точные методы, в частности параметрические, требуют знания количества источников и включают в себя многомерный поиск, размерность которого увеличивается с числом источников волн, в т.ч. мешающих целей и отраженных лучей, объем вычислений при этом делает их применение неэффективным для антенн произвольной формы. Компромиссом здесь может быть разбиение пространственной обработки на несколько этапов, на каждом из которых вычисляется априорная информация для последующего, например, такая, как количество целей, их приблизительное расположение, акустические характеристики и т.п. Эта процедура позволяет снизить требования к производительности за счет более эффективного использования вычислительных мощностей для получения каждой последующей доли информации. Вариантом такой многоступенчатой обработки может быть переход в пространство характеристик направленности (ХН) или лучей, когда на первом этапе производится обработка с помощью грубых, но более робастных и вычислительно более простых методов, последующая обработка осуществляется в пространстве полученных таким образом лучей, число которых можно контролировать в зависимости от требований к точности пространственного разделения.
Наиболее естественным доменом для первичной обработки в широкой полосе является временная область. При ФХН во временной области (например, по алгоритмам Фроста или Гриффитса-Джима), происходит непосредственное восстановление широкополосного сигнала с нужного направления. Анализ пространственного спектра для поиска целей производится на основе данных ФХН путем расчета энергии восстановленного сигнала. Для
частотного анализа в широкой полосе можно осуществлять дискретное преобразование Фурье (ДПФ) временных сигналов ХН, а не элементов антенны. Поэтому при начальной обработке во временной области становится возможным перенос спектрального анализа на более позднюю стадию, в пространство лучей. При этом выбор количества лучей (и соответственно, вычислительной сложности), для которых нужно ДПФ, может варьироваться в зависимости от требуемого пространственного разрешения и сложности помехо-сигнальной обстановки. Таким образом, последовательность операций первичной обработки широкополосных ГАС во временной области будет наиболее естественной, от простого к сложному:
- ФХН для когерентного восстановления широкополосного сигнала с определенных пеленгов;
- анализ пространственного спектра в нужном секторе для поиска
целей;
- ДПФ восстановленной временной последовательности сигналов с выбранных на предыдущем этапе пеленгов, то есть анализ спектральных характеристик первичного поля целей.
В рамках этих этапов обработка может также подразделяться на грубую (определение необходимой априорной информации) и тонкую с целью получения максимальной эффективности при минимальных вычислительных затратах. Причем эта структура будет неизменной независимо от назначения ГАК и задач, поставленных перед блоком обработки. Следует отметить, что при этом на каждом этапе существует возможность контролировать объем вычислений в зависимости от задачи и требований к точности. Данный подход особенно актуален в связи с современными тенденциями развития ГАС, связанными с созданием полностью комплексированных систем.
Во второй главе приводится описание предложенного метода первичной обработки ГАС с применением итеративного моделирования. Этот метод включает в себя построение модели помехо-сигнальной обстановки и определение невязки (разницы), полученной в результате обработки входных и моделируемых сигналов, с последовательным усложнением модели путем добавления в нее на каждой итерации дополнительных источников с целью компенсации невязки. Блок-схема данного алгоритма приведена на рис. 1.
На первом этапе обработки производится пространственно-временная обработка двумерного массива выборки входных сигналов, полученных с многоэлементной антенны. Пространственная обработка с помощью классического ФХН производится на каждом временном отсчете для всех пеленгов в выбранном секторе обзора с заданным угловым шагом, обусловленным требованиями к пространственному разрешению. Для выяснения спектрального состава акустических волн результаты ФХН сохраняются в течение периода, равного К//5(К- размер выборки,^ - частота дискретизации). После накопления производится ДПФ восстановленного временного ряда для каждого пеленга. По полученным комплексным составляющим определяется интенсивность гармоник, формирующих сигналы лучей. Результа-
том является массив Н размером Ь (количество пеленгов) на N (количество дискретных частот), элементы которого характеризуют пространственное и частотное распределение интенсивности акустического поля на антенне.
Выборка
Рис. 1. Функциональная диаграмма процедуры итеративного моделирования.
На втором этапе на основании известных данных о пространственном положении и характеристиках приема элементов антенны строится модель акустического поля, образованного источниками звука на приемной антенне. Сигналы модели аналогично входным сигналам подвергаются пространственной обработке, по результатам которой вычисляется невязка между модельными и исходными данными. Для нулевой итерации (/' = 0) матрицей невязки /1(0) является собственно массив спектров входных сигналов Н. Максимальный элемент невязки 8 (0 определяется путем последовательного перебора всех элементов Л(/)
¿(/)=тахк,(/)], (1)
1,п
где / - индекс пеленга, п - индекс частоты дискретного спектра, / - индекс итерации. Если максимальный элемент невязки больше заданного порога, в
модель добавляется один источник гармонического колебания, параметры которого определяются в соответствии со следующей процедурой.
Первоначально представим акустический источник плоской волной, приходящей на антенну с указанного пеленга. Характеристики волны (направление, частота, акустическая интенсивность) рассчитываются таким образом, чтобы максимально уменьшить невязку. По пеленгу I (;), являющимся
первым аргументом ё (г), моделируется источник, генерирующий сигнал на частоте, определяемой другим аргументом максимального элемента невязки
/(/)=«(0-^. (2)
Его амплитуда рассчитывается следующим образом. Поскольку дальность источника неизвестна, то целесообразно оценивать амплитуду гармонической волны р (/) в момент ее регистрации на гидрофонах антенны. Тогда, применяя дискретную форму теоремы Парсеваля (для оценки мощности сигнала, над которым производилось ДПФ) и, исходя из того факта, что квадрат максимальной амплитуды гармонического колебания в 2 раза больше квадрата его среднеквадратического значения, амплитуда моделируемого гармонического колебания р (г) вычисляется по формуле
МО). (3)
ик> \N-1C
Для полученных параметров источника можно рассчитать «выборку» сигналов на приемной антенне с аналогичной частотой дискретизации и временем накопления, что и для исходных сигналов. Выборка моделируется в
спектральной области для частоты источника / (/). Для этого используются те же направляющие векторы А/„ = [ащ, .. = [ехр02п:-/пт10), ... ,
ехр(/2л-/„-тщ.1)]г (/„ - частота, соответствующая индексу п, т - индекс гидрофона), что и для ФХН в частотной области. Если же применяется ФХН во временной области, то при предварительном расчете направляющих векторов а/%т следует использовать аналогичные цифровому ФХН задержки цт. Сигналы выборки х'т к{1) (надстрочный символ означает принадлежность к модели) будут определяться в соответствии с формулой
( I \
МО-«/(,)„■/(/)■— ■ехр[](р-1и]М1)), (4)
V у
где последний множитель, определяющий начальную фазу колебания, можно получить по результатам ДПФ. Полученная выборка подвергается пространственной обработке классическим методом Бартлетта, в результате чего определяется вектор распределения пространственного спектра, содержащий значения интенсивностей сигналов для лучей в секторе обзора. Этот вектор затем нормируется и находится спектр акустического поля модели Я (/'). После определения Н (/) программа начинает новую итерацию (г = / + 1): в соот-
ветствии с полученным H'(i-]) обновляется матрица невязки (точнее один ее вектор - элемент матрицы с индексом п (/-1))
д('')»(ы) = А0 - Ой(,-0 - И" (' - 0 > (5)
после чего заново производится поиск максимального элемента
При корректном моделировании максимальный элемент в массиве невязки при каждой следующей итерации определяется на другом участке пространственно-частотного спектра, поскольку предыдущий максимум компенсируется моделью. Если 8 (/) становится меньше пороговой величины, итеративная процедура прекращается, т.е. делается вывод, что построенная модель дает необходимую информацию об окружающей помехо-сигнальной обстановке. В противном случае моделируется новый источник гармонического колебания (один за каждую итерацию) и процедура моделирования повторяется. Порог прекращения итеративной процедуры Т* выбирается исходя из оценок уровня фонового шума и требуемого диапазона звуковой интенсивности определяемых целей.
Предположение о том, что достоверный учет влияния помех возможен с помощью адекватного моделирования, делает такой подход схожим с MFP и параметрическими методами оценки пеленгов целей. Однако, в отличие от этих методов, где каждый вариант модели предполагает одинаковое число источников с постоянными параметрами акустического излучения, предложенное построение и усложнение модели производится постепенно, путем последовательных приближений, только на основе оценки энергетических параметров источников. Это позволяет одновременно обнаружить несколько источников с различными характеристиками без увеличения размерности поиска. При таком подходе появляется возможность выделения слабых источников, маскируемых более сильными, в т.ч. коррелированными.
Таким образом, разработанный метод позволяет увеличить обнару-жительную способность при первичной обработке, что подтверждено численным моделированием. Рассмотрим результаты одного из подобных программных экспериментов. Моделируемая многоэлементная антенна в данном случае состояла из 360 гидрофонов, ориентированных от центра антенны и расположенных с периодичностью 1° в горизонтальной плоскости на окружности диаметром 40 м. Исходные данные: частота дискретизации - 1 кГц, размер выборки - 1024 (интервал дискретизации спектра - 0.98 Гц). В среде моделировались источники гармонических колебаний с частотами от 8 до 300 Гц и интенсивностью в точке приема от 94 дБ до 111 дБ, параметры источников приведены в табл. 1 (столбец «исходные данные»). Уровень фонового шума - 90 дБ, таким образом, для самой сильной гармоники ОСШ ~ 10, для самой слабой ОСШ ~ 1.5.
Для порога 90 дБ построение итеративной модели заняло 10 шагов, результатом обработки стало фиксирование всех присутствующих источников и определение их пеленга, частоты и интенсивности (табл. 1). Если пеленги моделируемых волн на разных итерациях совпадают, то считается, что
они излучаются одним источником, интенсивность которого равна сумме ин-тенсивностей всех моделируемых волн по данному пеленгу. На рис. 2,3 приведены графики суммарного по пеленгам спектра входных сигналов, спектра модельных сигналов - разницы между Н и и собственно невязки. На рис. 2 можно видеть, что только благодаря разработанному методу удалось обнаружить слабый источник звука №2 на фоне двух более мощных когерентных помех, интенсивность которых на 17 дБ больше. Рис. 3 иллюстрирует аналогичную ситуацию с источником №6, маскируемым основным лепестком более сильного (на 8 дБ) источника №4.
Таблица 1. Процедура построения модели, приведены параметры добавляемых на
каждом шаге источников в сравнении с параметрами исходных целей.
Исходные данные Итерации
0 1 2 3 4 5 6 7 8 9
1 35 6° 1105 дБ 186 Гц 35 5° 106 8 дБ 186 Гц 35 5° 107 4 дБ 186 Гц
2 61 0° 93 6 дБ 186 Гц 61 0° 90 7 дБ 186 Гц
3 90 0° 110 5 дБ 186 Гц 90 0° 106 9 дБ 186 Гц 90 0° 107 5 дБ 186 Гц
4 223 1° 107 4 дБ 8 Гц 224 0° 105 5 дБ 8 Гц 224 0° 105 8 дБ 8 Гц
5 223 1° 104 5 дБ 300 Гц 223 0° 99 4 дБ 300 Гц 223 0° 100 5 дБ 300 Гц
6 237 0° 96 6 дБ 8 Гц 238 0° 92 5 дБ 8 Гц
Оценка с помощью ФХН Фроста показала аналогичные классическому ФХН результаты: при наличии коррелированных между собой источников колебаний процесс адаптации привел к подавлению сигналов на выходе, при этом полученная форма пространственного спектра не позволила выделить слабые замаскированные сигналы на фоне сильных. При обработке в частотной области были получены сходные результаты. Классическая оценка Барт-летта дает ту же форму спектра, что и ФХН во временной области, при этом объем вычислений будет несравненно больше. То же самое касается и применения МУЭЯ.
Разделить все имеющиеся источники может упомянутый ранее параметрический алгоритм взвешенной подгонки подпространства (ХУБР). Однако для подобного применения WSF необходима априорная информация о числе источников, при этом объем вычислений будет очень большим даже при наличии дополнительной информации об источниках (частоты и интенсивности). Например, только для разделения трех волн №№1-3 требуется трехмерный поиск.
Интенсивность, отн eg 45
30- 45' en- 75- 90* 105' 120° 136"
Пвленг
Интенсивность, отн eg.
Рис. 2. Графики зависимости от пеленга интенсивности исходных данных, модельных данных и невязки между ними после 6-ой итерации (после определения источников №№1,3).
Рис. 3. Графики зависимости от пеленга интенсивности исходных данных, модельных данных и невязки между ними после 3-ей итерации (после обнаружения источника №4) для и = 8 (7.81 Гц).
105* 120* 135" 150* 165* 180' 195* 210* 225* 240* 255* 27D* 2В5' 300* 315' 330" 345' ЗЕО*
Пеленг
В табл. 2 приведен сравнительный анализ объема вычислений при первичной обработке разными методами для приведенного здесь варианта помехо-сигнальной обстановки: количество элементов антенны - 360, размер выборки - 1024, число пеленгов - 720 (круговой обзор: 360° с шагом 0.5°), количество итераций — 10 (для итеративного моделирования), число отводов фильтра - 10 (для ФХН Фроста).
Таблица 2 Сравнительная оценка объема вычислений при пространственной обработ-
Метод обработки Выделение всех источников Объем вычислений, Mflops
Классическое ФХН во временной области Нет 190
ФХН Бартлетга (классическое ФХН в частотной области) Нет 2506
ФХН Кэйпона (МУ1Ж) Нет 3751
ФХН Фроста Нет 5583
Итеративное моделирование Да 3860
Да 44708
В третьей главе описывается расширение данного метода от модели плоской до модели сферической волны, что требует знания, помимо пеленга, других координат цели. Очевидно, что для этого в рамках первичной обработки не обойтись без модельного подхода, учитывающего особенности распространения ГАС в среде. Использующий подобную технологию метод МРР малопригоден для систем реального времени и антенн произвольной формы из-за высоких требований к производительности вычислительных систем и размеру вертикальной апертуры приемного массива. Пути решения этой проблемы могут заключаться в использовании горизонтальной неоднородности среды. В стесненных прибрежных средах может наблюдаться многолучевое распространение звука, вызванное отражениями акустических волн от границ в горизонтальной плоскости (батиметрической рефракцией). Этой границей может быть береговая линия с крутым уклоном (например, в случае стесненной бухты с отвесным скальным берегом) или прибрежные фронты водных масс, характеризующиеся резкими градиентами акустических параметров. На мелководье адекватной является модель с постоянной скоростью звука, а влияние отражений от дна и поверхности можно учитывать благодаря соответствующим эмпирическим моделям потерь распространения. При этом не требуется достаточная вертикальная составляющая апертура приемного массива, как для МРР, также можно обойтись только энергетическими оценками, без расчета фаз (базирующегося на допущении о когерентности среды), что делает возможным непосредственную обработку широкополосных сигналов. Подобный подход позволяет разбить поиск координат источника в вертикальной плоскости на отдельные процедуры определения дальности и глубины.
Далее в главе приводится описание используемой пространственной модели многолучевой стесненной среды со сложным рельефом отражающих границ, исследуется возможность оценки дальности на основе моделирования многолучевого распространения сигнала в горизонтальной плоскости. Отражающие границы используются как дополнительная база для оценки точки излучения звука — при разных положениях источника будет соответственно меняться и точка отражения, и траектория отраженного луча, а, следовательно, и направление прихода. Таким образом, оценить дальность источника можно с помощью моделирования распространения излучаемого целью сигнала от берега с различными дальностями цели при одинаковом пеленге - в точке наибольшего приближения к истинной позиции источника разница модели с исходными данными будет наименьшей. Следует отметить, что чем больше отражающих границ содержит среда, тем больший вклад отраженных сигналов в общую картину, и тем очевидней разница между моделью и исходными данными при неправильном положении источника. Критерием соответствия модели может служить интегральная невязка представляющая сумму абсолютных значений всех элементов массива А
(б)
При этом дальность источника определяется по модели с наименьшей величиной ЛНедостатком этого критерия доя оценки дальности является его недостоверность в случае искажения пространственного спектра, вызванного интерференцией отраженных и прямых волн в случае, когда пеленги этих волн близки, и их основные лепестки при ФХН перекрываются. Такие волны могут быть когерентны, если источник неподвижен, а отражающая граница не вносит изменений в форму сигнала. Корреляция волн с разных направлений при обработке с помощью итеративного моделирования способна привести к существенной отрицательной невязке. Для различных положений источника взаимный сдвиг фаз прямой и отраженных волн, а, следовательно, и отрицательная невязка, появляющаяся по этой причине, могут принимать разные значения. Амплитуда таких изменений в ряде случаев становится даже больше информативно полезной части интегральной невязки А1. Из-за этого определение дальности по А1 оказывается невозможным.
Возможным путем решения этой проблемы является раздельная оценка положительных и отрицательных значений невязки
д+=£1ХК>о; Д"=£5Х1А.<О, (7)
/и I п
где интегральные величины А+ и А~ будут характеризовать соответственно «недомоделирование» и «перемоделирование». Истинное положение источника может определяться по позиции с минимальным значением А+. Однако все приведенные выше критерии имеют практический смысл, если отраженные сигналы обладают равной интенсивностью при различных позициях источника. Это возможно, когда длина траектории отраженного сигнала пропорциональна длине прямого тракта. Во всех других случаях интенсивность отраженных сигналов меняется - в отличие от интенсивности волны, приходящей по прямому тракту.
Следствием разности уровней отраженных сигналов для различных моделей становится ситуация, когда основной лепесток отраженной волны, даже будучи сдвинутым относительно истинного пеленга, может за счет своей большей интенсивности внести больший вклад в уменьшение положительной невязки и, соответственно, будет иметь меньшее значение А*, чем для модели с истинным значением дальности источника.
Очевидно, что надежный критерий должен быть комплексным и учитывать все вышесказанные источники ошибок. Численное моделирование показало, что наиболее подходящей оценкой истинности модели при определении дальности с помощью отражений является вклад отраженных сигналов в уменьшение положительной интегральной невязки А/, умноженный на его долю в общий вклад отраженных сигналов в изменение невязки
Ас=А/.-А—. (8)
Дг +АГ
Значения Аг+ и Аг~ рассчитываются следующим образом
Д/=Д/-Д\ ДГ"=Д--Д/, (9)
где А/ и А/ - интегральные величины положительной и отрицательной невязки, полученные при моделировании только прямого тракта распространения волны без включения отражений. Модель с максимальным значением комплексного критерия Ас и будет определять искомое значение дальности. Рис. 4 иллюстрирует пример эффективности различных критериев для оценки
Далее приводятся результаты численного моделирования решения задачи обнаружения и определения координат целей в сложной среде с многолучевым распространением, высоким уровнем шума и более сильными, чем полезный сигнал, направленными помехами. С помощью предложенного подхода проведена оценка дальности целей, определение которых с помощью триангуляционных методов невозможно из-за малого отношения горизонтальной апертуры приемной антенны к расстоянию до них. Благодаря моделированию отражений удалось обнаружить слабые источники, интенсивность основного лепестка которых ниже, чем у отраженных сигналов более мощных когерентных помех. Традиционной спектральной оценкой данные цели не могли быть выделены, так как при высоком пороге обнаружения они не определялись, а при низком пороге вместе с ними выявлялось много ложных целей, явившихся следствием многолучевого распространения в горизонтальной плоскости.
Предложенный подход к определению дальности может быть использован для оценки координат источников звука в рамках первичной обработки. Однако практически область применения данного метода ограничена средами, имеющими отвесные отражающие границы с малым акустическим поглощением и рассеиванием, когда отраженный шум может быть оценен до степени определения его характеристики направленности и энергии. Тем не менее, такой подход перспективен для любых водных сред, характеризующихся батиметрической рефракцией при условии использования трехмерных моделей, адекватно описывающих взаимодействие волновых фронтов с отражающими границами в горизонтальной плоскости. Это связано с критерием
дальности цели.
Значение оценочной функции, отн. ед. 7
6
5
//г
"Ч
.....,„- .......
И' -/....... / .........
Н-
1800
2000 2100 2200 2300 Дальность источника, м
Рис 4. Значения различных критериев в зависимости от дальности источника в модели, исходная дальность - 2200 м.
определения дальности, основывающемся на минимуме среднеквадратиче-ского отклонения и требующем только точной оценки интенсивности широкополосного сигнала без расчета и моделирования фаз узкополосных компонент, как в MFP, для которого необходимым признаком является высокая когерентность распространения ГАС.
Четвертая глава посвящена вопросу реализации методов первичной обработки ГАС на основе современных средств цифровой и аналого-цифровой обработки сигналов. Представлена разработка высокопроизводительной системы обработки сигналов на основе акустооптической ячейки (АОЯ), ПЗС-линейки, микросхемы программируемой логики и микроконтроллера для АОП ССРТ. Назначение этой системы состоит в считывании накопленных зарядов ПЗС-линейки, преобразование сигналов в цифровой код и передачи этой информации в ЭВМ. Дополнительной задачей является фиксирование текущего времени, а также битов конфигурации антенн ССРТ в момент выборки и передача всей информации, как маркера, вместе с пакетом данных выборки. Помимо этого, на электронный блок возлагается управление аттенюатором сигнала с антенн ССРТ. В данном устройстве использовалась схема преобразования «широкополосный электрический сигнал - пространственно распределенный оптический сигнал», которая может применяться и для спектрального анализа ГАС в случае, когда задачей является определение только интенсивности гармоник во временной области без учета фаз спектральных составляющих. Однако очевидно, что спектральный анализ широкополосных сигналов с помощью АОЯ, несмотря на все свои преимущества (оптическая обработка в реальном времени, высокая точность по интенсивности и частотному разделению), не может служить альтернативой цифровым средствам для обработки широкополосных ГАС. Подобные устройства не согласуются с современными требованиями к реализации бортовых ГАК, работающих в пассивном режиме. Как показали предварительные оценки подобного устройства, основными недостатками помимо сложности ввода-вывода данных на АОП являются высокое энергопотребление, вес и габариты модуля обработки и, не в последнюю очередь, высокая стоимость полученного АОП, что сужает область применения подобных систем только для стационарных установок обработки высокочастотных сигналов. Тем не менее, данная работа вызвала интерес с точки зрения использования микросхем программируемой логики для реализации многоканальных устройств сбора и обработки данных и позволила оценить перспективы такого подхода для реализации модуля первичной обработки ГАС.
Далее представлена разработка модуля первичной обработки на основе программируемой логической БИС - FPGA (field programmable gâte array) серии StratixII фирмы Altéra. Приведено сравнение подобной платформы с сигнальными процессорами, рассмотрены достоинства и недостатки такого подхода, перспективы использования для современных комплексов пассивной гидролокации. Наибольший интерес с этой точки зрения вызывает возможность создания на FPGA интегрированного программируемого модуля
сбора и первичной обработки ГАС. Особенно актуальной представляется реализация оптимальных методов, характеризующихся сложностью математического аппарата, большим объемом вычислений, ветвлением вычислительных потоков и, соответственно, большим количеством требуемых вычислительных блоков. По сравнению с другими адаптивными алгоритмами широкополосной обработки, алгоритм Фроста является более громоздким, но в то же время состоит из простейших параллельных операций, где не требуется прямое и обратное преобразования Фурье, расчет ковариационных матриц и их обращение. Расчет выхода ФХН по Фросту производится с помощью транс-версального фильтра, для коррекции весов необходимо знать только вектор входных сигналов и выходное значение ФХН, определения корреляционной матрицы входных значений не требуется, весь процесс адаптации сводится к последовательности простых арифметических операций. Реализация транс-версального фильтра и цифрового ФХН в случае больших произвольных антенн не требует разветвленной логики и может быть осуществлена с помощью FPGA, внутренняя архитектура которой включает все необходимые для данных операций функциональные узлы.
В рамках диссертации разработан блок первичной обработки, реализующий сбор данных с многоэлементной антенны произвольной формы, цифровое ФХН и оптимальную пространственно-временную обработку с помощью метода Фроста на базе микросхемы StratixII EP2S15F484C5 со следующими параметрами: количество элементов антенны - 128; число отводов фильтра - 48; представление данных - целые числа со знаком (разрядность; 16 для входных данных и 32 для весов трансверсального фильтра). Объем внешней памяти выборок - 64 Мб, что при частоте дискретизации 0.5 МГц позволяет делать ФХН в произвольном направлении для гидроакустических массивов с разбросом элементов до 760 м. Для сравнения производительности аналогичный алгоритм реализован также на наиболее быстродействующем на сегодняшний день целочисленном сигнальном процессоре (СП) -TMS320C6414 фирмы Texas Instruments. TMS320C6414T имеет восемь 32-разрядных вычислительных блоков (в т.ч. два умножителя и два формирователя адреса данных), работающих параллельно. Предполагалось, что ввод данных в СП с антенны осуществляется по каналам прямого доступа к памяти от внешней системы сбора (в отличие от модуля с FPGA, где сбор совмещен с системой обработки).
Результаты реализации алгоритма на данных СП и FPGA приведены в табл. 3, откуда видно, что производительность FPGA почти в 7 раз превысила производительность сигнального процессора. При реализации было задействовано более 90% внутренних ресурсов FPGA (из которых, в свою очередь, более 90% ушло на реализацию отводов), а занятость вычислительных блоков СП составила около 80%, что показывает оптимальность выбора данных микросхем для решения указанной задачи. Следует отметить большую интегрированность и гибкость системы сбора данных, построенной на базе микросхемы программируемой логики, что позволяет быстрее перестраивать
систему в случае изменения задачи, например, увеличения количества элементов антенны или изменения процедуры обработки. К недостаткам реализации на РРвА подобной системы следует отнести большую сложность проектирования комплексных модулей обработки.
Таблица 3 Сравнение реализации алгоритма на FPGA и СП.
Микросхема FPGA Altera Stratixll EP2S15F484C5 СП Texas Instruments TMS320C6414
Тактовая частота 200 МГц для сбора данных 280 МГц для ФХН и адаптации 1000 МГц
Вычислительные блоки 48 умножителей (16x16) 780 LAB (16 разр ) 4 умножителя (16x16) 6 АЛУ (32 разр )
Производительность, (16x16 ММАС в сек ) 13440 4000
Длительность вычислений (ФХН и адаптации весов) одной выборки 1 4 мкс 9 6 мкс
Средняя розничная цена в России 250$ 350$
Приведенный пример совмещенной пространственно-временной оптимальной обработки многоканальных широкополосных сигналов иллюстрирует универсальный подход, позволяющий работать с любыми ГАС. В случае разделения пространственной и частотной фильтрации, например, для обработки узкополосных сигналов, преимущество РРвА перед СП будет еще более очевидным. Структура РРвА, совмещающая вместе с умножителями сумматоры-вычитатели, аккумуляторы и общие сумматоры (с возможностью округления после каждого этапа работы с плавающей точкой) в совокупности с быстрой схемой передачи операндов по цепочке от одного умножителя к другому позволяет одновременно производить быстрое умножение многих комплексных чисел и организовывать конвейер множителей и промежуточных результатов арифметических операций без привлечения дополнительных ресурсов. Такая архитектура идеально подходит для БПФ, пространственной и частотной фильтрации, корреляционного анализа и других алгоритмов цифровой обработки сигналов, представленных как целыми числами, так и числами с плавающей точкой, что делает ее подходящей для реализации любых методов первичной обработки ГАС, в т.ч. и предложенных в данной работе.
В заключении сформулированы основные результаты работы.
1. Разработан метод первичной обработки ГАС, использующий итеративное моделирование акустического поля на приемной антенне и позволяющий автоматически оценивать сложную окружающую помехо-сигнальную обстановку и фиксировать находящиеся в ней цели. Показано, что данный подход приемлем для антенн любой формы.
2. С помощью программного моделирования показано, что разработанный метод проявляет лучшую обнаружительную способность в сложной
среде с большим количеством источников, в т.ч. коррелированных между собой, чем известные спектральные методы первичной обработки ГАС. В частности, с помощью итеративного моделирования удавалось выявить несколько источников (и оценить их параметры) с интенсивностью на 15-20 дБ меньше, чем маскирующие их направленные помехи.
3. Показано, что при реализации предложенный метод требует существенно меньшей производительности, чем известные параметрические методы. Например, в ряде случаев при равной обнаружительной способности объем вычислений при обработке с помощью итеративного моделирования более чем на порядок меньше. При этом для построения модели помимо данных о конфигурации антенны не требуется априорной информации о помехо-сигнальной обстановке (количестве источников звука в среде, их пространственных и спектральных характеристиках).
4. Исследовано влияние среды на формирование акустического поля. Предложена упрощенная двумерная модель описания стесненной водной среды и процедура предсказания и расчета многолучевого распространения акустических волн в горизонтальной плоскости.
5. Предложен метод оценки дальности, основанный на прогнозировании многолучевого распространения ГАС в горизонтальной плоскости, который может применяться в стесненных средах с существенной батиметрической рефракцией для антенн произвольной формы (без требований к большой вертикальной и горизонтальной апертуре).
6. С помощью численного моделирования показано, что предложенный метод позволяет оценивать расстояние до источника в случаях, когда традиционные методы, основанные на расчете кривизны фронта волны, не работают в силу малой апертуры приемного массива, а модельные методы, в частности MFP, не могут быть использованы в системах реального времени из-за большого объема вычислений.
7. Разработан программный исследовательский комплекс, включающий в себя генератор помехо-сигнальной обстановки для формирования тестовых выборок сигналов произвольной многоэлементной гидроакустической антенны и программно-алгоритмическое обеспечение, реализующее обработку ГАС в соответствии с разработанными методами. Комплекс использован для исследования эффективности методов первичной обработки, в т.ч. предложенных в данной работе, для различных вариантов помехо-сигнальной обстановки и различных многоэлементных антенн.
8. Разработан и создан электронный блок управления и сбора информации акустооптического приемника, предназначенный для спектрального анализа радиосигналов, внедренный в эксплуатацию на ССРТ ИСЗФ СО РАН. Для считывания и предварительной обработки многоканальных данных (12 разрядов) с тактовой частотой 2.4 МГц использована микросхема программируемой логики МАХ 7000 фирмы Altera. Устройство может быть использовано в системах первичной обработки ГАС как основа для спектрального анализа интенсивности широкополосных сигналов.
9. Разработан блок сбора данных и первичной обработки ГАС для многоэлементной антенны произвольной формы на основе микросхемы программируемой логики FPGA. Показано, что применение современных FPGA (Stratix II фирмы Altera) в качестве платформы для реализации методов многоканальной цифровой обработки ГАС позволяет (в т.ч. за счет оптимизации процедуры вычислений) увеличить производительность почти в 7 раз, при одновременном уменьшении массогабаритных характеристик и энергопотребления модуля первичной обработки по сравнению с реализацией на наиболее быстродействующем на сегодняшний день целочисленном сигнальном процессоре (TMS320C6414 фирмы Texas Instruments).
Список публикаций:
1. Нежевенко Е.С., Сотников А.А., Чулков B.JI. Обработка гидроакустических сигналов с применением адаптивного моделирования // труды ГА-2004 - стр. 459-462, С.-Пб., 2004.
2. Нежевенко Е.С., Сотников А.А. Адаптивное моделирование в задачах первичной обработки гидроакустических сигналов // Автометрия. - 2004. - Т. 40, №.4. - стр. 33-43, Новосибирск, 2004.
3. Сотников А.А. Устройство считывания оптической информации на основе ПЗС-линейки // Материалы АПЭП-2004. Новосибирск, 2004, Т. 3, стр. 313-316.
4. E.S. Nejevenko, А.А. Sotnikov, Adaptive modeling for hydroacoustics signal processing, Proc. PRIA-7-2004, St.- Petersburg, 2004, 825-828.
5. E.S. Nejevenko, A. A. Sotnikov. Improvement of Sound Source Detection by using of the Shoreline Modeling // Proc. ACIT-SIP-2005 - pp. 161-166, Novosibirsk, 2005.
6. A.V. Gubin, R.Yu. Stasyuk, S.V. Lesovoi, V.D. Barmasov, and A.A. Sotnikov. The Antenna Control System and the Data Acquisition System of the Siberian Solar Radio Telescope // Proc. ACIT-ACA-2005 - pp.161-165, Novosibirsk, 2005.
7. Nejevenko E. S., Sotnikov A. A. Adaptive Modeling for Hydroacoustic Signal Processing // Pattern Recognition and Image Analysis, 2006, Vol. 16, No. 1, pp. 5-8.
8. Сотников А.А. Использование программируемой логической БИС для реализации адаптивной обработки широкополосных гидроакустических сигналов // труды ГА-2006 - стр. 428-432, С.-Пб., 2006.
Подписано в печать « 2 » апреля 2007 г.
Формат бумаги 60 х 84 1/16
Объем 1.5 печл., Тираж 100 экз. Заказ № 263
ЗАО «РИЦ "Прайс-Курьер"», 630090, г Новосибирск, пр ак Лаврентьева, 6
Оглавление автор диссертации — кандидата технических наук Сотников, Антон Алексеевич
Список условных обозначений и сокращений.
Введение.
Глава 1. Актуальные проблемы первичной обработки ГАС.
1.1. Существующие методы обработки пространственно-временных сигналов.
1.1.1. Базовые положения.
1.1.2. Классическое ФХН.
1.1.3. Оптимальные спектральные методы пространственной обработки.
1.1.4. Параметрические методы пространственной обработки.
1.1.5. Недостатки оптимальных методов.
1.1.6. Обработка широкополосных сигналов. Алгоритмы
Фроста и Гриффитса-Джима.
1.2. Пассивная гидролокация в среде с многолучевым распространением.
1.2.1. Обоснование необходимости учета и параметризации среды.
1.2.2. Традиционные методы оценки координат источника в пассивном режиме.
1.2.3. Особенности распространения звука в мелком море.
1.3. Проблемы реализации первичной обработки ГАС в гидролокационных комплексах.
1.3.1. Реализация различных этапов вычислений в современных ГАК.
1.3.2. Современная техническая база пространственной оптимальной обработки в частотной области.
1.3.3. Особенности аппаратной реализации первичной обработки ГАС во временной области.
1.3.4. Оценка перспектив реализации широкополосной адаптивной обработки ГАС на программируемых логических БИС.
1.4. Выводы.
Глава 2. Применение итеративного моделирования помехо-сигнальной обстановки для первичной обработки ГАС.
2.1. Принципы адаптивного моделирования для определения неизвестных параметров.
2.2. Процедура первичной обработки ГАС с помощью итеративного моделирования.
2.3. Исследование эффективности итеративного моделирования в задаче определения пространственных и спектральных характеристик источников звука.
2.4. Сравнение обнаружительной способности итеративного моделирования и других методов пространственно-временной обработки ГАС в случае нескольких коррелированных источников звука.
2.5. Выводы по проведенным программным экспериментам.
Глава 3. Расширение возможностей итеративного моделирования в рамках первичной обработки при использовании модели окружающей среды.
3.1. Постановка требований к модели для первичной обработки данных в стесненной водной среде.
3.2. Расчет влияния отраженных сигналов.
3.3. Возможности повышения эффективности при оценке дальности цели в стесненной водной среде с помощью моделирования многолучевого распространения в горизонтальной плоскости.
3.4. Программный эксперимент по комплексному исследованию эффективности первичной обработки ГАС с помощью итеративного моделирования. Выводы.
Глава 4. Способы повышения эффективности реализации программноаппаратного модуля первичной обработки ГАС.
4.1. Электронный модуль обработки многоканального сигнала Сибирского Солнечного Радиотелескопа.
4.1.1. Реализация спектрального анализа широкополосного сигнала в реальном времени на основе акустооптической ячейки.
4.1.2. Использование ПЛИС для схемотехнической реализации сбора и предварительной обработки многоканальных данных.
4.2. Оценка возможности реализации первичной обработки ГАС многоэлементной антенны на современной программируемой логике.
4.2.1. Постановка задачи создания системы сбора и обработки широкополосных ГАС.
4.2.2. Структура модуля сбора и обработки данных на основе FPGA Stratix II фирмы Altera.
4.2.3. Функциональные блоки и процедура вычислений при расчете выхода ФХН и адаптации весов по методу НСКОО (ФХН Фроста).
4.2.4. Сравнительный анализ реализации блока первичной обработки на FPGA и СП, перспективыиспользования FPGA для создания мобильных систем гидролокации.
Введение 2007 год, диссертация по информатике, вычислительной технике и управлению, Сотников, Антон Алексеевич
Актуальность темы.
В настоящий момент произошла смена приоритетов в назначении морских гидролокационных систем. Раньше основной ареной действия служил открытый океан, в современном мире наибольшее внимание уделяется операциям у побережья в отдельных регионах, где складываются кризисные ситуации. Соответственно, в качестве потенциальных целей сейчас рассматриваются объекты, обладающие малой гидроакустической заметностью - малотоннажные надводные плавсредства, небольшие подводные лодки (ПЛ) и т.д. Другим фактором становится все возрастающая потребность борьбы с незаконной деятельностью в прибрежной зоне, осуществляемую, как правило, с помощью небольших судов. Все это делает задачу обнаружения малых целей вблизи береговой линии (в бухтах, фиордах и т.д.) весьма актуальной. Это обстоятельство с учетом сложных гидролого-акустических условий на мелководье требует новых подходов к обработке гидроакустических сигналов (ГАС).
Распространение звуковых волн в прибрежной акватории в условиях мелководья принципиально отличается от распространения в открытом море. Здесь характерными являются множественные отражения звука от дна, поверхности и берегов. Высокая интенсивность деятельности человека в прибрежной полосе, и, как следствие, большее число различных источников звука и более высокий уровень шума также усложняет решение задач обнаружения, идентификации и слежения. Следовательно, необходимо выделять локальные помехи, помехи вызванные реверберацией и фоновые шумы моря, что повышает требования к разрешающей способности системы обработки ГАС.
Одним из вариантов увеличения разрешающей способности является увеличение протяженности приемной антенны (апертуры) и увеличения числа элементов, что не всегда возможно. Для достоверного выделения и оценивания сигналов целей на фоне множественных помех при недостатке или отсутствии априорной информации о целях и ограниченной апертуре массива гидрофонов требуются адаптивные алгоритмы обработки данных, учитывающих влияние среды распространения.
Реализация таких алгоритмов требует большого объема вычислений и возможна только с применением высокопроизводительных средств обработки. Поэтому практическое использование подобных методов в системах реального времени проблематично, а при возрастании числа идентифицируемых источников их применение становится практически невозможным. Достоверность оценок при этом сильно зависит от точности информации о параметрах моделируемой среды. Некоторые же методы, могут использоваться только с определенным типом многоэлементных антенн, что сужает область их применения -вместо стационарных комплексов, имеющих регулярную пространственную конфигурацию (линейные, цилиндрические, сферические), широкое распространение в последнее время получают конформные антенны (по обводу корпуса судна), гибкие буксируемые антенны, а также приемные массивы, элементы которых устанавливаются на гидроакустических буях. Обработка сигналов с многоэлементных антенн произвольной конфигурации обладает своей спецификой, что накладывает отпечаток на выбор методов.
Соответственно этим тенденциям изменяются и принципы построения современных гидролокационных комплексов. Системы формирования характеристик направленности (ФХН) для антенн с линейным или круговым расположением гидрофонов, предполагающие однолучевое распространение сигнала от цели и использующие адаптацию к локальным и глобальным помехам уступают место системам, реализующим оптимальные алгоритмы для антенных массивов с произвольным расположением элементов и учитывающим влияние среды. Перспективные пассивные и активные гидроакустические средства уже не смогут обходиться без таких многоэлементных «интеллектуальных» антенн.
Задачи, решаемые обработкой ГАС, могут варьироваться в зависимости от назначения, активного (гидролокатор) или пассивного (шумопеленгатор) освещения обстановки и задач, ставящихся перед всей системой в целом - обнаружение целей, определение их параметров (акустических и пространственных), сопровождение целей, классификация, траекторный анализ и т.п. Отдельно следует отметить режим пассивной гидролокации (шумопеленгования), где предметом обработки является акустический сигнал, излучаемый собственно целью. Малое отношение сигнал-шум (ОСШ) при пассивном режиме требует более сложной процедуры первичной обработки, т.е. обнаружения цели и выделения полезного широкополосного сигнала на фоне помех. Сложность обработки искупается возможностью классификации цели, определению параметров ее движения и прочих характеристик по оценке данных, полученных в результате пространственно-временного анализа первичного поля цели. Немаловажным фактором является также и скрытность этого режима - при шумопе-ленговании не излучается зондирующих импульсов, как в активном режиме, которые, как правило, демаскируют носитель гидроакустического комплекса (ГАК). В ГАК ПЛ режим шумопеленгования в силу этой и ряда других причин получил приоритетную роль.
Таким образом, основной задачей при проектировании комплексов пассивной гидролокации, в частности, систем первичной обработки ГАС, является поиск компромисса между эффективностью системы в задачах обнаружения и идентификации целей и ее сложностью. Повышение сложности ведет к увеличению массы, габаритов, энергопотребления, стоимости и т.п., то есть таких параметров, на которые накладываются жесткие ограничения. Поэтому основными направления исследований в области вычислительной гидроакустики являются, с одной стороны, поиск новых эффективных алгоритмов обработки, которые позволили бы получать больше информации при том же объеме вычислений, с другой - разработка эффективных высокопроизводительных программно-аппаратных средств обработки массивов данных.
Цели и задачи исследования.
Цель работы - повышение эффективности систем первичной обработки гидроакустических сигналов многоэлементных антенн произвольной формы, предназначенных для использования в пассивном режиме в средах, характерии зующихся большим количеством локальных помех и неоднородностью в горизонтальной плоскости.
Основные задачи работы:
1. Разработка методов обнаружения нескольких источников звука, в т.ч. коррелированных, определения их пространственных и акустических характеристик на основе моделирования помехо-сигнальной обстановки.
2. Исследование способов снижения объема вычислений при определении дальности источников звука для стесненных прибрежных участков за счет упрощения акустической модели среды и использования многолучевого распространения, вызванного горизонтальной неоднородностью среды.
3. Разработка программного исследовательского комплекса, включающего в себя генератор помехо-сигнальной обстановки для формирования тестовых выборок сигналов многоэлементной антенны, и программно-алгоритмическое обеспечение, реализующее обработку ГАС в соответствии с разработанными методами.
4. Исследование эффективности предложенных методов в задачах первичной обработки ГАС с помощью разработанного программного исследова
-----тельского комплекса. ------------------—
5. Разработка высокопроизводительного программно-аппаратного модуля первичной обработки широкополосных ГАС на основе современных средств параллельных вычислений.
Научная новизна.
Разработан метод обнаружения целей, определения их пеленга и спектральных характеристик излучаемого звука в сложной помехо-сигнальной обстановке на основе итеративного моделирования. Метод позволяет увеличить вероятность обнаружения целей на фоне локальных помех (в т.ч. коррелированных с полезным сигналом) по сравнению с традиционными методами первичной обработки.
Предложен метод оценки расстояния до источника акустических колебаний на основе предсказания и моделирования трасс прохождения звуковых волн с учетом отражений, вызванных батиметрической рефракцией в средах с многолучевым распространением в горизонтальной плоскости.
Показано, что реализация сбора и обработки широкополосных ГАС на основе современных высокопроизводительных микросхем программируемой логики позволяет увеличить производительность и снизить массогабаритные характеристики блока первичной обработки ГАС.
Практическая значимость.
Разработанные методы могут быть использованы для создания блоков первичной обработки гидроакустических комплексов, предназначенных для обнаружения целей и определения их параметров на фоне большого количества локальных помех. Следовательно, они могут применяться в современных пассивных гидролокационных системах, создаваемых на основе многоэлементных антенн. Применение данных методов позволит увеличить обнаружительную способность систем пассивной гидролокации.
Внедрение полученных результатов.
Результаты работы использовались для выполнения НИР «Цигуне» (20022004 гг.) и «Цурок» (2005-2007 гг.), посвященных исследованию методов первичной обработки ГАС в целях повышения эффективности систем пассивной и активной гидролокации.
В рамках диссертационной работы разработан и создан электронный блок управления, сбора и обработки данных акустооптического приемника (АОП) Сибирского солнечного радиотелескопа (ССРТ) для Института солнечной и земной физики (ИСЗФ) СО РАН (г. Иркутск), с весны 2005 три экземпляра которого внедрены в опытную эксплуатацию на ежедневных наблюдениях ССРТ для формирования радиоизображений Солнца.
Основные положения, выносимые на защиту.
1. Метод обнаружения целей, определения их пеленга и спектральных характеристик излучаемого звука на основе итеративного моделирования обладает лучшим пространственным разрешением при разделении коррелированных волн, чем у всех известных спектральных методов, предназначенных для работы с многоэлементными антеннами произвольной формы.
2. В случае сложной помехо-сигнальной обстановки (большого количества источников) метод итеративного моделирования при реализации требует существенно меньшего объема вычислений, чем параметрические методы, при равной обнаружительной способности. При этом в отличие от параметрических методов, для построения итеративной модели не требуется априорной информации о помехо-сигнальной обстановке (количестве источников звука в среде, их пространственных и спектральных характеристиках).
3. Метод определения дальности источников акустических колебаний путем моделирования многолучевого распространения ГАС в горизонтальной плоскости позволяет существенно снизить объем вычислений при определении координат цели в пассивном режиме.
4. Использование микросхем программируемой логики общего назначения в качестве вычислительной базы блока первичной обработки позволяет совмещать на одной микросхеме реализацию задач сбора данных, формирования диаграммы направленности и адаптивной пространственно-временной обработки широкополосных многоканальных ГАС. При этом структура современных микросхем программируемой логики, оптимизированная под параллельные вычисления, позволяет достичь в несколько раз большей производительности (при прочих равных параметрах) по сравнению с реализацией на сигнальных процессорах.
Краткая характеристика работы:
Работа состоит из введения, 4 глав, заключения, списка литературы и приложений.
В первой главе приведен обзор актуальных проблем первичной обработки гидроакустических сигналов. Сначала приводятся базовые понятия и определения, касающиеся данной области, далее рассматриваются существующие алгоритмы, использующиеся для пространственно-временной обработки сигналов многоэлементных антенн. Рассматриваются достоинства и недостатки методов, сфера их применения, особенности и присущие им ограничения при использовании в тех или иных задачах. Особенное внимание уделяется методам оптимальной обработки, предназначенных для работы в сложной помехо-сигнальной обстановке, в неоднородной среде с многолучевым распространением и т.п. Оценивается вычислительная сложность методов, возможности ее оптимизации для использования в системах реального времени. В заключительной части исследуются возможности современных средств обработки сигналов, а также делается обзор современных тенденций в области программно-аппаратной реализации обработки ГАС, особенно первичной обработки.
Во второй главе приводится описание предложенного метода первичной обработки ГАС с применением итеративного моделирования помехо-сигнальной обстановки. Показана процедура обработки на основе пространственно анализа-акустического поля с помощью формирования характеристики направленности во временной области, что позволяет перейти из пространства элементов антенны в область лучей с последующим спектральным разложением широкополосного отклика по каждому лучу с помощью БПФ. Результаты этой обработки используются для моделирования источников звуковых колебаний в среде. Моделирование производится последовательно с добавлением на каждом шаге (итерации) нового гармонического источника плоской волны, параметры которого определяются из соображений минимизации невязки. Таким образом, путем последовательного усложнения модели появляется возможность выделения слабых источников, маскируемых более сильными коррелированными помехами. Представлены примеры программных экспериментов, позволяющих оценить эффективность предложенного метода, объем и характер вычислений по сравнению с другими алгоритмами оптимальной обработки.
В третьей главе описывается расширение данного метода от модели плоской волны до точечного источника. Приводится описание используемой пространственной модели многолучевой стесненной среды со сложным рельефом отражающих границ, исследуется возможность оценки дальности на основе учета и моделирования трасс прохождения отраженного сигнала. Описаны особенности среды, где может применяться такой подход. Предложены возможные критерии оценки дальности целей с помощью предложенного метода. Приводятся результаты программного эксперимента где представлен пример решения задачи обнаружения и определения координат целей в сложной среде с многолучевым распространением в горизонтальной плоскости, высоким уровнем шума и более сильными, чем полезный сигнал, направленными помехами.
Четвертая глава посвящена вопросу реализации методов первичной обработки ГАС на основе современных средств цифровой и аналогов-цифровой обработки сигналов. Представлена разработка высокопроизводительной системы обработки сигналов на основе акустооптической ячейки. Оценена возможность приложения подобной структуры к реализации первичной обработки ГАС. Показаны достоинства использования программируемой логики в многоканальных системах сбора и обработки данных. Далее представлена разработка модуля первичной обработки на основе современной программируемой логической БИС - FPGA. Показано сравнение подобной платформы по сравнению с сигнальными процессорами. Рассмотрены достоинства и недостатки такого подхода, перспективы использования для современных ГАК.
Список публикаций:
1. Нежевенко Е.С., Сотников A.A., Чулков B.JI. Обработка гидроакустических сигналов с применением адаптивного моделирования // труды ГА-2004 - стр. 459-462, С.-Пб., 2004
2. Нежевенко Е.С., Сотников A.A. Адаптивное моделирование в задачах первичной обработки гидроакустических сигналов // Автометрия. - 2004. - Т. 40, №.4. - стр. 33-43, Новосибирск, 2004.
3. Сотников A.A. Устройство считывания оптической информации на основе ПЗС-линейки // Материалы АПЭП-2004. Новосибирск, 2004, Т. 3, стр. 313316.
4. E.S. Nejevenko, A.A. Sotnikov, Adaptive modeling for hydroacoustics signal processing, Proc. PRIA-7-2004, St.- Petersburg, 2004, 825-828.
5. E.S. Nejevenko, A.A. Sotnikov. Improvement of Sound Source Detection by using of the Shoreline Modeling // Proc. ACIT-SIP-2005 - pp. 161-166, Novosibirsk, 2005.
6. A.V. Gubin, R.Yu. Stasyuk, S.V. Lesovoi, V.D. Barmasov, and A.A. Sotnikov. The Antenna Control System and the Data Acquisition System of the Siberian Solar Radio Telescope // Proc. ACIT-ACA-2005 - pp.161-165, Novosibirsk, 2005.
7. Nejevenko E. S., Sotnikov A. A. Adaptive Modeling for Hydroacoustic Signal Processing // Pattern Recognition and Image Analysis, 2006, Vol. 16, No. 1, pp. 5-8.
8. Сотников A.A. Использование программируемой логической БИС для реализации адаптивной обработки широкополосных гидроакустических сигналов // труды ГА-2006 - стр. 428-432, С.-Пб., 2006.
Заключение диссертация на тему "Первичная обработка гидроакустических сигналов на основе итеративного моделирования помехо-сигнальной обстановки"
Заключение
По результатам диссертационной работы можно сделать следующие выводы:
1. Разработан метод первичной обработки ГАС, использующий итеративное моделирование акустического поля на приемной антенне и позволяющий автоматически оценивать сложную окружающую помехо-сигнальную обстановку и фиксировать находящиеся в ней цели. Показано, что данный подход приемлем для антенн любой формы.
2. С помощью программного моделирования показано, что разработанный метод проявляет лучшую обнаружительную способность в сложной среде с большим количеством источников, в т.ч. коррелированных между собой, чем известные спектральные методы первичной обработки ГАС. В частности, с помощью итеративного моделирования удавалось выявить несколько источников (и оценить их параметры) с интенсивностью на 15-20 дБ меньше, чем маскирующие их направленные помехи.
3. Показано, что при реализации предложенный метод требует существенно меньшей производительности, чем известные параметрические методы. Например, в ряде случаев при равной обнаружительной способности объем вычислений при обработке с помощью итеративного моделирования более чем на порядок меньше. При этом для построения модели помимо данных о конфигурации антенны не требуется априорной информации о помехо-сигнальной обстановке (количестве источников звука в среде, их пространственных и спектральных характеристиках).
4. Исследовано влияние среды на формирование акустического поля. Предложена упрощенная двумерная модель описания стесненной водной среды и процедура предсказания и расчета многолучевого распространения акустических волн в горизонтальной плоскости.
5. Предложен метод оценки дальности, основанный на прогнозировании многолучевого распространения ГАС в горизонтальной плоскости, который может применяться в стесненных средах с существенной батиметрической рефракцией для антенн произвольной формы (без требований к большой вертикальной и горизонтальной апертуре).
6. С помощью численного моделирования показано, что предложенный метод позволяет оценивать расстояние до источника в случаях, когда традиционные методы, основанные на расчете кривизны фронта волны, не работают в силу малой апертуры приемного массива, а модельные методы, в частности MFP, не могут быть использованы в системах реального времени из-за большого объема вычислений.
7. Разработан программный исследовательский комплекс, включающий в себя генератор помехо-сигнальной обстановки для формирования тестовых выборок сигналов произвольной многоэлементной гидроакустической антенны и программно-алгоритмическое обеспечение, реализующее обработку ГАС в соответствии с разработанными методами. Комплекс использован для исследования эффективности методов первичной обработки, в т.ч. предложенных в данной работе, для различных вариантов помехо-сигнальной обстановки и различных многоэлементных антенн.
8. Разработан и создан электронный блок управления и сбора информации акустооптического приемника, предназначенный для спектрального анализа радиосигналов, внедренный в эксплуатацию на ССРТ ИСЗФ СО РАН. Для считывания и предварительной обработки многоканальных данных (12 разрядов) с тактовой частотой 2.4 МГц использована микросхема программируемой логики МАХ 7000 фирмы Altera. Устройство может быть использовано в системах первичной обработки ГАС как основа для спектрального анализа интенсивности широкополосных сигналов.
9. Разработан блок сбора данных и первичной обработки ГАС для многоэлементной антенны произвольной формы на основе микросхемы программируемой логики FPGA. Показано, что применение современных FPGA (Stratix II фирмы Altera) в качестве платформы для реализации методов многоканальной цифровой обработки ГАС позволяет (в т.ч. за счет оптимизации процедуры вычислений) увеличить производительность почти в 7 раз, при одновременном уменьшении массогабаритных характеристик и энергопотребления модуля первичной обработки по сравнению с реализацией на наиболее быстродействующем на сегодняшний день целочисленном сигнальном процессоре (TMS320C6414 фирмы Texas Instruments).
Библиография Сотников, Антон Алексеевич, диссертация по теме Математическое моделирование, численные методы и комплексы программ
1. Корякин Ю.А., Смирнов С.А., Яковлев Г.В. Корабельная гидроакустическая техника. СПб.: Наука, 2004.
2. А. Р. Лисс, А. В. Рыжиков, А. В. Челпанов, Цифровой вычислительный комплекс современных гидроакустических систем, Гидроакустика, вып. 2, стр. 6-14, СПб, 2000.
3. B.C. Сизиков. Устойчивые методы обработки результатов измерений. -СПб.: Специальная Литература, 1999.
4. В.В. Караваев, В.В. Сазонов. Статистическая теория пассивной локации. М.: Радио и связь, 2004.
5. Р.А. Монзинго, Т.У. Миллер. Адаптивные антенные решетки. / Пер. с англ. М.: Радио и связь, 1986.
6. Н. Krim and М. Viberg. Two decades of array signal processing: The parametric approach, IEEE Signal Processing Mag, pp. 67-94, July 1996.
7. D. Van Veen and К. M. Buckley. Beamforming: A versatile approach to spatial filtering, IEEE Signal Processing Mag., vol. 5, pp. 4-24, 1988.
8. Б.Уидроу, С.Стирнз. Адаптивная обработка сигналов. / Пер. с англ. -М.: Радио и связь, 1989.
9. Y. Hua, А.В. Gershman and Q. Cheng. High-Resolution and Robust Signal Processing. New York.: Marcel Dekker, 2003.
10. У.С. Найт, Р.Г. Придхэм, C.M. Кэй. Цифровая обработка сигналов в гидролокационных системах, ТИИЭР, т.69, ноябрь 1981.
11. W. Howells. Explorations in fixed and adaptive resolution at GE and SURC, IEEE Trans. Antennas Propagat., vol. AP-24,pp. 575-584,1976.
12. S. P. Applebaum and D. J. Chapman. Adaptive arrays with main beam constraints, IEEE Trans. Antennas Propagat., vol.AP-24, pp. 650-662, 1976.
13. Кэйпон. Пространственно-временной спектральный анализ с высоким разрешением, ТИИЭР. 1969. - Т. 57, № 8. - С. 69.
14. R. Т. Lacoss. Data adaptive spectral analysis method, Geophysics, vol. 36, pp. 661-675,1971.
15. С.Jl. Марпл. Цифровой спектральный анализ и его приложения. / Пер. с англ. М.: Мир, 1990.
16. L.C. Godara. Application of Antenna Array to Mobile Communications, Part II ¡Beam-Forming and Direction-of-Arrival Considerations, Proceedings of the IEEE, Vol.85,No.8, August 1997, pp.1195-1245.
17. H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part IV, Optimum Array Processing. New York: Wiley, 2002.
18. N.L. Owsley. "Sonar Array Processing" in "Array Signal Processing", S.Haykin, ed., Prentice-Hall, New Jersey, 1985.
19. I.I. Korshever. Adaptive Array Processing for Sensor Fields with Arbitrary Geometry. Proceedings o/ACIT2002, Novosibirsk, 2002. pp. 502-506.
20. A. George, J. Garcia, K. Kim, and P. Sinha. Distributed Parallel Processing Techniques for Adaptive Sonar Beamforming, Journal of Computational Acoustics, Vol. 10, No. l,pp. 1-23,2002.
21. F.B. Jensen, W.A. Kuperman, M.B. Porter, H. Schmidt. Computational Ocean Acoustics, American Institute of Physics, New York, 1994.
22. Р.Д. Урик. Основы гидроакустики. / Пер. с англ. Л.: Судостроение,1978.
23. S. Stergiopoulos. Implementation of Adaptive and Synthetic-Aperture Processing Schemes in Integrated Active-Passive Sonar Systems, Proceedings of the IEEE. 1998. - Vol. 86, No. 2, pp. 358-396.
24. Михайлов Г.А. Оптимизация методов Монте-Карло. М.: Наука,1987.
25. Фрост. Алгоритм линейно-ограниченной обработки сигналов в адаптивной решетке. ТИИЭР. 1972. - Т. 60, № 8. - С. 5.
26. L. J. Griggiths, С. W. Jim, An Alternative Approach to Linearly Constrained Adaptive Beamforming, IEEE Trans, on Antennas and Propagation. 1982. -Vol. AP-30,No. l,pp. 27-34.
27. Гриффите. Простой адаптивный алгоритм для обработки сигналов антенных решеток в реальном времени. ТИИЭР. 1969. - Т. 57, № 10. - С. 6.
28. А.В. Комляков. Корабельные средства измерения скорости звука и моделирования акустических полей в океане. СПб.: Наука, 2003.
29. J1.M. Бреховских, О.А. Годин. Акустика слоистых сред. М.: Наука,1989.
30. F.B. Jensen. Wave Theory Modeling: A Convenient Approach to CW and Pulse Propagation Modeling in Low-Frequency Acoustics, IEEE Journal of Oceanic Engineering. 1988. Vol. 13, No.4. P. 186-197.
31. H.P. Bucker. Use of calculated sound fields and matched field detection to locate sound sources in shallow water., J. Acous. Soc. Am. vol. 59, pp.368-373, 1976.
32. J. Krolik. SSAP with Computational Acoustic and Electromagnetic Propagation Models, IEEE SP Magazine, June, pp.47-52 ,1998.
33. Авилов K.B. Современные численные модели звуковых полей в океане и их приложение к решению практических задач гидроакустики // труды ГА-2006-стр. 5-10.
34. Porter М.В. Acoustic Models and Sonar Systems. IEEE Journal of Oceanic Engineering. 1993. Vol. 18, No.4. P. 425-437.
35. A. Tolstoy. Matched Field Processing for Underwater Acoustics. Singapore: World Scientific, 1993.
36. A.B. Baggeroer, W.A. Kuperman, P.N. Mikhalevsky, An overview of matched field processing methods in ocean acoustics. IEEE Journal of Oceanic Engineering, vol. 18, pp.401-424 , October 1993.
37. А.Б. Бэггероуер. Обработка сигналов в гидролокации // Применение цифровой обработки сигналов / Под ред. Э. Оппенгейма. М.: Мир, 1980. С. 367-485.
38. R.J. Vaccaro, The past, present, and the future of underwater acoustic signal processing. IEEE SP Magazine, Vol. 15, Issue 4, pp.21-51, 1998.
39. Preisig J.C. Coupled Acoustic Mode Propagation Through Continental-Shelf Internal Solitary Waves. IEEE Journal of Oceanic Engineering. 1997. Vol. 22, No.2. P. 256-269.
40. Kuperman W.A., Lynch J.F., Shallow-Water Acoustics. Physics Today -2004. October. P. 55-61.
41. Riley J.M. Experimental Measurement of the Array Bearing Error Caused by Bathymetric Refraction. IEEE Journal of Oceanic Engineering. 1997. Vol. 22, No.2. P. 211-218.
42. А. Корпел. Акустооптика: Обзор основных принципов. ТИИЭР. т.69, N1, 1981, с. 55.
43. Нежевенко Е.С. Оптические сигнальные процессоры и аналоговые вычислительные устройства: теория, принципы построения, применение. Автореферат на соиск. степени д.т.н. Новосибирск, 2002.
44. G. A. Machado, N. С. Battersby, С. Toumazou, On the Development of Analogue Sampled-Data Signal Processing, Analog Integrated Circuits and Signal Processing, Vol 12, pp. 179-199, 1997.
45. Yang W., Chang P. Programmable Switched-Capacitor Neural Network for MVDR Beamforming. IEEE Journal of Oceanic Engineering. 1996. Vol. 21, No.l. P. 77-84.
46. Haykin S. Adaptive Filter Theory. Prentice-Hall, New Jersey, 2001.
47. Ю.А. Корякин, A.P. Лисс, A.B. Рыжиков. Создание цифровых вычислительных комплексов гидроакустических систем на базе отечественных микропроцессоров // труды ГА-2006 стр. 14-19.
48. Farrow, C.W., A continuously variable digital delay element, IEEE International Symposium on Circuits and Systems, 1988, page(s) 2641 2645 vol.3 1988.
49. J. Bier. Evaluating Performance FPGAs vs. DSPs, FPGA Journal, Oct.,2003.
50. А. Хабаров. Микросхемы FPGA и DSP-процессоры конкуренция или взаимодействие? Электронные компоненты, 2006, №1, с. 43-46.
51. Carron Н., Boizard J.L., Albouy В. An architecture dedicated to the real time processing of wide-band circular antennas // Proc. OCEANS 2000 MTS/IEEE Conference and Exhibition 2000. Vol. 3, P. 1669-1672.
52. P. Graham, В. Nelson. FPGA-based sonar processing I I Proc. 1998 ACM/SIGDA 6th int. symp. Field programmable gate arrays 1998, P. 201-208.
53. Б. Кривошеин. Адаптивная фильтрация широкополосных сигналов с применением ПЛИС, Электронные компоненты, 2006, №1, с. 47-50.
54. Цыпкин Я.З. Адаптация и обучение в автоматических системах. М.: Наука, 1968.
55. J.W. Cooley, and J.W. Tukey, An Algorithm for the Machine Computation of Complex Fourier Series, Mathematics Computation, Vol. 19, pp. 297-301, April 1965.
56. Incze M.L. Characterization of Coastal Environments for Acoustic Models // Proc. OCEANS 2000 MTS/IEEE Conference and Exhibition 2000. Vol. 2, P. 887-904.
57. Ebbeson G.R., Ozard J.M., Wort P., Litchfield G., Vigneron C. An Environmental Database for Matched-Field Processing // Proc. OCEANS 2000 MTS/IEEE Conference and Exhibition 1997. Vol. 1, P. 660-665.
58. A.T.Altyntsev, A.A.Dutov, V.V. Grechnev et al. Millisecond-duration microwave burst observations with the SSRT fast data acquisition system, Solar Physics, 1996, 168, 145-158.
59. Занданов В.Г., Тресков T.A., Уралов A.M., Секундные пульсации микроволнового излучения активных областей, // Исследования по геомагнетизму, аэрономии и физике солнца. Наука, М., No.68, стр.21-31. 1984.
60. Рабинер Л., Гоулд Б. Теория и практика цифровой обработки сигналов. -М., Мир, 1978.
61. Kaiser, J.F., "Nonrecursive Digital Filter Design Using the Io- sinh Window Function," Proc. 1974 IEEE Symp. Circuits and Systems, (April 1974), pp. 20-23.
-
Похожие работы
- Разработка методов измерения параметров гидроакустических измерительных систем
- Алгоритмы обработки сложных фазоманипулированных гидроакустических сигналов системы позиционирования подводного робота
- Параметрический метод управляемого преобразования гидроакустических полей шумоизлучения научно-исследовательских и промысловых судов, методы и системы их измерения, основанные на закономерностях нелинейной акустики
- Математическое моделирование и программное обеспечение при обработке гидроакустического сигнала сейсмического (взрывного) характера
- Проектирование высокопроизводительных систем цифровой обработки сигналов
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность