автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.01, диссертация на тему:Метод и алгоритмы обработки информации в системе прогнозирования качества агломерата
Автореферат диссертации по теме "Метод и алгоритмы обработки информации в системе прогнозирования качества агломерата"
4856356
ПРаВ,1Х РУК0ПИСИ
ВИНОГРАДОВА ЛЮДМИЛА НИКОЛАЕВНА
МЕТОД И АЛГОРИТМЫ ОБРАБОТКИ ИНФОРМАЦИИ В СИСТЕМЕ ПРОГНОЗИРОВАНИЯ КАЧЕСТВА АГЛОМЕРАТА
Специальность: 05.13.01 - Системный анализ, управление и обработка информации (в металлургии)
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук
Череповец-2010
4856356
Работа выполнена в Череповецком государственном университете
Научный руководитель:
доктор технических наук, профессор Ершов Евгений Валентинович
Официальные оппоненты:
доктор технических наук, профессор Кабаков Зотей Константинович
кандидат технических наук Веселое Юрий Владимирович
Ведущая организация:
ООО «Северсталь-Промсервис»
Защита состоится 24 декабря 2010 г. в 14 часов на заседании диссертационного совета Д 212.297.02 при Череповецком государственном университете по адресу 162602, г. Череповец, Вологодская обл., ул. Луначарского, д.5.
С диссертацией можно ознакомиться в библиотеке Череповецкого государственного университета.
Автореферат разослан «23» ноября 2010 г.
Ученый секретарь диссертационного совета/ Ж^л Харахнин К.А.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. Современное агломерационное производство характеризуется повышением требований к качеству продукции, снижению ее себестоимости и улучшению экологической обстановки. В этих условиях одним из важнейших направлений совершенствования производства агломерата является повышение качества управления и прогнозирования. За последние 15-КЮ лет в мировой практике агломерационного производства были предложены и внедрены разнообразные передовые методы и системы управления процессом спекания шихты и прогнозирования характеристик агломерата.
Получение малоразрушающегося агломерата остаётся главным фактором улучшения технологических параметров выплавляемого чугуна, снижения расхода кокса и увеличения производительности доменных печей, так как на большинстве отечественных и зарубежных предприятий агломерат является основным компонентом доменной шихты. Оптимальная крупность кусков агломерата для малых и средних доменных печей составляет от 5 до 40 мм. для крупных и сверхмощных от 15 до 40 мм.
Благодаря фундаментальным работам ученых В.Я. Миллера. A.M. Парфенова. Е.Ф. Вегмана, A.A. Сигова, C.B. Базилевича, В.И. Коротича, Г.Г. Ефимен-ко и др. достигнуты значительные успехи в области совершенствования технологии производства агломерата. Наибольший вклад в развитие теории и практики управления и контроля агломерационного процесса внесли работы ученых С.Т. Ростовцева. И.П. Худорожкова, В.А. Уткова, Г.Г. Ефименко, Смирнова, Хохолова Д.Г., Каплуна Л.И., Шумакова Н.С.. Малыгина A.B., C.B. Хопунова Э.А., В.Б. Тарасова, В.П. Пузанова, И.А. Дегтяренко, В.В. Кравцова, А.И. Иванова, А.Д. Пархоменко, З.К. Кабакова, Kasana S., Sasaki M., Kasai E., Nakajima К., Kurosawa S., Errigo V.
Однако практически все известные методы ориентированы на прогнозирование результатов только процесса спекания шихты. Поэтому в настоящее время разработка методов обработки информации, позволяющих прогнозировать качество готового агломерата представляется актуальной научно-технической задачей.
Объект исследования: системы управления и прогнозирования качества агломерата на агломерационных машинах конвейерного типа.
Предмет исследования: математические модели, методы, процедуры обработки информации в системе прогнозирования качества агломерата.
Диссертационная работа выполнялась в рамках темплана Минобрнауки России «Разработка метода и средств прогнозирования результативности непрерывных технологических процессов термической обработки материалов» и госбюджетной НИР «Разработка методов и принципов построения многофункциональных систем технического зрения» (НИИ 01/Г-08, госбюджетная НИР в Череповецком государственном университете).
Целью диссертационной работы является повышение точности прогнозирования выхода годного агломерата на начальном этапе процесса спекания шихты на основе применения фрактальной аппроксимации технологических параметров и самонастраивающихся нейронных сетей.
Для достижения поставленной цели в работе решаются следующие основные задачи:
1) анализ методов и средств прогнозирования качества агломерата;
2) разработка математического обеспечения метода прогнозирования выхода годного агломерата;
3) разработка алгоритмов обработки информации и прогнозирования выхода годного агломерата;
4) экспериментальные исследования метода и средств обработки информации в системе прогнозирования качества агломерата.
Методы исследований. Для решения поставленных задач в работе использовались теоретические основы газодинамики и теплотехники агломерационного процесса; методы статистической обработки информации; методы цифровой обработки изображений; методы математического и компьютерного моделирования; методы прогнозирования.
Научная новизна и основные положения, выносимые на защиту:
1. Разработан метод хранения технологических параметров в системе прогнозирования качества агломерата, отличающийся сжатием вариационных рядов данных на основе фрактальной аппроксимации с использованием кеш-функции.
2. Предложен метод обработки параметров непрерывного технологического процесса спекания агломерационной шихты, отличающийся применением самонастраивающейся нейронной сети и позволяющий прогнозировать выход годного агломерата еще на начальном этапе процесса спекания шихты.
3. Разработано системно обоснованное алгоритмическое обеспечение прогнозирования выхода годного агломерата, включающее алгоритмы:
- аппроксимации экспериментальных данных фрактальными распределениями, позволяющий сжимать информацию натурных рядов данных без существенных потерь в точности;
- фрактальной компрессии изображения излома агломерационного спе-ка. обеспечивающий высокий коэффициент сжатия;
- прогнозирования выхода годного агломерата с помощью самонастраивающейся нейронной сети, обеспечивающий повышение оперативности принятия решений.
Практическая ценность работы заключается в следующем:
1. Разработана информационная модель прогнозирования непрерывного технологического процесса спекания агломерационной шихты.
2. Предложена методика настройки алгоритмического обеспечения системы прогнозирования качества агломерата.
3. Создано программное обеспечение системы прогнозирования качества агломерата, реализующее метод и алгоритмы обработки информационных сигналов.
Реализация результатов работы. Разработанные метод и алгоритмы обработки информационных сигналов, реализованные в системе прогнозирования качества агломерата, прошли экспериментальную проверку в агломерационном производстве на ОАО «Северсталь» и внедрены в учебный процесс на кафедре «Программное обеспечение ЭВМ» Череповецкого государственного универси-
тета при проведении занятий по дисциплинам «Системы искусственного интеллекта», «Моделирование технических объектов», «Технология разработки программного обеспечения», а также в курсовом и дипломном проектировании.
Апробация работы. Основные положения диссертационной работы докладывались и получили положительную оценку на Международных и Всероссийских конференциях: 9-й Межд. конф. «Оптико-электронные приборы и устройства в системах распознавания образов, обработки изображений и символьной информации» (Курск, 2010 г.); 13-й, 14-й Межд. конф. «Системный анализ в проектировании и управлении» (С.-Петербург, 2009, 2010 гг.); 9-й Межд. конф. «Информационно-вычислительные технологии и их приложения» (Пенза, 2009 г.); 3-й Межд. конф. молодых ученых «Инновационные тенденции развития Российской науки» (Красноярск, 2010 г.); Межд. конф. «Информационно-измерительные, диагностические и управляющие системы» (Курск, 2009 г.); 1-й. 4-й Межд. конф. «Информационные технологии в производственных, социальных и экономических процессах» (Череповец, 1999, 2005 гг.); Всеросс. конф. «Интеллектуальные и информационные системы» (Гула, 2009 г.); 2-й Всеросс. конф. с межд. участием «Перспективы развития информационных технологий» (Новосибирск, 2010 г.); Всеросс. конф. «Череповецкие научные чтения» (Череповец, 2009, 2010 гг.) и на постоянно действующем научно-техническом семинаре кафедры программное обеспечение ЭВМ Череповецкого государственного университета.
Публикации. По материалам диссертации опубликованы 20 печатных работ, в том числе 2 монографии и 5 статей в рецензируемых научных журналах, входящих в Перечень ВАК Минобрнауки России.
Структура и объем работы. Диссертационная работа состоит из введения, четырех разделов, заключения, списка литературы, включающего 105 наименований и 3 приложений. Работа содержит 135 страниц, 44 рисунка и 10 таблиц.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность, сформулированы цель и задачи исследования, представлены и положения, выносимые на защиту, их научная новизна и практическая ценность работы.
В первом разделе по данным отечественной и зарубежной литературы проведен анализ систем прогнозирования качества агломерата, который показал, что прогнозирование в данной предметной области является перспективным научным направлением.
На основе проведенного анализа сформулированы задачи работы и определен обобщенный параметр прогнозирования - выход годного агломерата, характеризующий в целом качество готовой продукции агломерационного производства.
Сформулированы функциональные требования к математическому обеспечению системы прогнозирования качества агломерата. На рис. 1 представлена обобщенная функциональная схема системы прогнозирования качества агломерата на агломерационной машине конвейерного типа.
Система управления агломерационным производством
Бункер загрузки шихты
Система прогнозирования качества агломерата
Блок ведения справочно-I нформационного фондй
П Готовый агломерат
V
Агломерационная машина |—^
Рис. I. Обобщенная функциональная схема системы прогнозирования качества агломерата
Во втором разделе на основе системного подхода разработана информационная модель процесса спекания агломерата (рис. 2), показывающая основные этапы обработки входных и выходных параметров технологических процессов при производстве агломерата.
Топливо Шлам
Рис. 2. Информационная модель процесса спекания агломерата
На основе полученной модели были выбраны основные параметры, влияющие на качество агломерата, всего 18 параметров (состав шихты, скорость движения паллет, начальная температура шихты, время зажигания, высота насыпного слоя шихты и т.д.), разработан обобщенный метод прогнозирования выхода годного агломерата (рис. 3) и определены основные блоки системы прогнозирования качества агломерата.
Рис. 3. Логическая модель метода прогнозирования
В процессе работы системы прогнозирования качества, кроме прогноза выхода годного агломерата, продолжается накопление информации (параметры, влияющие на качество, изображения, полученные ТУ-камерой) в ретроспективном банке данных для последующего ее использования.
Для уменьшения объема информации, хранимой в базе данных, был разработан метод хранения технологических параметров производства агломерата, основанный на фрактальном сжатии изображений излома агломерационного спека и фрактальной аппроксимации рядов данных с помощью хеш-функции.
По степени значимости на выход годного агломерата выделены первые семь параметров: ряд Я\ - начальная температура шихты 1ш, ряд Я2 - доля возврата в шихте кв, ряд Л3 - скорость движения паллет Уп, ряд - время зажигания шихты т3, ряд Л5 - скорость газа в слое Уг, - мощность источника тепла в слое дт, - влагосодержание шихты квл. Расположение рядов относительно друг друга соответствует степени их значимости в порядке убывания. За ключевой ряд ЯК принимаются данные о выходе годного агломерата. Это обусловлено тем, что точность определения выходного параметра всегда ниже точности входных параметров.
Для вариационных рядов, где необходим точный подбор аппроксимирующей кривой целесообразно применение распределения на основе множества Мандельброта с использованием хеш-функции, которая имеет вид:
Yj =H(£YV,coll,interval)
¡j
где Yjj - значения битового массива отображения (1< / <N, 1< j <М)\ coll - коэффициент «процеживания» или число учитываемых коллизий хеш-функции;
interval - ширина битового изображения фрактала.
При изменении коэффициента коллизий можно получить другие вариационные распределения (рис. 4).
.'И -
Ч' Г
1 J J J J
/ /'' j / УУ
1W-
/у
1 1 1
г 1 1 1:>У УУ) I 1 1 1!:iO t^O
номера отсчето!
Рис. 4. Вариационные распределения: 1 - 0 коллизий, 2 - 1 коллизия, 3-50 коллизий, 4-100 коллизий
Для того чтобы значения элементов аппроксимирующего отрезка распределения соответствовали размерностям натурного ряда данных было произведено масштабирование.
При аппроксимации данных фракталом Мандельброта с использованием хеш-функции, ряд разбивается на 7 частей. В каждой части кривая задаётся прямоугольной областью фрактала и отрезком, на котором данные составляют прямую, приблизительно параллельную оси абсцисс.
Аппроксимируя такую кривую фракталом, получается коэффициент сжатия 1,7+6,0, к тому же бесконечная извилистость фрактальной кривой даст возможность очень точно задать как местоположения отдельных точек, так и изменение их дисперсии вокруг линии тренда.
Кроме числовых значений входных параметров в базе данных хранятся изображения излома агломерационного спека, сжатые фрактальным методом, в основе которого лежит алгоритм разбиения исходного изображения на доменные и ранговые блоки и попытки нахождения таких сжимающих преобразовании, при которых находились бы наилучшие соотношения между ранговыми и доменными блоками. Ранговые блоки получают с помощью адаптивного разбиения с переменным размером блоков по технологии квадродерева. При подгонке доменных и ранговых областей используются аффинные преобразования, включающие операции параллельного переноса, поворота и масштабирования (сжатия).
Константы контрастности и яркости, которые необходимы для обработки цвета при использовании сжимающих отображений вычисляются по формулам:
« - а -
—¡¡. »—у.
где
« и 1 ГАГ ¿—¡¿—1
мы у* у1 и МЫ', ,
ч
здесь
с1 - матрица значения пикселей в доменной области;
г - матрица значений пикселей в ранговой области;
N - столбцы ранговой и доменной областей соответственно;
М - строки ранговой и доменной областей соответственно.
Уменьшение размера итогового изображения (сжатого) получается за счет того, что в файле будет храниться не информация о цвете каждого пикселя, а расположение рангового блока, домен, описывающий этот блок и информация о преобразованиях домена в ранговый блок.
Прогнозирование выхода годного агломерата осуществляется с помощью предварительно обученной нейронной сети Кохонена.
В работе описаны этапы процесса прогнозирования выхода годного агломерата, включающие сбор данных для обучения и тестирования нейронной сети, выбор характеристик сети, обучение и ее адаптация к реальным промышленным условиям.
В условиях агломерационного производства на ОАО «Северсталь» длина агломерационной машины 60 м, при средней скорости ее движения 1,75 м/мин среднее время процесса спекания шихты составит 34,3 мин. Для системы прогнозирования выхода годного агломерата период прогнозирования Т„ равен времени процесса спекания агломерата на агломерационной машине конвейерного типа, горизонт прогнозирования Гп = Т„, а интервал прогнозирования Ип задается равным 10 мин.
В третьем разделе на основе предложенных методов разработано алгоритмическое обеспечение системы прогнозирования качества агломерата, включающее следующие алгоритмы: аппроксимации экспериментальных данных фрактальными распределениями, фрактального сжатия изображения излома агломерационного спека, декомпрессии изображений и данных, обучения самонастраивающейся нейронной сети и прогнозирования выхода годного агломерата.
Алгоритм обучения сети Кохонена требует формирования весов входных параметров как до обучения, так и после.
В табл. 1 представлены веса обученной нейронной сети для 18 входных параметров.
Таблица 1
Веса сети Кохонена после обучения
1 2 3 4 5 6
Нейрон 1 53,7113 5,0641 5,4231 8,4551 25,9599 0,3172
Нейрон2 53,1906 4,9225 5,2856 8,4438 25,9673 0,3175
НейронЗ 51.8953 5,1475 5,2640 8,2135 27,1762 0,3427
7 8 9 10 11 12
Нейрон 1 6 1,8521 0,4224 1212,4856 6915,7615 3,7660
Нейрон2 6 1,8752 0,4408 1229,9985 5515,8408 3,7444
НейронЗ 6 1,8803 0,4443 1195,1550 5977,7420 3,7528
13 14 15 16 17 18
Нейрон 1 62,2103 1,4809 1,3533 0,7021 0,2396 1,1293
Нейрон2 60,6258 1,4811 1,3617 0,7064 0,2397 1,1268
НейронЗ 63,6811 1,4839 1,3532 0,6635 0.2395 1,1274
На рис. 5 представлены распределения весов и нейронов для тестового набора №1 в виде разреженной матрицы весов для двух первых параметров: начальная температура шихты и доля топлива в шихте.
Е 5.В 5.6 5.4 5.2 5
" 4.0 4 6
+ +- +
+ +■ +
• + + + -
-г
- о + + -
+
- О + -
+
- + + + -
+ + +■
- + +■ + -
+ ® +
- + + 4- + +
* + + +
52 54 55
Температура шихты
Рис. 5. Разреженная матрица весов тестового набора № 1
После обучения нейронной сети система прогнозирования работает в соответствии с обобщенным алгоритмом прогнозирования выхода годного агломерата, блок-схема которого представлена на рис. 6.
После получения входных параметров формируется запрос в ретроспективный банк данных на наличие таких значений. В случае совпадения результаты прогнозирования выдаются на основе накопленного ретроспективного банка данных. В противном случае - работает процедура прогнозирования на основе самонастраивающейся нейронной сети.
Рис. 6. Блок-схема обобщенного алгоритма прогнозирования
В четвертом разделе определены основные функциональные элементы и блоки системы прогнозирования качества агломерата (рис. 7), предложена методика настройки алгоритмического обеспечения и приведены результаты экспериментальной проверки системы прогнозирования.
Экспериментальные исследования системы прогнозирования качества агломерата осуществлялись в условиях реального агломерационного производства с целью проверки надежности и эффективности методов и алгоритмов фрактального сжатия входных и выходных параметров и прогнозирования выхода годного агломерата.
5П0Д — блок предварительной обработки данных;
БАиП — блок анализа и прогнозирования
Рис. 7. Функциональная схема системы прогнозирования качества агломерата
Оценка адекватности результатов эксперимента выполнена с помощью критерия Фишера, при этом в агломерационном цехе № 3 ОАО «Северсталь» были проведены 560 опытов.
В табл. 2 представлены режимы работы обобщенного алгоритма прогнозирования.
Таблица 2
Выбор режима работы обобщенного алгоритма прогнозирования
№ п/п Наборы входных параметров Результат прогнозирования
на основе ретроспективного банка данных на основе самонастраивающейся нейронной сети
1. Набор № 40 - Высокое качество
2. Набор №41 - Высокое качество
3. Набор № 42 - Высокое качество
4. Набор № 43 Среднее качество -
5. Набор № 44 Высокое качество -
6. Набор № 45 Высокое качество -
На начальном этапе формирования ретроспективного банка данных в большинстве случаев работает нейронная сеть, но по мере накопления информации система прогнозирования качества агломерата выдает результаты прогноза, не прибегая к помощи нейронной сети.
На рис. 8 представлены результаты прогнозирования для 25 опытов и гистограмма распределения выхода годного агломерата для 560 опытов.
5 -<и
? 65 1 1 С
| £0 -И
® I
156 -н
I зз-Ь
7П
Выход
годного
агломерата
П7
Д-А^
ЕПЗ Вьсокий П^Средний гяНизкж
9 11 13 1 5 1 7 1 9 21 23 25
С С
М^шоооч! входных данных
ГСВСВССВНВВ Прогноз сети
Низкий Среаний Высокий
Выход годного агломерата
Рис. 8. Результаты прогнозирования
Предложенный метод прогнозирования выхода годного агломерата позволяет уменьшить ошибку прогноза до 2^-5 %, расширяет функциональность и улучшает экономические показатели путем повышения оперативности принятия решений.
Обобщенные результаты достигнутых показателей приведены на диаграмме (рис. 9).
У меньше!и 1С объема хранимых данных
Экономия кокса на тонну чугуна (% 2.3'
Увеличение выход годного агломерата (%)
Увеличение оперативности реализации , принятых решений
2,8
" Увеличение производительности доменных печей <%)
Рис. 9. Обобщенные результаты оценки эффективности применения метода прогнозирования выхода годного агломерата
Заключение содержит перечень основных результатов диссертационной работы.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ
1. Разработана информационная модель, позволяющая определить наиболее важные технологические параметры с точки зрения их влияния на выход годного агломерата.
2. Разработан метод хранения технологических параметров в системе прогнозирования качества агломерата, отличающийся сжатием вариационных рядов данных на основе фрактальной аппроксимации в 3,7 раза.
3. Разработан метод прогнозирования и обработки параметров непрерывного технологического процесса спекания агломерационной шихты, отличающийся использованием самонастраивающейся нейронной сети и позволяющий повысить точность прогнозирования выхода годного агломерата еще на начальном этапе процесса спекания шихты.
4. Разработано системно обоснованное алгоритмическое обеспечение системы прогнозирования качества агломерата, обеспечивающее повышение оперативности реализации принятых решений в 2,8 раза.
5. Разработано программное обеспечение системы прогнозирования качества агломерата, реализующее предложенные методы и алгоритмы.
ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ по Перечню ВАК
1. Виноградова, Л.Н. Способ сжатия экспериментальных данных фрактальными распределениями для прогнозирования хода непрерывных металлургических процессов [Текст]/ Л.Н. Виноградова, Е.В. Ершов. Производство проката. -2010, №3,-С. 35-38.
2. Виноградова, Л.Н. Использование нейронной сети и фрактальной аппроксимации для прогнозирования параметров макроструктуры и качества агломерата в оптико-электронной системе управления спеканием шихты [Текст]/ Л.Н. Виноградова, Е.В. Ершов, Е.С. Шумилова. Вестник Череповецкого гос. ун-та-2010,-№2,- С. 126-129.
3. Виноградова, Л.Н. Определение функциональных требований к системе прогнозирования выходных параметров непрерывного технологического процесса производства агломерата [Текст]/ Л.Н. Виноградова, Е.В. Ершов, Е.С. Шумилова. Вестник Череповецкого гос. ун-та.-2010.-№ 3,- С. 123-127.
4. Виноградова, Л.Н. Математическое и алгоритмическое обеспечение системы прогнозирования выхода годного агломерата на основе искусственной нейронной сети Кохонена [Текст]/ Л.Н. Виноградова, Е.В. Ершов, Е.В. Майта-ма. Вестник Череповецкого гос. ун-та.-2010.-№ 4,- С. 81-84.
5. Виноградова, Л.Н. Алгоритм фрактальной аппроксимации для сжатия изображений в оптико-электронных системах контроля качества продукции [Текст]/ Л.Н. Виноградова, Е.В. Ершов, Е.С. Шумилова. Известия вузов. Приборостроение. - 2010. - № 9. - С. 19-22.
Монографии
6. Виноградова, Л.Н. Технология проектирования информационного и программного обеспечения оптико-электронных систем управления, контроля и прогнозирования качества агломерата [Текст]: монография / Л.Н. Виноградова, Е.В. Ершов, О.Л. Селяничев, В.В. Селивановских, О.Г. Ганичева, Е.В. Королева, С.Н. Хисамутдинов - Череповец: ГОУ ВПО Череповецкий гос. ун-т, 2010.-416 с.
7. Виноградова, Л.Н. Оптико-электронный контроль зажигания шихты и гранулометрического состава агломерата [Текст]: монография / Л.Н. Виноградова, Е.В. Ершов, О.Г. Ганичева. В.В. Селивановских. - Череповец: ГОУ ВПО Череповецкий гос. ун-т, 2007. - 204 с.
в других изданиях:
8. Виноградова, Л.Н. Разработка алгоритма прогнозирования параметров макроструктуры и качества агломерата с применением фрактального сжатия данных и нейронной сети [Текст]/Л.Н. Виноградова. Е.В. Ершов. Е.С. Шумилова. Системный анализ в проектировании и управлении: сб. научных трудов XIV Междунар. науч.-практ. копф. Ч.2: СПб.: Изд-во Политехи, ун-та. 2010. - С.167-168.
9. Виноградова, Л.Н. Алгоритм сжатия экспериментальных данных фрактальными распределениями в оптико-электронной системе управления процессом производства агломерата [Текст]/Л.Н. Виноградова, Е.В. Ершов. Череповецкие научные чтения - 2009: Материалы Всероссийской научно-практической конференции. Часть 3. Современные проблемы технических, естественных и экономических наук. Череповец: ГОУ ВПО ЧГУ. 2010.-С. 199-201.
10. Виноградова, Л.Н. Алгоритмическое обеспечение системы прогнозирования параметров макроструктуры и качества агломерата на основе нейронной сети и фрактальной аппроксимации [Текст]/ Л.Н. Виноградова. Е.С. Шумилова. Инновационные тенденции развития Российской науки: сб. материалов III Междунар. (заочная) научно-практ. конф. молодых ученых. Краснояр. гос. аграр. ун-т. - Красноярск. 2010.-С. 282-284.
11. Виноградова, Л.Н. Применение нейронной сети и фракт&чьной аппроксимации для прогнозирования параметров макроструктуры и качества агломерата [Текст]/Л.Н. Виноградова, Е.В. Ершов, Е.С. Шумилова. Оптико-электронные приборы и устройства в системах распознавания образов, обработки изображений и символьной информации. Распознавание-2010: сб. материалов IX Междунар. конф. Курск: Курск, гос. техн. ун-т, 2010. - С.255-256.
12. Виноградова, Л.Н. Алгоритм прогнозирования параметров макроструктуры и качества агломерата с использованием нейронной сети и фрактальной аппроксимации [Текст]/Л.Н. Виноградова, Е.В. Ершов, Е.С. Шумилова. Перспективы развития информационных технологий: Сб. материалов II Ежегодной Всероссийской научно-практической конференции с междунар. участием. Новосибирск, 2010. - С. 65-68
13. Виноградова, Л.Н. Применение фрактальной аппроксимации для сжатия экспериментальных данных при прогнозировании оптимальной доли крупности кусков агломерата [Текст]/ Л.Н. Виноградова, Е.В. Ершов, Е.С. Шумилова. Информационно-вычислительные технологии и их приложения (МК-42-9): Сб. материалов XI Международной научно-технической конференций. Пенза, 2009.- С. 114117.
14. Виноградова, Л.Н. Метод сжатия экспериментальных данных в оптико-электронной системе управления процессом производства агломерата с помощью фрактальной аппроксимации [Текст]/ Л.Н. Виноградова, Е.В. Ершов. Интеллектуальные и информационные системы. Интеллект-2009: сб. материалов Всероссий-
ской научно-технической конференции. Тула: Тульский гос. тех. универсистет, 2009. - С. 77-80.
15. Виноградова, Л.Н. Применение алгоритма фрактальной аппроксимации рядов экспериментальных данных в оптико-электронной системе управления спеканием агломерата [Текст]/Л.Н. Виноградова, Е.В. Ершов. Системный анализ в проектировании и управлении: сб. материалов XIII Междунар. научно-практической конференции: Санкт-Петербург, 2009. - С.257-259.
16. Виноградова, Л.Н. Применение фрактальной аппроксимации для сжатия экспериментальных данных в оптико-электронной системе управления процессом спекания агломерационной шихты [Текст]/ Л.Н. Виноградова, Е.В. Ершов. - Информационно-измерительные, диагностические и управляющие системы. Диагно-стика-2009: сб. материалов Междунар. научно-тех. конф. Часть 2. Курск: Курск, гос. техн. ун-т. 2009.-С. 152-155.
17. Виноградова, Л.Н. Применение фракталов Мандельброта для прогнозирования содержания доли оптимального класса крупности агломерата в оптико-электронной системе управления агломерацией рудного сырья [Текст]/Л.Н. Виноградова. Е.В. Ершов. Вестник Череповецкого гос. ун-та.-2009-№ 3,- С. 131-134.
18. Виноградова, Л.Н. Оптико-электронная система контроля гранулометрического состава сыпучих материалов [Текст]/ Л.Н. Виноградова. Е.В. Ершов, В.В. Селивановских. Информационные технологии в производственных, социальных и экономических процессах (ИНФОТЕХ - 2004): Материалы IV Международной науч.-техн.конф. - Череповец: ГОУ ВПО ЧГУ. 2005. С. 191 -192.
19. Виноградова, Л.Н. Алгоритмы предварительной обработки изображения в оптико-электронной системе анализа гранулометрического состава агломерата [Текст]/ Л.Н. Виноградова, Е.В. Ершов, О.Г. Ганичева, В.В. Селивановских. Е.В. Королева. Вестник Череповецкого государственного университета. - 2003. - № 2. -С. 78-79.
20. Виноградова, Л.Н. Алгоритмы функционирования оптико-электронной системы управления процессом спекания шихты на агломерационной машине конвейерного типа [Текст]/ Л.Н. Виноградова, Е.В. Ершов, О.Л.Селяничев, М.Н. Фа-тиев. Информационные технологии в производственных, социальных и экономических процессах: Материалы НТК - Череповец: ЧГУ, 1999. - С. 42-45.
Подписано к печати 17.11.2010. Тир. 100 экз. Усл.пл. 1,0.
Формат 60x84/16 Гарнитура Times. Зак. №130. ГОУ ВПО «Череповецкий государственный университет» 162600, Вологодская обл., г. Череповец, пр-т Луначарского, 5
Оглавление автор диссертации — кандидата технических наук Виноградова, Людмила Николаевна
ВВЕДЕНИЕ.
1 Общая характеристика проблемы прогнозирования качества агломерата.
1.1 Анализ существующих методов и средств прогнозирования параметров непрерывного технологического процесса производства агломерата.
1.2 Характеристика производства" агломерата как объекта прогнозирования
1.3 Определение требований к математическому обеспечению прогнозирования параметров непрерывного технологического процесса производства агломерата.
1.4 Выводы.
2 Математическое обеспечение метода прогнозирования выхода годного агломерата.
2.1 Разработка метода прогнозирования выхода годного агломерата
2.2 Разработка метода хранения технологических параметров в системе прогнозирования.
2.2.1 Метод сжатия технологических параметров производства агломерата.
2.2.2 Метод сжатия изображений излома агломерационного спека.
2.3 Разработка математической модели системы прогнозирования качества агломерата
2.4 Выводы.
3 Алгоритмы обработки информации и прогнозирования выхода годного агломерата.
3.1 Алгоритм сжатия и хранения технологических параметров в системе прогнозирования
3.1.1 Фрактальный алгоритм сжатия изображения.
3.1.2 Фрактальный алгоритм сжатия данных.
3.1.3 Алгоритмы декомпрессии изображения и данных.
3.2 Обучение самонастраивающейся нейронной сети.
3.3 Алгоритм функционирования нейронной сети.
3.4 Обобщенный алгоритм прогнозирования выхода годного агломерата.
3.5 Выводы.
4 Экспериментальные исследования метода и алгоритмов обработки информации в системе прогнозирования качества агломерата.
4.1 Основные функциональные элементы и блоки.
4.2 Методика настройки алгоритмического обеспечения.
4.3 Результаты экспериментальных исследований.
4.4 Перспективы применения разработанных метода и алгоритмов обработки информации в системах прогнозирования технологических параметров непрерывных металлургических процессов.!.
4.5 Выводы.
Введение 2010 год, диссертация по информатике, вычислительной технике и управлению, Виноградова, Людмила Николаевна
Актуальность темы. Современное агломерационное производство характеризуется повышением требований к качеству продукции, снижению ее себестоимости и улучшению экологической обстановки. В этих условиях одним из важнейших направлений совершенствования производства агломерата является повышение качества управления и прогнозирования. За последние 15-^-20 лет в мировой практике агломерационного производства были предложены и внедрены разнообразные передовые методы и системы управления процессом спекания шихты и прогнозирования характеристик агломерата.
Получение малоразрушающегося агломерата остаётся главным фактором улучшения технологических параметров выплавляемого чугуна, снижения расхода кокса и увеличения производительности доменных печей, так как на большинстве отечественных и зарубежных предприятий агломерат является основным компонентом доменной шихты. Оптимальная крупность кусков агломерата для малых и средних доменных печей составляет от 5 до 40 мм, для крупных и сверхмощных от 15 до 40 мм.
Благодаря фундаментальным работам ученых В.Я. Миллера, A.M. Парфенова, Е.Ф. Вегмана, A.A. Сигова, C.B. Базилевича, В.И. Коротича, Г.Г. Ефименко и др. достигнуты значительные успехи в области совершенствования технологии производства агломерата. Наибольший вклад в развитие теории и практики управления и контроля агломерационного процесса внесли работы ученых С.Т. Ростовцева, И.П. Худорожкова, В.А. Уткова, Г.Г. Ефименко, Смирнова, Хохолова Д.Г., Каплуна Л.И., Шумакова Н.С., Малыгина A.B., C.B. Хопунова Э.А., В.Б. Тарасова, В.П. Пузанова, И.А. Дегтяренко, В.В. Кравцова, А.И. Иванова, А.Д. Пархоменко, З.К. Кабакова, Kasana S., Sasaki M., Kasai E., Nakajima К., Kurosawa S., Errigo V.
Однако практически все известные методы ориентированы на прогнозирование результатов только процесса спекания шихты. Поэтому в настоящее время разработка методов обработки информации, позволяющих прогнозировать качество готового агломерата представляется актуальной научно-технической задачей.
Объект исследования: системы управления и прогнозирования качества агломерата на агломерационных машинах конвейерного типа.
Предмет исследования: математические модели, методы, процедуры обработки информации в системе прогнозирования качества агломерата.
Диссертационная работа выполнялась в рамках темплана Минобрнауки России «Разработка метода и средств прогнозирования результативности непрерывных технологических процессов термической обработки материалов» и госбюджетной НИР «Разработка методов и принципов построения многофункциональных систем технического зрения» (НИИ 01/Г-08, госбюджетная НИР в Череповецком государственном университете).
Целью диссертационной работы является повышение точности прогнозирования выхода годного агломерата на начальном этапе процесса спекания шихты на основе применения фрактальной аппроксимации технологических параметров и самонастраивающихся нейронных сетей.
Для достижения поставленной цели в работе решаются следующие основные задачи:
1) анализ методов и средств прогнозирования качества агломерата;
2) разработка математического обеспечения метода прогнозирования выхода годного агломерата;
3) разработка алгоритмов обработки информации и прогнозирования выхода годного агломерата;
4) экспериментальные исследования метода и средств обработки информации в системе прогнозирования качества агломерата.
Методы исследований. Для решения поставленных задач в работе использовались теоретические основы газодинамики и теплотехники агломерационного процесса; методы статистической обработки информации; методы цифровой обработки изображений; методы математического и компьютерного моделирования; методы прогнозирования.
Научная новизна и основные положения, выносимые на защиту:
1. Разработан метод хранения технологических параметров в системе прогнозирования качества агломерата, отличающийся сжатием вариационных рядов данных на основе фрактальной аппроксимации с использованием кеш-функции.
2. Предложен метод обработки параметров непрерывного технологического процесса спекания агломерационной шихты, отличающийся применением самонастраивающейся нейронной сети и позволяющий прогнозировать выход годного агломерата еще на начальном этапе процесса спекания шихты.
3. Разработано системно обоснованное алгоритмическое обеспечение прогнозирования выхода годного агломерата, включающее алгоритмы: аппроксимации экспериментальных данных фрактальными распределениями, позволяющий сжимать информацию натурных рядов данных без существенных потерь в точности;
- фрактальной компрессии изображения излома агломерационного спека, обеспечивающий высокий коэффициент сжатия;
- прогнозирования выхода годного агломерата с помощью самонастраивающейся нейронной сети, обеспечивающий повышение ' оперативности принятия решений.
Практическая ценность работы заключается в следующем:
1. Разработана информационная модель прогнозирования непрерывного технологического процесса спекания агломерационной шихты.
2. Предложена методика настройки алгоритмического обеспечения системы прогнозирования качества агломерата.
3. Создано программное обеспечение системы прогнозирования качества агломерата, реализующее метод и алгоритмы обработки информационных сигналов.
Реализация результатов работы. Разработанные метод и алгоритмы обработки информационных сигналов, реализованные в системе прогнозирования качества агломерата, прошли экспериментальную проверку в агломерационном производстве на ОАО «Северсталь» и внедрены в учебный процесс на кафедре «Программное обеспечение ЭВМ» Череповецкого государственного университета при проведении занятий по дисциплинам «Системы искусственного интеллекта», «Моделирование технических объектов», «Технология разработки программного обеспечения», а также в курсовом и дипломном проектировании.
Апробация работы. Основные положения диссертационной работы докладывались и получили положительную оценку на Международных и Всероссийских конференциях: 9-й Межд. конф. «Оптико-электронные приборы и устройства в системах распознавания образов, обработки изображений и символьной информации» (Курск, 2010 г.); 13-й, 14-й Межд. конф. «Системный анализ в проектировании и управлении» (С.-Петербург, 2009, 2010 гг.); 9-й Межд. конф. «Информационно-вычислительные технологии и их приложения» (Пенза, 2009 г.); 3-й Межд. конф. молодых ученых «Инновационные тенденции развития Российской науки» (Красноярск, 2010 г.); Межд. конф. «Информационно-измерительные, диагностические и управляющие системы» (Курск, 2009 г.); 1-й, 4-й Межд. конф. «Информационные технологии в производственных, социальных и экономических процессах» (Череповец, 1999, 2005 гг.); Всеросс. конф. «Интеллектуальные и информационные системы» (Тула, 2009 г.); 2-й Всеросс. конф. с межд. участием «Перспективы развития информационных технологий» (Новосибирск, 2010 г.); Всеросс. конф. «Череповецкие научные чтения» (Череповец, 2009, 2010 гг.) и на постоянно действующем научно-техническом семинаре кафедры программное обеспечение ЭВМ Череповецкого государственного университета.
Публикации. По материалам диссертации опубликованы 20 печатных работ, в том числе 2 монографии и 5 статей в рецензируемых научных журналах, входящих в Перечень ВАК Минобрнауки России.
Структура и объем работы. Диссертационная работа состоит из введения, четырех разделов, заключения, списка литературы, включающего 105 наименований и 3 приложений. Работа содержит 135 страниц, 44 рисунка и 10 таблиц.
Заключение диссертация на тему "Метод и алгоритмы обработки информации в системе прогнозирования качества агломерата"
4.5 Выводы
1. Представлены основные элементы и блоки системы прогнозирования качества агломерата, в таблице- приведены технические характеристики элементов и устройств системы.
2. Разработана методика настройки разработанного алгоритмического обеспечения системы прогнозирования качества агломерата.
3. Приведены результаты выбора режимов работы алгоритма прогнозирования выхода годного агломерата в реальных производственных условиях.
4. На основании экспериментальных исследований подтверждена высокая надежность и эффективность разработанного алгоритмического обеспечения.
5. Приведены достигнутые технико-экономические показатели.
6. Определены перспективы применения разработанных метода и алгоритмов обработки и хранения данных в системах прогнозирования параметров непрерывного производства.
ЗАКЛЮЧЕНИЕ
1. Разработана информационная модель, позволяющая определить наиболее важные технологические параметры с точки зрения их влияния на выход годного агломерата.
2. Разработан метод хранения технологических параметров в системе прогнозирования качества агломерата, отличающийся сжатием вариационных рядов данных на основе фрактальной аппроксимации в 3,7 раза.
3. Разработан метод прогнозирования и обработки параметров непрерывного технологического процесса спекания агломерационной шихты, отличающийся использованием самонастраивающейся нейронной сети и позволяющий повысить точность прогнозирования выхода годного агломерата еще на начальном этапе процесса спекания шихты.
4. Разработано системно обоснованное алгоритмическое обеспечение системы прогнозирования качества агломерата, обеспечивающее повышение оперативности реализации принятых решений в 2,8 раза.
5. Разработано программное обеспечение системы прогнозирования качества агломерата, реализующее предложенные методы и алгоритмы.
Библиография Виноградова, Людмила Николаевна, диссертация по теме Системный анализ, управление и обработка информации (по отраслям)
1. Азарова, O.A. Нейросетевая система оценки дефектов макроструктуры заготовок Текст. / O.A. Азарова, М.В. Зарецкий, О.С. Логунова. [Текст] // Металлургия стали. Проблемы и решения: мат. 3 конгресса металлургов Урала. — Челябинск: Рекпол, 2008. — С.53-55.
2. Александров, В.В., Горский Н.Д. Представление и обработка изображений: рекурсивный подход Текст. / В.В. Александров, Н.Д. Горский //Л-д.: Наука 1985.- 190 с.
3. Базилевич, С. В. Агломерация Текст. / С. В. Базилевич, Е. Ф. Вегман. М.: Металлургия, 1967. - 368 с.
4. Базилевич, С. В. Производство агломерата и окатышей: справочник Текст. / C.B. Базелевич, А. Г. Астахов, Г. ММайзель и др.: под ред. Ю. С. Юсфина. М.: Металлургия, 1984.-213 с.
5. Берштейн, Р. С. Повышение эффективности агломерации Текст. / Р. С. Берштейн. М.: Металлургия, 1979. - 144 с.
6. Борискин, И. К. Интенсивная техническая обработка агломерата. Теория, оборудование, технология Текст. / И. К. Борискин, Г. А. Арыков, А. Н. Пыриков. М.: МИСИС, 1998.-248 с.
7. Бутаков, Е. А. Обработка изображений на ЭВМ Текст. / Е. А. Бутаков, В. И. Островский. М.: Радио и связь, 1987 - 240с.
8. Василенко, Г.И. Теория восстановления сигналов Текст./ Г.И. Василенко М.: Сов. радио. 1979. - 272 с.
9. Василенко, Г. И. Восстановление изображений Текст. / Г. И. Василенко, А. М. Тараторкин. М.: Радио и связь, 1986 - 304 с.
10. Ю.Ватолин, Д.С. Методы сжатия данных. Текст. / Д.С.Ватолин, А.
11. Ратушняк, М. Смирнов, В. Юкин //М.: Высшая школа, 2002. 294 с. 11.Ватолин, Д.С. Алгоритмы сжатия изображений. Текст./ Д.С. Ватолин // М.: Диалог-МГУ, 1999. - 523 с.
12. Ватолин, Д.С. Тенденции развития алгоритмов архивации графики. Текст. / Д.С. Ватолин. Открытые системы. №4, 1995. С. 24-28.
13. Вегман, Е. Ф. Металлургия чугуна Текст. /Е. Ф. Вегман, Б.Н. Жеребин, А.Н. Похвиснев, Ю.С. Юсфин. М.: Металлургия, 1978480 с.
14. Вегман, Е. Ф. Теория и технология агломерации Текст. V Е, Ф. Вегман. М.: Металлургия, 1974- 288 с.
15. Вегман, Е. Ф. Влияние плазменного зажигания на температуры в зоне горения твердого топлива при агломерации / Е. Ф. Вегман, А. Р. Жак, Т. В. Деткова, В. В. Гуралов // Изв. вузов. Черн. Металлургия. 1996 - № 11- С. 15-17.
16. Вегман, Е. Ф. Теоретические проблемы металлургии чугуна Текст. / Е. Ф. Вегман, В. О. Чургель. М.: Машиностроение, 2000. - 348 с.
17. Вегман, Е.Ф. Интенсификация агломерационного процесса Текст./ Е.Ф.Вегман, А.Н.Пыриков, А.Р.Жак. М.Машиностроение, 1995' 126 с
18. Вентцель, Е. С. Теория вероятности Текст. / Е. С. Вентцель. -М.гВысшая школа, 1976.-564 с.
19. Викулов, Г.С. Производство агломерата заданного химического состава Текст./Вилков А.Е., Кабанов Ю.А., Татаркин Н.Л.// Металлург.-2002.-№6.-С.47-49.
20. Виноградова, Л.Н. Определение функциональных требований к системе прогнозирования выходных параметров непрерывного технологического процесса производства агломерата Текст./ Л.Н.
21. Виноградова, E.B. Ершов, Е.С. Шумилова. Вестник Череповецкого гос. ун-та-2010 № 3.- С. 123-127.
22. Воробьев, В. И. Математическое обеспечение ЭВМ в науке и производстве Текст. / В. И. Воробьев -Лен.: Машиностроение, 1988. -160 с.
23. Высокоскоростная видеокамера. Schnelle Abläufe in Zeitlupe exakt analysieren. Текст. //Stahl und Eisen. 2006,126, №10. - C. 48.
24. Вороновский, Г.К. Генетические алгоритмы, искусственные нейронные сети и проблемы виртуальной реальности. Текст. / Г. К. Вороновский, К. В. Махотило, С. Н. Петрашев, С. А. Сергеев // X.: ОСНОВА, 1997. —С. 112.
25. Гармаш, Н.И. Повышение эффективности работы зажигательного горна агломашины Текст. / Н.И. Гармаш, В.А. Мартыненко // Металлург, и горноруд. пром-ть. 1999. - № 6. - С. 10-14.
26. ГОСТ 17495 80. Руды железные, концентраты, агломераты и окатыши. Методы отбора и подготовки проб для гранулометрического анализа Текст. //Введ. 1980-01-01- М.:Гос.ком. по стандартам СССР, 1980-6 с.
27. Грабовой, Ю. М. Опыт совершенствования тепловой работы зажигательного горна агломашины Текст. / Ю. М. Грабовой, А. И. Агарышев, А. И. Галкин, В. П. Невраев, В.Ф. Романовский // Сталь. 1995 - № 3.- С. 6-8.
28. Гранулометрический анализ на линии производственного процесса. Возможности современной системы измерения = On-line -Rorngrobeanalyse Текст. // Chem.-Anlog. 1989. -№11. - С. 137-138.
29. Дворкович, А. В. Цифровая обработка телевизионных и компьютерных изображений Текст. / А. В. Дворкович, В. П. Дворкович ,[и др.]. М.: Металлургия, 1997. - 209 с.
30. Денисов, Д. А. Сегментация изображений на ЭВМ Текст. / Д. А. Денисов, В. А. Низовкин // Зарубежная радиоэлектроника. 1985. -№10. -С. 3-30.
31. Денисов, Ю. М. Улучшение показателей доменной плавки путем повышения эффективности отсева мелких фракций агломерата Текст. /Ю. М. Денисов, С. Ф. Бугаев, А. Н. Газизов [и др.] // Черная металлургия. -2003. № 11. - С. 35-37.
32. Добеши, И. Десять лекций по вейвлетам. Текст. / И. Добеши // Пер. с анг. Е.В. Мищенко, под ред. А.П.Петухова.- М.: Ижевск 2001. 464 с.
33. Доменное производство Текст.: справочное издание. — в 2т.-Т. 1. Подготовка руд и доменный процесс; под ред. Е. Ф. Вегмана. М.: Металлургия, 1989. - 496 с.
34. Дуда,' Р. Распознавание образов и анализ сцен Текст. / Р. Дуда, П. Харт. М.: Мир, 1976. - 512 с.
35. Дьяконов, В. MATLAB. Обработка сигналов и изображений Текст.: справочник/В.Дьяконов, И.Абраменкова СПб.: Питер, 2002. - 320 с.
36. Дьяконов, В. П. MATLAB 6.0 /6.1 /6.5 +SPl+Simulink 4/5. Обработка сигналов и изображений. Текст. / В. П. Дьяконов. М.: COJIOH-Пресс, 2005. т 465 с.
37. Ершов, Е. В. Оптико-электронный контроль зажигания шихты и гранулометрического состава агломерата: монография Текст. / Е. В. Ершов, О. Г. Ганичева, В. В. Селивановских, JI. Н. Виноградова-Череповец: ГОУ ВПО Череповецкий гос. ун-т, 2007- 204 с.
38. Ершов, Е.В. Алгоритм фрактальной аппроксимации / С.Н. Хисамутдинов, Е.В. Ершов, H.A. Гребенюк // Вестник ЧТУ. -Череповец, 2003. № 2. - С. 76-78.
39. Ершов, Е.В. Способ сжатия экспериментальных данных распределениями, полученными на основе фракталов Текст. / С.Н. Хисамутдинов, Е.В. Ершов, Н.Е. Хисамутдинов // Вестник ЧТУ. — Череповец, 2003. № 2. - С. 74-76.
40. Жилкин, В. П. Производство агломерата. Технология, оборудование, автоматизация Текст. / В. П. Жилкин, Д.Н. Доронин; под ред. Г. А. Шалаева. Екатеринбург: Уральский центр ПР и рекламы «Марат»,2004.-291с.
41. Жуков, А. Г. Тепловизионные приборы и их применение Текст. : под ред. Н. Д. Девяткова / А. Г.Жуков, А. Н. Горюнов, А. А. Кальфа. М.: Радио и связь, 1983. - 168 с. ,
42. Исаенко, А. Н. Идентификация модели прогнозирования гранулометрического состава руды на выходе бункеров Текст. / А. Н. Исаенко, Ю. Г. Качан // Тр. Запорож. инж. акад. Металлургия. 2003.- № 8. С. 15-19.1
43. Испытательная лаборатория гранулометрической техники Текст. // СЬеш.-1п§.-Тес11п. 1996. - 68. - № 10. - С.1196.
44. Ищенко, А. Д. Автоматизированная система управления агломерационным процессом Текст. / А. Д. Ищенко, М. А. Фишман, Л. Г. Бенсман, С. Л. Зевин, А. Ф. Сакир. Черн. Металлургия. - 1990 - № 4 - С. 65-66.
45. Ищенко, А. Д. Статические и динамические свойства ' агломерационного процесса Текст. / А. Д. Ищенко. М.:1. Металлургия, 1972. 320 с.
46. Корн, Г. Справочник по математике для научных работников и инженеров Текст. / Г. Корн, Т. Корн. М.: Наука, 1978. - 832 с.
47. Коротич, В. И. Газодинамика агломерационного процесса Текст. / В. И. Коротич, В. П. Пузанов. М.: Металлургия, 1969.-208 с.
48. Коротич, В. И. Основы теории и технологии подготовки сырья к доменной плавке Текст. / В. И. Коротич. М.: Металлургия, 1978. -208 с.
49. Коротич, В. И. Металлургия черных металлов Текст. / В. И.Коротич, С. Г. Братчиков. М.: Металлургия, 1987.-249 с.
50. Коротич, В. И. Агломерация рудных, материалов Текст. / В. И. Коротич, Ю. А. Фролов, Г. Н. Бездежский. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2003. - 400 с.
51. Коршиков, Г. В. Структура, текстура и механическая прочность агломерата Текст. / Г. В. Коршиков // Изв. вузов. Чер. Металлургия. — 1985. № 9. - С.32-35.
52. Круглов, В. В. Искусственные нейронные сети. Теория и практика. Текст. / В. В. Круглов, В.В. Борисов // М.: Горячая линия Телеком, 2001. —382 с.
53. Ким, В. Ранговые алгоритмы обработки изображений Текст. / В. Ким, Л.П. Ярославский // Адаптивные методы обработки изображений. -М.: Наука, 1988. С. 35 - 73.
54. Линдли, Л. Практическая обработка изображений на языке Си Текст. / Л. Линдли-М.: Мир, 1994 512 с.
55. Миркес, Е. M. Нейрокомпьютер. Проект стандарта. Текст. / Е. М. Миркес // Новосибирск: Наука, 1999. — 337 с.
56. Нестерук, В.Ф. Информационная оценка процесса зрительного восприятия Текст./ В.Ф. Нестерук, H.H. Порфирьева // Оптика и спектроскопия. 1978. - Т. 44, вып. 4. - С. 801 - 803.
57. Павлидис, Т. Алгоритмы машинной графики и обработка изображений. Текст. / Т. Павлидис // М.: Радио и связь 1986. 400 с.
58. Пат 1332160 Канада, МКИ6 В07В04/00. Классификатор для сыпучих материалов = Particle Separator Текст. / Quig G.F.- № 600360; заявл. 23.5.89; опубл.27.9.94.
59. Пат. 2149332 Россия, МПК7 F27 В21/06. Способ зажиганияагломерационной шихты и устройство для его осуществленияi
60. Текст. / Д.Н. Доронин, В.П. Жилкин, С.С. Скачкова и др.; заявитель и патентообладатель ОАО по наладке соверш. технол. и эксплуат. электрост. и сетей Уралтехэнэрго. №98115469/02; заявл. 07.08.1998; опубл. 20.05.2000, Бюл. № 14.
61. Писаревский, А. Н. Системы технического зрения (принципиальные основы, аппаратное и математическое обеспечение) Текст. / А. Н. Писаревский, А. Ф. Чернявский, Г. К. Афанасьев [и др.]. Л.: Машиностроение. Ленингр. отд., 1988. - 424 с.
62. Прэтт, У. Цифровая обработка изображений Текст.: Пер. с англ. -Под ред.Д. С. Лебедева в 2 т. /У. Прэтт. - М.: Мир, 1982. -Т.1. - 312 е., Т.2.-480 с.
63. Путятин, Е. П. Обработка изображений в робототехнике Текст. / Е. П. Путятин, С. И. Аверин. М.: Мир, 1990. - 320 с.
64. Пытьев, Ю. П. Морфологический анализ размытых изображений Текст. / Ю. П. Пытьев // Изв. ДАН СССР. 1983. - Т. 269. - № 5. -С. 1061- 1064.V
65. Роберт, Каллан. Основные концепции нейронных сетей = The Essence of Neural Networks First Edition. Текст. / P. Каллан // M.: «Вильяме», 2001. —288 с.
66. Розеншельд, А. Распознавание и обработка изображений. Текст. / А. Розеншельд // М.: Мир, 1972. 232 с.
67. Саймон, Хайкин. Нейронные сети: полный курс = Neural Networks: А Comprehensive Foundation. Текст. / С. Хайкин. // М.: «Вильяме», 2006. — 1104 с.
68. Сырямкин, В.И. Системы технического зрения: Справочник Текст. /В.И.Сырямкин, В.С.Титов, Ю.Г.Якушенков и др. //Под общей редакцией В.И.Сырямкина, В.С.Титова. Томск: МГП «Раско».- 1992.-С. 367.
69. Уоссермен, Ф. Нейрокомпьютерная техника: Теория и практика = Neural Computing. Theory and Practice. — M.: Мир, 1992. — 240 с.
70. Учитель, Ф. Д. Концепция формирования характеристик крупности шихтовых материалов аглодоменного производства (сообщ.1) Текст. / Ф. Д. Учитель, В. В. Севернюк, В. И. Большаков, С. В. Лялюк // Металлург, и горноруд. пром-ть. 1999. -№ 1.-С.5-8.
71. Фомин, A.A. Основы сжатия информации. Текст. / A.A. Фомин // СПб.: Санкт-Петербург, 1998. 675 с.
72. Фу, К. Робототехника: пер. с англ. Текст. / К. Фу, Р. Гонсалес, К. Ли М.: Мир, 1989. - 624 с.
73. Яблонский, С.В. Введение в дискретную математику. Раздел «Теория кодирования» Текст. / С.В. Яблонский // М. Наука, 1986. 384 с.
74. Яншин, В. В. Анализ и обработка изображений: принципы и алгоритмы Текст. / В. В. Яншин. М.: Машиностроение. 1995.-112 с.
75. Ярославский, Л. П. Цифровая обработка сигналов в оптике и голографии: Введение в цифровую оптику Текст. / Л. П. Ярославский. М.: Радио и связь, 1987. - 296 с.
76. Fukagama, Т. Автоматизированная система управления агломерационным процессом с искусственным интеллектом. Текст./ T.Fukagama // Кавасаки сэйтэцу тихо Kawasaki steel gino. - 1991.-№3.-С.203-209
77. Jacquin А. Текст. // Visual Comm. and Image Processing, vol. SPIE-1360, 1990.
78. Nakashima, К. Управление агломерационным процессом с помощью ЭВМ Reglage de l'opération d'agglomération par guideoperateur Текст./ К. Nakashima, Iyama, S. Nigo, Y. Nakajima, H. Takahashi, H.Akizuki // Rev.met., 1986. 83. - №5. -C. 421-431.
79. Obata, H. Создание автоматической системы управления производством на аглофабрике завода в Chiba Текст. / H. Obata / Дзайрё то пуросэсу. 1988-1, №4. - С.958-961.
80. Pennebaker W.B., Mitchell J.L., Langdon G.G., Arps R.B., // IBM Journal of research and development, Vol.32, No.6, November 1988, pp. 771-726.
81. Smith, B. Computer Graphics and applications. / B. Smith, L. Rowe //September 1993.
82. Wallace G.K. // Communication of ACM. Volume 34. Number 4 April 1991.
-
Похожие работы
- Автоматизация контроля гранулометрического состава агломерата на основе оптико-электронного метода
- Разработка АСУТП стабилизации химического состава агломерата
- Метод и алгоритмы обработки информации в системе прогнозирования охлаждения агломерата на прямолинейном охладителе
- Математическое обеспечение оптико-электронной системы анализа макроструктуры агломерата на конвейерных агломерационных машинах
- Методы, модели и алгоритмы управления технологическим процессом производства агломерата на основе оптико-электронного контроля его качества
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность