автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.18, диссертация на тему:Алгоритмы формирования математических моделей трехмерных геометрических объектов в гальванотехнике при неполных исходных данных
Автореферат диссертации по теме "Алгоритмы формирования математических моделей трехмерных геометрических объектов в гальванотехнике при неполных исходных данных"
005012944
На правах рукописи УДК 004.94(043.3)
ПОПОВА Маргарита Александровна
АЛГОРИТМЫ ФОРМИРОВАНИЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ТРЕХМЕРНЫХ ГЕОМЕТРИЧЕСКИХ ОБЪЕКТОВ В ГАЛЬВАНОТЕХНИКЕ ПРИ НЕПОЛНЫХ ИСХОДНЫХ ДАННЫХ
Специальность 05.13.18 - Математическое моделирование, численные методы и комплексы программ
2 9мдрШ
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата технических наук
Тамбов 2012
005012944
Работа выполнена на кафедре «Системы автоматизированного проектирования» федерального государственного бюджетного ебразователь-ного учреждения высшего профессионального образованшС^Тамбовский государственный технический университет» (ФГБОУ ВПО «ТГТУ»).
Научный руководитель доктор технических наук, профессор,
профессор кафедры «Системы автоматизированного проектирования» ФГБОУ ВПО «ТГТУ» Литовка Юрий Владимирович
Официальные оппоненты: доктор технических наук, профессор
заведующий кафедрой «Системы автоматизированного проектирования и поискового конструирования» ФГБОУ ВПО «ВолгГТУ» Камаев Валерий Анатольевич
кандидат технических наук, доцент кафедры «Графические информационные системы» ФГБОУ ВПО «НГТУ им. P.E. Алексеева» Райкин Леонид Исаакович
Ведущая организация федеральное государственное бюджетное
образовательное учреждение высшего профессионального образования «Саратовский государственный технический университет им. Гагарина Ю.А.»
Защита состоится 19 апреля 2012 г. в 15 часов на заседании диссертационного совета Д 212.260.07 при ФГБОУ ВПО «ТГТУ» по адресу:
г. Тамбов, ул. Ленинградская, д. 1, ауд. 160.
Отзывы на автореферат в двух экземплярах, заверенные гербовой печатью, просим направлять по адресу: 392000, г. Тамбов, ул. Советская,
д. 106, ФГБОУ ВПО «ТГТУ» ученому секретарю диссертационного совета Д 212.260.07.
С диссертацией и авторефератом можно ознакомиться в библиотеке ФГБОУ ВПО «ТГТУ» по адресу: г. Тамбов, ул. Мичуринская, д. 112, корп. «Б».
Автореферат диссертации размещен на официальных сайтах ФГБОУ ВПО «ТГТУ» Ьйр:// www.tstu.ru и ВАК при Минобрнауки Ьйр:// www.vak.ed.gov.ru.
Автореферат разослан 17 марта 2012 г.
Ученый секретарь диссертационного совета доктор технических наук, доцент ^ С.Я. Егоров
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность исследования. В гальванотехнике одним из важнейших качественных показателей покрытия является его неравномерность. Для снижения неравномерности применяются различные методы: использование многоанодных систем, дополнительных катодов, биполярных электродов, токонепроводящих экранов. При решении задачи оптимизации по критерию неравномерности покрытия детали в гальванической ванне важной является информация о геометрии и местоположении относительно друг друга участвующих в нанесении покрытия объектов - анодов, катодов, биполярных электродов, токонепроводящих экранов. Для системы расчета гальванопокрытий геометрические данные о сцене (совокупность объектов, участвующих в нанесении покрытия и принадлежащих объему ванны) должны удовлетворять следующим требованиям: давать представление о поверхности и размерах трехмерных объектов, их расположении в ванной, роли в процессе нанесения покрытия, описание поверхности, обращенной к аноду (частный случай). В распоряжении пользователя, как правило, имеется только неполная геометрическая информация о таких объектах - машиностроительный чертеж (бумажный носитель или эскиз с ортогональными проекциями) или электронный чертеж. Необходим переход от неполной информации к трехмерному описанию всей сцены. Для этого необходимо решение следующих задач:
- распознавание геометрических примитивов чертежа;
- воссоздание векторного представления проекций;
- нахождение координат точек поверхности трехмерного объекта.
Исследование повышения эффективности САПР путем распознавания машиностроительных чертежей было рассмотрено в работах Д.В. Никулина, разработке геометрических моделей формирования поверхностей деталей сложной формы посвящены работы М.А. Гвирца. Среди зарубежных работ стоит отметить труды М. Ласло (США) о структурах геометрических данных и алгоритмах их обработки. Восстановлением объемного представления по эскизам ортогональных проекций занимался Дж. Гасс-лер (UK, Coventry University). Однако ни в одной работе не приведены методы, решающие все вышеперечисленные задачи в комплексе. Анализ существующих пакетов для обработки различных типов неполных данных с целью получения трехмерной геометрической модели показал следующее: всем требованиям, предъявляемым в системах расчета гальванопокрытия, не удовлетворяет ни один программный продукт. Если использовать несколько различных продуктов, то возможно создать систему, удовлетворяющую требованиям и обрабатывающую все предлагаемые типы неполных исходных данных. Однако это потребует доработки программ и добавления некоторых функций, что представляет собой нетривиальную задачу ввиду несопоставимости форматов пакетов. Кроме того, комплекс
программных продуктов имеет высокую стоимость. Таким образом, разработка моделей, методов, алгоритмов и комплексов программ восстановления трехмерной модели объекта сцены гальванической ванны, исходя из различных типов неполной исходной информации, актуальна.
Объектом исследования являются математические модели трехмерного объекта - гальванической ванны.
Предметом исследования является модификация существующей математической модели (ММ), описывающей поверхность трехмерного объекта с той целью, чтобы она соответствовала требованиям алгоритмов системы расчета гальванопокрытия.
Цель и задачи исследования. Целью является создание математических моделей и алгоритмов формирования математических моделей трехмерных геометрических объектов по неполным исходным данным для использования в задачах расчета гальванических процессов с целью выявления оптимальных управляющих воздействий для получения необходимых характеристик покрытия. Для достижения поставленных целей необходимо решить следующие задачи:
- исследовать форматы исходного представления геометрии объектов и выработать методику построения алгоритма обработки форматов неполных исходных данных, обрабатывающего различные классы исходных данных, в отличие от существующих, и заменяющего собой систему пакетов работы с геометрией объектов;
- исследовать существующие математические модели и классификацию представлений пространственных объектов;
- модифицировать наиболее подходящую (выявленную в процессе исследования) математическую модель объекта с той целью, чтобы она отвечала требованиям, предъявляемым к представлениям поверхности объекта в системах расчета неравномерности гальванопокрытия;
- разработать собственные форматы хранения информации о трехмерном объекте, позволяющие работать с модифицированной математической моделью (МММ);
- разработать численные методы воссоздания объемного представления объекта по ортогональным проекциям, представленным на чертежах и эскизах;
- разработать алгоритмы обработки растрового изображения для последующего использования при восстановлении поверхности трехмерного объекта - элемента сцены гальванической ванны - с тем, чтобы он отвечал требованиям МММ;
- определить структуру программного комплекса ввода исходной информации и обработки различных форматов исходных данных, реализующего предлагаемые математические модели и численные алгоритмы, предназначенные для использования в системах расчета гальванопокрытия.
Методы исследования. В работе использовались методы геометрического моделирования и компьютерной графики, элементы теории распознавания образов, понятия инженерной семантики, аналитического построения математической модели, структурного и объектно-ориентированного программирования.
Научная новизна результатов исследования.
1. Предложена модифицированная математическая модель трехмерных геометрических объектов, отличающаяся тем, что описывает целиком сцену с учетом присущих особенностей элементов сцены.
2. Предложены разработанные структуры записи данных в соответствии с МММ, отличающиеся соответствием различным типам представления исходных данных и типы файлов, позволяющих хранить информацию в соответствии с МММ.
3. Разработаны методы формирования геометрических трехмерных объектов, отличающиеся тем, что воссоздают МММ объекта из различных исходных неполных данных о геометрии объекта.
4. Предложены методы восстановления трехмерного геометрического объекта из неполных данных, позволяющие реализовывать описанные выше алгоритмы и параллельную обработку данных.
5. Разработана подсистема ввода графической информации, отличающаяся тем, что позволяет обрабатывать различные классы исходных представлений объекта (двумерные, трехмерные, векторные, растровые), предоставляет пользователю возможность выбора обрабатываемой поверхности, реализует описанные выше алгоритмы, и предложена ее реализация на языке программирования высокого уровня.
Практическая ценность. Практическую значимость представляет разработанный комплекс прикладных программ, позволяющий реализовать предложенные алгоритмы формирования геометрических трехмерных объектов, дающий возможность пользователю сократить время ввода геометрической информации об объектах сцены.
Внедрение. Разработанная система формирования трехмерных геометрических объектов успешно прошла производственные испытания на предприятии ООО «Гранит-М» (г. Уварово Тамбовской обл.) и принята к использованию при проектировании перспективного гальванооборудования, которое планируется выпускать на предприятии. Полученные в диссертационной работе результаты используются в Тамбовском государственном техническом университете для проведения учебных занятий при обучении студентов 3 курса специальности «Системы автоматизированного проектирования» по дисциплинам «Геометрическое моделирование в САПР» и «Компьютерная графика».
На защиту выносятся:
1. Модифицированная математическая модель объекта, описывающая геометрические характеристики объекта — гальванической ванны.
2. Форматы файлов представления модели и база данных.
3. Методы и алгоритмы обработки растрового представления, распознавания примитивов ортогональных проекций объектов.
4. Модуль восстановления объемного объекта из данных чертежа.
5. Алгоритм работы подсистемы ввода графической информации, обрабатывающий различные форматы и типы исходных данных.
6. Программный комплекс восстановления и хранения МММ объекта из неполных исходных данных.
Публикации. Основные положения диссертации отражены в 9 публикациях, в том числе в 3 статьях в журналах, рекомендованных ВАК, а также в программе, зарегистрированной в ФГУ ФИПС. Личный вклад соискателя: постановка задачи и алгоритм ввода графической информации в систему расчета гальванопокрытия, методика распознавания контура проекций на чертеже, алгоритм построения трехмерной сетки объекта и его использование при расчетах, алгоритм восстановления объемного представления объекта из его проекций, алгоритм структуры хранения двумерных и трехмерных данных, алгоритм расчета стороны объекта, обращенной к аноду.
Согласно паспорту специальности в диссертационной работе разработаны новые математические методы моделирования геометрических объектов (п. 1), проведены комплексные исследования разработанных алгоритмов с применением современной технологии математического моделирования и вычислительного эксперимента (п. 5), реализованы разработанные эффективные вычислительные методы восстановления трехмерных объектов по неполным исходным данным в виде комплексов проблемно-ориентированных программ (п. 4).
Апробация работы. Результаты диссертации докладывались и обсуждались на XXI, XXII, XXIII международных научных конференциях «Математические методы в технике и технологиях» (Саратов, 2008; Псков, 2009; Саратов, 2010); на Международной научной конференции «Покрытия и обработка поверхности» (Москва, 2010); на VII Всероссийской научной конференции «Защитные и специальные покрытия, обработка поверхности в машиностроении и приборостроении» (Пенза, 2010).
Достоверность и обоснованность результатов диссертационного исследования определяется корректным использованием апробированного математического аппарата и согласованностью экспериментальных данных и данных, полученных расчетом с применением предложенной математической модели трехмерного объекта и вычислительным алгоритмом подсистемы ввода графической информации в программном комплексе, а также успешным внедрением разработанных алгоритмов и программных средств.
Структура и объем работы. Диссертация общим объемом 147 страниц состоит из введения, четырех глав, списка литературы и приложений.
ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ
Во введении обоснована актуальность диссертационной работы, сформулирована цель и аргументирована научная новизна исследований, показана практическая значимость полученных результатов, представлены выносимые на защиту научные положения.
В первой главе рассмотрено современное состояние вопросов, связанных с ролью информации об объемном представлении объектов в системах расчета гальванопокрытия. Дано понятие трехмерного объекта как геометрического места точек поверхности в пространстве. Проведено исследование гальванических роботизированных систем в качестве систем-потребителей графической информации об объектах.
Дано определение неполных исходных данных о трехмерном объекте. Неполными исходными данными о трехмерном объекте будем считать данные, несущие информацию о геометрии объекта, но не представляющие собой трехмерный геометрический объект в том виде, как того требуют системы расчета гальванопокрытия. Для системы расчета гальванопокрытий данные должны удовлетворять упомянутым выше требованиям. В качестве типов неполных исходных данных рассмотрены следующие: бумажный чертеж, электронное растровое описание проекций объекта, электронное векторное описание проекций объекта, объемная модель системы трехмерного моделирования (векторное объемное описание объекта). Существующие методы перехода от имеющихся представлений обладают низкой универсальностью и, следовательно, ограниченностью допустимого класса задач, для которого применимы эти методы. Одной из главных проблем является несовместимость форматов представлений исходных данных и необходимость использования программного обеспечения различных классов, нуждающегося в дополнительной доработке, для конвертации этих форматов.
В ходе исследования существующих программных комплексов для ввода информации об объекте и воссоздания объемной поверхности выявлено отсутствие программ, работающих одновременно со всеми типами представления исходных данных об объекте. Кроме того, изученные программы в результате своей работы не гарантируют воссоздание модифицированной математической модели трехмерного объекта, геометрическое описание которой без дополнительных манипуляций подходило бы для использования в системах расчета гальванопокрытий. Сделан вывод о необходимости отказа от использования дорогостоящей системы на основе существующих пакетов для получения необходимых данных о геометрии деталей, входящих в описание сцены ванной.
Обоснована необходимость разработки подсистемы восстановления трехмерного объекта по неполным исходным данным, которая должна работать со следующими видами исходных данных: отсканированный
бумажный чертеж (форматы JPEG, TIFF, BMP); двумерный векторный чертеж (открытый формат dxf); объемная модель (формат 3ds); массив точек поверхности. Приведена постановка задачи, которая состоит в следующем. Необходимо модифицировать существующие математические модели с целью получения модели, описывающей трехмерный объект в соответствии с требованиями, предъямясмыми к информации о трехмерном объекте в промышленности, в частности - системах расчета гальванопокрытия; разработать алгоритмы и методы, позволяющие получать описание объекта по неполным исходным данным; реализовать программный комплекс, позволяющий использовать различные неполные представления объекта в качестве исходных данных с целью последующего преобразования в соответствии с описанием модифицированной математической модели трехмерного объекта.
Вторая глава посвящена исследованиям существующих ММ, описывающих геометрию объемных объектов. Выявлено, что наилучшим образом поставленной задаче удовлетворяет рецепторная ММ, описывающая множество точек пространства (1).
(О, еслиг-я точка принадлежит объекту;
/(WÎ.z,)H, . Л (!)
[1, если/-я точка не принадлежит объекту.
Однако эта модель не описывает ряд свойств объектов сцены, в связи с чем она была модифицирована следующим образом. Пусть пространство ванны состоит из и-го количества точек, тогда для г-й точки введем функции:
1, если /' - я точка принадлежит поверхности объекта; /(xi,yi,zi) = <2, если ¡'-я точка лежит внутри объекта;
3, если ¿-я точка не принадлежит объекту;
0, если i - я точка не принадлежит объекту;
1, если ¿-я точка принадлежит поверхности анода;
2, если i - я точка принадлежит поверхности катода; g{xj,yi,zi) = - 3, если г-я точка принадлежит поверхности
биполярного электрода; 4, если i - я точка принадлежит поверхности токонепроводящего экрана.
Для каждого типа объектов в ванной предусмотрены порядковые номера:
П\{хі,уі,2і) =
»2 (хі,уі,гі) =
0, если і - я точка не принадлежит аноду;
1, если і - я точка принадлежит поверхности анода с номером 1;
па, если і- я точка принадлежит поверхности анода с номером па;
0, если і - я точка не принадлежит катоду;
1, если і - я точка принадлежит поверхности катода с номером 1;
"З (х^Уі^І) =
п4(х,,у1,гі) =
пк, если і - я точка принадлежит поверхности катода с номером пк;
0, если і - я точка не принадлежит биполярному электроду;
1, если і - я точка принадлежит поверхности биполярного электрода с порядковым номером 1;
пЬ, если і - я точка принадлежит поверхности
биполярного электрода с порядковым номером пЬ;
0, если і - я точка не принадлежит токонепроводящему экрану;
1, если і - я точка принадлежит поверхности токонепроводящего экрана с порядковым номером 1;
л/, если 1-я точка принадлежит поверхности
токонепроводящего экрана с порядковым номером и/.
В общем случае свойства точек сцены описываются кортежем б/= и1,, и2/, иЗ„ п4,> для г-й точки в прямоугольной ванне (хтш < х,- < < Япих, Утп < УI < У пах, гт„ < г,- < 2тах). Для точки, принадлежащей электролиту ванны, запись выглядит следующим образом: () = <3, 0, 0, 0, 0, 0>, для точки поверхности 5-го катода: () = <1, 2, 0, 5, 0, 0>. Как видно из примеров, предлагаемая МММ достаточна для описания рассматриваемого объекта.
Третья глава посвящена методам и алгоритмам обработки входных данных; воссозданию поверхности трехмерного объекта. Описаны форматы и способы хранения информации об объектах, общий алгоритм ввода графической информации, приведены собственные форматы подсистемы ввода, использование форматов исходных данных, конвертация форматов. Алгоритм работы с различными форматами файлов на входе системы в зависимости от типов входных данных: 1) выбор шага сетки; 2) задание положения детали в заданной системе координат; 3) выбор формата исходных данных: бумажный чертеж; электронный чертеж; объемная модель; файл двумерного формата g2d; файл трехмерного формата g3d; 4) формирование объемной сетки модели с заданным шагом: если исходная информация представляет собой сканированный чертеж (Tiff, Jpeg), то необходимо: улучшить качество изображения; задать масштаб чертежа, распознать графические примитивы и штамп; сформировать векторный файл формата g2d, записать в БД чертежей; сформировать трехмерный файл формата g3d; если исходная информация представляет собой электронный чертеж (dxf), то необходимо: произвести разбор формата файла dxf, перевести электронный чертеж в файл формата g2d; сформировать трехмерный файл формата g3d; если исходная информация представляет собой объемную модель (3DS), то необходимо произвести разбор формата файла 3DS, перевести информацию о модели в файл формата g3d; если исходная информация представляет собой файл двумерного формата g2d, то необходимо сформировать трехмерный файл формата g3d; если исходная информация представляет собой файл трехмерного формата g3d, то необходимо перейти к шагу 5; 5) запись в базу данных модели, представленной объемной сеткой.
В разделе, посвященном улучшению качества изображения, приведены алгоритмы сглаживания и удаления шумов. Сравниваются различные модели представления векторной информации, выбирается более подходящая для описанной выше задачи. Рассмотрим алгоритм распознавания проекций на чертеже для перевода растрового изображения в векторное представление и восстановления поверхности объекта по ним. При распознавании графических примитивов на чертеже решается задача выделения множества точек и определения аналитического вида примитива, которому они принадлежат. Для реализации распознавания монохромного изображения используется следующий алгоритм: 1) Перебираются все пиксели изображения до первого черного пикселя. Этот пиксель считается начальной узловой точкой (узловая точка - точка начала линии, является местом пересечения линий, их стыковки). На рисунке 1 она обозначена как {Х0, Y0) и отмечена «крестиком». 2) С некоторым шагом исследуется окрестность этой точки, при этом учитывается восьмисвязность изображения. Направление сканирования окрестности узловой точки на рис. 2 указано линиями. 3) Сканирование ведется до тех пор, пока не будет обна-
ружен зазор - область белых точек (рис. 2). 4) В этом случае точки, находящиеся слева от зазора, для искомой линии рассматриваться не будут. К ним можно вернуться после нахождения линии справа от области зазора. Напомним, что приоритетным является направление обхода по часовой стрелке. 5) Двигаясь вдоль линии в выбранном направлении (рис. 2), находятся параметры к и Ь для построения уравнения прямой у = кх + Ь по точкам (Х0, Го) и (Х„ У;): к = ЛУ/ДХ; Ь = У0. Рассчитывается угол а = &тс.Щ(к) и его значение запоминается и корректируется на каждом последующем шаге движения. Необходимо также отслеживать ширину линии и смотреть, чтобы отслеживаемая точка (Хь У,) лежала на оси линии. Для определения ширины линии на каждом шаге строится перпендикуляр к прямой у = кх+Ь, уравнение перпендикуляра имеет вид: у = tg(а + л/2)х + Ь . Вдоль этого перпендикуляра в обоих направлениях от точки (Хь У,) отслеживается ширина линии в пикселях и запоминается для каждого шага. 6) Повторяем шаг 5 до тех пор, пока не появится резкое изменение угла а. Это изменение должно касаться не только последнего найденного а;, но и всей последовательности. Изменение направления, как в точке (Хг, У2) (рис. 3) свидетельствует о том, что мы нашли следующую узловую точку (Х\, У,). 7) Построим аналитически прямую между точками (Х0, У0) и (Хь У,). 8) Учитывая ширину линии у/, можно откорректировать положение узловой точки (Т0', У0'). 9) Отслеживая положение найденных на пятом шаге точек массивов Х[1], УН и сравнивая их с полученной прямой (Х0, У0) - (X,, У,) можно сделать вывод о кривизне линии (в случае, если это дуга или сложная кривая, будет наблюдаться плавное изменение угла а (рис. 4)). ] 0) После определения вида линии и расчета точки центра для дуги, данные об узловых точках (и точки центра для дуги) записываются в массив примитивов. Все принадлежащие найденной линии точки, кроме узловых, отбрасываются из дальнейшего рассмотрения, а линия считается распознанной.
Рис. 1. Сканирование окрестности узловой точки
Рис. 2. Движение по направлению
Рис. 3. Смена направления
ХО,Ув
Рис. 4. Обработка кривых линий
3 9
16
Рис. 5. Пример векторного файла
И) Для найденной новой узловой точки (Хь Г,) повторяются пункты со 2 по 11. Если новых вершин не найдено, то следует вернуться к тем, что были найдены во время отслеживания зазоров. 12) Когда контур распознан полностью и данные об этой проекции помещены в таблицу примитивов, то на всем изображении ищется следующая черная точка, которая будет считаться началом контура новой проекции и для нее повторяются все пункты алгоритма со 2 по 11.
Далее приведено описание формата g2d - формата двумерного представления, алгоритм разбора и конвертации открытого формата сіхґ, где первая строка содержит масштаб объекта, вторая - количество отрезков, далее следуют строки с целочисленными координатами начала и конца каждого отрезка. Рассмотрим алгоритм преобразования имеющегося векторного представления двумерного чертежа (рис. 5) в полноценную трехмерную модель. 1) На первом шаге алгоритма необходимо считать векторный файл и преобразовать набор координат вершин в список отрезков, прослеживая связность отрезков между собой. Для этого строится табл. 1,
где числа соответствуют номерам отрезков. Второе число в строке таблицы означает количество отрезков, имеющих общие вершины с указанным в первом столбце отрезке. Остальные числа - номера связанных отрезков. Если строка содержит ноль - это означает особый случай, когда отрезки связаны не общими вершинами, хотя и относятся к одной проекции - случай рассмотрим ниже. 2) На втором шаге алгоритма определяем связанные объекты - наборы связанных линий для определения проекций. Для этого проходим по таблице на рис. 6, вычленяем отрезки, уже отнесенные к группе. Изначально массив заполнен нулями. В таблице 1 показан массив на этапе рассмотрения отрезка 3. Возможны различные варианты пересечений (рис. 7). Анализируя положение прямоугольников, определяем принадлежность отрезков - 10-го ко второму объекту, 13-го отрезка - третьему объекту. Если прямоугольники не пересекаются, как в последнем варианте, то это означает, что объекты принадлежат разным проекциям. 3) На третьем шаге алгоритма по определенным выше объектам проекций строим прямоугольники, описывающие каждый из трех объектов. По координатам вершин этих проекций можно судить, какой объект принадлежит какой именно проекции (как видно из рис. 8). 4) Четвертый шаг заключается в нахождении начала координат трех проекций для использования этой точки в дальнейшем при склейке трехмерной модели. На рисунке 9 показаны геометрические построения, необходимые для нахождения начала координат. Точка А принадлежит фронтальной проекции, точка В соответствует точке А на вертикальной проекции, точка С относится также к фронтальной, а £> соответствует точке С на проекции сверху. Точки Е и Р являются центрами отрезков АВ и СО соответственно. Для нахождения начала координат определим точку пересечения перпендикуляров, восстановленных из середин отрезков АВ и СО. Параметрическое уравнение линии, проходящей через точки А и В, имеет вид
х(1) = (хв-хАУ + хА; ^
У(0 = (УВ~УА)* + УА-
Аналогично для линии, проходящей через точки С и О: х(1) = {хв-хс)1 + хс-, уЦ) = (Уо~Ус)1 + Ус-
Таблица 1
Номер отрезка 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Признак
вхождения 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
в проекцию
10 11 12 13 14 ГТ5 16
□
-в-
сз
а ой
й-
□
□
Рис. 6. Таблица с отрезками
улП)ЯХХ=»11п
Рис. 7. Возможные варианты пересечения объектов
ь
а :
Рис. 8. Прямоугольники, описываюшис проекции
Рис. 9. Поиск начала координат
Задача нахождения точки начала координат сводится к нахождению точки пересечения линий, описанных системами (2) и (3). Уравнения перпендикуляров в точках Е и будут иметь вид:
*(*) = <УА ~Ув)1 + у(0 = (хв -хА)і +
ХА+хВ+УВ~УА .
У(0 = (хо-хс)1 +
2
У А + Ув+ХА хБ _
2
хс + х0+ув -Ус
2
Ус + Уо + хс — ха
5) На пятом шаге производится перерасчет координат вершин отрезков относительно нового начала координат. Особое место занимает описание алгоритма восстановления трехмерной поверхности чертежа по трем проекциям объекта и расчета, которые можно сразу передавать в качестве исходных данных в системы-потребители, например, для расчета неравномерности покрытия; сокращено количество вычислений и, соответственно, объем памяти, требуемый для вычисления и хранения модели сцены по сравнению с расчетом геометрического места всех точек поверхности объекта; данный метод упрощает работу с объектом достаточно сложной формы и при наличии отверстий.
Приведено описание разработанного автором формата g3d, который хранит сведения о месте точки узла сетки модели - трехмерные координаты х, у, z точки поверхности. Приведен алгоритм преобразования широко распространенного и используемого в объемном моделировании формата 3ds, в разработанный автором формат g3d. Совокупность данных алгоритмов получения точек поверхности объекта в пространстве обладает рядом преимуществ:
- автоматическое позиционирование чертежа и определение проекций детали за счет определения точки центра и контуров проекций;
- возможность позиционирования объекта в ванной путем проецирования сцены на объект;
- возможность сокращения времени расчета за счет вычисления положения точек только обращенной к аноду поверхности объекта.
Таким образом, в третьей главе даны описания разработанного алгоритма и программного комплекса для получения МММ объемного представления объекта.
Четвертая глава посвящена реализации описанных алгоритмов.
Модуль расчета неравномерности гальванического покрытия в роботизированных гальванотехнических системах ставит своей целью улучшение качественного показателя получаемого покрытия. Описана разработанная подсистема Gen3d 1.2 ввода графической информации для расчета неравномерности гальванического покрытия в роботизированных гальванотехнических системах. Приведено описание предлагаемой подсистемы ввода графической информации и восстановления объекта по неполным исходным данным, описание модулей, примеры работы подсистемы. Перечислены функции предлагаемого ПО Gen3d 2.0 Converter:
- выбор формата исходных данных (*.dxf, *.3ds, *.jpg);
- задание размеров ванны и положения объектов в ней;
- конвертация исходных данных в собственные форматы (*.g2d, *.g3d);
- распознавание линий чертежа с возможностью корректировки оператором;
- восстановление объемного представления объекта и получение МММ сцены;
- запись в БД electrodes геометрического места точек модели;
- создание файла собственного проекта. На рисунке 10 показана конвертация из растрового представления в векторный формат g2d. На рисунке 11 - восстановленная поверхность при конвертации представления, полученного на предыдущем шаге. Таким образом, четвертая глава отражает использование разработанных алгоритмов, программных модулей и моделей в системах расчета гальванопокрытия. На рисунке 12 показан пример сцены - гальванической ванны и примеры МММ (таблица на рис. 13) для некоторых точек сцены. Полученные геометрические данные используются при решении задач оптимизации равномерности гальванопокрытия с использованием многоанодных систем, систем с токонепроводящим экраном, с биполярным электродом и их комбинаций. В заключении сформулированы основные результаты и выводы работы.
111111 шш
ІШІІ1ІІІІГ............
..jiiiiiiiiiis
її
і®! ШІІ11
тжаштж&ш
Рис. 10. Конвертация из растрового представления в векторный формат
Рис. 11. Восстановленная поверхность
Местоположение точки в ванне Координаты Q1?, У. *■)
X У z V 0 nl «2 пЗ е4
Поверхность анода А1 26 27 67 1 101 1 0 0 0
Поверхность анода А2 26 54 1 102 2 0 0 0
Поверхность анода АЗ 26 72 71 1 103 3 0 0 0
Поверхность катода К1 112 54 72 1 201 0 1 0 0
Поверхность катода К2 93 20 31 1 202 0 2 0 0
Поверхность биполярного электрода БЭ 82 27 30 1 301 0 0 1 0
Рис. 12. Сцена с объектами гальванической ванны
Рис. 13. Пример МММ для точек сцены рис. 12
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
1. Модифицированная рецепторная математическая модель трехмерного объекта позволяет получать однозначное описание объекта в том виде, в котором это необходимо в системе расчета неравномерности гальванопокрытия.
2. Разработана подсистема ввода и обработки графической информации из неполных исходных данных об объекте, обрабатывающая различные классы исходных данных, в отличие от существующих системы и комплексов программ.
3. Разработаны алгоритмы распознавания и векторизации растрового чертежа, которые позволяют, не просчитывая все точки поверхности в пространстве, получить информацию об обращенных к сцене фрагментах объекта, что в частности необходимо при расчете толщины гальванического покрытия.
4. Разработанные алгоритмы восстановления поверхности объекта позволяют производить расчет геометрического места точек поверхности, что значительно сокращает время расчета.
5. Предложены усовершенствованные структуры и форматы данных в соответствии с МММ, которые позволяют хранить информацию об объекте в удобном для пользователя виде и избегать конфронтации различных форматов.
6. Использование предлагаемых методик позволяет не только расширить круг исходных данных о покрываемой детали, но и значительно сократить время ввода информации о ней. Внедрение разработанной подсистемы в программный комплекс управления гальваническими процессами позволит улучшить качество конечной продукции благодаря расчету неравномерности покрытия. Кроме того, при внедрении сократятся затраты времени и ресурсов на наладку и запуск в производство новых номенклатур изделий.
ПУБЛИКАЦИИ ПО ТЕМЕ РАБОТЫ
Статьи в рецензируемых журналах по списку ВАК:
1. САПР гальванических процессов / A.C. Попов, Ю.В. Литовка, Г.А. Кириченко, М.А. Попова // Вестник Тамбовского государственного технического университета. - Тамбов, 2008. - Т. 14, № 4. — С. 882 - 891.
2. Построение трехмерной сетки детали для расчета распределения гальванического покрытия по ее поверхности / A.C. Попов, Ю.В. Литовка, М.А. Попова // САПР и графика. - Москва, 2010. - № 1. - С. 68-69.
3. Алгоритм формирования объемной геометрической модели детали из чертежа проекций / A.C. Попов, Ю.В. Литовка, В.В. Пэк, М.А. Попова // Вестник АГТУ. Сер. Управление, вычислительная техника и информатика. — Астрахань, 2009. - № 2. - С. 152 - 160.
Прочие публикации-.
4. Литовка, Ю.В. Постановка задачи ввода графической информации в системе управления гальваническими процессами / Ю.В. Литовка, М.А. Попова // Математические методы в технике и технологиях : сб. тр. XXI Междунар. науч. конф. - Саратов, 2008. - Т. б. - С. 185 - 187.
5. Литовка, Ю.В. Алгоритм векторизации растрового чертежа в САПР гальванических процессов / Ю.В. Литовка, М.А. Попова // Математические методы в технике и технологиях : сб. тр. XXII Междунар. науч. конф. - Псков, 2009. - Т. 10. - С. 101-102.
6. Попов, A.C. Ввод графической информации в системе управления гальваническими процессами / A.C. Попов, Ю.В. Литовка, М.А. Попова // Математические методы в технике и технологиях : сб. тр. XXIII Междунар. науч. конф. - Саратов, 2010. - С. 47-48.
7. Система автоматизированного проектирования и управления гальваническими процессами / A.C. Попов, Ю.В. Литовка, Г.А. Кириченко, М.А. Попова // Покрытия и обработка поверхности : тез. докл. 7 Междунар. конф. - М., 2010. - С. 57-58.
8. Проблемы разработки комплексов программ моделирования и оптимизации гальванических процессов / Ю.В. Литовка, Г.А. Кириченко, М.А. Попова, A.C. Попов // Защитные и специальные покрытия, обработка поверхности в машиностроении и приборостроении : тез. докл. VII Всерос. науч. конф. - Пенза, 2010. - С. 46 - 48.
9. Свидетельство об официальной регистрации программы для ЭВМ № 2010614480. Программа для построения трехмерной модели по двумерному чертежу / A.C. Попов, М.А. Попова. - 2010.
Подписано в печать 14.03.2012. Формат 60 х 84/16. 0,93 усл. печ. л. Тираж 100 экз. Заказ № 88
Издательско-полиграфический центр ФГБОУ ВПО «ТГТУ» 392000, г. Тамбов, ул. Советская, д. 106, к. 14
Текст работы Попова, Маргарита Александровна, диссертация по теме Математическое моделирование, численные методы и комплексы программ
61 12-5/3484
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет»
На правах рукописи ,,УДК 004.94 (043.3)
/
. йГ
/ '
Попова Маргарита Александровна
АЛГОРИТМЫ ФОРМИРОВАНИЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ
ТРЁХМЕРНЫХ ГЕОМЕТРИЧЕСКИХ ОБЪЕКТОВ В ГАЛЬВАНОТЕХНИКЕ ПРИ НЕПОЛНЫХ ИСХОДНЫХ ДАННЫХ
05.13.18- "Математические модели, численные методы и комплексы программ"
Диссертация на соискание ученой степени кандидата технических наук
Научный руководитель: д.т.н., профессор Ю.В. Литовка
Тамбов - 2012
Оглавление
Введение........................................................................................................................................................6
Глава 1. Обзор существующих методов ввода информации о
трехмерных объектах........................................................................................................................10
1.1 Трехмерные объекты в промышленности............................................................................10
1.2 Роль графической информации в системах управления гальваническими процессами..................................................................................................13
1.3 Неполные исходные данные об объекте........................................................21
1.3.1 Бумажный чертеж (растровая модель)..........................................................22
1.3.2 Электронный чертеж системы AutoCAD....................................................23
1.3.3 Трехмерная модель системы 3DS МАХ (описание сцены)..........24
1.4 Существующие методы ввода информации о трехмерном объекте.......................................................................................................................................................................................................26
1.4.1 Ручной ввод информации о трехмерном объекте............................27
1.4.2 Автоматизированные способы ввода информации о трехмерном объекте....................................................................................................................................................................29
1.5 Существующие программные комплексы ввода информации об объекте и воссоздания объёмной поверхности..........................................................32
1.5.1 Программные комплексы для работы с трехмерными исходными данными..............................................................................................................................33
1.5.2 Программные комплексы для работы с двумерными исходными данными..........................................................................................................................35
1.5.3 Программные комплексы для работы с неполными исходными данными об объекте на бумажном носителе (распознавание и векторизация отсканированных чертежей)..................35
1.5.4 Программные комплексы для реконструкции объекта по неполным исходным данным..........................................................................................................36
1.5.5 Недостатки существующих программных комплексов для ввода информации об объекте и воссоздания объёмной поверхности 37
1.6 Постановка задачи исследования и решаемые задачи............... 38
Глава 2. Математические модели трехмерных объектов............... 42
2.1 Существующие математические модели объемных тел....... 42
2.1.1 Классификация математических моделей объемных тел.......................................................................................................... 44
2.1.2 Моделирование сплошных тел....................................... 45
2.1.3 Классификация моделей и методов визуализации.................. 56
2.2 Описание модифицированной математической модели (МММ) гальванической ванны...................................................................... 64
Глава 3. Алгоритмы воссоздания поверхности объекта из неполных исходных данных................................................................ 68
3.1 Общий алгоритм работы подсистемы ввода графической информации................................................................................................ 68
3.2 Методы подготовки данных об объекте с бумажного носителя
для последующей обработки................................................... 75
3.2.1 Методы предварительной обработки бумажного носителя... 75
3.3 Метод распознавания графических примитивов на растровом представлении объекта.............................................................. 82
3.3.1 Преимущества векторного представления перед растровым
для описания неполных исходных данных об объекте.................. 82
3.3.2 Модели представления векторной информации на плоскости 83
3.3.3 Использование базы данных образцов графических примитивов................................................................................................. 86
3.3.4 Алгоритм векторизации растрового чертежа................... 86
3.3.5 Описание внутрисистемного представления двумерного векторного формата §2(1......................................................... 93
3.4 Преобразование информации об объекте из электронного чертежа объекта системы проектирования на плоскости во внутрисистемное представление формата ............................ 94
3.5 Восстановление ЗБ-геометрической модели объекта............ 97
3.5.1 Описание формата §3(1, используемого для хранения информации об объекте в виде модифицированной математической модели (МММ)......................................................................................... 98
3.5.2 Разбор файла формата §2с1, алгоритмы нахождения отрезков проекций объекта и перерасчета точки центра сцены с объектом...... 98
3.5.3 Расчет геометрического места точек сетки объекта из представления §2с1................................................................ 105
3.6 Воссоздание поверхности объекта из модифицированной математической модели (МММ)............................................... 112
3.7 Восстановление модифицированной математической модели (МММ) объекта из представления системы трехмерного
112
моделирования....................................................................
3.8 Описание структуры базы данных моделей восстановленных трехмерных объектов............................................................. ц^
3.9 Проверка адекватности модели......................................... 120
Глава 4. Реализация алгоритмов. Примеры работы программного комплекса.................................................................................................. 124
4.1 Пример модифицированной математической модели (МММ).... 124
4.2 Реализация модуля ввода, преобразования и обработки исходных данных об объекте................................................... 126
4.3 Функции разрабатываемого модуля ввода, преобразования и обработки исходных данных об объекте................................... 129
4.4 Пример работы модуля ввода, преобразования и обработки исходных данных об объекте.................................................... 130
Основные результаты и выводы................................................................................................134
Список использованных источников..................................................................................135
Приложение А. Справка о внедрении на предприятии........................................145
Приложение Б. Справка о внедрении на предприятии........................................146
Приложение В. Свидетельства о государственной регистрации
программ для ЭВМ..................................................................................................................................147
ВВЕДЕНИЕ
Гальванические покрытия применяются для защиты от коррозии, декоративной отделки, придания изделиям специальных свойств, в связи с чем гальванические участки имеются практически на всех машиностроительных предприятиях. Одним из важнейших качественных показателей покрытия является его неравномерность. Для снижения неравномерности применяются различные методы: использование многоанодных систем, дополнительных катодов, биполярных электродов, токонепроводящих экранов. При решении задачи оптимизации по критерию неравномерности покрытия детали в гальванической ванне важной является информация о геометрии и местоположении относительно друг друга участвующих в нанесении покрытия объектов -анодов, катодов, биполярных электродов, токонепроводящих экранов. Для системы расчёта гальванопокрытий геометрические данные о сцене (совокупности объектов, участвующих в нанесении покрытия и принадлежащих объему ванны) должны удовлетворять следующим требованиям: давать представление о поверхности и размерах трёхмерных объектов, их расположении в ванной, роли в процессе нанесения покрытия, описание поверхности, обращенной к аноду (частный случай). В распоряжении пользователя, как правило, имеется только неполная геометрическая информация о таких объектах - машиностроительный чертёж (бумажный носитель или эскиз с ортогональными проекциями) или электронный чертёж. Необходим переход от неполной информации к трехмерному описанию всей сцены. Для этого необходимо решение следующих задач:
- распознавание геометрических примитивов чертежа;
- векторизация растрового изображения;
- нахождение точек поверхности трёхмерного объекта.
Исследование повышения эффективности САПР путём распознавания
машиностроительных чертежей было рассмотрено в работах Никулина Д.В. [1], разработке геометрических моделей формирования поверхностей деталей
сложной формы посвящены работы М.А.Гвирца [2]. Среди зарубежных работ стоит отметить труды М. Ласло (США) о структурах геометрических данных и алгоритмах их обработки. Восстановлением объёмного представления по эскизам ортогональных проекций занимался Дж. Гасслер [3] (UK, Coventry University). Однако ни в одной работе не приведены методы, решающие все вышеперечисленные задачи в комплексе. Анализ существующих пакетов для обработки различных типов неполных данных с целью получения трёхмерной геометрической модели показал следующее: всем требованиям, предъявляемым в системах расчёта гальванопокрытия не удовлетворяет ни один программный продукт. Если использовать несколько различных продуктов, то возможно создать систему, удовлетворяющую требованиям и обрабатывающую все предлагаемые типы неполных исходных данных. Однако это потребует доработки программ и добавления некоторых функций, что представляет собой нетривиальную задачу ввиду несопоставимости форматов пакетов. Таким образом, разработка моделей, методов, алгоритмов и комплексов программ восстановления трёхмерной модели объекта сцены гальванической ванны, исходя из различных типов неполной исходной информации, актуальна.
Объектом исследования являются математические модели трехмерного объекта - гальванической ванны. Предметом исследования является модификация существующей математической модели (ММ), описывающей поверхность трёхмерного объекта с той целью, чтобы она соответствовала требованиям алгоритмов системы расчёта гальванопокрытия. Цель и задачи исследования: создание математических моделей и алгоритмов формирования математических моделей трёхмерных геометрических объектов по неполным исходным данным для использования в задачах расчета гальванических процессов с целью выявления оптимальных управляющих воздействий для получения необходимых характеристик покрытия. В работе обоснована необходимость разработки подсистемы восстановления трёхмерного объекта по неполным исходным данным, которая должна работать со следующими ви-
дами исходных данных: отсканированный бумажный чертёж (форматы JPEG, TIFF, BMP); двумерный векторный чертёж (открытый формат dxf); объёмная модель (формат 3ds); массив точек поверхности. Приведена постановка задачи, которая состоит в следующем. Необходимо модифицировать существующие математические модели с целью получения модели, описывающей трёхмерный объект в соответствии с требованиями, предъявляемыми к информации о трёхмерном объекте в промышленности, в частности - системах расчёта гальванопокрытия; разработать алгоритмы и методы, позволяющие получать описание объекта по неполным исходным данным; реализовать программный комплекс, позволяющий использовать различные неполные представления объекта в качестве исходных данных с целью последующего преобразования в соответствии с описанием модифицированной математической модели трёхмерного объекта. В ходе исследования существующих математических моделей 3D-геометрических объектов выявлено, что наилучшим образом поставленной задаче удовлетворяет рецепторная ММ, описывающая множество точек пространства. Предлагается модификация рецеп-торной ММ с тем, чтобы она отвечала перечисленным выше требованиям. Таким образом, была получена модифицированная ММ (МММ). Для преобразования различных классов неполных исходных данных (растровые, векторные, трехмерные, двумерные данные) в МММ в работе предложены соответствующие методы, алгоритмы, форматы данных и структуры баз данных, которые обеспечивают взаимодействие полученных МММ объектов с системой расчета гальванопокрытия.
Предложены следующие пункты научной новизны результатов
исследования:
1. Предложена модифицированная математическая модель трёхмерных геометрических объектов, отличающаяся тем, что описывает целиком сцену с учётом присущих особенностей элементов сцены.
2. Предложены разработанные структуры записи данных в соответствии с МММ, отличающиеся соответствием различным типам представления ис-
ходных данных и типы файлов, позволяющих хранить информацию в соответствии с МММ.
3. Разработаны методы формирования геометрических трёхмерных объектов, отличающиеся тем, что воссоздают МММ объекта из различных исходных неполных данных о геометрии объекта.
4. Предложены методы восстановления трёхмерного геометрического объекта из неполных данных, позволяющие реализовывать описанные выше алгоритмы и параллельную обработку данных.
5. Разработана подсистема ввода графической информации, отличающаяся тем, что позволяет обрабатывать различные классы исходных представлений объекта (двумерные, трехмерные, векторные, растровые), предоставляет пользователю возможность выбора обрабатываемой поверхности, реализует описанные выше алгоритмы, и предложена её реализация на языке программирования высокого уровня.
Полученные геометрические данные используются при решении задач оптимизации равномерности гальванопокрытия с использованием многоанодных систем, систем с токонепроводящим экраном, с биполярным электродом и их комбинаций. Разработанная система формирования трёхмерных геометрических объектов успешно прошла производственные испытания на предприятии ООО "Гранит-М" (г. Уварово Тамбовской области) и принята к использованию при проектировании перспективного гальванооборудования, которое планируется выпускать на предприятии.
Глава 1 Обзор существующих методов ввода информации о трехмерных объектах
1.1 Трехмерные объекты в промышленности
В настоящее время большое распространение в различных отраслях подготовки производства в промышленности получили ЗБ-геометрические модели объектов. Работа с трехмерными данными объектов производится на этапах проектирования и моделирования объектов.
Проектирование является одной из стадий создания изделий и сооружений в технике и строительстве [5]. Согласно заданными спецификацией основными характеристиками разрабатываемого изделия, конструктор ищет решение, оптимальное с точки зрения затрат и технических параметров. Достоинства парадигмы взаимодействия конструктора с изображением проектируемой конструкции на экране ЭЛТ впервые подметил Айвен Сазерленд еще лет сорок назад [6]. Сегодня уже ни у кого не возникает сомнения прогрессивность применения средств графического взаимодействия конструктора и компьютера в системах автоматизации проектирования (САПР). Графическая система САПР позволяет изображать объекты на разных стадиях проектирования, что существенно упрощает процесс проектирования. Важной проблемой при решении задачи взаимодействия конструктора и САПР является разработка подхода и методики при создании структуры объектно-ориентированных систем, их информационной среды, интерфейсов пользователя, специализированных инструментов, а также методов и алгоритмов программирования при параметрически управляемом геометрическом моделировании [7].
Как только графические системы стали обладать достаточной производительностью для создания сложных динамических изображений, возникла идея применить их в качестве средства моделирования реальной обстановки (симулятора) на разного рода тренажерах. Первыми такие системы освоили
авиаторы, они использовались для обучения пилотов на земле. Это позволило значительно снизить стоимость обучения, гарантируя при этом его высокое качество и безопасность [8]. В основу процесса проектирования-производства изделия заложено не просто компьютерное черчение, а геометрическое моделирование. Под геометрическим моделированием понимают совокупность операций и процедур, включающих формирование геометрической модели объекта и ее преобразование с целью получения желаемого изображения объекта и определения его геометрических свойств. Мастер-модель — это уникальная электронная модель в ассоциативной структуре изделия, которая служит ссылочным эталоном для ассоциативно связанных с ней элементов создаваемого изделия или оснастки для его производства, с которой одновременно работают все участвующие в создании изделия. При таком использовании мастер-модели не происходит потерь данных, происходит лишь их пополнение и уточнение [9]. Изготовление современных изделий без геометрической модели практически невозможно в связи со всевозрастающей сложностью геометрии деталей и прочих используемых трехмерных объектов. Под трехмерным объектом будем по�
-
Похожие работы
- Исследование и разработка методов и средств визуализации трехмерных объектов
- Разработка метода синтеза и параметризации трехмерных геометрических моделей в концептуальном дизайне
- Исследование и разработка методов и средств визуализации трехмерных объектов
- Разработка методов и геометрических моделей анализа незаполненных пространств в задачах размещения
- Моделирование рационального размещения трехмерных геометрических объектов в системах автоматизированного проектирования раскроя-упаковки
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность