автореферат диссертации по информатике, вычислительной технике и управлению, 05.13.06, диссертация на тему:Алгоритмическое обеспечение автоматизированной системы классификации работоспособности судовых устройств
Оглавление автор диссертации — кандидата технических наук Милед Лассад Бен Халед
Введение.
Глава 1. Методы моделирования и статистической классификации технического состояния судового оборудования.
1.1 Судовые энергетические установки как объекты контроля, классификации и моделирования.
1.2 Алгоритмы статистической классификации технического состояния объектов контроля и управления.
1.3 Моделирование изменения работоспособности технических объектов.
Основные результаты.
Глава 2. Математическое обеспечение авто мати з и ро в а) ты : систем классификации судовых устройств.
2.1 Автоматизированная система классификации работоспособности СЭУ.
2.1.1 Архитектура систем контроля и классификации судо! ого оборудования.
2.1.2 Структура автоматизированных средств классификац ии и диагностирования.
2.1.3 Алгоритмическое и программное обеспечение АСКР.
2.2 Методы описания технического состояния диагностируемых объектов.
2.3 Оценивание работоспособности СЭУ с помощью обобщенной модели.
2.4 Учет динамики эксплуатации при классификации работоспособности объектов.
Основные результаты.
Глава 3. Снижение размерности пространства параметров жбото-способности и решение точностной задачи.
3.1 Выбор информативных параметров для оценки работсх гюсоб-ности объектов.—.
3.2 Снижение размерности параметрического пространств с помощью мер Шеннона и Кульбака.
3.3 Методы оценки вероятности ошибки распознавания со тояния объекта.
Основные результаты
Глава 4. Моделирование процессов и статистический анш513 изменения работоспособности СЭУ для решения задачи класс!- фика
-34.1 Имитационные модели и их компоненты.
4.2 Статистический анализ процессов изменения работоспособности СЭУ.:.л:.;. 1зо
4.3 Моделирование закономерностей (трендов) изменения работоспособности СЭУ.
4.4 Экспериментальное исследование алгоритмической классификации.
4.4.1 Моделирование изменения параметров СЭУ.
4.4.2 Вычисление вероятности безотказной работы и остаточного ресурса.
4.4.3 Экспериментальная проверка метода статистических решений.
Основные результаты.
Введение 1999 год, диссертация по информатике, вычислительной технике и управлению, Милед Лассад Бен Халед
Интенсивное развитие и дифференциация производства в мировой экономической системе, расширение связей между отдаленными регионами в настоящее время привели к резкому возрастанию роли морского и речного транспорта в мировой системе коммуникаций. Используемые на судах технологии по обработке и сохранению грузов, а также насыщенность флота энергетическим оборудованием, приводят к необходимости автоматизации технологических операций, связанных с эксплуатацией судна в целом.
К основным судовым технологическим процессам следует отнести операции контроля, диагностической классификации, управления судовыми техническими средствами. Эти функции из-за своей сложности не могут эффективно выполняться только с помощью локальных микропроцессорных устройств, хотя они, безусловно, необходимы. Для этих целей требуется автоматизированная система управления (АСУ), которая охватывала бы все процессы на судах, превышающие определенный уровень сложности. Это подтверждается активным развитием здесь, в России, и особенно за рубежом, теоретических основ и технических средств судовых АСУ.
Роль подобного АСУ особенно возрастает при функционировании такого сложного автономного объекта, каким является современное судно. Очевидно, что, чем больше задач будет решать АСУ в алгоритмическом плане без увеличения сложности её технических средств, тем выше будет эффективность всей системы.
Современный подход предполагает организацию в судовых АСУ нескольких подсистем или отдельных систем, целью которых является контроль технического состояния, статистической классификации и управление различными судовыми механизмами - главным двигателем, вспомогательными механизмами и другими системами.
Каждая подсистема представляет собой свою "нишу" в общей системе контроля, классификации и управления, имеет свой класс решаемых задач, свое алгоритмическое и программное обеспечение.
Безусловно, одной из важнейших задач большинства подсистем является задача классификации технического состояния судовых механизмов, когда необходимо оценивать изменения работоспособности контролируемых объектов, принимать решение о критическом состоянии объекта и необходимости профилактических мероприятий (осмотра, ремонта и т.п.). Для этих целей необходимо в рамках АСУ иметь информационные основы классификации и анализа базы данных, алгоритмы имитационного моделирования ухудшения состояния объекта в зависимости от режимов работы и нагрузки на механизмы, принятие решения при деградации работоспособного состояния и /дрейфе параметров, о профилактических мероприятиях при обслуживании судовых установок.
Иными словами, необходимо создание автоматизированных систем классификации работоспособности (АСКР) контролируемых судовых объектов и, в частности, судовых энергетических установок (СЭУ).
В связи с этим, целью исследования диссертационной работы является обоснование структуры АСКР с разработкой теоретического (информационного), алгоритмического и программного обеспечения и методов принятия решения на основе моделирования изменения работоспособности СЭУ.
В соответствии с поставленной целью в работе решаются следующие основные задачи:
- формирование математических процедур и алгоритмизация статистического анализа информационной базы данных для получения количественных оценок изменения состояния работоспособности судовых энергетических установок в процессе эксплуатации;
- разработка методического обеспечения для математического описания работоспособности СЭУ с целью статистической классификации и принятии решений о техническом состоянии объектов;
- разработка алгоритмов снижения размерности пространства работоспособности СЭУ и выбора наиболее информативных параметров с определением точностных характеристик процесса классификации;
- организация процедуры имитационного моделирования изменения технического состояния СЭУ с робастным оцениванием процесса и определения остаточного ресурса объектов;
- апробация метода статистических решений применительно к решению задачи классификации работоспособности СЭУ в многомерном пространстве;
Предмет исследования диссертации составляют математические основы и алгоритмы статистической классификации и моделирования изменения работоспособности главного судового двигателя в рамках АСКР.
Методы исследования. Методологической основой и общей теоретической базой диссертационного исследования служат принципы вероятностно-стохастического подхода к анализу изменения технического состояния (нестационарного случайного процесса) на основе имитационного моделирования улучшения работоспособности контролируемого объекта. Используются методы корреляционного и ковариоционного анализа, теории распознавания образов (кластерного анализа), теории моделирования, системного анализа и теории алгоритмов.
Исследования опираются на материалы Департамента морского транспорта и Службы речного флота Министерства транспорта России, специальную математическую и техническую литературу.
Научная новизна полученных в диссертации результатов заключается в следующем.
1.Для многопараметрического объекта (главного дизеля) создано программное обеспечение для имитационного моделирования изменения технического состояния и принятия решения по организации его эксплуатации.
2. Предложим математические основы для формального описания работоспособности СЭУ с целью автоматизированной статистической классификации состояния объектов в процессе эксплуатации.
3. Обобщены методы выбора наиболее информативных параметров СЭУ и снижения размерности параметрического пространства состояния объекта для целей контроля и диагностирования.
4. Предложена структура автоматизированной системы классификации работоспособности объектов с возможностью моделирования и робастного оценивания остаточного ресурса.
5. Проверен метод статистических решений для случая гауссовых аппроксимаций плотностей распределения классов работоспособности с оценкой риска распознавания в условиях нестационарной динамики эксплуатации.
Практическая ценность. В результате исследования доказана целесообразность и эффективность использования теоретических разработок и программных средств для моделирования изменения технического состояния объектов контроля и классификации с целью повышения качества эксплуатации СЭУ.
Полученное математическое обеспечение доведено до методик, алгоритмов и программного обеспечения, используемых в исследовательских разработках по повышению эффективности технического обслуживания судовых механизмов, организации диагностических работ и профилактического обслуживания применительно к СЭУ, проводимого Департаментом морского и Службы речного флотов Министерства транспорта России.
Реализация работы. Разработанные в диссертации методы моделирования изменения работоспособности СЭУ с применением моделей трендов, роба-стного оценивания остаточного ресурса, алгоритмы принятия решения о состоянии объекта на основе вычисления логарифма отношения правдоподобия и риска распознавания апробированы на экспериментальных данных, полученных в процессе эксплуатации главных дизелей на морских судах, и используются в научных исследования и учебном процессе в Государственном университете водных коммуникаций (г. Санкт-Петербург).
Апробация работы. Основные результаты диссертационной работы докладывались и обсуждались на следующих научно-технических конференциях и семинарах:
- на научно-технической конференции, посвященной памяти Э. Циолковского (июнь, 1997 г.), г. Рязань;
- на Международной научно-технической конференции «Транском-97» (октябрь, 1997 г.), г. Санкт-Петербург;
- на научно-методической конференции НМК-98 (апрель, 1998 г.), СПГУВК, г. Санкт-Петербург;
- на кафедральных семинарах «Диагностический контроль и управление на водном транспорте» (1997-1998 г.г.), СПГУВК, г. Санкт-Петербург.
Публикации. Основные положения диссертации изложены в четырех публикациях.
Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, списка используемой литературы и приложений. Содержит 164 страниц машинописного текста, иллюстрирована рисунками на 26 страницах и включает 21 таблицу.
Заключение диссертация на тему "Алгоритмическое обеспечение автоматизированной системы классификации работоспособности судовых устройств"
ОСНОВНЫЕ РЕЗУЛЬТАТЫ
1. Предложена общая схема имитационной модели сложного объекта, а также структура имитационной модели для исследования функционирования системы в реальном масштабе времени. Кроме того, разработана структура системы моделирования на основе аппаратных или специальной базы данных программных средств.
2. Осуществлен статистический анализ процессов изменения работоспособности СЭУ с вычислением математических ожиданий и среднеквадратиче-скйх отклонений параметров объектов; ковариационным, корреляционным анализом параметров с вычислением взаимнокорреляционных коэффициентов и автокорреляционных функций; робастным оцениванием случайных процессов параметров для повышения эффективности статистической классификации.
3. Разработана методика моделирования закономерностей (трендов) процессов изменения работоспособности СЭУ по пяти параметрам с использованием: линейной, квадратичной и экспоненциальной моделей.
При этом предложен алгоритм оценки показателей надежности объектов на основе результатов моделирования с использованием моделей прогнозирования для вычисления вероятности и времени безотказной работы и определения среднего остаточного ресурса.
4. Разработана структура автоматизированной системы классификации работоспособного состояния конкретных объектов СЭУ и разработано программное обеспечение АСКР на языке высокого уровня Turbo Pascal 7.0 фирмы Borland International, составлена обобщенная блок-схема статистического анализа и моделирования процессов изменения технического состояния СЭУ.
5. Проведено экспериментальное исследование алгоритмов классификации на основе моделирования для трех типов случайных процессов с анализом
-179характеристики надежности и остаточного ресурса для конкретного варианта СЭУ.
6. Приведены данные экспериментальной проверки метода статистических решений, использованный для осуществления классификации объектов двух классов с нахождением оптимальных значений порогов распознавания, дающих максимальную вероятность правильного распознавания объектов по степени работоспособности.
ЗАКЛЮЧЕНИЕ
Автоматизация технологических процессов на судах приводит к необходимости автоматизированного решения задач контроля за техническим состоянием и работоспособностью судовых энергетических установок и управления техническим обслуживанием судовых механизмов в виде профилактического осмотра и ремонта. Все эти задачи требуют для своего решения развитую информационную базу данных, достаточно мощное алгоритмическое и программное обеспечение. Это могло бы стать ограничительным фактором для внедрения методов классификации и контроля работоспособности на судах. Однако полученные результаты имитационного моделирования свидетельствуют о том, что введение новых информационных технологий и алгоритмов имитации не усложняют инструментальные судовые технические средства статистической классификации , а насыщают только алгоритмическое и программное обеспечение. Это означает, что судовая энергетическая установка, оборудованная системой централизованного контроля на базе микропроцессорных средств и выполненная на класс автоматизации Регистра (А1 и А2),может быть охвачена контролем работоспособности, диагностической классификацией, принятием решения о состоянии судового объекта только за счет введения соответствующих моделирующих и классифицирующих программ в бортовые вычислительные системы.
Решение этих задач позволит не только осуществлять профилактические работы и ремонт, исходя из фактического состояния СЭУ, определенного с помощью штатных систем контроля и диагностирования, но и «планировать» её работоспособное состояние, т.е. заблаговременно планировать профилактические и ремонтные работы, исходя из заданных режимов функционирования. Возможен также «обратный» вариант использования результатов имитационного моделирования, учитывавший реальные возможности осуществления ремонтных и профилактических работ, планировать какие-либо специальные, щадящие режимы эксплуатации СЭУ.
В результате исследования, в соответствии с поставленной целью, в работе были получены следующие основные результаты:
1. С точки зрения диагностирования, имитационного моделирования и статистической классификации рассмотрен судовой двигатель с системных позиций и выделены несколько групп параметров (входные, структурные, теплотехнические и энергетические), определяющие ею работоспособность. Проанализированы распространенный в отрасли математические модели, используемые для решения задач диагностирования, моделирования и статистической классификации. При этом алгоритм СК технического состояния объектов СЭУ исследован как в детерминированном, так и в стохастическом варианте. Показана целесообразность применения имитационного моделирования для решения задач оценивания и классификации технического состояния контролируемых объектов.
2. Исследованы архитектурные построения автоматизированных систем контроля, диагностирования и статистической классификации агрегатов СЭУ. Выбрана из всех существующих типов комбинированная структура АСКР, в которой датчики непосредственно связаны с агрегатом, а У СО и ЭВМ расположены отдельно. Структурная организация АСКР использует три канала передачи данных (быстропротекающие и медленнопротекающие процессы, а также сигналы синхронизации).
3. Рассмотрен метод статистических решений для многомерного случая при решении задач статистической классификации работоспособности объектов в трех вариантах: а) при известных гауссовских плотностях распределения; б) методом локальной частотной оценки (при неизвестных законах распределения) и в) методом стохастической аппроксимации (для восстановления функции отношения правдоподобия). Показана возможность решения задачи СК с помощью обобщенной модели в виде логарифма отношения правдоподобия.
4. Для решения задачи учета динамики изменений условий эксплуатации предложен метод экстраполяции решающего правила при аппроксимации плотностей распределения гауссовским законом и вычислением отношения правдоподобия.
5. Предложены пути выбора наиболее информативных параметров объектов для статистической классификации их работоспособности с помощью метода «главных компонент» и метода коэффициента различимости. Обоснована возможность использования известных мер Шеннона и Кульбака для описания степени неопределенности сведений, содержащихся в классах для снижения размерности параметрического пространства.
6. Решена задача определения точностных характеристик процедуры статистической классификации в виде оценок вероятности ошибки распознавания состояния объекта («риска»распознавания) с вычислением доверительных интервалов и использованием ошибок первого и второго рода.
7. Предложена общая схема имитационной модели сложного судового объекта, а также структура имитационной модели для исследования функционирования системы в реальном масштабе времени. Кроме того, разработана структура системы моделирования на основе аппаратных или специальной базы данных программных средств. Разработана методика моделирования закономерностей (трендов) процессов изменения работоспособности СЭУ по пяти параметрам с использованием: линейной, квадратичной и экспоненциальной моделей. При этом предложен алгоритм оценки показателей надежности объектов на основе результатов моделирования для вычисления вероятности и времени безотказной работы и определения среднего остаточного ресурса.
8. Осуществлен статистический анализ процессов изменения работоспо
-183собности СЭУ с вычислением - первых начальных и вторых центральных моментов, ковариационным и корреляционным анализом параметров (с вычислением взаимнокорреляционных коэффициентов и автокорреляционных функций), робастным оцениванием случайных процессов параметров. Проведено экспериментальное исследование алгоритмов классификации на основе моделирования для трех типов случайных процессов с анализом характеристики надежности и остаточного ресурса для конкретного варианта СЭУ.
9. Разработана структура автоматизированной системы статистической классификации работоспособного состояния конкретного варианта СЭУ и подготовлено программное обеспечение АСКР на языке высокого уровня Turbo Pascal 7.0, кроме того, составлена обобщенная блок-схема алгоритма статистического анализа и моделирования процессов технического состояния СЭУ. Экспериментально проверен метод статистических решений, использованный для осуществления классификации объектов двух классов с нахождением оптимальных значений порогов распознавания объектов по степени работоспособности.
Библиография Милед Лассад Бен Халед, диссертация по теме Автоматизация и управление технологическими процессами и производствами (по отраслям)
1. Прикладная статистика: Классификация и снижение размерности: Справ. изд./С.А. Айвазян, В.М. Бухтабер, И.С. Енюков, Л.Д. Мешалкин; Под ред. С.А. Айвазяна.-М.: Финансы и статистика, 1989, 607 с.
2. Айвазян С.А., Бежаева З.И., Староверов О.В. Классификация многомерных наблюдений.-М.: Статистика, 1974,240с.
3. Айзерман М.А., Браверман Э.М., Розоноэр Л.И. Метод потенциальных функций в теории обучения машин.-М.: Наука, 1970, 384 с.
4. Мозгалевский A.B., Волынский В.И., Гаскаров Д.В. Техническая диагностика судовой автоматики.-Л.: Судостроение, 1972, 223 с.
5. Енюков И.С. Методы, алгоритмы, программы многомерного статистического анализа (пакет ППСА), (матем. Обеспечения прикладной статистики), -М.: Финансы и статистика, 1986, 232 с.
6. Петров A.C., Пивоваров И.А. Электроизмерительное устройство К-748 для систем контроля и диагностики дизелей.-Л.: Двигателестроение, №1, 1984, с. 37-39.
7. Fukunaga L., Sloymaken F. А gesing theory of recognition fruction in sel-forganisiring systems.-"Transaction of the IEE on Electronic Computer", 1965, v.EC-14, №1.
8. Дорофеюк A.A. Алгоритмы автоматической классификации (об-зор)//Автоматика и телемеханика.-1971, №12, с.78-113.
9. Климов E.H., Попов С.А., Сахаров В.В. Идентификация и диагностика судовых технических систем.-Л.: Судостроение, 1978. 176 с.
10. Варжапетян А.Г. Автоматизация контроля параметров водной среды.-Л.: Судостроение, 1986.
11. Турбович И.Т., Юрков Е.Ф., Гитис В.Г. Детерминированный метод принятия решения при опознавании образов ( метод эталонов). В сб. «Опознавание объектов».- М.: Наука, 1968.
12. Водьд А. Статистические решающие функции. М.: Мир. 1967.
13. Андерсен Т. Введение в многомерный статистический анализ. -М.: Физматгиз, 1963.-420 с.
14. Максимей И.В. Имитационное моделирование на ЭВМ М.: Радио и связь, 1988,232 с.
15. Климов Г.П. и др. Математические модели систем с разделением времени.- Кишинев.: Штиинца, 1983, 110 с.
16. Шлезингер М.И. Взаимосвязь обучения и самообучения в распознавании образов. Кибернетика, АН УССР, №2, 1968.
17. Смит Дж. М. Математическое и цифровое моделирование для инженеров и исследователей. М.: Машиностроение, 1980, 271 с.
18. Шеннон Р. Имитационное моделирование систем. Искусство и наукаМ.: Мир, 1978,417 с.
19. Методы цифрового моделирования и идентификации стационарных случайных процессов в информационно-измерительных системах./ А.Н. Лебедев, Д.Д. Недосекин, Г.А. Стеклова, Е.А. Чернявский Л.: Энергоатомиздат. Ленинградское отд.; 1988, 64 с.
20. Пугачев В.С. Теория случайных функций. -М.: Наука, 1962.
21. Ковалевский В.А. Задачи распознавания образов с точки зрения математической статистики. В сб. «Читающие автоматы и распознавание образов», Киев, 1965.
22. Барабаш Ю.Л., Варский Б.В. и др. Вопросы статистической теории распознавания. -М.: Советское радио, 1967.
23. Мясников Ю.Н., Ровин А.А., Чекалов Ю.Н. Проблемы технического диагностирования судовых энергетических установок. -Л.: Судостроение, 1978, №9, с. 31-35.
24. Возницкий И.В., Грин A.A. Орехов Ю.А. Диагностирование малооборотного дизеля аппаратурой типа К-2 «Аутроника».-М.: в/о «Мортехреклама», серия «Техническая эксплуатация флота». Экспресс информация, вып. 6 (554), 1983, с. 1-7.
25. Возницкий И.В., Грин A.A. Орехов Ю.А. Диагностирование рабочего процесса дизеля по тепло-техническим параметрам.-М.: в/о «мортехинформрек-лама», серия «Техническая эксплуатация флота». Экспресс информация, вып. 18(590), 1984, с. 16-22.
26. Возницкий И.В., Орехов A.A. Пунда A.C. Диагностирование рабочего процесса судового дизеля. Труды ЛВИМУ, серия «Судовые энергетические установки», 1980, с. 18-23.
27. Большаков В.Ф., Фомин Ю.Я., Павленко В.И. Эксплуатация судовых среднеоборотных дизелей.-М.: Транспорт, 1983, с. 61-71.
28. Возницкий И.В., Грин A.A., Орехов Ю.А., Тихомиров Б.В. Диагностирование малооборотного дизеля.-М.: «Морской флот», №3, 1975, с. 46-47.
29. Ханин С.М. Зависимость температуры поршня судового среднеоборотного дизеля от износа поршневых колец. Проектирование и техническая эксплуатация судовых энергетических установок. Гприрыбфлот.-JI.: Транспорт, 1975. С. 136-143.
30. Шишкин В.А. Анализ неисправностей и предотвращение повреждений судовых дизелей. М.: Транспорт, 1986, с. 154-179.
31. Карпов Л.Н. Надежность и качество судовых дизелей.-Л.: Колос, 1977.
32. Клятнов Ю.П. Некоторые особенности процесса изнашивания деталей цилиндро-поршневой группы при переменном погружении двигателей. Гипро-рыбфлот. Проектирование и техническая эксплуатация судовых энергетических установок. -Л.: Транспорт, 1975, с. 72-80.
33. Кузнецов П.И. и др. Сравнительная оценка некоторых методов диагностики. Изв. АН СССР. Серия «Техническая кибернетика», №5, 1979, с. 90-94.
34. Кульбак С. Теория информации истатистика. -М.: Наука, 1967,408 с.
35. Дунин-Барковский И.В., Смирнов Н.В. Теория вероятностей и математическая статистика в технике (общая часть).-М.: Наука, 1962.
36. Логинов В.И. Вероятностные оценки качества решающего правила в задачах распознавания образов. Изв. АН СССР, Техническая кибернетика, №6, 1968.
37. Кулешов И.Н. Условие выбора линейных эталонных характеристик для диагностирования судового дизеля. ОВИМУ, Одесса, 1985, с. 4. Деп.8, в/о «Мортехинформреклама», ММФ, 5 марта 1985, №419, пр. 65.
38. Лбов Г.С. О представительности выборки при выборе эффективной системы признаков. Сб. «Вычислительные системы», ин-т математики СО АН СССР, вып. 22,1966.
39. Аведьян Э.Д., Цинский Я.З. Обобщенный алгоритм Качмажа. М.: Автоматика и телемеханика, 1979, №1, с. 22-78.
40. Лютов И.Л. Методика нормирования пределно допустимых износов деталей цилиндро-поршневой группы судовых дизелей. Вопросы надежности и износоустойчивости дизелей. Гипрорыбфлот.-Л.: Транспорт, 1973, с.33-48.
41. Харач Г.М. Теоретические основы нормирования и оценки долговечности деталей машин по износу. Вопросы надежности и износоустойчивости дизелей. Гипрорыбфлот.-Л.: Транспорт, 1973, с.5-15.
42. Прусаков A.B. Параметры диагностирования технического состояния судового автоматизированного генератора.-Л.: ЛВИМУ, 1987, с.7. Деп. В/о
43. Мортехинформреклама». 23 марта 85 №453, МФ-85.
44. Хьюбер П. Робастность в технике.-М.: Мир, 1984.-304 с.
45. Дружинин Г.В. Надежность систем автоматики.-М.: Энергия, 1967.
46. Садыков Г.С. показатели остаточной долговечности и их оценки в задачах продления сроков эксплуатации технических объектов. -М.: Знание, 1968.
47. Баранов А.П. Автоматизированное управление судовыми электроэнергетическими установками.-М.: Транспорт, 1981.-255 с.
48. Кузнецов С.Е., Филев B.C. Основы технической эксплуатации судового электрооборудования и автоматики: Учебник.-Санкт Петербург: Судостроение, 1995, 301 с.
49. Висленов Ю.С., Егоров Г.В. Ремонт судового электрооборудования: Справ.-М.: Транспорт, 1992.-200с.
50. Таран В.П. Диагностирование электрооборудования.- Киев:Техника, 1983.-200 с.
51. Климов E.H. Основы технической диагностики судовых энергетических установок.-М.: Транспорт, 1980.
52. Киреев Ю.Н. и др. Электрооборудование судов.-Л.Судостроение,1986.
53. Кулибанов Ю.М., Гаскаров В.Д. Интеллектуализация учреждающих систем контроля. Сб. тез. докл. Всероссийской научно-методической конференции «Высшее образование в современных условиях».-Санкт Петербург.: СПГУВК, 1996, с. 130-132.
54. Колесников Д.Н. Моделирование случайных факторов в автоматике и вычислительной технике.-Санкт Петербург:СГТГТУ, 1994.
55. Юсупов P.M. Элементы теории и идентификации технических объектов. Мин-во обороны СССР, 1964.-202 с.
56. Попов A.C., Кулибанов Ю.М. и др. Автоматизация производственныхпроцессов на водном транспорте. -М.: Транспорт, 1983.
57. Кутузов О.И., Татарникова Т.М., Хаддат М. Концепция аналитико-статистического моделирования. Санкт - Петербург:Изв. ГЭТУ, вып. 486, 1995. С. 11-16.
58. Давыдов П.С. Техническая диагностика радиоэлектронных устройств и систем.-М.: Радио и связь, 1988.-256 с.
59. Гуляев В.А., Иванов В.М. Диагностическое обеспечение энергетического оборудования.-Киев: ИЭД, 1982.-66с.
60. Байда Н.П. и др. Микропроцессорные системы поэлементного диагностирования РЭА.-М.: Радио и вязь, 1987,- 256 с.
61. Грешилов А.А. Анализ и синтез стохастических систем.-М.: Радио и связь, 1990, 320 с.
62. Ладенко И.С. Имитационные системы (методология исследования и проектирования).- Новосибирск:Наука, 1981.-300 с.
63. Варжапетян А.Г., Коршунов Г.И. Обеспечение качества технических средств автоматизации.-Л.: Машиностроение, 1981.-168 с.
64. Громов А.Р., Шкабардня А.М. Техническая эксплуатация средства автоматизации на судах.-М:Речной флот, 1990, №9.
65. Кузнецов П.И., Пчелинцев Л.А. Последовательное обучение систем диагностики. М.: Энергоатомиздат, 1987.-112 с.
66. Левин М.И., Плотина А.Г., Петров А.С. Состояние и перспективы технической диагностики дизелей. В кн.: Двигатели внутреннего сгорания.-М.:1981.-31 с.
67. Горелик А.Л., Скрипкин В.А. Методы распознавания. М.: Высшая школа, 1984.-215 с.
68. Левин Б.Р. Теоретические основы статистической радиотехники (3-е изд.) -М.: радио и связь, 1989.-656 с.
69. Петрович М.Л., Давидович М.И. Статистическое оценивание и проверка гипотез на ЭВМ.-М.:Финансы и статистика, 1989.-315 с.
70. Ли Т.Г., Адаме, Гейнз У.М. Управление процессами с помощью ЭВМ. Моделирование и оптимизация.-М.: Сов. радио, 1972.-312 с.
71. Советов Б.Я., Яковлев С.А. Моделирование систем.-М.:Высшая школа, 1985.-251 с.
72. Францев И.Р. Моделирование процессов технического обслуживания судовых технических средств с использованием структурных матриц / сб. «Управление транспортными системами».- Санкт Петербург: СПГУВК, 1997. —с. 83-90.
73. Попов С.А., Трифонов В.Н., Францев Р.Э. Информационная компьютерная технология, как средство реализации системных принципов/сб. научн. тр. «Информационные технологии на транспорте».- Санкт Петербург.: СПГУВК, 1996.-е. 112-119.
74. Мышкис А.Д. Элементы теории математических моделей.-М.: Наука,1994.
75. Коган М.М. прикладная теория информации.-М.: Радио и связь, 1981.216 с.
76. Айзерман М.А., Малишевский А.В. некоторые аспекты теории выбора лучших вариантов // Авоматика и телемеханика, 1981, №2, с.65-83.
77. Цыпнин Я.З. Информационная теория идентификации.-М.: Наука,1995.-336 с.
78. Эддоус М., Стэнсфидц Р. Методы принятия решения /Пер. с англ.-М.: Аудит, ЮНИТИ, 1997.-590 с.
79. Вапник В.Н. Восстановление зависимостей по эмпирическим данным.-М.: Наука, 1979.-447 с.
80. Классификация и кластер /Под ред. Дж. Вэн Райзина.-М.:Мир, 1980.330 с.
81. Миркин Б.Г. анализ качественных признаков и структур.-М.: Статистика, 1980.-320 с.
82. Текст наиболее важных процедур и функций, Function МО ( klv : integer; ArEnter: array of real ):real; Vari: integer; sum: real;begin1. Sum:=0;
83. For i:=0 to klv-1 do begin1. Sum:=Sum+ArEnter1.; end;1. MO:=Sum/klv;
84. Function Sigma (klv : integer; ArEnter : array of real ):real; vari: integer; sgm : real; Beginsgm:=0;for i:=0 to klv-1 do begin
85. Sgm:=sgm+sqr( ArEnter1.-MO(kl v, ArEnter)) end;
86. Sigma:=sqrt<l/ (klv-1) *-Sgm);procedure Load; vari, IOvar, RCount: Integer; s: String; MainFile: File;begin
87. RCount := 0; Assign ( MainFile, 'Enter.dat'): {$1-}
88. Reset (MainFile, 1); {$1+}1.var := lOResult; if IOvar = 0 thenbegin
89. BlockRead (MainFile, Ar Start, SizeOf(Ar Start)); BloekRead (MainFile, RCount, SizeOf(RCount)); end else beginwriteln('I/0 error'); exit; end;
90. Close ( MainFile ); Count := RCount; Assign (£'Enterl.dat' );1. SI-}1. Reset (f); {$1+}for i:=0 to RCount 1 - do begin str(ArStait1.:0:3,s); readln(£ArStart i.); { if (i=20) or (i=39) then begin readln; ClrScr; end;} end;1. Close ( f);end;
91. Procedure MOSig( MasZn : array of real; Var Mo t, Sig t : array of real); Var i: integer; Begin1. For i 0 to 19 do Begin
92. Mot1.:=MasZni 4- Count 20.;
93. Sig t 1. :=Sigma ( Count {i + Count 20}., MasZn );end; end;procedure Robast( C : real; var Ar Exit: array of real); var i: integer; MatOg, SKOtkl, XC : real; s: string;begin
94. MatOg := M0( Count, ArStart); SKOtkl Sigma( Count, ArStart); for i := 0 to Count -1 do begin
95. XC := ArStart1. MatOg; if Abs( XC) <= C*SKOtkl then begin
96. ArExit1. := Ar Startfi.; end;if XC < (-1 )*C*SKOtkl then begin
97. ArExit1. MatOg C*SKOtkl; end;if XC > C*SKOtkl then begin
98. ArJExitfi. := MatOg.+ C*SKOtkl; end; end; end;procedure CentrZn ( Ar Enter : array of real; var Ar Exit: array of real); varj : integer; begin
99. For jiK) to Count -1 do begin
100. ArExitj. :=■ ArEnter[j] MO(Count, ArEnter);end; end;
101. Function SigmaForTr (klv: integer; Ar Enter : array of real ):real; var i : integer; sgm: real; Beginsgm:=0;for i:=0 to klv-1 do begin
102. Sgm:=sgm+sqr(Ar Enter1.) ; end;
103. SigmaForTr:=sqrt(I/(klv-l )*Sgm); end;-i msprocedure LoadFLapl; var i: Integer;1. MyFile : File; begin
104. Assign ( MyFile, flaplasa.daf ); {$!-}
105. Reset ( MyFile, 1 ); {$!+}if lOResult < > Othen begin writein (' Error !' ); exit; end else begin
106. BlockRead (MyFile, ArgZnFlapl, SizeOf( ArgZnFlapl)); end;1. Close (MyFile); end;procedure Trend ( ArEnter: Array of real); var xk: real; bt: Double; j : integer;
107. ArForTrend : Array 0.39. of real; beginxk := MO (Count, ArEnter) (MO ( Count, ArJEnter) * pr ); bt := ( MO ( Count, Ar Enter) - xk) / Count; {(Count — 1) *************************
108. Procedure Trend Sko (ArEnter : array of real) ; Varxn, xk, bt, xkv, xexp : Real; i: integer; Beginxn Sigma ( Count, Ar Enter );xk := Sigma ( Count, Ar Enter ) * K Sig;bt:= (xk-xn)/ (Count- 1 );
109. Writeln(' sko nxn:0:3,' sko kxk:0:3);}1. For i := 0 to 19 do1. Begin
110. SkoLt1. := xn + bt * (i + 20); if Crob o 2 then begin
111. SkoKv1. -0.000481 *sqr(i+21) + 0.0383664"(i+21)+0.3251147; SkoExpfi. := 0.0005715*sqr(i+21) 0. 0047915*(i+21 )+0.36722 ; end;ifCrob = 2then begin
112. SkoKvfi. := -0.0003697*sqr(i+21) + 0.0351322*(i+21 )+0.3552375; SkoEspfi] := 0.0006829*sqr(i+21) 0.0080257*(i+21 )+0.3973428 ; end;
113. Writein (i,' SkoLt1.:0:3,' xkv = SkoKvi.:0:3,xexp =\ SkoExp1.:0:3);} End; { readin (i); CIrScr,}end;
114. Function XFlapl( Alpha, Mo, Sko : real ) : real; begin
115. MOP:= ((20)*W 39AAr19. + 19*Ar[39])/(ar [39] - ar[19]); End;
116. Function SKOP ( ArSKO, ArMO : array of real): real;var prom : real;1. Begin
117. Prom := (20)*(0.5*(Sqr(ArSKO19.)-Sqr( ArSKO[0]))*ArMO[ 19]+19 ASqr(ArSKO[0] )-l*Sqr( ArSKO[ 19])); SKOP := SQRT(ABS(Prom))/(ArMO[39] ArMO[19]); End; begin
118. Alpha := MO ( Count, ArJEnter) MO ( Count, ArJEnter ) * 0.2; ^*************:m^*jm:********.^q — yar^ gj^o = Constantif Reg = 1 then beginfor j := 0 to' 19 do Begin
119. MO = Constant, SKO = Constant }
120. OstVjj. := 0.5 + ArgZnFlapl1.Zn{Prom}; str( C>stVj]:0:4, sv) ; GotoXy(15 ,J+1) ; Write (j, ' ',sv) ; end;if s3=slthen begin
121. OstVLtO. 0.5 + ArgZnFlaplfi].Zn; str(OstVLtj] :0:4, sv); GotoXy(15,J+l) ; Write ( sv ) ; end;if s4=sl then begin
122. OstVKvfj. 0.5 + ArgZnFlapl1.Zn; str(OstVKv|j]:0:4, sv) ; GotoXy(30,J+l) ; Write ( sv ); end;if s5=sl then begin
123. OstVLtj. 0.5 + ArgZnFlaplfi].Zn; str(OstVLt[j]:0:4, sv); GotoXy(l,J+l) ;1. Write a' ',sv);end;if s4=sl then begin
124. OstVKvj. := 0.5 + ArgZnFlaplfi].Zn; str(OstVKv[j]:0:4, sv); GotoXy(15,J+l); Write ( sv ); end;if s5=sl then begin
125. OstVExpO. 0.5 + ArgZnFlapl 1.Zn; str(OstVExpj]:0:4, sv); GotoXy(30,J+l); Write ( sv ); end; End; end; end;j^jo = Var SKO — Var ************************if Reg = 3 then Begin1. Fori :=0to 19do Begin
126. OstVLttj. := 0.5 + ArgZnFlapl1.Zn; str(OstVLtj] :0:4, sv); GotoXy(l,J+l);1. Write(j,' ',sv);end;if s4=sl then begin
127. OstVKvj. := 0.5 + ArgZnFl.apl1.Zn; str(OstVKv[j] :0:4, sv); GotoXy(15,J+l);1. Write ( sv); end;if s5=sl then begin
128. OstVExpj. := 0.5 + ArgZnFlapl1.Zn; str(OstVExpO]:0:4, sv); GotoXy(30,J+l); Write ( sv ) ;end;if s6=sl then begin
129. PLtj. := 0.5 + ArgZnFlapl 1.Zn; str(PLt[j]:0:4, sv) ; GotoXy(45,J+l) ; Write ( sv ) ; end;if s7=sl then begin
130. PKvj. 0.5 + ArgZnFlapl 1.Zn; str(PKv[j]:0:4, sv) ; GotoXy(53,J+l) ; Write (sv); end;if sS^sl then begin
-
Похожие работы
- Диагностирование автоматизированных судовых электроэнергетических систем в условиях эксплуатации
- Вибродиагностика судовых дизелей по крутильным колебаниям валопровода
- Математическое и алгоритмическое обеспечение систем диагностирования судовых электрических средств автоматизации
- Методы и алгоритмы диагностирования и параметрической оптимизации судовых электрических средств автоматизации
- Методология информационного обеспечения проектирования систем автоматизированного управления судовыми энергетическими процессами на основе объектно-ориентированного подхода
-
- Системный анализ, управление и обработка информации (по отраслям)
- Теория систем, теория автоматического регулирования и управления, системный анализ
- Элементы и устройства вычислительной техники и систем управления
- Автоматизация и управление технологическими процессами и производствами (по отраслям)
- Автоматизация технологических процессов и производств (в том числе по отраслям)
- Управление в биологических и медицинских системах (включая применения вычислительной техники)
- Управление в социальных и экономических системах
- Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей
- Системы автоматизации проектирования (по отраслям)
- Телекоммуникационные системы и компьютерные сети
- Системы обработки информации и управления
- Вычислительные машины и системы
- Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях (по отраслям наук)
- Теоретические основы информатики
- Математическое моделирование, численные методы и комплексы программ
- Методы и системы защиты информации, информационная безопасность