автореферат диссертации по безопасности жизнедеятельности человека, 05.26.03, диссертация на тему:Повышение эффективности эксплуатации двигателей основных пожарных автомобилей в условиях отрицательных температур

кандидата технических наук
Савин, Михаил Александрович
город
Москва
год
2001
специальность ВАК РФ
05.26.03
цена
450 рублей
Диссертация по безопасности жизнедеятельности человека на тему «Повышение эффективности эксплуатации двигателей основных пожарных автомобилей в условиях отрицательных температур»

Оглавление автор диссертации — кандидата технических наук Савин, Михаил Александрович

Условные обозначения и сокращения.

ВВЕДЕНИЕ.

ГЛАВА 1. СОСТОЯНИЕ ВОПРОСА И ЗАДАЧИ ИССЛЕДОВАНИЯ.

1Л. Сокращение времени прибытия пожарных расчетов -важная социально-экономическая проблема.

1.2. Дорожно-климатические особенности Уральского, Сибирского и Дальневосточного Федеральных округов.

1.2.1. Дифференциация регионов России по показателям обстановки с пожарами с учетом климатических факторов.

1.2.2. Природно-транспортное районирование зоны Севера и Северо-востока страны.

1.2.3. Дорожные условия Северных и Северо-восточных регионов.

1.3. Влияние климатических условий и режимов эксплуатации на оперативно-технические показатели пожарных автомобилей.

1.3.1. Режимы эксплуатации пожарных автомобилей.

1.3.2. Статистические характеристики режимов работы пожарных автомобилей.

1.3.3. Влияние температурного режима системы жидкостного охлаждения на мощность и экономичность двигателя.

1.3.4. Износы двигателей пожарных автомобилей.

1.3.5. Экологические аспекты.

Введение 2001 год, диссертация по безопасности жизнедеятельности человека, Савин, Михаил Александрович

Пожары - это мощный фактор, негативно влияющий на социально-экономическое состояние страны. Ежегодно в России происходит более 264 тыс. пожаров, в результате которых гибнет более 13,5 тыс. человек. Полные потери от пожаров, составляют более 22 млрд. руб., т.е. почти 5% от бюджета 1999 года. Полные потери от пожаров в стране почти в 10 раз превышают сумму средств (2,4 млрд. руб.), выделяемых отдельной строкой в бюджете для Государственной противопожарной службы МВД России [1]. При общих положительных данных относительные показатели случаев гибели людей на пожарах в России остаются в 5. 12 раз выше, чем в других странах. Таким образом, степень негативного влияния их последствий на состояние социальной, техногенной и экологической безопасности недопустимо высока.

За год подразделениями ГПС МВД России совершаются более 1,8 млн. выездов. В условиях заметного роста интенсивности дорожного движения средняя скорость движения ПА на пожар постоянно снижается, увеличивается время подачи первого ствола, что объективно приводит к возрастанию количества жертв и материальных убытков. Так среднее время следования ПА по вызову выросло в 1992. 1996 гг. в городах с 7,66 до 8,08 мин, а на селе с 15,41 до 18,9 мин [2]. В 1999 году среднее время прибытия первого пожарного расчета по вызову составило немногим более 11 мин. Среднее время ликвидации - порядка 35 мин. [3].

Оперативно-техническая деятельность службы отличается многообразием операций различной энергоемкости, которые выполняются с помощью основных, специальных и вспомогательных ПА [4] при изменяющихся воздействиях внешней среды.

В 1999 году в подразделениях ГПС МВД России эксплуатировалось 17302 основных ПА, при штатной положенное™ 23294 (т.е. оснащенность составила лишь 74%) [3]. Из основных ПА 39,37% находились на вооружении УГПС холодных климатических районов России [5], в т.ч. в оперативных подразделениях ГПС Уральского, Сибирского и Дальневосточного Федеральных округов - 35,45%. Кроме того, 7928 единицы техники (34,03%) отработали свой срок и, тем не менее, активно эксплуатируются.

В обширных регионах Уральского, Сибирского и Дальневосточного Федеральных округов, где сосредоточен экспортный и значительная часть оборонного потенциала государства в частности, в осенне-зимний период, характеризующийся низкими температурами окружающего воздуха и различной степенью загрузки силового агрегата ПА, производится более 56% (без учета ложных вызовов) годового объема работ данных оперативных подразделений ГПС по обслуживанию защищаемых объектов и территорий [6].

ПА, как известно, приспособлены для эксплуатации только в интервале температур +35° до - 35°С. Зимой из-за пониженного теплового состояния ДВС и агрегатов трансмиссии снижается оперативно-технические показатели ПА (возрастает время следования к месту вызова), топливная экономичность и ресурс. Поэтому особую актуальность приобретает проблема повышения эффективности использования имеющегося достаточно изношенного парка ПА, решение которой невозможно без совершенствования и поддержания в работоспособном состоянии двигателей ПА, при изменяющихся в широком диапазоне внешних воздействиях.

Существенная зависимость выходных показателей ДВС от теплового состояния предопределяет повышенные требования к температурам рабочих сред основных функциональных систем. В условиях отрицательных температур, из-за пониженного теплового режима, становится весьма проблематичным не только реализация потенциальных возможностей, но даже сохранение работоспособности ДВС. Так, в условиях холодного климата появляются трудности с созданием и последующим поддержанием, при работе на привод спецагрегата, оптимального теплового режима работы двигателей ПА. Это особенно относится к дизелям. Низкая температура в СО способствует образованию смолистых и окисляющих веществ. При этом резко увеличивается отложение нагара и ускоряется износ поршней, поршневых колец и стенок цилиндров. Эксплуатация ДВС при температуре ОЖ до +55°С приводит к увеличению износов в 4 раза по сравнению с износом при номинальном тепловом режиме, до +40°С - в 12 раз, а при +30°С -в 20раз [7].

Поэтому разработка комплекса технических решений и мероприятий по адаптации двигателей ПА к эксплуатации в условиях отрицательных температур имеет важное научно-практическое, и, в конечном счете, социально-экономическое значение. Результаты данных исследований могут быть использованы при создании ДВС для АТС "северного исполнения", а также для приспособления двигателей ЗИЛ и дизелей ЯМЗ к работе в условиях низких температур окружающего воздуха.

Подобные проблемы зимней эксплуатации справедливы и для механических транспортных средств, состоящих на вооружении других оперативных и специальных служб, пассажирского и грузового автотранспорта, сельского и лесного хозяйства, строительной, дорожной, коммунальной служб и т.д.

Из вышеизложенного следует, что наиболее напряженно используются ПА в зимних условиях. Поэтому до настоящего времени актуальна проблема обеспечения эффективности и надежности эксплуатации двигателей ПА при тушении пожаров в условиях низких температур.

На основании изложенного целью данной работы является повышение эффективности эксплуатации ДВС основных ПА в условиях отрицательных температур окружающего воздуха, т.е. уменьшению количества жертв и материальных убытков от пожаров на основе сокращения времени прибытия ПА к месту вызова, которое может быть достигнуто, прежде всего, максимальным сохранением тепла в агрегатах и механизмах ПА, форсированием послепускового прогрева ДВС, наряду с улучшением их топливно-экономических и экологических показателей, максимальным сохранением остаточного моторесурса.

Реализация цели достигалась различными методами. Был проведен статистический анализ пожаров в России в целом, а также по Свердловской области и по административно-территориальным ATE Сибири и Дальнего Востока помесячно и по сезонам за три последних года. Для сокращения времени прибытия ПА к месту вызова, на основе ускорения послепускового прогрева ДВС, предложены следующие технические решения: модульный (т.е. имеющий помимо основного также дополнительный экран - жалюзи / шторку - на фронте со стороны вентилятора) радиатор, а также комбинированный способ питания ДВС. Экспериментально проверена их эффективность. Для реализации этой части работы были созданы на базе пожарных автоцистерн АЦ-40(130) модель 63Б (базовое шасси ЗИЛ-130) и АЦП-6/3-40(5557) (базовое шасси УРАЛ-5557) специальные испытательные лаборатории. С их использованием были проведены экспериментальные исследования работоспособности предложенных систем охлаждения и питания двигателей ПА и обоснованы мероприятия по улучшению адаптивности карбюраторных и дизельных ДВС для эксплуатации при отрицательных температурах окружающего воздуха.

Кроме того, прошло экспериментальную проверку на эффективность техническое устройство, позволяющего замедлить темп остывания силового агрегата ПА после его останова.

Новизна полученных в работе результатов характеризуется следующим.

1. Аналитически изучена возможность ускорения послепускового прогрева ДВС за счет реструктуризации внешнего теплового баланса (например: уменьшением теплоотвода радиатором, а также внешними поверхностями собственно ДВС). Сокращение такого неблагоприятного, в смысле тепловой и механической напряженности деталей, увеличения износов, ухудшения экономических и экологических показателей, периода в работе двигателя возможно посредством применения дополнительного экрана радиатора с фронта, обращенного к вентилятору и повышением нагрузки ДВС;

2. В диапазоне температур 0.- 30°С установлена степень приспособленности для эксплуатации в условиях отрицательных температур силовых агрегатов ПА наиболее распространенных в подразделениях ГПС и исследована эффективность технических решений, позволяющих осуществить форсирование послепускового прогрева двигателей ПА для сокращения времени прибытия к месту вызова, а также замедление их остывания после останова.

3. Выведены рациональные формулы для определения режима и темпов охлаждения радиатора (или любого другого элемента) ДВС в условиях естественной конвекции. Последующая экспериментальная проверка их адекватности позволили утверждать, что процесс охлаждения в условиях естественной конвекции не является регулярным и темп охлаждения зависит от времени и текущей температуры.

Практическая ценность полученных результатов заключается в следующем.

1. Использование результатов исследований в практике оперативных подразделений ГПС позволит решить проблему повышения эффективности эксплуатации двигателей ПА при отрицательных температурах путем сокращения времени их прибытия к месту вызова: при радиусе выезда 6 км время прибытия пожарных автоцистерн уменьшается соответственно на 2,0 минуты АЦ-40(130)-63Б и на 1,8 минуты АЦП-6/3-40(5557), которое достигнуто форсированием послепускового прогрева основных функциональных систем ДВС до оптимальных температур. Апробированный способ питания карбюраторного двигателя ЗИЛ-130 топливно-масляной смесью при прогреве также позволяет уменьшить время следования отделения на АЦ-40(130)-63Б на 0,7 минуты.

2. Обоснованные, экспериментально проверенные на адекватность, математические модели позволяют рассчитывать интенсивность охлаждения ДВС и их отдельных элементов на спокойном воздухе при различных значениях его температуры.

3. Технические решения и рекомендации по улучшению адаптации двигателей ПА к изменяющимся воздействиям внешней среды предложены для использования оперативным подразделениям ГПС, получили практическое применение в учебном процессе, а также могут быть использованы заводами-изготовителями.

Основные результаты, выносимые на защиту:

1. Направления обеспечения эффективной эксплуатации двигателей основных пожарных автомобилей в условиях отрицательных температур.

2. Исследований степени адаптивности различных силовых агрегатов к эксплуатации в осенне-зимних условиях на всех режимах.

3. Исследований эффективности технических решений, позволяющих осуществить форсирование послепускового прогрева двигателей пожарных автомобилей в ходе следования к месту вызова, а также замедлению их остывания после останова и проверки адекватности полученных формул.

4. Исследований по экономической и экологической целесообразности оптимизации теплового состояния двигателей пожарных автомобилей в осенне-зимний период эксплуатации.

Работа выполнена на кафедре «Тракторы и автомобили» Уральской Государственной сельскохозяйственной академии.

1. СОСТОЯНИЕ ВОПРОСА И ЗАДАЧИ ИССЛЕДОВАНИЯ

1.1. Сокращение времени прибытия пожарных расчетов -важная социально-экономическая проблема

Несмотря на тенденцию сокращения числа пожаров и случаев гибели людей, наблюдаемую в последние годы эти показатели остаются высокими: за десять лет количество пожаров возросло более чем в два раза, ущерб от них - почти в четыре раза [8]. Этот ущерб определен величиной только прямых фактических потерь от воздействия опасных факторов пожара - пламени, повышенных температур, токсичных продуктов горения и термического разложения, дыма, огнетушащих веществ и т.д. на основные фонды и имущество юридических и физических лиц, если эти потери находятся в прямой причинной связи с пожарами.

Так называемый косвенный ущерб от пожаров, связанный с недовыпуском продукции и снижением прибыли за время вынужденного простоя производства, нарушением хозяйственных и технологических связей, оплаты штрафов за недопоставку продукции, затрат на демонтажные работы и работы по расчистке и уборке строительных конструкций, капитальных вложений на восстановление основных фондов, затрат на ликвидацию пожара, расходов, связанных с гибелью и травмированием людей и т.п. получается значительно больше. В общей структуре потерь от пожаров около 28% приходится на стоимость уничтоженных и поврежденных огнем и дымом материальных ценностей, 50% - на потери от вынужденных простоев производства, 11,4% - на стоимость восстановительных мероприятий на объектах, 10,6% - на экономические потери от гибели и травмирования людей [8].

Ограничить воздействие опасных факторов пожара на людей и материальные ценности объективно допустимыми пределами удается не всегда из-за недостаточно высокого уровня развития пожарной техники. В этой связи повышение эффективности пожарной техники - актуальная задача, т.к. ее создание и использование является важным средством обеспечения пожарной безопасности, снижения экономических потерь от пожаров, защиты жизни и здоровья людей.

Разработка принципиально новой пожарной техники, а также ее обновление и модернизация на основе улучшения целевых параметров рабочих органов (скорости следования к месту вызова, сокращением боевого развертывания, надежности, производительности, долговечности, ресурса и т.д.) связаны с определением социально-экономической эффективности, отражающей степень превышения результатов использования пожарной техники над суммарными затратами.

Таким образом, категорию "эффективность" в данном случае следует рассматривать как количественную оценку заданных целевых характеристик осуществляемых мероприятий по обеспечению пожарной безопасности страны. Целевыми характеристиками могут по ГОСТ 12.1.004-91 [9], в частности, служить время свободного горения, критическая продолжительность пожара, время полного боевого развертывания, огнетушащая способность, время локализации, время ликвидации и другие.

Весьма важным моментом, например, является сокращение времени прибытия к месту вызова. Специалисты считают, что в случае задержки прибытия оперативных расчетов к месту пожара, резко возрастают размеры социально-экономических последствий от огня. По оценке английских специалистов [8], например, потеря каждой минуты при следовании на пожар в середине 70-х годов приводила к гибели двух человек на каждые 100 пожаров и дополнительной потере 60.70 фунтов стерлингов в производственных и других нежилых помещениях. Аналогичные оценки имеются в американских работах. Исследования также показывают, что потери от пожара в течение первых 10 мин. составляют 1500.2000 ф. ст. в минуту, затем растут в ускоряющемся темпе. Приводятся также данные о влиянии внедренной в округе Вест-Мидленс (Великобритания) современной компьютерной системы (стоимостью 5 млн. ф. ст.) на сокращение времени прибытия к месту вызова пожарных подразделений. Отмечено, в частности, что в 60% пожаров время прибытия подразделений сократилось на 2 мин., что дало уменьшение годовых потерь на 10 млн.ф.ст. [10]. Это означает, что чем быстрее прибывает первый оперативный расчет (и все остальные) к месту вызова, чем совершеннее дислокация пожарных подразделений, тем выше эффективность их деятельности.

В связи с тем, что в отечественной статистике никак не отражается связь между своевременностью прибытия оперативных расчетов и размерами потерь от пожаров [11], представляется интересным оценить в первом приближении каждую минуту официально зарегистрированного пожара в 1999 году с точки зрения наносимого экономике полного ущерба. При этом сделаем одно допущение. Ввиду малозначимости, в сравнении с продолжительностью тушения среднестатистического пожара, временем боевого развертывания пренебрегаем [12]. Таким образом, время свободного горения включает время сообщения о пожаре (в среднем по стране 9 мин), а также среднее время прибытия первого пожарного подразделения (11 мин) и в масштабе страны составляет порядка 19 мин. Среднее же время ликвидации - 35 мин [3] (для Свердловской области соответственно 11 и 57 мин). Принимаем время развития среднестатистического пожара - 55 мин. Таким образом, совокупное время всех пожаров происшедших в стране в 1999 году суммарно составило порядка

55 ■ 264 ООО = 14 520 ООО мин.

Отсюда, за одну минуту пожаров полные материальные потери составили

22 ООО ООО ООО руб. / 14 520 ООО мин. = 1515,152 руб./мин., а гибель - 13500 / 14 520 000 = 0,0009297 чел./мин.

Или на каждые 100 пожаров приходится следующее количество жертв:

0,0009297 • 55) • 100 = 5,11 чел.

Таким образом, одна минута среднестатистического пожара в 1999 году обошлась российскому обществу более чем в 1515 руб. полного ущерба (а одна секунда - 25,25 руб.) и гибелью 0,0009297 чел. или более 5,11 жертв на каждые 100 пожаров.

В то же время известно, что подавляющая доля погибших граждан от общего числа жертв, приходится на первый период пожара в результате воздействия на них не повышенных температур, а, прежде всего, таких опасных факторов, как дым и токсичные продукты горения и термического разложения (так, в Свердловской области в 1996.99 годах в среднем 83,2% жертв имели место еще до прибытия оперативных подразделений ГПС - табл. 1.1). Экстраполируя ситуацию с погибшими в Свердловской области на Россию в целом можно полагать, что в 1999 году на пожарах еще до прибытия оперативных расчетов было 11232 случая летальных исходов. Таким образом, в масштабе страны снижение среднего времени прибытия пожарных подразделений всего на 1 минуту могло бы спасти в 1999 году 1404 жизни (а на 1 секунду - соответственно 23,4 человека) или в

Таблица 1.1

Состояние оперативной обстановки по пожарам 1 группы (УГПС ГУВД Свердловской области)

Кол-во пожаров Гибель людей / %

Всего: До прибытия пожарной охраны В ходе ликвидации пожара В течение до 7 суток после пожара После 7 суток

1999г

7821 441 /100 381 /86,4 2/0,45 36/8,2 13/2,9

1998г

8089 454/100 372/81,9 11 / 2,4 39/8,6 26/5,7

1997г

8799 473 / 100 381 /80,5 19/4,0 56/ 11,8 14/2,9

1996г

9975 479/ 100 402/83,9 19/4,0 43 / 9,0 13/2,7

За период 1996. 1999 г.г. по гарнизону в среднем:

8671,25 461,75/ 100 384 /83,2 12,75/2,8 43,5/ 9,4 16,5/3,6 пересчете на 100 пожаров - 4,25 человек. Последнее в 2,1 раза превышает соответствующий британский показатель (в Свердловской области эти цифры соответственно 35 и 4,68).

Следовательно, эффективное решение такой оперативно-тактической задачи как увеличение средней скорости следования ПА, сокращение времени прибытия первых пожарных расчетов к месту вызова (в частности посредством форсирования послепускового прогрева двигателей) из сугубо инженерной, переходит в социально-экономическую плоскость, так как объективно приводит, прежде всего, к снижению трагических последствий, а также материальных убытков от пожаров.

Заключение диссертация на тему "Повышение эффективности эксплуатации двигателей основных пожарных автомобилей в условиях отрицательных температур"

4.3. Выводы и рекомендации

1. Анализ исследований показал, что зимой, в связи с изменением теплофизических свойств воздуха, увеличивается период послепускового прогрева ДВС, резко снижаются его мощностные качества, уменьшается средняя скорость движения ПА, что объективно приводит к увеличению количества жертв и материальных потерь от пожаров.

В результате проведенного исследования предложено решение актуальной научно-практической задачи повышения эффективности эксплуатации двигателей ПА при отрицательных температурах окружающего воздуха, которое может быть достигнуто посредством интенсификации послепускового прогрева ДВС для сокращения времени прибытия ПА к месту вызова, что имеет важное значение для общества и национальной экономики.

2. Теоретически обоснованы и получили экспериментальное подтверждение технические решения по сокращению времени послепускового прогрева ДВС, включающие установку дополнительного экрана радиатора жидкостной СО с фронта, обращенного к вентилятору; дополнительной теплоизоляции как радиатора, так и ДВС в целом, а также применением в первый период после пуска ДВС топливно-масляной смеси. На эти технические решения получены патенты РФ на изобретения.

3. В работе дано теоретическое обоснование целесообразности и возможности реструктуризации внешнего теплового баланса ДВС. Поскольку эффективность даже исправных термостатов невелика, то идея реструктуризации практически реализована дополнительным экранированием радиатора СО, что позволило уменьшить рассеивание тепла и сократить время прогрева ДВС до эксплуатационных температур. Как следствие, в условиях низких температур (от 0 до -30°С) время прибытия к месту вызова пожарных автоцистерн АЦ-40(130)63Б и АЦП-6/3-40(5557) может быть сокращено на 1,8 .2,0 минуты.

4. ПА выезжают на пожар в течение суток в случайные промежутки времени. Поэтому стало необходимым изучить динамику охлаждения ДВС после останова в условиях гаража. Для оценки изменения теплового состояния ДВС находящегося в гараже получены формулы для определения режима и темпов остывания ДВС. Экспериментально установлено, что уже через 2.3 часа пребывания ПА в гараже необходим интенсивный послепусковой прогрев ДВС. Для уменьшения темпов остывания требуется обеспечить более эффективную теплоизоляцию радиатора и ДВС в целом.

5. Реализация задач исследования позволит получить следующие социальный и экономический эффекты: одна минута среднестатистического пожара в 1999 году обошлась российскому обществу более чем 1,5 тыс. рублей полного ущерба. Кроме того, в масштабе страны сокращение времени прибытия оперативных расчетов всего на одну минуту могло бы спасти 1404 жизни (а на 1 сек -соответственно 23,4 чел) или в пересчете на 100 пожаров - 4,25 человек.

Расчетный годовой экономический эффект в эксплуатации от внедрения разработанных мероприятий на одну пожарную автоцистерну типа АЦ-40(130)63Б, находящуюся на боевом дежурстве в объектовой части УГПС ГУВД Свердловской области составил 1111, 82 руб.

В дальнейшем необходимо продолжить исследования по общему подогреву ПА и их двигателей в гаражах.

При эксплуатации ПА с двигателями ЗИЛ-130 и ЯМЭ-236 в условиях отрицательных температур рекомендуется:

1. В обязательном порядке утеплять чехлом не только облицовку радиатора, но и капот.

2. В гараже боевых машин осуществлять как общий подогрев ПА, так и местный подогрев ДВС тем, или иным способом.

3. Предусмотреть отключение вентилятора от ДВС.

4. В перспективе радиаторы ДВС оснастить дополнительными жалюзи / шторкой. В настоящее же время целесообразно все дизели ЯМЗ-236 дооборудовать дополнительным экраном радиатора (пластик, резинотекстиль, фанера или какого либо другой листовой материал), разместив последний в имеющемся зазоре между радиатором и кожухом вентилятора.

Библиография Савин, Михаил Александрович, диссертация по теме Пожарная и промышленная безопасность (по отраслям)

1. Серебренников Е.А. Пожарная безопасность как составная часть национальной безопасности России. Пожарная безопасность - 2000 комплексные решения, техника, оборудование, услуги. Специализированный каталог,- М.: Гротек, 2000. - 192с.

2. Пожитной С.В. Особенности эксплуатации пожарных автомобилей в зимний период // Проблемы деятельности ГПС регионов Сибири и Дальнего Востока. Материалы 1-ой Сибирской научно-практической конференции. Иркутск: ВИСИ МВД России, 1998. - 238с.

3. Пожары и пожарная безопасность в 1999г. Статистический сборник. Часть 2. Ресурсы пожарной охраны и показатели ее деятельности. -М.: ВНИИПО МВД России, 2000. 164с.

4. Боевой устав пожарной охраны (БУПО-95). Приказ МВД России от 05.07.1995 г. №257.

5. Наставление по технической службе ГПС МВД России. Приказ МВД России от 24.01.1996 г. № 34.

6. Андреев Ю.А., Амельчугов С.П. и др. Возникновение и предупреждение пожаров на объектах Сибири и Дальнего Востока // Сибирский вестник пожарной безопасности. 1999, № 1.

7. Бардышев О.А. Повышение эффективности эксплуатации строительной техники в зимних условиях. Л.: ЛДНТП, 1976. - 20с.

8. Микеев А.К. Пожар. Социальные, экономические, экологические проблемы. М.: Пожнаука, 1994. - 385с.

9. ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования. М.: Изд-во стандартов, 1991.

10. Крейч Д. Стоймость пожарной охраны. XVII Международныйсимпозиум. Варшава, 1989. - С.9. .22.

11. Об утверждении документов по государственному учету пожаров и последствий от них в Российской Федерации. Приказ МВД России от 30.06.1994 г. № 332.

12. Нормативы по пожарно-строевой подготовке. М.: ГУГПС МВД России, 1994.

13. Пожары и пожарная безопасность в 1998г. Статистический сборник. М.: ВНИИПО, 1999. - 239с.

14. Брушлинский Н.Н., Микеев А.К. и др. Совершенствование организации и управления пожарной охраной. М.: Стройиздат, 1986. - 152с.

15. Фирсов А.Г., Мешалкин Е.А. и др. Зонирование территории Российской Федерации по показателям обстановки с пожарами с учетом климатических факторов // Пожарная безопасность. 1998, № 2.

16. Мешалкин Е.А., Порошин А.А. и др. Анализ состояния обстановки с пожарами в природно-климатических районах России. Проблемы горения и тушения пожаров на рубеже веков. Материалы XV научно-практической конференции Ч.2.- М.: ВНИИПО МВД России, 1999.-244с.

17. Зыкова Г.Г. Продолжительность периодов с низкими температурами на Азиатской части СССР. JL: Гидрометеорологическое издательство, 1969. - 120с.

18. Ишков A.M., Григорьев Р.С. Эксплуатационная надежность автомобилей в зоне холодного климата (Западная Якутия). Сб. науч. тр. "Материалы и конструкции для техники Севера". Якутск: 1984. -92с.

19. Исаченко В.П., Осипова В.А. и др. Теплопередача. М.: Энергоиздат, 1981.-416с.

20. Москвин Е.В., Рыбаков К.В. и др. Применение метода подобия для оценки износа двигателей внутреннего сгорания. Томск, 1978. -77с.

21. Бурков В.В. Эксплуатация автомобильных радиаторов. М.: Транспорт, 1975. - 80с.

22. Капцев В.А., Ратнер Е.М. Характеристика некоторых городов Заполярья по материалам физиолого- гигиенической оценки влияния погоды и климата на тепловое состояние человека // Медицина труда и промышленная экология. 1996, № 5.

23. Кох П.И. Климат и надежность машин. М.: Машиностроение, 1981. - 175с.

24. Бурханов В.Ф. Опыт районирования Севера применительно к условиям эксплуатации бездорожного транспорта. Сб. "Техника для Севера". М.: Экономика, 1966. - 200с.

25. Лосавио Г.С. Эксплуатация автомобилей при низких температурах. -М.: Транспорт, 1973. 120с.

26. ГОСТ 16350-80. Климат СССР. Районирование и статистические параметры климатических факторов для технических целей,- М.: Изд-во стандартов, 1980.

27. Бажанов B.JI., Гольднблат И.И. и др. Расчет конструкций на тепловые воздействия. М.: Машиностроение, 1969. - 600с.

28. Великанов Д.П., Левин А. Автомобили северного исполнения // Автомобильный транспорт, 1971, № 11.

29. Бескин И.А., Корсак В.К. О технических требованиях к средствам наземного бездорожного транспорта для Севера / Техника для Севера. М.: Экономика, 1966. -200с.

30. Платонов В.Ф., Лепишвили P.P. Гусеничные и колесные транспортно-тяговые машины. -М.: Машиностроение, 1986. 296 с.

31. Краткий автомобильный справочник. М.: Транспорт, 1979. - 464с.

32. Роенко В.В. Исследование влияния подвижности жидкости на поперечную устойчивость автоцистерны. Автореф. дис. канд. техн. наук. -М.: 1980.

33. Исхаков Х.И. Теплозащита автотранспортных средств при воздействии тепловых потоков пожаров. Дис. д-ра техн. наук. М.: МВТУ, 1991.-400с.

34. Исхаков Х.И. Тепловой режим автомобиля. В кн.: Пожарная техника и тактика тушения пожаров. Сб. науч. тр.- М.: ВИПТШ МВД СССР, 1984.- 124с.

35. НПБ 163-97 Пожарная техника. Основные пожарные автомобили. Общие технические требования. Методы испытаний. М.: ГУГПС МВД России. 1997.

36. Яковенко Ю.Ф. Современные пожарные автомобили. М.: Стройиздат, 1988. - 352с.

37. Илиев И., Гришин А. Прогнозирование числа вызовов пожарных подразделений // Огнеборец, 1988. № 8

38. Брушлинский Н.Н., Соболев Н.Н. и др. Методы прогнозирования количества вызовов пожарных подразделений. В кн.: Организация,1. ТП Ах о 4ьтактика и техника тушения пожаров на объектах народного хозяйства. Сб. тр. М.: ВИПТШ МВД СССР, 1988. - 188с.

39. Брушлинский Н.Н., Соболев Н.Н. Анализ циклических изменений плотности потока вызовов пожарных подразделений в городе. В кн.: Организация, тактика и техника тушения пожаров на объектах народного хозяйства. Сб. тр. - М.: ВИПТШ МВД СССР, 1988. -188с.

40. Брушлинский Н.Н., Микеев А.К. и др. Совершенствование организации и управления пожарной охраной. М.: Стройиздат, 1986.- 152с.

41. Брушлинский Н.Н., Соболев Н.Н. Математическая модель расчета среднего радиуса выезда оперативных отделений пожарной охраны по вызовам. В кн.: Пожарная техника и пожаротушение на объектах народного хозяйства. - М.: ВИПТШ МВД СССР, 1986. -124с.

42. Устав службы пожарной охраны. Приказ МВД России от 05.07.1995г. №257.

43. Правила охраны труда в подразделениях ГПС МВД России. Приказ МВД России от 25.05.1996г. № 285.

44. Яковенко Ю.Ф., Кузнецов Ю.С. Техническая диагностика пожарных автомобилей.- М.: Стройиздат, 1989. 288с.

45. Пожарная техника и тушение пожаров. Экспресс-информация ВНИИПО МВД СССР. Серия 11, выпуск 1(71). М.: 1977.

46. Алешков М.В. Повышение работоспособности напорных рукавных линий при тушении пожаров в условиях низких температур. Дис. .канд. техн. наук М.: ВИПТШ МВД СССР, 1990. - 293с.

47. НПБ 101-95 Нормы проектирования объектов пожарной охраны. . -М.: ГУГПС МВД России. 1995.

48. СНиП 11-89-80* Генеральные планы промышленного предприятия. -М.: Госстрой СССР.

49. Ильясов P.M. Исследование с целью повышения тактико-технических возможностей пожарной техники при эксплуатации в условиях низких температур: Отчет о НИР (промежуточ.) / ИПЛ УПО УВД Иркутского облисполкрма Иркутск: 1986. 156с.

50. Куприянов В.П. Исследование пробегов пожарных автомобилей и обоснование периодичности замены масла в их трансмиссиях. Автореферат дис. канд. техн. наук. М.: 1977.

51. Файбишенко А.Д., Мартьянов И.М. Эксплуатация пожарной техники в зимних условиях. М.: Изд. МКХ РСФСР, 1960. - 104с.

52. Безбородько М.Д., Алексеев П.П. и др. Пожарная техника. М.: ВИПТШ МВД СССР, 1979. 436с.

53. Кузнецов Ю.С., Дяглев А.Ф. и др. Режимы испытания пожарных автомобилей на топливную экономичность. // Пожарная техника для защиты объектов народного хозяйства. Сб. научн. тр. ВНИИПО МВД СССР М.: 1987.

54. Донской А.П., Захаров М.П и др. Пожарные автомобили. Л.: Машиностроение, 1975.-336с.

55. Серегин Е.П., Босенко А.И. и др. Экономия горючего. М.: Воениздат, 1986. - 190с.

56. Микулин Ю.В., Карницкий В.В. и др. Пуск холодного двигателя при низкой температуре. М.: Машиностроение. 1971. - 216с.

57. Зыков С.А. Повышение эффективности использования силового агрегата сельскохозяйственного трактора с гидромеханической трансмиссией в зимних условиях. Дис. канд. техн. наук. Санкт-Петербург-Пушкин, 1997. - 165с.

58. Селиванов Н.И. и др. Оценка работоспособности дизелей подиапазонам температурного режима // Повышение эффективности использования сельскохозяйственных машин и агрегатов. Сб. науч. тр. Красноярск, КрасГАУ, 1992. С. 30.35.

59. Пасечников Н.С., Болгов И.В. Эксплуатация тракторов в зимнее время. М.: Россельхозиздат, 1972. - 144с.

60. Карпенко В.Г. Зимняя эксплуатация колесных и гусеничных машин. М.: Воениздат, 1958. - 258с.

61. Хиллиард Д.(ред), Спрингер Дж. Топливная экономичность автомобилей с бензиновыми двигателями. М.: Мир, 1988. - 504с.

62. Итинская Н.И., Кузнецов Н.А. Топливо, масла и технические жидкости: Справочник. М.: Агропромиздат, 1989. - 304с.

63. Гаврилов А.К. Системы жидкостного охлаждения автотракторных двигателей. М.: Машиностроение, 1966. - 164с.

64. Гурвич И.Б., Сыркин П.Э. и др. Эксплуатационная надежность автомобильных двигателей. -М.: Транспорт, 1994. 144с.

65. Резник Л.Г., Ромалис Г.М. и др. Эффективность использования автомобилей в различных условиях эксплуатации. М.: Транспорт, 1989.- 128с.

66. Белицкий М.С. Основы эксплуатационной долговечности двигателя автомобиля. Новочеркасск: Новочеркасский политехнический институт. 1961. - 170с.

67. Двигатели внутреннего сгорания: Теория порневых и комбинированных двигателей. Вырубов Д.Н., Иващенко Н.А. и др.; Под ред. Орлина А.С., Круглова М.Г. М.: Машиностроение, 1983. -372с.

68. Попов В.В. Исследование прогрева тракторного дизельного двигателя после пуска при эксплуатации в условиях низких температур окружающего воздуха. Автореф. дис. канд. тех. наук,1. Новосибирск, 1975. 20с.

69. Брук М.А., Виксмаи А.С. и др. Работа дизеля в нестационарных условиях. Д.: Агропромиздат. 1981. - 208с.

70. Юлдашев А.К. Изменение индикаторных показателей вихрекамерного тракторного дизеля при неустановившейся нагрузке. Автореф. дис. канд. тех. наук.- Ленинград-Пушкин, 1960. 20с.

71. Ждановский Н.С., Николаенко А.В. Надежность и долговечность автотракторных двигателей. Д.: Колос, 1981. - 295с.

72. Костин А.К., Пугачев Б.И. и др. Работа дизелей в условиях эксплуатации. Д.: Машиностроение, 1989. - 284с.

73. Гольд Б.В., Оболенский Е.П. и др. Прочность и долговечность автомобиля. М., Машиностроение, 1974. 328с.

74. Григорьев М.А., Пономарев Н.Н. Износ и долговечность автомобильных двигателей. М.: Машиностроение, 1976. 248с.

75. Смолин А.П. Эксплуатация строительных машин в зимних условиях. М.: Стройиздат., 1968. - 188с.

76. Рикардо Г. Быстроходные двигатели внутреннего сгорания. М.: Машгиз, I960.-412с.

77. Григорьев М.А. и др. Особенности изнашивания цилиндров автомобильных двигателей при работе на пониженных тепловых режимах. М.: Труды НАМИ, № 159. 1976,- 115с.

78. Хачиян А.С., Морозов К.А. и др. Двигатели внутреннего сгорания М.: Высшая школа, 1985. 311с.

79. Энглиш К. Поршневые кольца. Том 2. М.: Машгиз, 1963. - 368с.

80. Гаркави Н.Г., Аринченков В.И. и др. Эксплуатация смазочных, гидравлических и пневматических систем строительных машин в условиях Севера. Д.: 1979. - 112с.

81. ГОСТ 14846 81 Двигатели автомобильные. Методы стендовыхиспытаний. М.: Изд-во стандартов, 1984.

82. Микулин Ю.В. Смазка и износ двигателя при пусковом режиме в условиях положительных и отрицательных температур воздуха.// Энергомашиностроение. 1969, № 1.

83. Лосавио Г.С. Эксплуатация автомобилей при низких температурах. -М.: Транспорт, 1973. 120с.

84. Чудаков Е.А. Применение предварительного впрыска масла в целях снижения износа двигателя // Избранные труды. Т.2. М.: Издательство АН СССР, 1961. - 344с.

85. Патент Российской Федерации на изобретение от 27.02.1999 № 2126893 МКИ F 01 М 5/04 / Способ ускорения выхода двигателя транспортного средства на рабочий режим / Безбородько М.Д., Скоморохов А.И., Мичуров Г.М., Савин М.А.

86. Бородич A.M. Низкие температуры и топливная экономичность автомобиля // Автомобильная промышленность. 1988. № 10.

87. Жмудяк Л.М. Причины повышения КПД двигателей внутреннего сгорания при уменьшении температуры воздуха на впуске // Двигателестроение. 1989. - № 1.

88. Лейбзон З.И., Иванов П.А. Влияние температуры и влажности воздуха на эффективные показатели дизеля ЯМЭ-236 // Автомобильная промышленность. 1963. № 7.

89. ГОСТ 27435-87 Внутренний шум автотранспортных средств. Допустимые уровни и методы измерений. М.: Изд-во стандартов, 1987.

90. ГОСТ 27436-87 Внешний шум автотранспортных средств. Допустимые уровни и методы измерений. М.: Изд-во стандартов, 1987.

91. Мазур И.И., Молдаванов О.И. Курс инженерной экологии. М.:1. Высшая школа, 1999. 447с.

92. Протасов В.Ф. Экология, здоровье и охрана окружающей среды в России. М.: Финансы и статистика, 1999. - 672с.

93. Великанов Д.П. Автомобильный транспорт и окружающая среда / Известия Академии наук СССР. Энергетика и транспорт. 1979. № 6.

94. ГОСТ 17.2.203-87. Охрана природы. Атмосфера. Нормы и методы измерения содержания окиси углерода и углеводородов в отработавших газах автомобилей с бензиновыми двигателями. Требования безопасности. М.: Изд-во стандартов, 1987. - 7с.

95. ГОСТ 21393-75. Автомобили с дизелями. Дымность отработавших газов. Нормы и методы измерений. Требования безопасности. М.: Изд-во стандартов, 1986. - 5с.

96. Diesel soot: an exhausting problem / Peters W.C. // Fire Engineering. -1992. 145, № 3.

97. Звонов В.А. Токсичность двигателей внутреннего сгорания. -М.: Машиностроение, 1981. 160с.

98. Черненко В.А. Влияние технического состояния и режимовработы автомобилей на загрязнение окружающей среды. М.: МАДИ, 1981.

99. Хватов В.Н., Логинов Н.В. Пути снижения дымности отработавших газов автотракторных дизелей// Двигателестроение, 1991 № 5.

100. Безбородько М.Д., Терлецкий П.И. Эксплуатация пожарных автомобилей // Пожарное дело, 1993, № 1.

101. Гушев A.M. Пути уменьшения загрязнения окружающей среды двигателями пожарных автомобилей при их эксплуатации. Автореф. дис. канд. техн. наук. М.: 1991. -24с.

102. Великанов Д.П. Автомобильные транспортные средства. Эксплуатационные качества автомобилей и их измерители. М.: Транспорт, 1977. 326с.

103. Ильин В., Ложкин В. и др. Экологически чистый пожарный автомобиль реальность и перспектива. // Пожарное дело, 1997. № 9.

104. Осипов Г.И. Результаты исследования температурного поля двигателя пожарного автомобиля // Сб. науч. тр. М.: ВИПТШ МВД СССР, 1989.-247с.,

105. Ашаков А.П., Дяглев А.Ф., Кузнецов Ю.С. Условия эксплуатации и работоспособность пожарного автомобиля. В кн.: Организация тушения пожаров и аварийно-спасательных работ. Сб. тр. М.: ВИПТШ МВД СССР, 1990. - 224с.

106. Желваков Е.М., Безбородько М.Д. Как улучшить эксплуатацию автомобиля? // Пожарное дело. 1997, №11.

107. Безбородько М.Д. Куприянов В.П. и др. Пожарная техника. М.: ВИПТШ МВД СССР, 1989. 336с.

108. Афанасьев JLJL Повышение эффективности работы автомобильного транспорта. М.: Транспорт, 1977,- 123с.

109. Великанов Д.П. Избранные труды. Эффективность автомобильных транспортных средств и транспортной энергетики. М.: Наука, 1989.- 199с.

110. Чернов С.А., Кувшинов Я.И. Эксплуатация тракторов и автомобилей в зимних условиях. М.: Издательство МСХ РСФСР, 1963. - 80с.

111. Груздев Ю.И. Улучшение топливно-экономических показателей сельскохозяйственных тракторов. Ижевск: Удмуртия, 1988.- 126с.

112. Гулин С.Д., Шульгин В.В. и др. Аккумулирование теплоты отработавших газов // Автомобильная промышленность. 1994, № 3.

113. Робустов В.В., Певнев Н.Г. и др. Исследования ленточных электрических подогревателей моторного масла для автомобилей // Труды СибАДИ. Омск: Изд-во СибАДИ, 1998. - Вып.2, ч.1.

114. Кузнецов Ю.С., Навценя Н.В. и др. Концептуальный пожарный автомобиль 2000 // Проблемы горения и тушения пожаров на рубеже веков. Материалы XV науч.-практ. конф. - Ч. 2. ВНИИПО. -М.: 1999.-245 с.

115. Козлов B.C., Квайт С.М. и др. Особенности эксплуатации автотракторных двигателей зимой. JL: Колос, 1977. 159с.

116. Григорьев Б.А., Грибанов В.П. Оценка эффективности системы охлаждения двигателей автомобилей в дорожных условиях // Автомобильная промышленность, 1961, № 10о.а о

117. Романенко П.Н., Кошмаров Ю.А. и др. Термодинамика и теплопередача в пожарном деле. М.: ВИПТШ МВД СССР, 1978. 415с.

118. Бабкин Г.Ф., Дискин М.Е. и др. Автомобильный двигатель ЗИЛ-130. М., Машиностроение, 1973. - 264с.

119. Бурков В.В. Температурно-динамические качества тракторов и автомобилей. Л.: ЛСХИ, 1975. - 87с.

120. Bery Per-Sune, Udd Soren. Truck engine charge air cooling -experience trend and developments. SAE Technic Parer Series, 1983, № 831199.

121. Заявка на европейский патент № 0185009. Двигатель внутреннего сгорания с звукоизолирующей оболочкой. М. кл. F 02В 77/13, B60R 13/08, F 01Р 9/00, заявл. 03.12.85, опубл. 18.06.86. РИ "Изобретения стран мира". Выпуск 89. № 5. - М.: 1987. с. 15.

122. Гоц А.Н., Мацеренко И.П. и др. Тенденции развития автомобильных и транспортных средств за рубежом // Двигателестроение, 1991. № 9.

123. Егоренков Б.А. Капсулирование силового агрегата АТС: проблемы и перспективы // Автомобильная промышленность, 1986. № 8.

124. А.С. 895453 СССР, МКИ А 62с 33/00. Устройство для отогрева замерзших соединений пожарных рукавов / Г.С.Бурдман (СССР).

125. Кукис B.C. Оценка возможности утилизации энергииотработавших газов ДВС // Двигателестроение, 1990. № 10.

126. Заявка ФРГ 3931205 МКИ F 28 D 17/00; F 02 G 5/00 / Тепловой аккумулятор с гидроксидом бария / Р.Ж. 39 Двигатели внутреннего сгорания 1992. 4.39.119П.

127. Техническая справка № 11/484. Разработка предпосылок к утилизации тепла отработавших газов автомобильных двигателей. Утверждена заместителем директора НАМИ по научной работе Е.В. Шатровым 17.06.1988.

128. Мацкерле Ю. Современный экономичный автомобиль / Пер. с чешек. В.Б. Иванова М.: Машиностроение, 1987. - 320с.

129. Патент Российской Федерации от 15.02.1994г на изобретение № 2007592 МКИ F 01 Р 7/10 / Система жидкостного охлаждения теплового двигателя транспортного средства / Морозов А.Г., Савин М.А.

130. Патент Российской Федерации от 10.05.1997г на изобретение № 2078954 МКИ F 01 Р 7/10, 7/02 / Система охлаждения двигателя внутреннего сгорания / Савин М.А.

131. Петриченко P.M. Системы жидкостного охлаждения быстроходных двигателей внутреннего сгорания. JI.: Машиностроение, 1975. - 224с.

132. Кутателадзе С.С. Теплопередача и гидродинамическое сопротивление. Справочное пособие. М.: Энергоатомиздат, 1990. -367с.

133. Патент Российской Федерации на изобретение от 20.08.1998 № 2117781 МКИ F 01 Р 3/18 / Система жидкостного охлаждения двигателя внутреннего сгорания / Безбородько М.Д., Скоморохов А.И., Мичуров Г.М., Савин М.А.

134. Веденяпин Г.В. Общая методика экспериментального исследования и обработки опытных данных. М.: Колос, 1973. 199с.

135. ГОСТ 6616-74 Преобразователи термоэлектрические. Общие технические условия. М.: Изд-во стандартов, 1974.

136. Простов Н.И., Аверин Ю.Ф. и др. Техническое описание и инструкция по эксплуатации комплекта теплозащитной одежды для пожарных ТК-800. М.: ВНИИПО МВД СССР, 1987. - 23с.

137. НПБ 161-97 Специальная защитная одежда пожарных от повышенных тепловых воздействий. Общие технические требования. Методы испытаний. М.: ВНИИПО МВД России, 1998.

138. Кольченко В.И., Михеев В.И. и др. Работоспособность моторных установок для техники исполнения XJI и Т и система испытаний их в климатических камерах // Двигателестроение, 1990. №2.

139. Сабинин А.А. Автомобили с дизельными двигателями. М.: Высшая школа, 1970. - 224с.

140. Кригер A.M., Дискин М.Е. и др. Жидкостное охлаждение автомобильных двигателей. -М.: Машиностроение, 1985. 176с.

141. Румшинский JI.3. Математическая обработка результатов эксперимента. М.: Наука, 1973. - 192с.

142. Спичкин Г.В., Третьяков A.M. Практикум по диагностированию автомобилей. М.: Высшая школа, 1986. - 439с.

143. ГОСТ Р 50431-92 (МЭК 584 1 - 77) Термопары, часть 1. Номинальные статические характеристики преобразования. - М.: Издательство стандартов, 1993.

144. ГОСТ 1790 77 Проволока из сплавов хромель т, алюмель, копель и константан для термоэлектродов термоэлектрических преобразователей. Технические условия. - М.: Издательство стандартов, 1987.

145. Преображенский В.П. Теплотехнические измерения и приборы. М.: Энергия, 1978. - 704с.

146. Венцель С.В. Применение смазочных масел в двигателях внутреннего сгорания. М.: Химия, 1979. - 238с.

147. Скоморохов А.И., Савин М.А. Результаты исследований по ускорению послепускового прогрева двигателя внутреннего сгорания. // Пожарная безопасность, информатика и техника № 1 (15) -1996.

148. Алексеев В.П., Воронин В.Ф. и др. Двигатели внутреннего сгорания: Устройство поршневых и комбинированных двигателей. -М.: Машиностроение, 1990. -283с.

149. Пильщиков J1.M. Практикум по эксплуатации машинно-тракторного парка. М.: Колос, 1976. - 271с.

150. Манусаджянц О.И., Смаль Ф.В. Автомобильные эксплуатационные материалы. М.: Транспорт, 1989. - 271с.

151. Скоморохов А.И., Савин М.А. и др. Способ ускорения выхода двигателя транспортного средства на рабочий режим.

152. Конструирование и технология изготовления машин: Сборник научных трудов. Екатеринбург: УГТУ, 2000. 183с.

153. Скоморохов А.И., Мичуров Г.М., Савин М.А. Оценка приспособленности двигателя ЯМЗ 236 для эксплуатации в зимних условиях // Пожарная безопасность № 2 - 1998.

154. Страдомский М.В., Максимов Е.А. Оптимизация температурного состояния деталей дизельных двигателей. Киев.: Наукова думка, 1987. - 167с.

155. Костин А.К., Ларионов В.В. и др. Теплонапряженность двигателей внутреннего сгорания. Л.: Машиностроение, 1979. 222с.

156. Дьяконов В.П., Абраменкова И.В. MathCAD 7.0 в математике, физике и в Internet. М.: Нолидж, 1999. - 352с.

157. Инструкция по определению экономической эффективности новой пожарной техники, пожарно-профилактических мероприятий, изобретений и рационализаторских предложений в области пожарной защиты. М.: ВНИИПО МВД СССР. 1980. - 1 Юс.