автореферат диссертации по металлургии, 05.16.02, диссертация на тему:Извлечение цветных и редких металлов из отходов металлургического производства и нетрадиционных источников сырья с использованием кристаллизационных и сорбционных процессов

доктор технических наук
Черемисина,
Ольга Владимировна
город
Санкт-Петербург
год
2010
специальность ВАК РФ
05.16.02
Автореферат по металлургии на тему «Извлечение цветных и редких металлов из отходов металлургического производства и нетрадиционных источников сырья с использованием кристаллизационных и сорбционных процессов»

Автореферат диссертации по теме "Извлечение цветных и редких металлов из отходов металлургического производства и нетрадиционных источников сырья с использованием кристаллизационных и сорбционных процессов"

004663373

ЧЕРЕМИСИНА Ольга Владимировна

ИЗВЛЕЧЕНИЕ ЦВЕТНЫХ И РЕДКИХ МЕТАЛЛОВ ИЗ ОТХОДОВ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА И НЕТРАДИЦИОННЫХ ИСТОЧНИКОВ СЫРЬЯ С ИСПОЛЬЗОВАНИЕМ КРИСТАЛЛИЗАЦИОННЫХ И СОРБЦИОННЫХ ПРОЦЕССОВ

Специальность 05.16.02 - Металлургия черных, цветных

и редких металлов

Автореферат диссертации на соискание ученой степени доктора технических наук

2 3 СЕН 2010

САНКТ-ПЕТЕРБУРГ 2010

004608373

Работа выполнена в государственном образовательном учреждении высшего профессионального образования Санкт-Петербургском государственном горном институте имени Г.В.Плеханова (техническом университете).

Научный консультант -доктор химических наук, профессор

Ведущее предприятие - ООО «Институт Гипроникель».

Защита диссертации состоится 29 октября 2010 г. в 14 ч 30 мин на заседании диссертационного совета Д 212.224.03 при Санкт-Петербургском государственном горном институте имени Г.В.Плеханова (техническом университете) по адресу: 199106 Санкт-Петербург, 21-я линия, д.2, ауд.2203.

С диссертацией можно ознакомиться в библиотеке Санкт-Петербургского государственного горного института.

Автореферат разослан 7 сентября 2010 г.

Чиркст Дмитрий Эдуардович

Официальные оппоненты: доктор технических наук, профессор

Петров Георгий Валентинович,

доктор технических наук, профессор

Захаров Виктор Иванович,

доктор технических наук, профессор

Шнеерсон Яков Михайлович

УЧЕНЫЙ СЕКРЕТАРЬ диссертационного совета д-р техн. наук

В.Н.БРИЧКИН

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Истощение богатых месторождений редкоземельных и цветных металлов обуславливает вовлечение в промышленное производство все более бедное минеральное сырье и низкоконцентрированные природные и техногенные материалы. Проблемы рационального комплексного использования сырья, перехода на безотходные технологии его переработки, вторичного использования техногенных образований являются крайне актуальными. Переработка низкоконцентрированных природных и техногенных материалов, которыми являются промышленные технологические растворы, сточные воды химических и металлургических производств, почвы и грунты, загрязненные промышленными отходами, требует принципиально нового подхода к созданию эффективных технологий извлечения цветных и редких металлов. Комплексная переработка сырья и материалов имеет большое значение, как с точки зрения экономики, так и с точки зрения защиты окружающей среды. Необходимость рациональной комплексной переработки природных ресурсов диктуется с одной стороны необходимостью их экономного расходования, ограниченными запасами основного минерального сырья, с другой - все увеличивающимися темпами роста объема промышленного производства, сопряженного с загрязнением окружающей среды.

Проблема использования дополнительных источников редкоземельных и цветных металлов не решена в объеме, удовлетворяющем современную промышленность. Почти 82% балансовых запасов редкоземельных металлов (РЗМ) России приходится на содержащие РЗМ апатитовые руды, в том числе более 70% запасов связано с апатит-нефелиновыми рудами месторождений Хибинской группы в Мурманской области, где среднее содержание ЕЬп20з не превышает 0,4%. Из добываемых руд редкоземельные элементы не извлекаются, они остаются в хвостах обогащения, складированных в отвалах обогатительных фабрик. Попутное извлечение РЗМ ведется только на Ловозерском лопаритовом месторождении в Мурманской области. Его руды содержат редкоземельные металлы преимущественно цериевой группы. В рудах уникального российского месторождения Томторское, расположенного на северо-западе Республики Саха (Якутия), содержится в среднем от 12,8% (в корах выветрива-

ния) до 7,98% (в коренных рудах) РЗМ, в том числе 0,5% триоксида иттрия. Однако месторождение не разрабатывается и находится в нераспределенном фонде недр, так как располагается в районе с суровыми климатическими условиями и неразвитой инфраструктурой.

Из шестнадцати месторождений РЗМ, учитываемых Государственным балансом, к нераспределённому фонду, кроме Томтор-ского, относятся ещё четыре месторождения, в том числе крупные -Селигдарское и Белозиминское. В настоящее время единственный действующий источник сырья редкоземельных металлов - Ловозер-ский ГОК не может полностью обеспечить потребность страны в редкоземельных продуктах. Суммарная потребность на начало 2011 года составляет 10-12 тыс. тонн в год, которую можно удовлетворить только за счет переработки дополнительных нетрадиционных источников сырья редкоземельных металлов.

Полный технологический цикл современных предприятий металлургической отрасли, разнообразие перерабатываемого сырья, сложность и многостадийность производственных процессов обуславливают большой выход технологических и сточных вод, высокую степень их загрязненности цветными металлами, извлечение которых повышает рентабельность производства в целом.

Исследования по теории и технологии рационального использования нетрадиционного сырья, развитие и совершенствование существующей технологической базы отражены в трудах отечественных и зарубежных ученых: В.М. Сизякова, A.A. Берлина, И.Н. Белоглазова, Д.Э. Чиркста, Н.М. Телякова, Г .И. Дрозда, А.И. Окунева, Я.М. Шнеерсона, И. Пригожина, П. Гленсдорфа и др.

В то же время, изменения в сырьевой базе цветных и редких металлов, увеличение спроса на тяжелые металлы, ужесточение природоохранных мероприятий требуют дальнейшего развития технологии извлечения металлов из нетрадиционных источников сырья и низкоконцентрированных материалов металлургического производства. Разработка новых эффективных технологий рационального использования природных ресурсов и защиты окружающей среды определяет дальнейшее совершенствование теории и практики наукоемких технологий извлечения цветных и редкоземельных металлов из низкоконцентрированных природных и техногенных материалов.

Цель работы.

Разработка сорбционных и кристаллизационных технологий извлечения металлов из низкоконцентрированных природных и техногенных материалов химико-металлургических производств на основе исследований термодинамики и кинетики гетерогенных процессов и повышение эффективности переработки минеральных ресурсов с целью получения соединений РЗМ, очистки грунтов, сточных и природных вод от тяжелых металлов.

Идея работы.

Глубокое извлечение металлов из отходов металлургического производства и нетрадиционных источников сырья целесообразно путем интенсификации процесса массовой кристаллизации, использования сорбционных и ионообменных процессов с применением неорганических сорбентов природного происхождения.

Основные задачи исследования:

- создание термодинамической модели процесса извлечения фосфатов и фторидов РЗМ из производственных растворов продукционной и оборотной экстракционных фосфорных кислот (ПЭФК и ОЭФК);

- исследование кинетики кристаллизации фосфатов и фторидов лантаноидов из модельных фосфорнокислых растворов и растворов экстракционных фосфорных кислот (ЭФК);

- модификация сорбентов на основе железомарганцевых конкреций (ЖМК), определение термодинамических и кинетических характеристик ионного обмена тяжелых металлов на поверхности ЖМК;

- исследование термодинамики и кинетики ионного обмена катионов с высокой вытеснительной способностью для излечения тяжелых металлов из почв и грунтов.

Научные положения, выносимые на защиту:

1. С целью достижения высокой степени извлечения фосфатов и фторидов РЗМ из метастабильных растворов оборотных экстракционных фосфорных кислот с температурой 80-90°С и максимальной скорости роста кристаллов из продукционных экстракционных фосфорных кислот следует вводить затравочные фазы, обладающие структурным подобием с растущими кристаллами.

2. Для получения готового продукта фосфата РЗМ с содержанием не менее 80 масс. % из промышленных растворов экстракционных фосфорных кислот необходимо применение колонного кристаллизатора, создающего псевдокипящий слой твердой фазы и обеспечивающего предельное извлечение фосфатов РЗМ, что существенно снижает степень токсичности ЭФК, используемых для производства удобрений.

3. Новый сорбционный материал, полученный гранулированием железомарганцевых конкреций с бентонитовыми глинами, превышает по своим сорбционным характеристикам импортные аналоги, что обеспечивает эффективную сорбцию тяжелых металлов, независимо от механизма процесса; термодинамические характеристики сорбированных катионов и ионообменных равновесий являются решениями модифицированного уравнения Лэнгмюра.

4. Технологии кучного и конвективного выщелачивания тяжелых металлов из грунтов различного минерального состава, основанные на ионообменных процессах с использованием растворов солей, содержащих катионы с высокой вытеснитель-ной способностью, обеспечивают необходимую для данного типа грунта степень извлечения и возможность последующего введения грунтов в земельный оборот.

Научная новизна работы:

- получены термодинамические зависимости растворимости фосфатов и фторидов РЗМ в широком интервале температур и концентраций производственных растворов экстракционных фосфорных кислот;

- установлены значения констант скорости кристаллизации, энергий активации кристаллизации фосфатов и фторидов РЗМ; определена линейная скорость роста кристаллов, доля активной поверхности затравочных фаз;

- определен механизм кристаллизации фосфатов РЗМ на затравочных фазах, включающий стадию депротонирования дигидро-фосфатных комплексов;

- предложены принципы создания методики расчета констант ионного обмена, термодинамических характеристик сорби-

руемых катионов с помощью линейного модифицированного уравнения Лэнгмюра;

- определены механизмы и лимитирующие стадии сорбцион-ных процессов тяжелых металлов на ЖМК;

- термодинамически обоснован выбор элюента-вытеснителя, содержащего катионы с высоким комплексообразующим действием, для возможности извлечения из почв и грунтов тяжелых металлов на примере радионуклидов стронция-90 и цезия-137.

Практическая значимость работы:

- разработаны сорбционные и кристаллизационные технологии извлечения цветных и редкоземельных металлов, позволяющие расширить сырьевую базу и снизить давление на окружающую среду за счет уменьшения выбросов в водоемы и грунты производственных отходов металлургических предприятий;

- разработанная кристаллизационная технология извлечения фосфатов и фторидов РЗМ на затравочных матрицах из производственных растворов экстракционных фосфорных кислот не затрагивает основной технологии получения ЭФК, не требует применения дорогостоящих реагентов, громоздких установок и значительных капиталовложений. Кристаллизационная технология применима на всех производствах получения экстракционных фосфорных кислот по дигидратной схеме. В результате опытно-промышленных испытаний на ОАО «Балаковский химзавод» получен продукт с содержанием 85 масс. % безводного фосфата суммы РЗМ;

- разработана сорбционная технология очистки сточных вод металлургических предприятий с применением универсального сорбента, модифицированного на основе ЖМК, для извлечения цветных металлов и железа (2+), исключающая дополнительное применение окислителей. Получен фильтрующий сорбент на основе ЖМК, который прошел полупромышленные испытания по очистки сточных вод производственного предприятия ЗАО «НЛП «Биотех-прогресс» от различных форм железа на опытно-промышленной фильтрующей установке.

- разработана ионообменная технология кучного и конвективного выщелачивания, позволяющая извлекать из грунтов различного типа, отвалов и почв тяжелые металлы, относящиеся к классу опасности «А» по радионуклидам. Технология обеспечивает необ-

ходимую степень извлечения, не требует вывоза грунта, громоздких установок, специальных производственных помещений и может быть реализована на любом промышленном объекте непосредственно на месте загрязнения грунта.

Полученные теоретические и экспериментальные результаты работы рекомендованы к использованию в учебном процессе, при написании учебников и учебных пособий, в справочных изданиях.

Личный вклад автора заключается в выборе и обоснованности направлений исследования, организации, проведении и обобщении результатов экспериментов, разработке методик и технологических регламентов сорбционных и кристаллизационных технологий извлечения металлов из низкоконцентрированных отходов металлургического производства и нетрадиционного сырья. Все разработки осуществлялись под непосредственным руководством и при участии соискателя.

Методика исследований. В работе использованы современные методы химических и физико-химических анализов: объемный, весовой, спектральный, рентгенофазовый (РФА), рентгеноспек-тральный (РСА), фракционный, рН-метрический, потенциометриче-ский, ионометрический, спектрофотометрический, электронной спектроскопии, инфракрасной спектроскопии, минералогический, метод радиоактивных индикаторов с использованием изотопов Се144, Ей155, Бг90 и Се137, гамма-, бета- спектрометрический.

Экспериментальные исследования выполнены в лабораторном, укрупненно-лабораторном и опытно-промышленном масштабах. Теоретические исследования проведены с применением методов термодинамического анализа ионно-минеральных равновесий многокомпонентных систем ЭФК с использованием программы термодинамических расчетов «Гиббс».

Достоверность полученных результатов, научных исследований, выводов и рекомендаций подтверждаются сходимостью результатов прикладных и теоретических исследований, воспроизводимостью результатов анализов, проведенных различными физическими и физико-химическими методами. Результаты, полученные при исследовании модельных систем, подтверждены в опытно-промышленном эксперименте на ОАО «Балаковский химзавод»; опытно-промышленными испытаниями очистки сточных вод от ка-

тионов железа (2+) и (3+) в ЗАО «НПП «Биотехпрогресс»; натурными испытаниями по извлечению радионуклидов из грунтов территорий 5-го квартала Васильевского острова г. Санкт-Петербурга, Но-возыбковского района Брянской области, 30-километровой зоны бурта могильника в 15 км от 4-го блока ЧАЭС.

Публикации. По теме диссертационной работы опубликовано 73 печатных работы, из них 1 монография, 58 статей, в том числе 7 статей в журналах, рекомендованных ВАК Минобрнауки России, 4 патента.

Апробация работы. Материалы диссертации докладывались и обсуждались на конференциях: Third Internat. Symp. on Hydrothermal Reactions. Frunze. sept. 12-15, 1989; IV Internat. Symp. on Solubility Phenomens. Troy, New York, 1990; The 8th ISSP. Niigata, Japan, 1998; The 5th International conference «Ecology and Baltic sea region's countries development». Kronshtadt - Kotka, 2000; V Между-нар. конф. «Экология и развитие стран Балтийского региона». Кронштадт-Котка, 6-9 июля 2000 г.; VI Междунар. конф. «Экология и развитие Северо-Запада России». 11-16 июля 2001 г. СПб.; V Всероссийская конф. по проблемам науки и высшей школы. 8-9 июня 2001 г. СПб.; VIII Междунар. конф. «Экология и развитие общества». 23-28 июля 2003, СПб; Всероссийская научно-практическая конференция «Новые технологии в металлургии, химии, обогащении и экологии». СПб. 26-27 октября 2004; Всерос. конференция «Научные основы химии и технологии переработки комплексного сырья и синтеза на его основе функциональных материалов» КНЦ РАН, г. Апатиты, 8-11 апреля 2008; XII Международная научно-техническая конференция «Наукоемкие химические технологии-2008», Волгоград, 9-11 сентября; 58 Berg- und Hüttenmännischer Tag. Innovation in Geoscience, Geoengineering and Metallurgy. Technische Universität Bergakademie Freiberg. Freiberger Forschungshefte. 2007.; 59 Berg- und Hüttenmännischer Tag. Innovation in Geoscience, Geoengineering and Metallurgy. Technische Universität Bergakademie Freiberg. Freiberger Forschungshefte. 2008; XIII Всероссийский семинар «Термодинамика поверхностных явлений и адсорбции». 6-11 июля 2009 г., г. Плес; IV региональная конференция молодых ученых «Теоретическая и экспериментальная химия жидкофазных систем (Крестовские чтения). 17-20 ноября 2009, г. Иваново; Всерос-

сийская конференция «Исследование в области переработки и утилизации техногенных образований и отходов». 24-27 ноября, г. Екатеринбург, а также отражены в научных отчетах, проведенных в рамках следующих научно-технических программ:

- межведомственная научно-техническая программа (МНТП) Минобразования РФ «Научные исследования высшей школы по приоритетным направлениям науки и техники», 2000 -2004 г.г.;

- ведомственная научная программа (ВНП) Министерства образования и науки РФ «Развитие научного потенциала высшей школы», 2005-2008 г.г.;

- аналитическая ведомственная целевая программа (АВЦП) «Развитие научного потенциала высшей школы (2009- 2010 годы)».

Работа выполнена при поддержке следующих грантов: грант Министерства образования РФ отделения технических наук (МО РФ ТО) 5.1.189 2001-2002 г.; грант МО РФ ТО 2-05.1-3413 2003-2004 г; грант СПб в области научной и научно-технической деятельности 2003 г.

Объем и структура. Диссертационная работа состоит из введения, 6 глав, заключения, 2-х приложений, списка литературы из 300 наименований. Общий объем работы - 363 страницы, в том числе 109 таблиц, 63 рисунка.

Содержание работы.

Во введении обоснованы актуальность и направление исследования, сформулирована цель и определены основные решаемые задачи.

В первой главе дан краткий научно-технический анализ современного состояния и перспектив комплексного извлечения редкоземельных металлов в схеме переработки кольских апатитов, рассмотрены экспериментальные методы изучения роста кристаллов, описаны объекты исследования, методы анализа, обоснован выбор затравочной фазы кристаллизации РЗМ, разработана методика получения затравочных кристаллов фторидов и фосфатов РЗМ, исследованы формы кристаллизации лантаноидов из производственных растворов экстракционных фосфорных кислот, определены области ме-тастабильности пересыщенных фосфорнокислых растворов.

Во второй главе приведены результаты термодинамического расчета и экспериментальных исследований зависимости раство-

римости фосфата церия (III) и фосфата суммы РЗМ в модельных растворах ортофосфорной кислоты, в многокомпонентных промышленных фосфорнокислых растворах от температуры и концентрации фосфорной кислоты, оценен ионный состав растворов. Процессы кристаллизации и растворения фосфатов РЗМ описаны соответствующими реакциями.

Исследованы механизмы реакций кристаллизации фосфатов и фторидов лантаноидов в производственных и модельных растворах фосфорных кислот без и в присутствии затравочных фаз, определены лимитирующие стадии процесса кристаллизации. Найдена линейная скорость роста кристаллов, доля активной поверхности затравок.

В третьей главе исследованы параметры кристаллизационного извлечения фосфатов и фторидов РЗМ из пересыщенных растворов в динамических условиях, разработаны технология и оборудование опытно-промышленной установки для извлечения соединений РЗМ из растворов ЭФК, проведена технико-экономическая оценка внедрения технологии выделения соединений РЗМ из растворов ЭФК.

Четвертая глава посвящена сорбционному способу очистки природных и сточных вод с использованием модифицированного сорбента на основе железомарганцевых конкреций, приведены результаты прочности, динамической емкости и удельной поверхности неорганического сорбционного материала с окислительной функцией. Определены механизмы процесса сорбции катионов железа (2+), стронция, никеля (2+) на ЖМК, исследованы изотермы ионного обмена катионов Na+, Cu2+, Sr2+, Ni2+, Pb2+, Hg2+ на поверхности ЖМК, модифицировано уравнение Лэнгмюра для описания изотерм ионного обмена, решение которого позволяет установить направление смещения термодинамического равновесия и силу связи катионов с поверхностью сорбента. Проведены испытания сорбционного материала по очистке сточных вод от различных форм железа.

В пятой главе исследована термодинамика сорбционных процессов извлечения тяжелых радиоактивных металлов из почв и грунтов различного состава, подобраны селективные компоненты-вытеснители, приведены результаты кинетических исследований десорбции радионуклидов.

В шестой главе обоснованы технологии кучного и конвективного выщелачивания, представлена схема цепи аппаратов без и с регенерацией элюента и приведено технико-экономическое обоснование дезактивации грунтов территории 5-го квартала Васильевского острова г. Санкт-Петербурга.

Защищаемые положения диссертации

1. С целью достижения высокой степени извлечения фосфатов и фторидов РЗМ из метастабильных растворов оборотных экстракционных фосфорных кислот с температурой 80-90°С и максимальной скорости роста кристаллов из продукционных экстракционных фосфорных кислот следует вводить затравочные фазы, обладающие структурным подобием с растущими кристаллами.

Растворы оборотных и продукционных экстракционных фосфорных кислот, получаемых в результате сернокислотной переработки апатита при температурах 60-80 °С, пересыщены как фосфатами, так и фторидами РЗМ (содержание суммы РЗМ в ОЭФК 0,04-0,08 масс. %, в ПЭФК 0,09-0,12 масс. %), где РЗМ представлены металлами цериевой подгруппы с содержанием церия около 55 масс. %. Определены концентрационные и температурные области метастабильности пересыщенных по лантаноидам производственных фосфорнокислых растворов.

Выявлено, что в области метастабильности пересыщенных растворов кристаллизация не протекает спонтанно, но может быть проведена на поверхности затравки. В результате экспериментальных исследований в качестве затравочной твердой фазы выбраны фосфаты или фториды церия, а также суммы РЗМ (Ьа, Се, Рг, N(1, Бш, Ей, Ос1, Эу), синтезированных из нитратного промышленного раствора ТУ-95-120-84, получаемого на Горно-металлургическом заводе «Силмет» (г. Силламяэ).

Выработана методика синтеза затравочных кристаллов фосфатов и фторидов церия или РЗМ, повышающая поверхностную активность затравок и обеспечивающая фильтруемость получаемых осадков. Осаждение фосфатов и фторидов РЗМ проводится из разбавленных производственных нитратных растворов с содержанием лантаноидов 0,15-0,2 моль-дм"3 при рН=0,8-1,0 фосфорной или фто-роводородной кислотами с концентрациями 0,1 моль-дм'3 при тем-

пературе 20-30 "Сие последующей термической обработкой при 200-220 °С фосфатов церия или суммы РЗМ и при 100 °С фторидов церия или суммы РЗМ. По данной методике синтезированы фосфат церия, фосфат суммы РЗМ со структурой рабдофанита ЬпР040,5Н20 и фторид церия, фторид суммы РЗМ со структурой флюоцерита ЬпР3, где Ьп= Ьа, Се, Рг, N6, Бш, Ей, 0(1, Ву. При введении в горячий пересыщенный раствор ЭФК затравочных кристаллов синтезированных соединений РЗМ наблюдали 2-3 кратное понижение концентрации РЗМ в растворе (до 0,066 масс. % в ПЭФК и до 0,022 масс. % в ОЭФК ОАО «Фосфорит», г. Кингисепп).

По данным химического, термического и рентгенофазового анализов формы кристаллизации лантаноидов зависят от вида затравок: на поверхности затравки фосфата церия и фосфата РЗМ кристаллизуется 1л1Р040,5Н20 со структурой рабдофанита, на поверхности затравки фторида церия и фторида РЗМ кристаллизуется ЬпР3 со структурой флюоцерита.

Для нахождения оптимальных условий извлечения РЗМ из ОЭФК и ПЭФК изучена растворимость фосфата церия в растворе модельной фосфорной кислоты в зависимости от концентрации кислоты и температуры. Процесс растворения СеР04-0,5Н20 выразили уравнениями с учетом всех основных ионных равновесий. Решением системы уравнений химических реакций растворения СеР040,5Н20 и взаимодействия ионов при температурах 298,15-373,15К, включающей семь ионных равновесий, найдены константы ионных равновесий и оценен ионный состав раствора. Согласно термодинамическим расчетам при концентрации Н3РО4, моделирующей состав ПЭФК, 98 % церия (III) находится в растворе в виде дигидрофос-фатных комплексов, из них 62 % - в виде комплекса первой ступени координации Се(Н2Р04)2+, а 36 % - в виде комплекса второй ступени координации Се(Н2Р04)2+. С увеличением температуры и уменьшением концентрации Н3РО4 количество ионов Се(Н2Р04)2+ уменьшается до 54-55 %, а Се(Н2Р04)2+ растет от 36 до 44 %.

Поэтому стехиометрические коэффициенты реакции растворения СеР04-0,5Н20(3) аппроксимированы следующим уравнением:

СеР04 -0,5^0(5) + 2Н3Р04(ач) о 0,6[Се(Н2Р04)]2+(а<1) + т +0,4 [Се(Н2Р04)2]+(а<5) + 1,6Н2Р04-(ач) + 0,5Н20 ^ ;

Из значения теплового эффекта данной реакции ЛгН°298 =" 30,2 кДж-моль'1 найдена сумма теплот образования комплексов [Се(Н2Р04)]2+(ач) и [Се(Н2Р04)2]+(ач) и определены их термодинамические характеристики.

По уравнению изобары зависимости константы равновесия реакций образования комплексов [Се(Н2Р04)]2+(ач) и [Се(Н2Р04)2]+(ач) от температуры рассчитаны теплоты образования комплексов в интервале температур: 298,15-373,15К. Коэффициенты активности всех участвующих в реакции кристаллизации ионов рассчитаны по экспериментальному уравнению, описывающему зависимость в фосфорнокислых растворах коэффициентов активностей от ионной силы I в интервале 1 = 0-2 моль-кг'1.

Установлено, что растворимость СеР04-0,5Н20 уменьшается с ростом температуры и увеличивается с ростом концентрации Н3РО4. Термодинамический расчет подтвержден экспериментальными исследованиями. По расчетным и экспериментальным данным получена зависимость показателя растворимости рБ фосфата церия от рН раствора. Данная зависимость линейна и аппроксимируется следующим уравнением:

рБ = -^[8] = 2рН +1,04. (2)

Так как растворимость пропорциональна квадрату концентрации ионов водорода Э « [Н+]2 и практически весь церий находится в растворе в виде дигидрофосфатных комплексов, то одной из определяющих стадий кристаллизации является стадия отщепления двух протонов от дигидрофосфатных комплексов и процесс кристаллизации происходит по следующей реакции:

0,6[Се (Н2Р04)]2+(а<1) +0,4[Се(Н2Р04)2]+(а(1) + 0,5Н20 о

СеР04 -0,5Н20(5) + 0,4Н2Р04-(ач) + 2Н+( ад), ^ ;

энергия Гиббса которой составляет АгО°298= -13,48 кДж-моль"1.

Термодинамический расчет равновесного состава производственных растворов, выполненных по программе «Гиббс», алгоритм которой основан на минимизации энергии Гиббса заданной системы, показал, что при температурах 298,15 - 363,15 К и концентрациях

ОЭФК 2,03 - 2,44 моль-кг1 и ПЭФК и 5,05 - 5,71 моль-кг1 60 % растворенного церия находится в виде комплекса [Ce(H2P04)]2+(aq), а 40% - в виде комплекса [Се^^РО^] (aq).

Растворимость фосфата церия (III) в растворах ЭФК понижается с ростом температуры и повышается с ростом концентрации фосфорной кислоты, однако выше растворимости фосфата церия в модельной Н3РО4 при одинаковых температурах и концентрациях фосфорных кислот, что объясняется снижением концентрации собственно церия (III) в растворе при переходе от модельной кислоты к ЭФК (рис. 1).

Рис. 1 - Зависимость растворимости СеР04-0,5Н20 в модельном растворе (кривая 2) и в ПЭФК (кривая 1) от температуры при концентрации Н3РО4 5,78 моль-кг"1

Зависимость растворимости фосфатов суммы РЗМ от рН раствора согласуется с расчетными и экспериментальными данными, полученными для модельных растворов, и подтверждает реакцию кристаллизации (3) с отщеплением протонов от дигидрофос-фатных комплексов.

Растворы ЭФК пересыщены и по фториду лантаноидов. Растворимость фторидов лантаноидов увеличивается с ростом концентрации Н3РО4 и понижением температуры, однако для фторидов

РЗМ наблюдается практически одинаковая степень извлечения в твердую фазу из всех растворов ЭФК, и более слабая зависимость растворимости от температуры, чем для фосфатов. Из ПЭФК концентрацией вплоть до 7 моль-дм"3 можно извлечь РЗМ, используя фторидную затравку даже при 20 °С, в то время как при комнатной температуре выделение фосфатов лантаноидов не происходит и концентрационным пределом для извлечения фосфатов РЗМ из продукционных кислот являются значения 5,5-5,8 моль-дм"3.

Исследованы механизмы процесса кристаллизации фосфатов РЗМ на различных затравках и процесса спонтанной кристаллизации. Рассчитанные энергии активации Еакт демонстрируют многократное понижение активационного барьера при проведении кристаллизации на поверхности затравки:

Затравочная фаза: СеР04-0,5Н20 CaS04-0,5H20 отсутствует Es™ кДж-моль"1: 37,3±1,0 7,2±2,0 120,0±3,0

Таким образом, на образование зародышей кристаллов расходуется энергия 80-85 кДж-моль"1, что обуславливает метастабиль-ность пересыщенных растворов.

Высокое значение Еакт (120,0 кДж-моль"1) при проведении спонтанной кристаллизации без внесения затравочной фазы и увеличение константы скорости в 3 раза при возрастании температуры на 10 °С определяют лимитирующую стадию данного процесса, которой является химическая реакция депротонирования дигидрофос-фатных комплексов.

Более слабая зависимость константы скорости реакции от температуры при проведении процесса на поверхности рабдофанита и понижение Еакт до значения 37,3 кДж-моль'1 объясняются изменением лимитирующей стадии - процесс протекает в диффузионно-кинетическом режиме.

Кристаллизация на поверхности сульфата кальция протекает с меньшей скоростью, чем на собственной фазе, вследствие неполного соответствия граней растущих кристаллов и затравки. Меньшая по величине энергия активации при кристаллизации на поверхности сульфата кальция указывает на диффузионный механизм процесса.

Линейные зависимости логарифма концентрации лантаноидов во времени при 40- 90°С подтверждают первый порядок реакции кристаллизации соединений РЗМ на затравках из растворов ЭФК.

С ростом концентрации экстракционной фосфорной кислоты степень извлечения из нее фосфатов лантаноидов снижается, а скорость их кристаллизации, мало изменяясь в разбавленных растворах ОЭФК, резко возрастает при переходе к концентрированному раствору ПЭФК.

Из всей суммы лантаноидов полнее и быстрее всех кристаллизуется фосфат церия, так как степень извлечения и скорость кристаллизации из модельного раствора выше, чем из аналогичного по концентрации промышленного раствора и на затравке ЬпРОд О^НгО кристаллизация происходит вдвое медленнее, чем в аналогичном растворе на затравке СеР04-0,5Н20. Таким образом, лантаноиды изоморфно сокристаллизуются с церием с меньшими скоростями.

В ходе эксперимента получены данные об удовлетворительной сокристаллизации европия с фосфатом церия (III), коэффициент распределения европия KN(Eu) между твердой и жидкой фазами составил 158.

Примесь кальция в фосфорнокислых растворах не оказывает заметного влияния на ионные формы церия в растворе, с ростом концентрации кальция растворимость церия понижается незначительно. Анализ твердой фазы показывает, что в процессе кристаллизации фосфата РЗМ достигается значительная очистка конечного продукта от кальция.

На фторидных затравках наблюдается слабая зависимость скорости кристаллизации от температуры в интервале 60-80 °С, в то время как на фосфатной затравке снижение температуры с 80 до 60 °С приводит к уменьшению константы скорости кристаллизации в 2,2 раза, что соответствует формальной энергии активации процесса 37,3 кДж-моль"1.

Таким образом, установленные кинетические характеристики процесса кристаллизации и термодинамические зависимости растворимости фосфатов и фторидов церия и суммы РЗМ от концентрации ЭФК и температуры доказывают принципиальную возможность кристаллизации на затравочных фазах, обладающих структур-

ным подобием с растущими кристаллами из производственных растворов ЭФК.

Для достижения наибольшей степени извлечения фосфатов РЗМ предпочтительнее использовать растворы ОЭФК при температурах 80-90°С, максимальная скорость роста кристаллов фосфатов РЗМ наблюдается при использовании растворов ПЭФК, что не является столь существенным для скорости роста и полноты осаждения фторидов лантаноидов.

2. Для получения готового продукта фосфата РЗМ с содержанием не менее 80 масс. % из промышленных растворов экстракционных фосфорных кислот необходимо применение колонного кристаллизатора, создающего псевдокипящий слой твердой фазы и обеспечивающего предельное извлечение фосфатов РЗМ, что существенно снижает степень токсичности ЭФК, используемых для производства удобрений.

Экспериментальные исследования по кристаллизации соединений РЗМ на гранулированных затравках в динамических условиях при пропускании производственных растворов ЭФК через термостатированные колонки в непрерывном режиме «сверху вниз» позволили определить оптимальные параметры проведения технологического процесса кристаллизации в производственных условиях.

Полученные зависимости концентрации РЗМ в выходящем из колонки фосфорнокислом растворе от времени контакта твердой и жидкой фаз на различных затравках при разных температурах и концентрациях ЭФК представлены на рисунке 2.

В качестве характеристики кристаллизационного извлечения фосфата и фторида суммы РЗМ из ЭФК определены значения минимально допустимого времени контакта, ниже которого наблюдается проскок лантаноидов через колонку.

Как видно из графиков (кривые 1-2 и 3-4) минимальное время контакта твердой и жидкой фаз не зависит от параметров колонок и массы затравок, таким образом, выходные кривые становятся инвариантными.

Повышение температуры процесса способствует уменьшению минимального времени контакта твердой и жидкой фаз (кривые 1 и 3, 2 и 4 на рис. 2). С ростом температуры уменьшается

концентрация лантаноидов в растворе ЭФК на выходе из колонки в полном соответствии с понижением растворимости и возрастает выход РЗМ.

Рис. 2 - Зависимость концентрации РЗМ Свых (масс. %) в растворах ЭФК на выходе из колонки от времени контакта твердой и жидкой фаз t (мин) на затравке СеР04-0,5Н20:

1 - т=4,0 г, h=7,5 см, S=0,5 см2, Т=60°С, ОЭФК

2 - ш=16,1 г, h=14 см, S=1 см2, Т=60°С, ОЭФК

3 - ш=4,0 г, h=7,5 см, S=0,5 см2, Т=80°С, ОЭФК

4 - т=16,1 г, h=14 см, S=1 см2, Т=80°С, ОЭФК

5 - ш=4,0 г, h=7,5 см, S=0,5 см2, Т=80°С, ПЭФК,

где m - масса затравки, h, S - высота и сечение колонок.

Рост концентрации ЭФК (кривая 5 на рис. 2) приводит к повышению концентрации лантаноидов в растворе на выходе из колонки и к снижению tmin от 6,8 до 3,4 мин, что соответствует росту пропускной способности установки.

Замена затравки фосфата церия (III) на затравку фосфата суммы РЗМ приводит К резкому росту tmin ДО 17,2 мин (рис. 3).

Рис. 3 - Зависимость концентрации РЗМ СВЬ1Х (масс. %) в растворе ПЭФК на выходе из колонки на затравках 1 - СеР04-055Н20 и 2 - 1лгР040,5Н20 от времени контакта твердой и жидкой фаз I (мин) при Т = 80 °С

В случае кристаллизации на фосфате РЗМ из ПЭФК максимум скорости роста кристаллов соответствует времени 16-18 мин (кривая 2 на рис. 4).

Высокая степень извлечения РЗМ с использованием фторид-ных затравок соответствует времени контакта фаз 16-19 мин, сопоставимым с минимальным временем контакта фосфатных затравок, а максимальная скорость роста кристаллов достигается в диапазоне времени 1-11 мин.

На основании проведенных исследований кристаллизации соединений РЗМ в динамических условиях в промышленных растворах ЭФК и анализа технологических особенностей передела производства фосфорной кислоты предложена и испытана технология извлечения фосфатов суммы лантаноидов в условиях ОАО «Бала-ковский химзавод».

В результате испытаний получен продукт фосфатов РЗМ с содержанием до 85 масс. % без учета гидратной воды, что соответствует 55 % степени извлечения из растворов ОЭФК.

Рис. 4 - Зависимость скорости роста кристаллов v (мг-ч"1) на затравках СеР04-0,5Н20 (1) и ЬпРОд-О^НгО (2) от времени контакта твердой и жидкой фаз г (мин)

Технологическая схема передела кристаллизации соединений РЗМ при условии сохранения технико-экономических показателей действующего производства фосфорной кислоты представлена на рисунке 5.

В данной схеме извлечения фосфатов и фторидов суммы РЗМ рекомендован к применению пульсационный колонный аппарат непрерывного действия с транспортом затравки через поток ЭФК.

Конструкция колонного аппарата с модифицированными узлами и блоками, учитывая особенности технологического процесса кристаллизации соединений РЗМ, позволяет достичь предельного извлечения фосфатов и фторидов РЗМ из растворов ЭФК, используемых для производства минеральных удобрений. При огромных масштабах производства удобрений извлечение редких земель на промежуточной стадии процесса является рентабельным и вместе с тем, уменьшает загрязнение пахотной земли редкоземельными металлами.

1 - сборник; 2 - расходомер; 3 - теплообменник (90°С); 4 - кристаллизатор; 5 - секторный питатель; 6 - мембранный пульсатор; 7 - нижняя зона колонны; 8, 17 - шланговые вентили; 9 - накопительная емкость; 10 - виброгрохот; 11 - дробилка; 12 - экструдер; 13- сушилка (400°С), 14, 15 - ресиверы; 16-заглушка; Мь М2 -мембраны

В качестве готовой продукции, получаемой при выполнении технологической разработки, принят концентрат фосфатов РЗМ с содержанием ХЬпР04 « 80 масс. %, соответствующим следующему составу:

Се Рг Ш Бт Сё Ей Бу

«40% «5,0% «2,0% «2,6% «1,75% «0,5% «1%

Полученный продукт является готовой товарной продукцией, предназначенной для выделения индивидуальных РЗМ, применяемых в металлургической, электронной, нефтеперерабатывающей и других областях промышленности.

3. Новый сорбционный материал, полученный гранулированием железомарганцевых конкреций с бентонитовыми глинами, превышает по своим сорбционным характеристикам импортные аналоги, что обеспечивает эффективную сорбцию тяжелых металлов, независимо от механизма процесса; термодинамические характеристики сорбированных катионов и ионообменных равновесий являются решениями модифицированного уравнения Лэнгмюра.

Для очистки и извлечения из сточных и природных вод катионов цветных металлов и железа перспективно использование отечественных железомарганцевых конкреций, месторождение которых имеют достаточно большое распространение по площади дна Финского залива Балтийского моря, залегая в основном на поверхности дна.

Очистка сточных вод металлургических предприятий от различных форм железа, проводимая традиционным нейтрализацион-ным способом, не обеспечивает осаждение катионов железа (2+) до ПДК 0,1 мг-л"1 в виде малорастворимого гидроксида Бе(ОН)г в силу высокого значения рН гидратообразования (9,5) и требует дополнительное применение различных окислителей для перевода Ре2+ в степень окисления +3.

Использование модифицированного сорбента с окислительной функцией на основе ЖМК позволяет исключить дополнительное применение окислителей.

Вещественный состав ЖМК представлен гидроксидами железа и марганца, в изоморфной связи с которыми находятся цветные металлы. Характерной особенностью ЖМК является гигроскопичность, обусловленная развитой поверхностью материала (пористость составляет 58%).

Сравнения свойств отечественного и импортного пиролю-зитсодержащих материалов по удельной поверхности показали, что значение удельной поверхности у конкреций Финского залива более чем в 20 раз выше, чем у сорбента «Аквамандикс» европейского производства.

В виду неудовлетворительной прочности ЖМК проведена их модификация с бентонитом (коллоидными глинами), поливинилаце-татным клеем, жидким стеклом при различных соотношениях связующих материалов и температурах с последующим гранулированием. Модифицированный сорбент по прочности соответствует требованиям ГОСТ и по динамической емкости, определенной по количеству ионов железа (2+), поглощенных единицей массы воздушно-сухого сорбента, превышает более чем в 30 раз емкость импортных пиролюзитсодержащих материалов, что объясняется увеличением удельной поверхности в процессе размола и грануляции со связующим материалом.

Результаты сравнения прочностных характеристик и значений динамических емкостей до проскока 0,1 мг-дм'3 Fe (2+) отдельных модифицированных сорбентов и импортных аналогов представлены в таблице 1.

Несмотря на низкое содержание пиролюзита в конкрециях (в 3-4 раза ниже по сравнению с импортными аналогами), высокие значения удельной поверхности и динамической емкости объясняют высокую сорбционную способность железомарганцевых конкреций. Вторым фактором является наличие на поверхности конкреций затравок для осаждения гидроксида железа (III) в виде гетита и других железосодержащих минералов.

Преимуществами сорбента на основе модифицированных ЖМК являются: низкая насыпная масса, высокие значения пористости, удельной поверхности и высокой прочности, которые можно регулировать путём размалывания и связывания с бетонитом.

Таблица 1

Динамическая емкость до проскока 0,1 мг-дм"3 Бе (2+) и механическая прочность пиролюзитсодержащих сорбционных материалов

Образец Насыпная масса, кг-дм3 Динамическая емкость Прочность

Измельчаемость Истираемость

эквкг"1 гкг'1 % %

1 0,70 1,39 38,92 0,48 0,36

2 0,72 1,50 42,00 2,08 0,31

3 0,55 2,16 60,48 0,70 0,43

4 0,62 2,00 56,00 2,85 0,35

5 0,80 4,15 116,17 3,76 0,30

6 0,73 4,41 123,48 3,87 0,21

Пир. 0,67 0,74 20,72 <4 <0,5

Акв. 1,12 0,12 3,36 <4 <0,5

ЖМК1 0,35 2,41 67,48 7,4-9,8 1,3-1,4

ЖМК II 0,35 2,54 71,12 7,4-9,8 1,3 -1,4

1, 2 - ЖМК, модифицированные жидким стеклом при 15(РС и 900°С, 3, 4 - клеем ПВА при 15СРС и 25°С, 5, б - бентонитовыми глинами при 25°С, Пир. - пиролюзитсодержащий сорбент китайского производства, Акв.- пиролюзитсодержащий сорбент европейского производства «Аквамандикс», ЖМК I и II - сырые железомар-ганцевые конкреции.

В результате исследования кинетики сорбции катионов железа (2+), никеля (2+) и стронция (2+) на ЖМК определены механизмы и лимитирующие стадии процесса сорбции.

Высокое значение энергии активации Еакт=58,4 кДж-моль"1, первый порядок реакции, независимость констант скорости процесса от грансостава ЖМК и интенсивности перемешивания характери-

зуют лимитирующую стадию процесса сорбции железа (2+), которой является окислительно-восстановительная химическая реакция. Данную реакцию подтверждает рентгенофлуоресцентный анализ, который показал отсутствие катионов Мп2+ в отфильтрованных растворах после их контакта с сорбентом:

Мп02 + 2Бе2+ + 5Н20 => МпО + 2Ре(ОН)3! + 4Н+ (4)

Кинетические зависимости процесса сорбции катионов никеля и стронция интерпретированы уравнениями первого порядка, по которым вычислены значения констант скорости процесса сорбции во внешне- и внутридиффузионной областях. Константы скорости внешней диффузии катионов никеля и стронция незначительно возрастают с увеличением температуры, с уменьшением размера гранул ЖМК и с увеличением интенсивности перемешивания.

Значения констант скорости внутренней диффузии не зависят от температуры процесса, интенсивности перемешивания и незначительно снижаются с уменьшением размера гранул ЖМК. Низкие значения энергий активации процессов сорбции №2+ Я™, =7,43 кДж-моль"1 и Бг24 Еакт = 4,38 кДж-моль"1, первые порядки реакций определяют лимитирующие стадии процесса сорбции катионов стронция и никеля в режиме диффузии.

Для определения термодинамических характеристик сорбируемых катионов исследован процесс ионного обмена катионов Си2+, №2+, Со2+, РЬ2+, Бг2+ и из водных растворов при температуре 298 К на поверхности железомарганцевых конкреций, переведенных в натриевую форму. Изотермы сорбции катионов представлены на рисунке 6.

Термодинамическое описание ионного обмена для реакций:

2Ка+(Б) + Ме12+(ая) о 2Иа+(ая) + Ме^э)

проведено при допущении идеальности твердой фазы.

Для описания изотерм предложено новое модифицированное уравнение, аналогичное линейной форме уравнения Лэнгмюра:

У±^ауАп)

1 _ 1 л/У±(МсШх}I (5)

— н---— —. ,

ГМе:г* V ' ^ ' ^ЛЛг2*

где /С- кажущаяся константа ионного обмена, СНа+>СМе(2+ - равновесные концентрации натрия и обменивающихся катионов, у± -среднеионные коэффициенты активности, Гш2+ и Г „ - величины

сорбции ионов (моль-кг"1) и Гх = ™ Г^ + Г- величина предельной сорбции ионов, моль кг"1.

Рис. 6 - Изотермы сорбции сорбции катионов Бг2+, №2+, Со2+, Си2+, РЬ2+, Н§2+ на поверхности ЖМК: 1- Си2+, 2- №2+, 3- РЬ2+, 4- Hg2+, 5-Со2+, 6 - 8г2+; Г- величина сорбции ионов (моль-кг"1), Сш - равновесная концентрация ионов (моль-кг"1)

Решениями приведенного уравнения являются значения предельной сорбции обменивающихся ионов, кажущихся констант обмена ионов и ионных потенциалов г/г50Гь катионов, где г - заряд, г50Гь -радиус сорбированных катионов на ЖМК, которые приведены в таблице 2.

Таблица 2

Предельная сорбция обменивающихся ионов, константы ионного обмена и радиусы сорбированных ионов на поверхности сорбента

Обмени- Предельная Радиус сорби- Кажущаяся кон- г/ттЬ-10\

вающийся сорбция рованного ка- станта ионного пм'1

катион ионов, тиона, пм обмена /Меи

моль-кг'

0,49 217 1,90±0,15 9,2

0,90 160 2,00±0,21 12,5

РЬ2+ 0,87 163 4,50±0,18 12,3

Со2+ 0,67 186 4,65±0,30 10,8

№2+ 1,05 149 8,13±0,34 13,4

Си2+ 1,43 127 43,86±0,50 15,7

Экспериментально определенные радиусы катионов, сорбированных на ЖМК, имеют значения промежуточные между кристаллографическими радиусами катионов по Бокию и радиусами гидратированных катионов по Стоксу, поэтому являются средними эффективными радиусами частично дегидратированных ионов на поверхности сорбента. Их значения свидетельствуют о сильной дегидратации, высоком поляризующем действии катиона и более прочной связи катионов с отрицательно заряженными активными центрами поверхности ЖМК. Последние образуются на гидролизо-ванной поверхности пиролюзита вследствие диссоциации групп =Мп-ОН, значения рН изоэлектрического состояния марганцевых минералов в составе ЖМК равны 1,5 - 2,8.

Прочность кулоновского взаимодействия в двойном электрическом слое Штерна коррелирует с повышением ионного потенциала катионов в сорбированном состоянии и с понижением энергии Гиббса ионного обмена, это подтверждается составленным на основе полученных результатов рядом вытеснительной способности катионов:

Ыа+< 8г2+< Нё2+< РЬ2+< Со2+< №2+< Си2+<

298 5 0 -1,59±0,12 -1,7±0,2 -3,7±0,3 -3,8±0,3 -5,2±0,5 -9,3±0,5 кДж-моль"1

Вдоль ряда сорбционной способности катионов с понижением энергии Гиббса ионного обмена растет вытеснительная способность катионов. Термодинамические данные свидетельствуют о смещении ионообменного равновесия в сторону вытеснения ионов натрия с поверхности сорбента в раствор двухзарядными катионами, следовательно, железомарганцевые конкреции являются универсальным сорбентом цветных металлов и железа.

Испытания модифицированного материала на основе желе-зомарганцевых конкреций проведены на опытно-промышленной фильтрующей установке Киришского филиала научно-производственного предприятия ЗАО «НГ1П «Биотехпрогресс» по сорбционной технологии очистки сточных вод.

Проведенные испытания показали высокую эффективность обесцвечивания, очистки воды от различных форм железа и взвешенных веществ на полученной опытной партии сорбционного материала. Значения всех этих показателей лежат в диапазоне от 70 до 90 %.

Таким образом, применение данного сорбента позволяет исключить из общепринятых технологических схем ряд циклов, требующих дополнительных затрат, связанных с доокислением Бе2+ и удалением взвешенных веществ. Регенерация предлагаемого сорбента не требуется, так как в настоящее время проводится переработка ЖМК по технологии выщелачивания цветных и черных металлов сернистым ангидридом в растворах серной кислоты или пи-рометаллургическим способом. Модифицированный материал позволяет заменить импортные сорбенты, так как по высокой емкости и низкой себестоимости превосходит мировые аналоги.

4. Технологии кучного и конвективного выщелачивания тяжелых металлов из грунтов различного минерального состава, основанные на ионообменных процессах с использованием растворов солей, содержащих катионы с высокой вытеснитель-ной способностью, обеспечивают необходимую для данного типа грунта степень извлечения и возможность последующего введения грунтов в земельный оборот.

Тяжелые металлы находятся в почвах и грунтах в двух химических формах: в органической составляющей почвы в виде ком-

плексов с гуминовыми и фульвокислотами и в адсорбированном состоянии на поверхности минералов.

На основе термодинамических и кинетических исследований ионного обмена в почвах и грунтах разработана технология извлечения тяжелых радиоактивных металлов цезия-137 и стронция-90 путем ионного обмена их на катионы с высоким комплексообра-зующим действием и более сильной вытеснительной способностью, которая пропорциональна заряду катиона и обратно пропорциональна его радиусу в гидратированном состоянии. По этим параметрам в качестве иона-вытеснителя выбран катион Ре3+. В качестве элюента для извлечения из почв и грунтов радиоактивных металлов использован раствор хлорида железа (3+) концентрацией 0,010,2 моль-л"1 с эквимолярной добавкой хлорида аммония для стабилизации рН и в качестве неизотопного носителя для цезия-13 7. При концентрации ниже 0,01 моль-л"1 не достигается предельная адсорбция катионов железа (3+) почвой, а при концентрации выше 0,2 моль-л"1 катионы железа маскируются в форме хлоридных комплексов.

Дня термодинамического обоснования ионообменного способа изучена совместная сорбция катионов Бг2+ и Ее3+ на образце кембрийской голубой глины, переведенной в Н-форму.

Из уравнения (6) изотермы ионного обмена для реакции:

З8г2+301 + 2Ре3+ач о 38г2+ач + 2Ре3+8о1

1 ? ,, .¡К ■ Г ,,

^ У V ' (6)

вычислены величины предельной сорбции ионов Гм = 42,5 мэкв-кг"1,

кажущейся константы ионного обмена К= 12,14 и энергии Гиббса обмена катионов стронция на катионы железа (3+) на поверхности

глины Д(/029« = - 6,19 кДж-моль"1.

В уравнении (6) обозначены: Г 3+ и Г 2+ - величины сорбции катионов в совместном присутствии (моль-кг"1), Ги = ЗГ 3+ + 2Г 2+ - величина предельной сорбции катионов

(экв-кг"1), а и flft!( - активности катионов в растворе (моль-кг"1),

отнесенные к стандартной активности 1 моль-кг'1.

Отрицательное значение энергии Гиббса свидетельствует о смещении ионообменного равновесия в сторону вытеснения стронция из грунта растворами солей железа (3+).

Исследована кинетика десорбции радионуклидов 137Cs и 90Sr из образцов почв, отобранных в зонах отчуждения дер. Халеевичи Новозыбковского р-на Брянской обл. и бурта могильника в 15 км от 4-го блока ЧАЭС. Десорбция 137Cs и 90Sr из грунтов относится к реакции первого порядка.

По определенным значениям констант скорости десорбции, равным для цезия 0,072 сут*1, для стронция - 2,9-10"4 с'1, рассчитано время, необходимое для извлечения 70±5% 137Cs и 90±5% 90Sr, которые составляют 14 суток и, соответственно, 2,2 ч.

Экспериментально определены коэффициенты диффузии для реальных грунтов, которые по цезию составляют DCs -10 м2-с\ по стронцию - DSr ~ Ю"6 м2-с"', что указывает на более высокую подвижность 90Sr и более прочную фиксацию 137Cs.

Изучено извлечение радионуклидов элюирующими растворами трилонаБ (0,025-0,05 моль-л"1), азотной кислоты (0,10,5 моль-л"1) и хлорида железа (III) с эквимолярной добавкой хлорида аммония (0,02-0,04 моль-л"1) в динамических условиях на образцах грунта природно-техногенного происхождения, отобранных на территории бывшего военгородка № 6 5-го квартала Васильевского острова г. СПб, где выявлены 2 участка площадью 2500 м2, загрязненных выше предельно допустимой активности: по 137Cs до 5-10"5 Ки-кг"1, по 90Sr до 4-10~5 Ки-кг"1 с мощностью дозы до 10 мР час'1.

Удовлетворительная степень извлечения (96,8-97,8 %) получена при использовании в качестве элюента азотной кислоты, что объясняется высоким содержанием карбонатов грунте. Кислота хорошо вымывает стронций из карбонатных форм и с поверхности минералов, но значительно хуже из органокомплексов. С повышением содержания органической составляющей в грунте элюирую-щая способность кислоты по отношению к тяжелым металлам падает, тогда как вытеснительное действие растворов хлорного железа понижается в меньшей степени, поэтому раствор хлорида железа (III) является более универсальным элюентом.

Зависимость коэффициента очистки от соотношения объёма элюента к массе грунта V/m описана следующим эмпирическим уравнением:

К очитки = 1 + ' ~'' (7)

где коэффициент распределения DM./m не зависит в этом уравнении от V/m, а определяется только типом грунта или почвы и концентрацией промывного раствора.

По технологиям кучного и конвективного выщелачивания апробирован способ ионообменного извлечения тяжелых радиоактивных металлов стронция и цезия из грунтов на территории бывшего военного городка в 5-ом квартале Васильевского острова. Согласно нормативным документам требуется очистка грунта до удельной активности (1-2)-10'6 Ки-кг"1. По технологии кучного выщелачивания раствором хлорида железа (III) концентрацией 0,05 моль-л"' при отношении V/m=2,3 дм3-кг'1 получена степень очистки 60 %, по технологии конвективного выщелачивания при V/m=3,5 дм3-кг"1 степень очистки составила 90 %.

Количество циклов промывки п, необходимых для достижения заданного коэффициента очистки, и конечную удельную активность Ап рассчитывают по формулам (8) и (9):

_ ^ очистки )

18(1 (8)

где V; - объем промывного раствора в одном цикле, - коэффициент распределения металлов между грунтом и промывным раствором, т - масса промываемого грунта.

где Ао - исходная удельная активность грунта.

На рисунке 7 приведена технологическая схема цепи аппаратов ионообменного способа извлечения радиоактивных металлов из грунтов по технологиям кучного и конвективного выщелачивания с регенерацией промывного раствора.

П X <т> 2 Р

1 - Реактор для приготовления промывного раствора; 2 - Реактор конвективного выщелачивания; 3 - Отстойник для осаждения гидроксида железа; 4, 5 - Фильтр-пресс рамный; 6 - Емкость для регенерации железа; 7 - Реактор осаждения карбонатов стронция и цезия; 8 - Сушильный агрегат; 9 - Печь прокаливания; 10 - 15 - Насосы центробежные

Нейтрализацию промывных вод проводят содой до рН =8-9 с отделением отстоя. Осадок в виде карбонатов прокаливают до феррита кальция, содержащего стронций-90 и цезий-137 в качестве изоморфных включений, то есть в жестко фиксированной форме, и направляют на захоронение. Водную фазу направляют на установку радиационной очистки. Масса поступающего на захоронение отхода не превышает 10-20 кг на тонну грунта.

Технология кучного выщелачивания экономична, отвечает условию элюирования в наиболее эффективном динамическом режиме. Технология конвективного выщелачивания с перемешиванием фаз позволяет обеспечить любые заданные коэффициенты очистки и степень извлечения радиоактивных металлов для данного типа грунта.

ЗАКЛЮЧЕНИЕ

Представленная диссертация является научно-квалификационной работой, в которой разработаны физико-химические основы сорбционной и кристаллизационной технологий извлечения редких и цветных металлов из нетрадиционных источников сырья и низкоконцентрированных природных и техногенных материалов, позволяющие существенно снизить расход материальных ресурсов. Полученные научные результаты составляют основу эффективных технологий извлечения соединений РЗМ из нетрадиционного сырья - экстракционных фосфорных кислот, получаемых при переработке апатита и используемых в качестве удобрений, тяжелых металлов из техногенных отходов металлургических предприятий - почв, грунтов и сточных вод с использование модифицированного железомарганцевого сорбента, что существенно снижает степень токсичности производственных отходов металлургических предприятий.

Основные паучные и практические результаты работы.

1. Разработаны физико-химические основы сорбционной и кристаллизационной технологий извлечения тяжелых металлов из низкоконцентрированных нетрадиционных источников сырья и природных и техногенных материалов химико-металлургических производств.

2. Установлено, что растворы ОЭФК и ПЭФК, получаемые в результате сернокислотной переработки апатита при производст-

венных температурах на выходе из аппарата, пересыщены как фосфатами, так и фторидами РЗМ.

3. Выявлены концентрационные и температурные области метастабильности пересыщенных растворов, в которых доказано извлечение соединений РЗМ на затравках.

4. Разработана технология синтеза затравочных фаз, обладающих структурным подобием с растущими кристаллами. Доказано, что на поверхности затравки ЬпР04-0,5Н20 (Ln- сумма лантаноидов) кристаллизуется фосфат суммы РЗМ со структурой рабдо-фанита, на поверхности затравки ЬпБз - фторид РЗМ со структурой флюоцерита.

5. Проведен термодинамический расчет растворимости фосфата церия (III) и его равновесных ионных форм в модельном растворе фосфорной кислоты, а также компьютерный термодинамический расчет ионно-минеральных равновесий в многокомпонентных системах ЭФК, позволившие оценить ионный состав исследуемых растворов ЭФК в широком интервале температур 298,15-373,15К и концентраций 1,3-5,8 моль-кг*1 фосфорных кислот.

6. Описаны процессы кристаллизации и растворения фосфатов РЗМ соответствующими реакциями. Найдены величины энтальпий реакций растворения и кристаллизации фосфата лантаноидов в насыщенном растворе.

7. Рассчитаны стандартные термодинамические характеристики комплексных ионов [Се(Н2Р04)2+], [Се(Н2Р04)2+] и соединения СеР040,5Н20, отсутствующие в справочной литературе.

8. Установлены зависимости растворимости фосфатов и фторидов церия и РЗМ от температуры и концентрации фосфорнокислых растворов ПЭФК, ОЭФК, подтверждающие термодинамические расчеты.

9. Исследован механизм реакции кристаллизации фосфатов лантаноидов в производственных и модельных растворах без и в присутствии затравочных фаз: определена лимитирующая стадия данного процесса, которой является химическая реакция депротони-рования дигидрофосфатных комплексов вблизи поверхности твердой фазы.

10. Определена линейная скорость роста кристаллов, доля активной поверхности затравок. Выявлен оптимальный режим из-

влечения фосфатов и фторидов РЗМ на затравках, соответствующий максимальной скорости роста кристаллов.

11. Разработана технологическая схема с использованием колонного кристаллизатора, создающего псевдокипящий слой твердой фазы и обеспечивающего предельное извлечение РЗМ.

12. На основе грануляции ЖМК с бентонитовыми глинами получен прочный сорбционный материал с высокими значениями удельной поверхности и емкости.

13. Определены значения энергий активации процессов сорбции катионов железа (2+), стронция, никеля (2+) на неорганическом сорбенте, обладающим окислительной функцией.

14. Для описания изотерм ионного обмена модифицировано уравнение Лэнгмюра, решением которого являются значения констант ионного обмена катионов Со2+, Н§2+, РЬ2+, Си2+, Бг2*, №2+ на ЖМК, размеров «посадочных» площадок и радиусов сорбированных катионов, характеризующие силу связи катионов с поверхностью сорбента, а также значения энергий Гиббса ионного обмена, характеризующие направление смещения термодинамического равновесия.

15. Представлен ряд вытеснительной способности катионов на поверхности ЖМК, коррелирующий с понижением энергии Гиббса ионного обмена.

16. Исследована сорбционная способность ряда минералов. В порядке убывания обменной емкости, удельной поверхности и коэффициента распределения катионов стронция между водным раствором и твердой фазой минералы расположены в следующий ряд: каолинит > микроклин > доломит > альбит > олигоклаз, обосновывающий преимущественную фиксацию тяжелых металлов на глинистых минералах.

17. Изучена раздельная и совместная сорбция катионов

и Бе3+ на образцах кембрийской глины из водных растворов. Экспериментально определены значения константы и энергии Гиббса ионного обмена катионов стронция и железа (3+), доказывающие возможность ионообменного извлечения из грунта тяжелых металлов.

18. В качестве иона-вытеснителя выбран катион Бе3+ с большим зарядом, малым гидратированным радиусом и с высоким

комплексообразующим действием. Обоснован выбор элюента раствора хлорида железа (3+) и аммония и определен его концентрационный диапазон: 0,01-0,2 моль-л"1.

19. Разработана технологическая схема цепи аппаратов с регенерацией элюента. Предложены формулы для расчета коэффициентов очистки и числа промывных циклов растворов для достижения заданной степени очистки.

20. Проведены технико-экономические расчеты опытно-промышленных установок для извлечения цветных и редких металлов.

Основные публикации по диссертации:

1. Черемисина О.В. Теория и практика извлечения цветных, черных и редкоземельных металлов из промышленных растворов, стоков, природных вод и грунтов. СПб. СПГГИ (ТУ). 2008. 149 с.

2. Пат. 2340022 РФ. Способ получения сорбента для очистки среды/ С.З.Эль-Салим, Д.Э.Чиркст, О.В.Черемисина, А.А.Чистяков, И.Т.Жадовский. Опубл. 27.11.2008. Бюл. № 33.

3. A.c. 1656832 Способ извлечения фторидов редкоземельных элементов/ И.А.Дибров, Д.Э.Чиркст, О.В.Черемисина, И.В.Мелихов, В.Н. Рудин. Опубл. 15. 02. 1991.

4. Пат. 2298168 РФ. Анализатор мутных сред/ И.Н.Белоглазов, О.В.Черемисина, С.З.Эль-Салим, Д.С.Киреев. Опубл. 26.02.06 г. Бюл. № 12.

5. Пат. 2326951 РФ. Способ извлечения германия из шлаков переработки полиметаллических руд/ Д.Э.Чиркст, О.В.Черемисина, А.А.Чистяков, И.Т.Жадовский. Опубл. 20.11.2006 г. Бюл. № 17.

6. Черемисина О.В. Кинетика кристаллизационных процессов соединений редкоземельных металлов на затравочных фазах. Цветные металлы. 2009 г. № 10. С. 47-52.

7. Черемисина О.В. Опытно-промышленная установка для извлечения соединений редкоземельных металлов из производственных растворов. Цветные металлы. 2009 г. № 12. С. 45-52.

8. Черемисина О.В. Термодинамика кристаллизации фосфатов редкоземельных металлов из растворов ортофосфорной кислоты / Д.Э. Чиркст, О.В.Черемисина, М.В.Иванов, И.Т.Жадовский, A.A. Чистяков // Цветные металлы. 2006. № 11. С. 33-41.

9. Черемисина О.В. Гидрометаллургический способ получения чистых оксидов цинка и германия из шлаков медно-свинцового производства / Д.Э. Чиркст, О.В.Черемисина, A.A. Чистяков// Известия вузов. Цветная металлургия. 2008. № 5. С. 37-43.

10. Черемисина О.В. Изучение сорбции германия, цинка и свинца на анионите / A.A. Чистяков, Д.Э. Чиркст, О.В.Черемисина // Цветные металлы. № 6. 2009. С. 93-99.

11 .Черемисина О.В. Горный институт - колыбель первой в России химической научной школы / Д.Э. Чиркст, О.В.Черемисина, Т.Е. Литвинова // Цветные металлы. 2003. № 10. С. 4 - 8.

12. Черемисина О.В. Термодинамика гетерогенных процессов в гидрометаллургии и экологии / Д.Э. Чиркст, О.В.Черемисина, Т.Е. Литвинова // Цветные металлы. 2003. № 7. С. 106 - 111.

13.Черемисина О.В. Исследование кристаллизации фосфата церия в присутствии фосфата кальция. / И.А. Дибров, Д.Э. Чиркст, О.В.Черемисина, И.В.Мелихов, В.Н. Рудин//Журнал прикладной химии. 1990. Т. 63. № 9. С. 1970-1976.

14. Черемисина О.В. Некоторые закономерности кристаллизации фосфата церия (III) из фосфатных растворов / Д.Э. Чиркст, И.В. Мелихов, И.А. Дибров, О.В. Черемисина // Журнал прикладной химии. 1990. Т. 63. № 9. С. 2044-2047.

15. Черемисина О.В. Формы кристаллизации лантаноидов из экстракционной фосфорной кислоты / Д.Э. Чиркст, О.В.Черемисина, И.В. Мелихов, Л.Н. Сыркин, К.Н. Чалиян // Журнал прикладной химии. 1991. № 12. С. 2576-2581.

16. Черемисина О.В. Растворимость фосфата церия (III) в фосфорной кислоте / Д.Э.Чиркст, И.А.Дибров, О.В. Черемисина, И.В. Мелихов // Журнал физической химии. 1991. Т. 65. № 8. С.2180-2183.

17. Черемисина О.В. Изучение растворимости фосфата и фторида лантаноидов в фосфорнокислых растворах сложного солевого состава / Д.Э.Чиркст, К.Н.Чалиян, О.В. Черемисина// Журнал прикладной химии. 1993. Т. 66. № 9. С. 1927-1933.

18.Черемисина О.В. Кинетика кристаллизации фосфатов и фторидов лантаноидов из экстракционной фосфорной кислоты/ И.А. Дибров, Д.Э. Чиркст, О.В.Черемисина// Журнал прикладной химии. 1999. Т. 72. № 5. С. 739-744.

19.Черемисина О.В. Извлечение редких металлов и радионуклидов из бедного сырья и грунтов/ Д.Э. Чиркст, О.В .Черемисина, Т.Е.Литвинова// Записки Горного института. 2001. Т. 147. С. 186193.

20. Черемисина О.В. Опытная технология дезактивации грунтов, загрязненных радионуклидом стронцием-90 / Д.Э. Чиркст, О.В.Черемисина, Т.Е. Литвинова, М.И. Стрелецкая // Радиохимия. 2001. Т. 43. №5. С. 575-478.

21 .Черемисина О.В. Поведение цезия в процессе дезактивации грунта 5-го квартала Васильевского острова / Д.Э. Чиркст, О.В.Черемисина, Т.Е. Литвинова, М.И. Стрелецкая, М.В. Иванов // Радиохимия. 2002. Т. 44. С. 378-381.

22. Черемисина О.В. Физико-химическое обоснование дезактивации 5-го квартала Васильевского острова Санкт-Петербурга от загрязнения стронцием-90 / Д.Э. Чиркст, О.В .Черемисина, Т.Е. Литвинова, М.В. Иванов //Записки Горного института. 2003. Т. 154. С. 32-37.

23. Черемисина О.В. Определение поверхности минералов методами сорбции метиленового голубого и тепловой десорбции аргона/ Д.Э. Чиркст, О.В. Черемисина, И.С. Красоткин, М.И.Стрелецкая, М.В.Иванов // Журнал прикладной химии. 2003. Т. 76. № 4. С. 687 - 689.

24. Черемисина О.В. Термодинамическое исследование сорбции катионов железа (3+) на глине / Д.Э.Чиркст, О.В. Черемисина, Т.Е.Литвинова, М.В.Иванов, Н.А.Мироненкова // Журнал прикладной химии. 2003. Т. 76. № 6. С. 922 - 925.

25. Черемисина О.В. Изотерма сорбции катионов стронция на глине / Д.Э.Чиркст, О.В. Черемисина, М.В.Иванов, H.A. Мироненкова// Журнал прикладной химии. 2003. Т. 76. № 5. С. 755-758.

26. Черемисина О.В. Изотерма обмена ионов стронция и железа (3+) на глине/Д.Э.Чиркст, О.В.Черемисина, Т.Е.Литвинова, М.В. Иванов // Журнал прикладной химии. 2004. Т. 77. С. 580-582.

21 .Черемисина О.В. Сорбция железа (2+) железомарганце-выми конкрециями / Д.Э. Чиркст, О.В.Черемисина, М.В.Иванов, И.Т. Жадовский //Журнал прикладной химии. 2005. Т. 78. №4. С. 599-605.

28. Черемисина О.В. Изотерма обмена катионов никеля и натрия на железомарганцевых конкрециях/ Д.Э. Чиркст, О.В.Черемисина, М.В. Иванов, A.A. Чистяков, И.Т. Жадовский // Журнал прикладной химии. 2006. Т. 79. № 7. С. 1101-1305.

29. Черемисина О.В. Термодинамический расчет растворимости фосфатов редкоземельных металлов при различной температуре и концентрациях ортофосфорной кислоты / О.В.Черемисина, Д.Э. Чиркст// Записки Горного института. 2006. Т. 169. С. 219-227.

30.Черемисина О.В. Изотерма обмена катионов стронция и натрия на железомарганцевых конкрециях / Д.Э. Чиркст, О.В. Черемисина, М.В. Иванов, И.Т. Жадовский // Журнал прикладной химии. 2006. Т. 79. №3. С. 374-377.

31. Черемисина О.В. Кинетика сорбции катионов никеля же-лезомарганцевыми конкрециями / Д.Э. Чиркст, О.В. Черемисина, М.В. Иванов, A.A. Чистяков, И.Т. Жадовский // Известие вузов. Химия и хим. технология. 2006. Т. 49. № 11. С. 81 - 86.

32.Cheremisina О. Thermodynamic probe of dissolubility of a phosphate of cerium (III) at different temperatures and concentrations orthophosphates acids. Technische Universität Bergakademie Freiberg. Freiberger Forschungshefte. 2007. S. 169-172.

33.Черемисина О.В. Кинетика сорбции катионов стронция железомарганцевыми конкрециями / Д.Э. Чиркст, О.В.Черемисина, A.A. Чистяков, И.Т. Жадовский // Известия вузов. Химия и хим. технология. 2008. Т. 51. № 3. С. 40-45.

34. Черемисина О.В. Влияние температуры на сорбцию германия на анионите / Д.Э. Чиркст, A.A. Чистяков, О.В. Черемисина//Журнал физической химии. 2008. Т. 82. №12. С. 2382-2387.

35 .Cheremisina О. Deactivation ground a method of an ionic exchange. Technische Universität Bergakademie Freiberg. Freiberger Forschungshefte. 2008. S. 148-152.

36. Черемисина О.В. Изотерма обмена катионов натрия и меди на железомарганцевых конкрециях / Д.Э. Чиркст, О.В.Черемисина, М.В. Иванов, A.A. Чистяков, И.Т. Жадовский // Журнал прикладной химии. 2009. Т. 82. № 2. С. 238-242.

РИЦСПГГИ. 19.07.2010. 3.451 T. 100 экз. 199106 Санкт-Петербург, 21-я линия, д.2

Оглавление автор диссертации — доктор технических наук Черемисина, Ольга Владимировна

Введение 2010 год, диссертация по металлургии, Черемисина, Ольга Владимировна

Заключение диссертация на тему "Извлечение цветных и редких металлов из отходов металлургического производства и нетрадиционных источников сырья с использованием кристаллизационных и сорбционных процессов"

БиблиографияЧеремисина, Ольга Владимировна, диссертация по теме "Металлургия черных, цветных и редких металлов"